
FEDERATED OPTIMIZATION IN HETEROGENEOUS NETWORKS

Tian Li 1 Anit Kumar Sahu 2 Manzil Zaheer 3 Maziar Sanjabi 4 Ameet Talwalkar 1 5 Virginia Smith 1

ABSTRACT

Federated Learning is a distributed learning paradigm with two key challenges that differentiate it from traditional

distributed optimization: (1) significant variability in terms of the systems characteristics on each device in

the network (systems heterogeneity), and (2) non-identically distributed data across the network (statistical

heterogeneity). In this work, we introduce a framework, FedProx, to tackle heterogeneity in federated networks.

FedProx can be viewed as a generalization and re-parametrization of FedAvg, the current state-of-the-art

method for federated learning. While this re-parameterization makes only minor modifications to the method

itself, these modifications have important ramifications both in theory and in practice. Theoretically, we provide

convergence guarantees for our framework when learning over data from non-identical distributions (statistical

heterogeneity), and while adhering to device-level systems constraints by allowing each participating device to

perform a variable amount of work (systems heterogeneity). Practically, we demonstrate that FedProx allows

for more robust convergence than FedAvg across a suite of realistic federated datasets. In particular, in highly

heterogeneous settings, FedProx demonstrates significantly more stable and accurate convergence behavior

relative to FedAvg—improving absolute test accuracy by 22% on average.

1 INTRODUCTION

Federated learning has emerged as an attractive paradigm

for distributing training of machine learning models in net-

works of remote devices. While there is a wealth of work

on distributed optimization in the context of machine learn-

ing, two key challenges distinguish federated learning from

traditional distributed optimization: high degrees of systems

and statistical heterogeneity1 (McMahan et al., 2017; Li

et al., 2019).

In an attempt to handle heterogeneity and tackle high com-

munication costs, optimization methods that allow for lo-

cal updating and low participation are a popular approach

for federated learning (McMahan et al., 2017; Smith et al.,

2017). In particular, FedAvg (McMahan et al., 2017) is

an iterative method that has emerged as the de facto opti-

mization method in the federated setting. At each iteration,

FedAvg first locally performs E epochs of stochastic gra-

1Carnegie Mellon University 2Bosch Center for Artificial Intel-
ligence 3Goolge Research 4Facebook AI 5Determined AI. Corre-
spondence to: Tian Li <tianli@cmu.edu>.

Proceedings of the 3
rd MLSys Conference, Austin, TX, USA,

2020. Copyright 2020 by the author(s).
1Privacy is a third key challenge in the federated setting. While

not the focus of this work, standard privacy-preserving approaches
such as differential privacy and secure multiparty communication
can naturally be combined with the methods proposed herein—
particularly since our framework proposes only lightweight algo-
rithmic modifications to prior work.

dient descent (SGD) on K devices—where E is a small

constant and K is a small fraction of the total devices in

the network. The devices then communicate their model

updates to a central server, where they are averaged.

While FedAvg has demonstrated empirical success in het-

erogeneous settings, it does not fully address the underlying

challenges associated with heterogeneity. In the context

of systems heterogeneity, FedAvg does not allow partici-

pating devices to perform variable amounts of local work

based on their underlying systems constraints; instead it

is common to simply drop devices that fail to compute E
epochs within a specified time window (Bonawitz et al.,

2019). From a statistical perspective, FedAvg has been

shown to diverge empirically in settings where the data is

non-identically distributed across devices (e.g., McMahan

et al., 2017, Sec 3). Unfortunately, FedAvg is difficult to

analyze theoretically in such realistic scenarios and thus

lacks convergence guarantees to characterize its behavior

(see Section 2 for additional details).

In this work, we propose FedProx, a federated optimiza-

tion algorithm that addresses the challenges of heterogene-

ity both theoretically and empirically. A key insight we

have in developing FedProx is that an interplay exists

between systems and statistical heterogeneity in federated

learning. Indeed, both dropping stragglers (as in FedAvg)

or naively incorporating partial information from stragglers

(as in FedProx with the proximal term set to 0) implicitly

increases statistical heterogeneity and can adversely impact

Federated Optimization in Heterogeneous Networks

convergence behavior. To mitigate this issue, we propose

adding a proximal term to the objective that helps to improve

the stability of the method. This term provides a principled

way for the server to account for heterogeneity associated

with partial information. Theoretically, these modifications

allow us to provide convergence guarantees for our method

and to analyze the effect of heterogeneity. Empirically, we

demonstrate that the modifications improve the stability

and overall accuracy of federated learning in heterogeneous

networks—improving the absolute testing accuracy by 22%

on average in highly heterogeneous settings.

The remainder of this paper is organized as follows. In Sec-

tion 2, we provide background on federated learning and

an overview of related work. We then present our proposed

framework, FedProx, in Section 3, and derive convergence

guarantees for the framework accounting for both statistical

and systems heterogeneity in Section 4. Finally, in Section 5,

we provide a thorough empirical evaluation of FedProx on

a suite of synthetic and real-world federated datasets. Our

empirical results help to illustrate and validate our theoreti-

cal analysis, and demonstrate the practical improvements of

FedProx over FedAvg in heterogeneous networks.

2 BACKGROUND AND RELATED WORK

Large-scale machine learning, particularly in data center

settings, has motivated the development of numerous dis-

tributed optimization methods in the past decade (see, e.g.,

Boyd et al., 2010; Dekel et al., 2012; Dean et al., 2012;

Zhang et al., 2013; Li et al., 2014a; Shamir et al., 2014;

Reddi et al., 2016; Zhang et al., 2015; Richtárik & Takáč,

2016; Smith et al., 2018). However, as computing substrates

such as phones, sensors, and wearable devices grow both in

power and in popularity, it is increasingly attractive to learn

statistical models locally in networks of distributed devices,

in contrast to moving the data to the data center. This prob-

lem, known as federated learning, requires tackling novel

challenges with privacy, heterogeneous data and devices,

and massively distributed networks (Li et al., 2019).

Recent optimization methods have been proposed that are

tailored to the specific challenges in the federated setting.

These methods have shown significant improvements over

traditional distributed approaches such as ADMM (Boyd

et al., 2010) or mini-batch methods (Dekel et al., 2012) by

allowing both for inexact local updating in order to balance

communication vs. computation in large networks, and for

a small subset of devices to be active at any communication

round (McMahan et al., 2017; Smith et al., 2017). For exam-

ple, Smith et al. (2017) propose a communication-efficient

primal-dual optimization method that learns separate but

related models for each device through a multi-task learning

framework. Despite the theoretical guarantees and practical

efficiency of the proposed method, such an approach is not

generalizable to non-convex problems, e.g., deep learning,

where strong duality is no longer guaranteed. In the non-

convex setting, Federated Averaging (FedAvg), a heuristic

method based on averaging local Stochastic Gradient De-

scent (SGD) updates in the primal, has instead been shown

to work well empirically (McMahan et al., 2017).

Unfortunately, FedAvg is quite challenging to analyze due

to its local updating scheme, the fact that few devices are

active at each round, and the issue that data is frequently

distributed in a heterogeneous nature in the network. In par-

ticular, as each device generates its own local data, statistical

heterogeneity is common with data being non-identically

distributed between devices. Several works have made steps

towards analyzing FedAvg in simpler, non-federated set-

tings. For instance, parallel SGD and related variants (Zhang

et al., 2015; Shamir et al., 2014; Reddi et al., 2016; Zhou &

Cong, 2018; Stich, 2019; Wang & Joshi, 2018; Woodworth

et al., 2018; Lin et al., 2020), which make local updates

similar to FedAvg, have been studied in the IID setting.

However, the results rely on the premise that each local

solver is a copy of the same stochastic process (due to the

IID assumption). This line of reasoning does not apply to

the heterogeneous setting.

Although some recent works (Yu et al., 2018; Wang et al.,

2019; Hao et al., 2019; Jiang & Agrawal, 2018) have ex-

plored convergence guarantees in statistically heterogeneous

settings, they make the limiting assumption that all devices

participate in each round of communication, which is often

infeasible in realistic federated networks (McMahan et al.,

2017). Further, they rely on specific solvers to be used on

each device (either SGD or GD), as compared to the solver-

agnostic framework proposed herein, and add additional

assumptions of convexity (Wang et al., 2019) or uniformly

bounded gradients (Yu et al., 2018) to their analyses. There

are also heuristic approaches that aim to tackle statistical

heterogeneity by sharing the local device data or server-side

proxy data (Jeong et al., 2018; Zhao et al., 2018; Huang

et al., 2018). However, these methods may be unrealistic: in

addition to imposing burdens on network bandwidth, send-

ing local data to the server (Jeong et al., 2018) violates the

key privacy assumption of federated learning, and sending

globally-shared proxy data to all devices (Zhao et al., 2018;

Huang et al., 2018) requires effort to carefully generate or

collect such auxiliary data.

Beyond statistical heterogeneity, systems heterogeneity is

also a critical concern in federated networks. The storage,

computational, and communication capabilities of each de-

vice in federated networks may differ due to variability in

hardware (CPU, memory), network connectivity (3G, 4G,

5G, wifi), and power (battery level). These system-level

characteristics dramatically exacerbate challenges such as

straggler mitigation and fault tolerance. One strategy used

Federated Optimization in Heterogeneous Networks

in practice is to ignore the more constrained devices failing

to complete a certain amount of training (Bonawitz et al.,

2019). However (as we demonstrate in Section 5), this can

have negative effects on convergence as it limits the number

of effective devices contributing to training, and may induce

bias in the device sampling procedure if the dropped devices

have specific data characteristics.

In this work, inspired by FedAvg, we explore a broader

framework, FedProx, that is capable of handling hetero-

geneous federated environments while maintaining similar

privacy and computational benefits. We analyze the con-

vergence behavior of the framework through a statistical

dissimilarity characterization between local functions, while

also taking into account practical systems constraints. Our

dissimilarity characterization is inspired by the randomized

Kaczmarz method for solving linear system of equations

(Kaczmarz, 1993; Strohmer & Vershynin, 2009), a similar

assumption of which has been used to analyze variants of

SGD in other settings (see, e.g., Schmidt & Roux, 2013;

Vaswani et al., 2019; Yin et al., 2018). Our proposed frame-

work provides improved robustness and stability for opti-

mization in heterogeneous federated networks.

Finally, in terms of related work, we note that two aspects

of our proposed work—the proximal term in FedProx and

the bounded dissimilarity assumption used in our analysis—

have been previously studied in the optimization literature,

though often with very different motivations and in non-

federated settings. For completeness, we provide a further

discussion in Appendix B on this background work.

3 FEDERATED OPTIMIZATION: METHODS

In this section, we introduce the key ingredients behind

recent methods for federated learning, including FedAvg,

and then outline our proposed framework, FedProx.

Federated learning methods (e.g., McMahan et al., 2017;

Smith et al., 2017) are designed to handle multiple devices

collecting data and a central server coordinating the global

learning objective across the network. In particular, the aim

is to minimize:

min
w

f(w) =

N
∑

k=1

pkFk(w) = Ek[Fk(w)], (1)

where N is the number of devices, pk ≥ 0, and
∑

k pk=1.

In general, the local objectives measure the local empiri-

cal risk over possibly differing data distributions Dk, i.e.,

Fk(w) := Exk∼Dk
[fk(w;xk)], with nk samples available

at each device k. Hence, we can set pk=nk

n
, where n=

∑

k nk is the total number of data points. In this work, we

consider Fk(w) to be possibly non-convex.

To reduce communication, a common technique in feder-

ated optimization is that on each device, a local objective

function based on the device’s data is used as a surrogate

for the global objective function. At each outer iteration,

a subset of the devices are selected and local solvers are

used to optimize the local objective functions on each of

the selected devices. The devices then communicate their

local model updates to the central server, which aggregates

them and updates the global model accordingly. The key to

allowing flexible performance in this scenario is that each of

the local objectives can be solved inexactly. This allows the

amount of local computation vs. communication to be tuned

based on the number of local iterations that are performed

(with additional local iterations corresponding to more exact

local solutions). We introduce this notion formally below,

as it will be utilized throughout the paper.

Definition 1 (γ-inexact solution). For a function

h(w;w0) = F (w) + µ
2 ‖w − w0‖2, and γ ∈ [0, 1],

we say w∗ is a γ-inexact solution of minw h(w;w0)
if ‖∇h(w∗;w0)‖ ≤ γ‖∇h(w0;w0)‖, where

∇h(w;w0) = ∇F (w) + µ(w − w0). Note that a

smaller γ corresponds to higher accuracy.

We use γ-inexactness in our analysis (Section 4) to mea-

sure the amount of local computation from the local solver

at each round. As discussed earlier, different devices are

likely to make different progress towards solving the local

subproblems due to variable systems conditions, and it is

therefore important to allow γ to vary both by device and

by iteration. This is one of the motivations for our proposed

framework discussed in the next sections. For ease of nota-

tion, we first derive our main convergence results assuming

a uniform γ as defined here (Section 4), and then provide

results with variable γ’s in Corollary 9.

3.1 Federated Averaging (FedAvg)

In Federated Averaging (FedAvg) (McMahan et al., 2017),

the local surrogate of the global objective function at de-

vice k is Fk (·), and the local solver is stochastic gradient

descent (SGD), with the same learning rate and number

of local epochs used on each device. At each round, a

subset K ≪ N of the total devices are selected and run

SGD locally for E number of epochs, and then the resulting

model updates are averaged. The details of FedAvg are

summarized in Algorithm 1.

McMahan et al. (2017) show empirically that it is crucial to

tune the optimization hyperparameters of FedAvg properly.

In particular, the number of local epochs in FedAvg plays

an important role in convergence. On one hand, perform-

ing more local epochs allows for more local computation

and potentially reduced communication, which can greatly

improve the overall convergence speed in communication-

constrained networks. On the other hand, with dissimilar

(heterogeneous) local objectives Fk, a larger number of local

epochs may lead each device towards the optima of its local

Federated Optimization in Heterogeneous Networks

Algorithm 1 Federated Averaging (FedAvg)

Input: K, T , η, E, w0, N , pk, k = 1, · · · , N
for t = 0, · · · , T − 1 do

Server selects a subset St of K devices at random (each

device k is chosen with probability pk)

Server sends wt to all chosen devices

Each device k ∈ St updates wt for E epochs of SGD

on Fk with step-size η to obtain wt+1
k

Each device k ∈ St sends wt+1
k back to the server

Server aggregates the w’s as wt+1 = 1

K

∑

k∈St
wt+1

k

end for

objective as opposed to the global objective—potentially

hurting convergence or even causing the method to diverge.

Further, in federated networks with heterogeneous systems

resources, setting the number of local epochs to be high

may increase the risk that devices do not complete training

within a given communication round and must therefore

drop out of the procedure (Bonawitz et al., 2019).

In practice, it is therefore important to find a way to set the

local epochs to be high (to reduce communication) while

also allowing for robust convergence. More fundamentally,

we note that the ‘best’ setting for the number of local epochs

is likely to change at each iteration and on each device—as

a function of both the local data and available systems re-

sources. Indeed, a more natural approach than mandating a

fixed number of local epochs is to allow the epochs to vary

according to the characteristics of the network, and to care-

fully merge solutions by accounting for this heterogeneity.

We formalize this strategy in FedProx, introduced below.

3.2 Proposed Framework: FedProx

Our proposed framework, FedProx (Algorithm 2), is simi-

lar to FedAvg in that a subset of devices are selected at each

round, local updates are performed, and these updates are

then averaged to form a global update. However, FedProx

makes the following simple yet critical modifications, which

result in significant empirical improvements and also allow

us to provide convergence guarantees for the method.

Tolerating partial work. As previously discussed, dif-

ferent devices in federated networks often have different

resource constraints in terms of the computing hardware,

network connections, and battery levels. Therefore, it is un-

realistic to force each device to perform a uniform amount

of work (i.e., running the same number of local epochs,

E), as in FedAvg. In FedProx, we generalize FedAvg

by allowing for variable amounts of work to be performed

locally across devices based on their available systems re-

sources, and then aggregate the partial solutions sent from

the stragglers (as compared to dropping these devices). In

other words, instead of assuming a uniform γ for all de-

vices throughout the training process, FedProx implicitly

accommodates variable γ’s for different devices and at dif-

ferent iterations. We formally define γt
k-inexactness for

device k at iteration t below, which is a natural extension

from Definition 1.

Definition 2 (γt
k-inexact solution). For a function

hk(w;wt) = Fk(w) +
µ
2 ‖w − wt‖2, and γ ∈ [0, 1], we

say w∗ is a γt
k-inexact solution of minw hk(w;wt)

if ‖∇hk(w
∗;wt)‖ ≤ γt

k‖∇hk(wt;wt)‖, where

∇hk(w;wt) = ∇Fk(w) + µ(w − wt). Note that a

smaller γt
k corresponds to higher accuracy.

Analogous to Definition 1, γt
k measures how much local

computation is performed to solve the local subproblem

on device k at the t-th round. The variable number of

local iterations can be viewed as a proxy of γt
k. Utilizing

the more flexible γt
k-inexactness, we can readily extend

the convergence results under Definition 1 (Theorem 4) to

consider issues related to systems heterogeneity such as

stragglers (see Corollary 9).

Proximal term. As mentioned in Section 3.1, while toler-

ating nonuniform amounts of work to be performed across

devices can help alleviate negative impacts of systems het-

erogeneity, too many local updates may still (potentially)

cause the methods to diverge due to the underlying hetero-

geneous data. We propose to add a proximal term to the

local subproblem to effectively limit the impact of variable

local updates. In particular, instead of just minimizing the

local function Fk(·), device k uses its local solver of choice

to approximately minimize the following objective hk:

min
w

hk(w; w
t) = Fk(w) +

µ

2
‖w − wt‖2 . (2)

The proximal term is beneficial in two aspects: (1) It ad-

dresses the issue of statistical heterogeneity by restricting

the local updates to be closer to the initial (global) model

without any need to manually set the number of local epochs.

(2) It allows for safely incorporating variable amounts of

local work resulting from systems heterogeneity. We sum-

marize the steps of FedProx in Algorithm 2.

Algorithm 2 FedProx (Proposed Framework)

Input: K, T , µ, γ, w0, N , pk, k = 1, · · · , N
for t = 0, · · · , T − 1 do

Server selects a subset St of K devices at random (each

device k is chosen with probability pk)

Server sends wt to all chosen devices

Each chosen device k ∈ St finds a wt+1
k

which is a γt
k-inexact minimizer of: wt+1

k ≈
argminw hk(w; w

t) = Fk(w) +
µ
2 ‖w − wt‖2

Each device k ∈ St sends wt+1
k back to the server

Server aggregates the w’s as wt+1 = 1

K

∑

k∈St
wt+1

k

end for

Federated Optimization in Heterogeneous Networks

We note that proximal terms such as the one above are a

popular tool utilized throughout the optimization literature;

for completeness, we provide a more detailed discussion

on this in Appendix B. An important distinction of the pro-

posed usage is that we suggest, explore, and analyze such a

term for the purpose of tackling heterogeneity in federated

networks. Our analysis (Section 4) is also unique in con-

sidering solving such an objective in a distributed setting

with: (1) non-IID partitioned data, (2) the use of any local

solver, (3) variable inexact updates across devices, and (4) a

subset of devices being active at each round. These assump-

tions are critical to providing a characterization of such a

framework in realistic federated scenarios.

In our experiments (Section 5), we demonstrate that tol-

erating partial work is beneficial in the presence of sys-

tems heterogeneity and our modified local subproblem in

FedProx results in more robust and stable convergence

compared to vanilla FedAvg for heterogeneous datasets.

In Section 4, we also see that the usage of the proximal

term makes FedProx more amenable to theoretical analy-

sis (i.e., the local objective may be more well-behaved). In

particular, if µ is chosen accordingly, the Hessian of hk may

be positive semi-definite. Hence, when Fk is non-convex,

hk will be convex, and when Fk is convex, it becomes µ-

strongly convex.

Finally, we note that since FedProx makes only

lightweight modifications to FedAvg, this allows us to

reason about the behavior of the widely-used FedAvg

method, and enables easy integration of FedProx into

existing packages/systems, such as TensorFlow Federated

and LEAF (TFF; Caldas et al., 2018). In particular, we

note that FedAvg is a special case of FedProx with (1)

µ = 0, (2) the local solver specifically chosen to be SGD,

and (3) a constant γ (corresponding to the number of local

epochs) across devices and updating rounds (i.e., no notion

of systems heterogeneity). FedProx is in fact much more

general in this regard, as it allows for partial work to be per-

formed across devices and any local (possibly non-iterative)

solver to be used on each device.

4 FEDPROX: CONVERGENCE ANALYSIS

FedAvg and FedProx are stochastic algorithms by nature:

in each round, only a fraction of the devices are sampled

to perform the update, and the updates performed on each

device may be inexact. It is well known that in order for

stochastic methods to converge to a stationary point, a de-

creasing step-size is required. This is in contrast to non-

stochastic methods, e.g., gradient descent, that can find a

stationary point by employing a constant step-size. In or-

der to analyze the convergence behavior of methods with

constant step-size (as is usually implemented in practice),

we need to quantify the degree of dissimilarity among the

local objective functions. This could be achieved by assum-

ing the data to be IID, i.e., homogeneous across devices.

Unfortunately, in realistic federated networks, this assump-

tion is impractical. Thus, we first propose a metric that

specifically measures the dissimilarity among local func-

tions (Section 4.1), and then analyze FedProx under this

assumption while allowing for variable γ’s (Section 4.2).

4.1 Local dissimilarity

Here we introduce a measure of dissimilarity between the

devices in a federated network, which is sufficient to prove

convergence. This can also be satisfied via a simpler and

more restrictive bounded variance assumption of the gradi-

ents (Corollary 10), which we explore in our experiments in

Section 5. Interestingly, similar assumptions (e.g., Schmidt

& Roux, 2013; Vaswani et al., 2019; Yin et al., 2018) have

been explored elsewhere but for differing purposes; we pro-

vide a discussion of these works in Appendix B.

Definition 3 (B-local dissimilarity). The local functions

Fk are B-locally dissimilar at w if Ek

[

‖∇Fk(w)‖2
]

≤
‖∇f(w)‖2B2. We further define B(w)=

√

Ek[‖∇Fk(w)‖2]
‖∇f(w)‖2

for2 ‖∇f(w)‖ 6=0.

Here Ek[·] denotes the expectation over devices with masses

pk = nk/n and
∑N

k=1 pk = 1 (as in Equation 1). Defini-

tion 3 can be seen as a generalization of the IID assumption

with bounded dissimilarity, while allowing for statistical het-

erogeneity. As a sanity check, when all the local functions

are the same, we have B(w) = 1 for all w. However, in the

federated setting, the data distributions are often heteroge-

neous and B > 1 due to sampling discrepancies even if the

samples are assumed to be IID. Let us also consider the case

where Fk (·)’s are associated with empirical risk objectives.

If the samples on all the devices are homogeneous, i.e., they

are sampled in an IID fashion, then as mink nk → ∞, it

follows that B(w) → 1 for every w as all the local functions

converge to the same expected risk function in the large sam-

ple limit. Thus, B(w) ≥ 1 and the larger the value of B(w),
the larger is the dissimilarity among the local functions.

Using Definition 3, we now state our formal dissimilarity

assumption, which we use in our convergence analysis. This

simply requires that the dissimilarity defined in Definition 3

is bounded. As discussed later, our convergence rate is a

function of the statistical heterogeneity/device dissimilarity

in the network.

Assumption 1 (Bounded dissimilarity). For some ǫ > 0,

there exists a Bǫ such that for all the points w ∈ Sc
ǫ =

{w | ‖∇f(w)‖2 > ǫ}, B(w) ≤ Bǫ.

2As an exception we define B(w) = 1 when
Ek

[

‖∇Fk(w)‖2
]

= ‖∇f(w)‖2, i.e. w is a stationary so-
lution that all the local functions Fk agree on.

Federated Optimization in Heterogeneous Networks

For most practical machine learning problems, there is no

need to solve the problem to highly accurate stationary so-

lutions, i.e., ǫ is typically not very small. Indeed, it is well-

known that solving the problem beyond some threshold may

even hurt generalization performance due to overfitting (Yao

et al., 2007). Although in practical federated learning prob-

lems the samples are not IID, they are still sampled from

distributions that are not entirely unrelated (if this were the

case, e.g., fitting a single global model w across devices

would be ill-advised). Thus, it is reasonable to assume that

the dissimilarity between local functions remains bounded

throughout the training process. We also measure the dis-

similarity metric empirically on real and synthetic datasets

in Section 5.3.3 and show that this metric captures real-

world statistical heterogeneity and is correlated with practi-

cal performance (the smaller the dissimilarity, the better the

convergence).

4.2 FedProx Analysis

Using the bounded dissimilarity assumption (Assumption 1),

we now analyze the amount of expected decrease in the

objective when one step of FedProx is performed. Our

convergence rate (Theorem 6) can be directly derived from

the results of the expected decrease per updating round. We

assume the same γt
k for any k, t for ease of notation in the

following analyses.

Theorem 4 (Non-convex FedProx convergence: B-local

dissimilarity). Let Assumption 1 hold. Assume the functions

Fk are non-convex, L-Lipschitz smooth, and there exists

L− > 0, such that ∇2Fk � −L−I, with µ̄ := µ− L− > 0.

Suppose that wt is not a stationary solution and the local

functions Fk are B-dissimilar, i.e. B(wt) ≤ B. If µ, K,

and γ in Algorithm 2 are chosen such that

ρ=

(

1

µ
− γB

µ
−B(1+γ)

√
2

µ̄
√
K

−LB(1+γ)

µ̄µ

−L(1+γ)2B2

2µ̄2
−LB2(1+γ)2

µ̄2K

(

2
√
2K+2

))

>0,

then at iteration t of Algorithm 2, we have the following

expected decrease in the global objective:

ESt

[

f(wt+1)
]

≤f(wt)−ρ‖∇f(wt)‖2,

where St is the set of K devices chosen at iteration t.

We direct the reader to Appendix A.1 for a detailed proof.

The key steps include applying our notion of γ-inexactness

(Definition 1) for each subproblem and using the bounded

dissimilarity assumption, while allowing for only K de-

vices to be active at each round. This last step in particular

introduces ESt
, an expectation with respect to the choice

of devices, St, in round t. We note that in our theory, we

require µ̄ > 0, which is a sufficient but not necessary con-

dition for FedProx to converge. Hence, it is possible that

some other µ (not necessarily satisfying µ̄ > 0) can also

enable convergence, as we explore empirically (Section 5).

Theorem 4 uses the dissimilarity in Definition 3 to iden-

tify sufficient decrease of the objective value at each itera-

tion for FedProx. In Appendix A.2, we provide a corol-

lary characterizing the performance with a more common

(though slightly more restrictive) bounded variance assump-

tion. This assumption is commonly employed, e.g., when

analyzing methods such as SGD. We next provide sufficient

(but not necessary) conditions that ensure ρ > 0 in Theorem

4 such that sufficient decrease is attainable after each round.

Remark 5. For ρ in Theorem 4 to be positive, we need

γB < 1 and B√
K

< 1. These conditions help to quantify

the trade-off between dissimilarity (B) and the algorithm

parameters (γ, K).

Finally, we can use the above sufficient decrease to the char-

acterize the rate of convergence to the set of approximate

stationary solutions Ss = {w | E
[

‖∇f(w)‖2
]

≤ ǫ} under

the bounded dissimilarity assumption, Assumption 1. Note

that these results hold for general non-convex Fk(·).

Theorem 6 (Convergence rate: FedProx). Given some

ǫ > 0, assume that for B ≥ Bǫ, µ, γ, and K the assump-

tions of Theorem 4 hold at each iteration of FedProx.

Moreover, f(w0)− f∗ = ∆. Then, after T = O(∆
ρǫ
) itera-

tions of FedProx, we have 1
T

∑T−1
t=0 E

[

‖∇f(wt)‖2
]

≤ ǫ.

While the results thus far hold for non-convex Fk(·), we

can also characterize the convergence for the special case

of convex loss functions with exact minimization in terms

of local objectives (Corollary 7). A proof is provided in

Appendix A.3.

Corollary 7 (Convergence: Convex case). Let the asser-

tions of Theorem 4 hold. In addition, let Fk (·)’s be convex

and γt
k = 0 for any k, t, i.e., all the local problems are

solved exactly, if 1 ≪ B ≤ 0.5
√
K, then we can choose

µ ≈ 6LB2 from which it follows that ρ ≈ 1
24LB2 .

Note that small ǫ in Assumption 1 translates to larger Bǫ.

Corollary 7 suggests that, in order to solve the problem

with increasingly higher accuracies using FedProx, one

needs to increase µ appropriately. We empirically verify

that µ > 0 leads to more stable convergence in Section 5.3.

Moreover, in Corollary 7, if we plug in the upper bound

for Bǫ, under a bounded variance assumption (Corollary

10), the number of required steps to achieve accuracy ǫ is

O(L∆
ǫ

+ L∆σ2

ǫ2
). Our analysis helps to characterize the

performance of FedProx and similar methods when local

functions are dissimilar.

Federated Optimization in Heterogeneous Networks

Remark 8 (Comparison with SGD). We note that

FedProx achieves the same asymptotic convergence guar-

antee as SGD: Under the bounded variance assumption, for

small ǫ, if we replace Bǫ with its upper-bound in Corollary

10 and choose µ large enough, the iteration complexity of

FedProx when the subproblems are solved exactly and

Fk(·)’s are convex is O(L∆
ǫ

+ L∆σ2

ǫ2
), the same as SGD

(Ghadimi & Lan, 2013).

To provide context for the rate in Theorem 6, we compare

it with SGD in the convex case in Remark 8. In general,

our analysis of FedProx does not yield convergence rates

that improve upon classical distributed SGD (without local

updating)—even though FedProx possibly performs more

work locally at each communication round. In fact, when

data are generated in a non-identically distributed fashion,

it is possible for local updating schemes such as FedProx

to perform worse than distributed SGD. Therefore, our theo-

retical results do not necessarily demonstrate the superiority

of FedProx over distributed SGD; rather, they provide

sufficient (but not necessary) conditions for FedProx to

converge. Our analysis is the first we are aware of to analyze

any federated (i.e., with local-updating schemes and low

device participation) optimization method for Problem (1)

in heterogeneous settings.

Finally, we note that the previous analyses assume no sys-

tems heterogeneity and use the same γ for all devices and it-

erations. However, we can extend them to allow for γ to vary

by device and by iteration (as in Definition 2), which cor-

responds to allowing devices to perform variable amounts

of work as determined by the local systems conditions. We

provide convergence results with variable γ’s below.

Corollary 9 (Convergence: Variable γ’s). Assume the func-

tions Fk are non-convex, L-Lipschitz smooth, and there ex-

ists L− > 0, such that ∇2Fk � −L−I, with µ̄ := µ−L− >
0. Suppose that wt is not a stationary solution and the local

functions Fk are B-dissimilar, i.e. B(wt) ≤ B. If µ, K,

and γt
k in Algorithm 2 are chosen such that

ρt=

(

1

µ
− γtB

µ
−B(1+γt)

√
2

µ̄
√
K

−LB(1+γt)

µ̄µ

−L(1+γt)2B2

2µ̄2
−LB2(1+γt)2

µ̄2K

(

2
√
2K+2

))

>0,

then at iteration t of Algorithm 2, we have the following

expected decrease in the global objective:

ESt

[

f(wt+1)
]

≤f(wt)−ρt‖∇f(wt)‖2,
where St is the set of K devices chosen at iteration t and

γt=maxk∈St
γt
k.

The proof can be easily extended from the proof for The-

orem 4 , noting the fact that Ek[(1 + γt
k)‖∇Fk(w

t)‖] ≤
(1 + maxk∈St

γt
k)Ek[‖∇Fk(w

t)‖].

5 EXPERIMENTS

We now present empirical results for the generalized

FedProx framework. In Section 5.2, we demonstrate the

improved performance of FedProx tolerating partial solu-

tions in the face of systems heterogeneity. In Section 5.3,

we show the effectiveness of FedProx in the settings with

statistical heterogeneity (regardless of systems heterogene-

ity). We also study the effects of statistical heterogeneity

on convergence (Section 5.3.1) and show how empirical

convergence is related to our theoretical bounded dissimilar-

ity assumption (Assumption 1) (Section 5.3.3). We provide

thorough details of the experimental setup in Section 5.1 and

Appendix C. All code, data, and experiments are publicly

available at: github.com/litian96/FedProx.

5.1 Experimental Details

We evaluate FedProx on diverse tasks, models, and real-

world federated datasets. In order to better characterize

statistical heterogeneity and study its effect on convergence,

we also evaluate on a set of synthetic data, which allows

for more precise manipulation of statistical heterogeneity.

We simulate systems heterogeneity by assigning different

amounts of local work to different devices.

Synthetic data. To generate synthetic data, we follow

a similar setup to that in Shamir et al. (2014), addition-

ally imposing heterogeneity among devices. In particular,

for each device k, we generate samples (Xk, Yk) accord-

ing to the model y = argmax(softmax(Wx + b)), x ∈
R

60,W ∈ R
10×60, b ∈ R

10. We model Wk ∼ N (uk, 1),
bk ∼ N (uk, 1), uk ∼ N (0, α); xk ∼ N (vk,Σ), where the

covariance matrix Σ is diagonal with Σj,j = j−1.2. Each el-

ement in the mean vector vk is drawn from N (Bk, 1), Bk ∼
N(0, β). Therefore, α controls how much local models dif-

fer from each other and β controls how much the local data

at each device differs from that of other devices. We vary

α, β to generate three heterogeneous distributed datasets,

denoted Synthetic (α, β), as shown in Figure 2. We also

generate one IID dataset by setting the same W, b on all

devices and setting Xk to follow the same distribution. Our

goal is to learn a global W and b. Full details are given in

Appendix C.1.

Real data. We also explore four real datasets; statistics are

summarized in Table 1. These datasets are curated from

prior work in federated learning as well as recent feder-

ated learning benchmarks (McMahan et al., 2017; Caldas

et al., 2018). We study a convex classification problem with

MNIST (LeCun et al., 1998) using multinomial logistic re-

gression. To impose statistical heterogeneity, we distribute

the data among 1,000 devices such that each device has

samples of only two digits and the number of samples per

device follows a power law. We then study a more com-

plex 62-class Federated Extended MNIST (Cohen et al.,

https://github.com/litian96/FedProx

Federated Optimization in Heterogeneous Networks

2017; Caldas et al., 2018) (FEMNIST) dataset using the

same model. For the non-convex setting, we consider a text

sentiment analysis task on tweets from Sentiment140 (Go

et al., 2009) (Sent140) with an LSTM classifier, where each

twitter account corresponds to a device. We also investigate

the task of next-character prediction on the dataset of The

Complete Works of William Shakespeare (McMahan et al.,

2017) (Shakespeare). Each speaking role in the plays is as-

sociated with a different device. Details of datasets, models,

and workloads are provided in Appendix C.1.

Table 1. Statistics of four real federated datasets.

Dataset Devices Samples Samples/device

mean stdev

MNIST 1,000 69,035 69 106

FEMNIST 200 18,345 92 159

Shakespeare 143 517,106 3,616 6,808

Sent140 772 40,783 53 32

Implementation. We implement FedAvg (Algorithm 1)

and FedProx (Algorithm 2) in Tensorflow (Abadi et al.,

2016). In order to draw a fair comparison with FedAvg, we

employ SGD as a local solver for FedProx, and adopt a

slightly different device sampling scheme than that in Algo-

rithms 1 and 2: sampling devices uniformly and then averag-

ing the updates with weights proportional to the number of

local data points (as originally proposed in McMahan et al.

(2017)). While this sampling scheme is not supported by our

analysis, we observe similar relative behavior of FedProx

vs. FedAvg whether or not it is employed. Interestingly,

we also observe that the sampling scheme proposed herein

in fact results in more stable performance for both methods

(see Appendix C.3.4, Figure 12). This suggests an addi-

tional benefit of the proposed framework. Full details are

provided in Appendix C.2.

Hyperparameters & evaluation metrics. For each

dataset, we tune the learning rate on FedAvg (with E=1

and without systems heterogeneity) and use the same learn-

ing rate for all experiments on that dataset. We set the

number of selected devices to be 10 for all experiments on

all datasets. For each comparison, we fix the randomly se-

lected devices, the stragglers, and mini-batch orders across

all runs. We report all metrics based on the global objec-

tive f(w). Note that in our simulations (see Section 5.2

for details), we assume that each communication round cor-

responds to a specific aggregation time stamp (measured

in real-world global wall-clock time)—we therefore report

results in terms of rounds rather than FLOPs or wall-clock

time. See details of the hyper-parameters in Appendix C.2.

5.2 Systems Heterogeneity: Tolerating Partial Work

In order to measure the effect of allowing for partial so-

lutions to be sent to handle systems heterogeneity with

FedProx, we simulate federated settings with varying sys-

tem heterogeneity, as described below.

Systems heterogeneity simulations. We assume that there

exists a global clock during training, and each participating

device determines the amount of local work as a function of

this clock cycle and its systems constraints. This specified

amount of local computation corresponds to some implicit

value γt
k for device k at the t-th iteration. In our simulations,

we fix a global number of epochs E, and force some devices

to perform fewer updates than E epochs given their current

systems constraints. In particular, for varying heterogeneous

settings, at each round, we assign x number of epochs (cho-

sen uniformly at random between [1, E]) to 0%, 50%, and

90% of the selected devices, respectively. Settings where 0%

devices perform fewer than E epochs of work correspond to

the environments without systems heterogeneity, while 90%

of the devices sending their partial solutions corresponds to

highly heterogeneous environments. FedAvg will simply

drop these 0%, 50%, and 90% stragglers upon reaching

the global clock cycle, and FedProx will incorporate the

partial updates from these devices.

In Figure 1, we set E to be 20 and study the effects of aggre-

gating partial work from the otherwise dropped devices. The

synthetic dataset here is taken from Synthetic (1,1) in Figure

2. We see that on all the datasets, systems heterogeneity has

negative effects on convergence, and larger heterogeneity

results in worse convergence (FedAvg). Compared with

dropping the more constrained devices (FedAvg), incor-

porating variable amounts of work (FedProx, µ = 0) is

beneficial and leads to more stable and faster convergence.

We also observe that setting µ > 0 in FedProx can further

improve convergence, as we discuss in Section 5.3.

We additionally investigate two less heterogeneous settings.

First, we limit the capability of all the devices by setting E
to be 1 (i.e., all the devices run at most one local epoch), and

impose systems heterogeneity in a similar way. We show

training loss in Figure 9 and testing accuracy in Figure 10

in the appendix. Even in these settings, allowing for partial

work can improve convergence compared with FedAvg.

Second, we explore a setting without any statistical hetero-

geneity using an identically distributed synthetic dataset

(Synthetic IID). In this IID setting, as shown in Figure 5

in Appendix C.3.2, FedAvg is rather robust under device

failure, and tolerating variable amounts of local work may

not cause major improvement. This serves as an additional

motivation to rigorously study the effect of statistical het-

erogeneity on new methods designed for federated learning,

as simply relying on IID data (a setting unlikely to occur in

practice) may not tell a complete story.

Federated Optimization in Heterogeneous Networks

0%

stragglers

50%

stragglers

90%

stragglers

Figure 1. FedProx results in significant convergence improvements relative to FedAvg in heterogeneous networks. We simulate

different levels of systems heterogeneity by forcing 0%, 50%, and 90% devices to be the stragglers (dropped by FedAvg). (1) Comparing

FedAvg and FedProx (µ = 0), we see that allowing for variable amounts of work to be performed can help convergence in the presence

of systems heterogeneity. (2) Comparing FedProx (µ = 0) with FedProx (µ > 0), we show the benefits of our added proximal term.

FedProx with µ > 0 leads to more stable convergence and enables otherwise divergent methods to converge, both in the presence of

systems heterogeneity (50% and 90% stragglers) and without systems heterogeneity (0% stragglers). Note that FedProx with µ = 0 and

without systems heterogeneity (no stragglers) corresponds to FedAvg. We also report testing accuracy in Figure 7, Appendix C.3.2, and

show that FedProx improves the test accuracy on all datasets.

5.3 Statistical Heterogeneity: Proximal Term

To better understand how the proximal term can be benefi-

cial in heterogeneous settings, we first show convergence

can become worse as statistical heterogeneity increases.

5.3.1 Effects of Statistical Heterogeneity

In Figure 2 (the first row), we study how statistical hetero-

geneity affects convergence using four synthetic datasets

without the presence of systems heterogeneity (fixing E
to be 20). From left to right, as data become more hetero-

geneous, convergence becomes worse for FedProx with

µ = 0 (i.e., FedAvg). Though it may slow convergence

for IID data, we see that setting µ > 0 is particularly useful

in heterogeneous settings. This indicates that the modified

subproblem introduced in FedProx can benefit practical

federated settings with varying statistical heterogeneity. For

perfectly IID data, some heuristics such as decreasing µ
if the loss continues to decrease may help avoid the decel-

eration of convergence (see Figure 11 in Appendix C.3.3).

In the sections to follow, we see similar results in our non-

synthetic experiments.

5.3.2 Effects of µ > 0

The key parameters of FedProx that affect performance

are the amount of local work (as parameterized by the num-

ber of local epochs, E), and the proximal term scaled by µ.

Intuitively, large E may cause local models to drift too far

away from the initial starting point, thus leading to potential

divergence (McMahan et al., 2017). Therefore, to handle

the divergence or instability of FedAvg with non-IID data,

it is helpful to tune E carefully. However, E is constrained

by the underlying system’s environments on the devices,

and it is difficult to determine an appropriate uniform E for

all devices. Alternatively, it is beneficial to allow for device-

specific E’s (variable γ’s) and tune a best µ (a parameter

that can be viewed as a re-parameterization of E) to prevent

divergence and improve the stability of methods. A proper

µ can restrict the trajectory of the iterates by constraining

the iterates to be closer to that of the global model, thus

incorporating variable amounts of updates and guaranteeing

convergence (Theorem 6).

We show the effects of the proximal term in FedProx

(µ > 0) in Figure 1. For each experiment, we compare the

results between FedProx with µ = 0 and FedProx with

a best µ (see the next paragraph for discussions on how to

select µ). For all datasets, we observe that the appropriate µ
can increase the stability for unstable methods and can force

divergent methods to converge. This holds both when there

is systems heterogeneity (50% and 90% stragglers) and

there is no systems heterogeneity (0% stragglers). µ > 0
also increases the accuracy in most cases (see Figure 6

and Figure 7 in Appendix C.3.2). In particular, FedProx

improves absolute testing accuracy relative to FedAvg by

22% on average in highly heterogeneous environments (90%

stragglers) (see Figure 7).

Federated Optimization in Heterogeneous Networks

0 50 100 150 200
Rounds

0.5

1.0

1.5

2.0
Tr

ai
ni

ng
 L

os
s

Synthetic-IID

FedAvg (FedProx, =0)
FedProx, >0

0 50 100 150 200
Rounds

1

2

3
Synthetic (0,0)

0 50 100 150 200
Rounds

1

2

3

Synthetic (0.5,0.5)

0 50 100 150 200
Rounds

1

2

3

Synthetic (1,1)

0 50 100 150 200
Rounds

0.0

0.1

0.2

0.3

Va
ria

nc
e

of
 L

oc
al

 G
ra

d. Synthetic-IID

FedAvg (FedProx, =0)
FedProx, >0

0 50 100 150 200
Rounds

10

20

30

40

Synthetic (0,0)

0 50 100 150 200
Rounds

20

40

60

Synthetic (0.5,0.5)

0 50 100 150 200
Rounds

25

50

75

100

Synthetic (1,1)

Figure 2. Effect of data heterogeneity on convergence. We remove the effects of systems heterogeneity by forcing each device to run the

same amount of epochs. In this setting, FedProx with µ = 0 reduces to FedAvg. (1) Top row: We show training loss (see results on

testing accuracy in Appendix C.3, Figure 6) on four synthetic datasets whose statistical heterogeneity increases from left to right. Note

that the method with µ = 0 corresponds to FedAvg. Increasing heterogeneity leads to worse convergence, but setting µ > 0 can help to

combat this. (2) Bottom row: We show the corresponding dissimilarity measurement (variance of gradients) of the four synthetic datasets.

This metric captures statistical heterogeneity and is consistent with training loss — smaller dissimilarity indicates better convergence.

0 50 100 150 200
Rounds

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 L
os

s

Synthetic-IID
FedAvg (FedProx, =0)
FedProx, dynamic
FedProx, >0

0 50 100 150 200
Rounds

1

2

3

Synthetic (1,1)

Figure 3. Effectiveness of setting µ adaptively based on the current

model performance. We increase µ by 0.1 whenever the loss

increases and decreases it by 0.1 whenever the loss decreases for

5 consecutive rounds. We initialize µ to 1 for Synthetic IID (in

order to be adversarial to our methods), and initialize µ to 0 for

Synthetic (1,1). This simple heuristic works well empirically.

Choosing µ. One natural question is to determine how to

set the penalty constant µ in the proximal term. A large µ
may potentially slow the convergence by forcing the updates

to be close to the starting point, while a small µ may not

make any difference. In all experiments, we tune the best

µ from the limited candidate set {0.001, 0.01, 0.1, 1}. For

the five federated datasets in Figure 1, the best µ values are

1, 1, 1, 0.001, and 0.01, respectively. While automatically

tuning µ is difficult to instantiate directly from our theoret-

ical results, in practice, we note that µ can be adaptively

chosen based on the current performance of the model. For

example, one simple heuristic is to increase µ when seeing

the loss increasing and decreasing µ when seeing the loss

decreasing. In Figure 3, we demonstrate the effectiveness of

this heuristic using two synthetic datasets. Note that we start

from initial µ values that are adversarial to our methods. We

provide full results showing the competitive performance

of this approach in Appendix C.3.3. Future work includes

developing methods to automatically tune this parameter

for heterogeneous datasets, based, e.g., on the theoretical

groundwork provided here.

5.3.3 Dissimilarity Measurement and Divergence

Finally, in Figure 2 (the bottom row), we demonstrate that

our B-local dissimilarity measurement in Definition 3 cap-

tures the heterogeneity of datasets and is therefore an appro-

priate proxy of performance. In particular, we track the vari-

ance of gradients on each device, Ek[‖∇Fk(w)−∇f(w)‖2],
which is lower bounded by Bǫ (see Bounded Variance Equiv-

alence Corollary 10). Empirically, we observe that increas-

ing µ leads to smaller dissimilarity among local functions

Fk, and that the dissimilarity metric is consistent with the

training loss. Therefore, smaller dissimilarity indicates bet-

ter convergence, which can be enforced by setting µ ap-

propriately. We also show the dissimilarity metric on real

federated data in Appendix C.3.2.

6 CONCLUSION

In this work, we have proposed FedProx, an optimization

framework that tackles the systems and statistical hetero-

geneity inherent in federated networks. FedProx allows

for variable amounts of work to be performed locally across

devices, and relies on a proximal term to help stabilize

the method. We provide the convergence guarantees for

FedProx in realistic federated settings under a device dis-

similarity assumption, while also accounting for practical

issues such as stragglers. Our empirical evaluation across a

suite of federated datasets has validated our theoretical anal-

ysis and demonstrated that the FedProx framework can

significantly improve the convergence behavior of federated

learning in realistic heterogeneous networks.

ACKNOWLEDGEMENTS

We thank Sebastian Caldas, Jakub Konečný, Brendan

McMahan, Nathan Srebro, and Jianyu Wang for their help-

Federated Optimization in Heterogeneous Networks

ful discussions. AT and VS are supported in part by DARPA

FA875017C0141, the National Science Foundation grants

IIS1705121 and IIS1838017, an Okawa Grant, a Google

Faculty Award, an Amazon Web Services Award, a JP Mor-

gan A.I. Research Faculty Award, a Carnegie Bosch Institute

Research Award, and the CONIX Research Center, one of

six centers in JUMP, a Semiconductor Research Corpora-

tion (SRC) program sponsored by DARPA. Any opinions,

findings, and conclusions or recommendations expressed

in this material are those of the author(s) and do not nec-

essarily reflect the views of DARPA, the National Science

Foundation, or any other funding agency.

REFERENCES

Tensorflow federated: Machine learning on decentral-

ized data. URL https://www.tensorflow.org/

federated.

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,

J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur,

M. K., Levenberg, J., Monga, R., Moore, S., Murray,

D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P.,

Wicke, M., Yu, Y., and Zheng, X. Tensorflow: A system

for large-scale machine learning. In Operating Systems

Design and Implementation, 2016.

Allen-Zhu, Z. How to make the gradients small stochas-

tically: Even faster convex and nonconvex sgd. In Ad-

vances in Neural Information Processing Systems, 2018.

Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Inger-

man, A., Ivanov, V., Kiddon, C., Konecny, J., Mazzocchi,

S., McMahan, H. B., Overveldt, T. V., Petrou, D., Ram-

age, D., and Roselander, J. Towards federated learning at

scale: system design. In Conference on Machine Learn-

ing and Systems, 2019.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J.

Distributed optimization and statistical learning via the

alternating direction method of multipliers. Foundations

and Trends in Machine Learning, 2010.

Caldas, S., Wu, P., Li, T., Konečnỳ, J., McMahan, H. B.,

Smith, V., and Talwalkar, A. Leaf: A benchmark for fed-

erated settings. arXiv preprint arXiv:1812.01097, 2018.

Cohen, G., Afshar, S., Tapson, J., and van Schaik, A. Em-

nist: an extension of mnist to handwritten letters. arXiv

preprint arXiv:1702.05373, 2017.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Le,

Q. V., Mao, M., Ranzato, M., Senior, A., Tucker, P., Yang,

K., and Ng, A. Large scale distributed deep networks.

In Advances in Neural Information Processing Systems,

2012.

Dekel, O., Gilad-Bachrach, R., Shamir, O., and Xiao, L. Op-

timal Distributed Online Prediction Using Mini-Batches.

Journal of Machine Learning Research, 2012.

Ghadimi, S. and Lan, G. Stochastic first-and zeroth-order

methods for nonconvex stochastic programming. SIAM

Journal on Optimization, 2013.

Go, A., Bhayani, R., and Huang, L. Twitter sentiment

classification using distant supervision. CS224N Project

Report, Stanford, 2009.

Goldblum, M., Reich, S., Fowl, L., Ni, R., Cherepanova,

V., and Goldstein, T. Unraveling meta-learning: Under-

standing feature representations for few-shot tasks. arXiv

preprint arXiv:2002.06753, 2020.

Hao, Y., Rong, J., and Sen, Y. On the linear speedup analysis

of communication efficient momentum sgd for distributed

non-convex optimization. In International Conference on

Machine Learning, 2019.

Huang, L., Yin, Y., Fu, Z., Zhang, S., Deng, H., and

Liu, D. Loadaboost: Loss-based adaboost federated

machine learning on medical data. arXiv preprint

arXiv:1811.12629, 2018.

Jeong, E., Oh, S., Kim, H., Park, J., Bennis, M., and Kim, S.-

L. Communication-efficient on-device machine learning:

Federated distillation and augmentation under non-iid

private data. arXiv preprint arXiv:1811.11479, 2018.

Jiang, P. and Agrawal, G. A linear speedup analysis of dis-

tributed deep learning with sparse and quantized commu-

nication. In Advances in Neural Information Processing

Systems, 2018.

Kaczmarz, S. Approximate solution of systems of linear

equations. International Journal of Control, 1993.

Khodak, M., Balcan, M.-F. F., and Talwalkar, A. S. Adaptive

gradient-based meta-learning methods. In Advances in

Neural Information Processing Systems, 2019.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 1998.

Li, M., Andersen, D. G., Smola, A. J., and Yu, K. Com-

munication efficient distributed machine learning with

the parameter server. In Advances in Neural Information

Processing Systems, 2014a.

Li, M., Zhang, T., Chen, Y., and Smola, A. J. Efficient mini-

batch training for stochastic optimization. In Conference

on Knowledge Discovery and Data Mining, 2014b.

https://www.tensorflow.org/federated
https://www.tensorflow.org/federated

Federated Optimization in Heterogeneous Networks

Li, T., Sahu, A., Talwalkar, A., and Smith, V. Federated

learning: Challenges, methods, and future directions.

arXiv preprint arXiv:1908.07873, 2019.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A.,

and Smith, V. Feddane: A federated newton-type method.

arXiv preprint arXiv:2001.01920, 2020.

Lin, T., Stich, S. U., and Jaggi, M. Don’t use large mini-

batches, use local sgd. In International Conference on

Learning Representations, 2020.

McMahan, H. B., Moore, E., Ramage, D., Hampson, S.,

and Arcas, B. A. y. Communication-efficient learning of

deep networks from decentralized data. In International

Conference on Artificial Intelligence and Statistics, 2017.

Pennington, J., Socher, R., and Manning, C. Glove: Global

vectors for word representation. In Empirical Methods in

Natural Language Processing, 2014.

Reddi, S. J., Konečnỳ, J., Richtárik, P., Póczós, B., and

Smola, A. Aide: Fast and communication efficient dis-

tributed optimization. arXiv preprint arXiv:1608.06879,

2016.

Richtárik, P. and Takáč, M. Distributed coordinate descent

method for learning with big data. Journal of Machine

Learning Research, 2016.

Schmidt, M. and Roux, N. L. Fast convergence of stochastic

gradient descent under a strong growth condition. arXiv

preprint arXiv:1308.6370, 2013.

Shamir, O., Srebro, N., and Zhang, T. Communication-

efficient distributed optimization using an approximate

newton-type method. In International Conference on

Machine Learning, 2014.

Smith, V., Chiang, C.-K., Sanjabi, M., and Talwalkar, A. S.

Federated multi-task learning. In Advances in Neural

Information Processing Systems, 2017.

Smith, V., Forte, S., Ma, C., Takac, M., Jordan, M. I.,

and Jaggi, M. Cocoa: A general framework for

communication-efficient distributed optimization. Jour-

nal of Machine Learning Research, 2018.

Stich, S. U. Local sgd converges fast and communicates

little. In International Conference on Learning Represen-

tations, 2019.

Strohmer, T. and Vershynin, R. A randomized kaczmarz al-

gorithm with exponential convergence. Journal of Fourier

Analysis and Applications, 2009.

Vaswani, S., Bach, F., and Schmidt, M. Fast and faster

convergence of sgd for over-parameterized models (and

an accelerated perceptron). In International Conference

on Artificial Intelligence and Statistics, 2019.

Wang, J. and Joshi, G. Cooperative sgd: A

unified framework for the design and analysis of

communication-efficient sgd algorithms. arXiv preprint

arXiv:1808.07576, 2018.

Wang, S., Tuor, T., Salonidis, T., Leung, K. K., Makaya,

C., He, T., and Chan, K. Adaptive federated learning

in resource constrained edge computing systems. IEEE

Journal on Selected Areas in Communications, 2019.

Woodworth, B. E., Wang, J., Smith, A., McMahan, B.,

and Srebro, N. Graph oracle models, lower bounds, and

gaps for parallel stochastic optimization. In Advances in

Neural Information Processing Systems, 2018.

Yao, Y., Rosasco, L., and Caponnetto, A. On early stopping

in gradient descent learning. Constructive Approximation,

2007.

Yin, D., Pananjady, A., Lam, M., Papailiopoulos, D., Ram-

chandran, K., and Bartlett, P. Gradient diversity: a key

ingredient for scalable distributed learning. In Interna-

tional Conference on Artificial Intelligence and Statistics,

2018.

Yu, H., Yang, S., and Zhu, S. Parallel restarted sgd for

non-convex optimization with faster convergence and

less communication. In AAAI Conference on Artificial

Intelligence, 2018.

Zhang, S., Choromanska, A. E., and LeCun, Y. Deep learn-

ing with elastic averaging sgd. In Advances in Neural

Information Processing Systems, 2015.

Zhang, Y., Duchi, J. C., and Wainwright, M. J.

Communication-efficient algorithms for statistical opti-

mization. Journal of Machine Learning Research, 2013.

Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., and Chandra,

V. Federated learning with non-iid data. arXiv preprint

arXiv:1806.00582, 2018.

Zhou, F. and Cong, G. On the convergence properties of

a k-step averaging stochastic gradient descent algorithm

for nonconvex optimization. In International Joint Con-

ference on Artificial Intelligence, 2018.

Zhou, P., Yuan, X., Xu, H., Yan, S., and Feng, J. Efficient

meta learning via minibatch proximal update. In Ad-

vances in Neural Information Processing Systems, 2019.

Federated Optimization in Heterogeneous Networks

A COMPLETE PROOFS

A.1 Proof of Theorem 4

Proof. Using our notion of γ-inexactness for each local solver (Definition 1), we can define et+1
k such that:

∇Fk(w
t+1

k) + µ(wt+1

k − w
t)− e

t+1

k = 0,

‖et+1

k ‖ ≤ γ‖∇Fk(w
t)‖ . (3)

Now let us define w̄t+1 = Ek

[

wt+1
k

]

. Based on this definition, we know

w̄
t+1 − w

t =
−1

µ
Ek

[

∇Fk(w
t+1

k)
]

+
1

µ
Ek

[

e
t+1

k

]

. (4)

Let us define µ̄ = µ− L− > 0 and ŵt+1
k = argminw hk(w;w

t). Then, due to the µ̄-strong convexity of hk, we have

‖ŵt+1

k − w
t+1

k ‖ ≤ γ

µ̄
‖∇Fk(w

t)‖. (5)

Note that once again, due to the µ̄-strong convexity of hk, we know that ‖ŵt+1
k − wt‖ ≤ 1

µ̄
‖∇Fk(w

t)‖. Now we can use

the triangle inequality to get

‖wt+1

k − w
t‖ ≤ 1 + γ

µ̄
‖∇Fk(w

t)‖. (6)

Therefore,

‖w̄t+1 − w
t‖ ≤ Ek

[

‖wt+1

k − w
t‖
]

≤ 1 + γ

µ̄
Ek

[

‖∇Fk(w
t)‖
]

≤ 1 + γ

µ̄

√

Ek[‖∇Fk(wt)‖2] ≤ B(1 + γ)

µ̄
‖∇f(wt)‖,

where the last inequality is due to the bounded dissimilarity assumption.

Now let us define Mt+1 such that w̄t+1 − wt = −1

µ

(

∇f(wt) +Mt+1

)

, i.e. Mt+1 = Ek

[

∇Fk(w
t+1
k)−∇Fk(w

t)− et+1
k

]

.

We can bound ‖Mt+1‖:

‖Mt+1‖ ≤ Ek

[

L‖wt+1

k − w
t
k‖+ ‖et+1

k ‖
]

≤
(

L(1 + γ)

µ̄
+ γ

)

× Ek

[

‖∇Fk(w
t)‖
]

≤
(

L(1 + γ)

µ̄
+ γ

)

B‖∇f(wt)‖ , (7)

where the last inequality is also due to bounded dissimilarity assumption. Based on the L-Lipschitz smoothness of f and
Taylor expansion, we have

f(w̄t+1) ≤ f(wt) + 〈∇f(wt), w̄t+1 − w
t〉+ L

2
‖w̄t+1 − w

t‖2

≤ f(wt)− 1

µ
‖∇f(wt)‖2 − 1

µ
〈∇f(wt),Mt+1〉+

L(1 + γ)2B2

2µ̄2
‖∇f(wt)‖2

≤ f(wt)−
(

1− γB

µ
− LB(1 + γ)

µ̄µ
− L(1 + γ)2B2

2µ̄2

)

× ‖∇f(wt)‖2. (8)

From the above inequality it follows that if we set the penalty parameter µ large enough, we can get a decrease in the
objective value of f(w̄t+1)− f(wt) which is proportional to ‖∇f(wt)‖2. However, this is not the way that the algorithm

works. In the algorithm, we only use K devices that are chosen randomly to approximate w̄t. So, in order to find the

E
[

f(wt+1)
]

, we use local Lipschitz continuity of the function f .

f(wt+1) ≤ f(w̄t+1) + L0‖wt+1 − w̄
t+1‖, (9)

where L0 is the local Lipschitz continuity constant of function f and we have

L0 ≤ ‖∇f(wt)‖+ Lmax(‖w̄t+1 − w
t‖, ‖wt+1 − w

t‖) ≤ ‖∇f(wt)‖+ L(‖w̄t+1 − w
t‖+ ‖wt+1 − w

t‖).

Therefore, if we take expectation with respect to the choice of devices in round t we need to bound

ESt

[

f(wt+1)
]

≤ f(w̄t+1) +Qt, (10)

Federated Optimization in Heterogeneous Networks

where Qt = ESt

[

L0‖wt+1 − w̄t+1‖
]

. Note that the expectation is taken over the random choice of devices to update.

Qt ≤ ESt

[(

‖∇f(wt)‖+ L(‖w̄t+1 − w
t‖+ ‖wt+1 − w

t‖)
)

× ‖wt+1 − w̄
t+1‖

]

≤
(

‖∇f(wt)‖+ L‖w̄t+1 − w
t‖
)

ESt

[

‖wt+1 − w̄
t+1‖

]

+ LESt

[

‖wt+1 − w
t‖ · ‖wt+1 − w̄

t+1‖
]

≤
(

‖∇f(wt)‖+ 2L‖w̄t+1 − w
t‖
)

ESt

[

‖wt+1 − w̄
t+1‖

]

+ LESt

[

‖wt+1 − w̄
t+1‖2

]

(11)

From (7), we have that ‖w̄t+1 − wt‖ ≤ B(1+γ)
µ̄

‖∇f(wt)‖. Moreover,

ESt

[

‖wt+1 − w̄
t+1‖

]

≤
√

ESt
[‖wt+1 − w̄t+1‖2] (12)

and

ESt

[

‖wt+1 − w̄
t+1‖2

]

≤ 1

K
Ek

[

‖wt+1

k − w̄
t+1‖2

]

≤ 2

K
Ek

[

‖wt+1

k − w
t‖2
]

, (as w̄
t+1 = Ek

[

w
t+1

k

]

)

≤ 2

K

(1 + γ)2

µ̄2
Ek

[

‖∇Fk(w
t)‖2

]

(from (6))

≤ 2B2

K

(1 + γ)2

µ̄2
‖∇f(wt)‖2, (13)

where the first inequality is a result of K devices being chosen randomly to get wt and the last inequality is due to bounded
dissimilarity assumption. If we replace these bounds in (11) we get

Qt ≤
(

B(1 + γ)
√
2

µ̄
√
K

+
LB2(1 + γ)2

µ̄2K

(

2
√
2K + 2

)

)

‖∇f(wt)‖2 (14)

Combining (8), (10), (9) and (14) and using the notation α = 1
µ

we get

ESt

[

f(wt+1)
]

≤ f(wt)−
(

1

µ
− γB

µ
− B(1 + γ)

√
2

µ̄
√
K

− LB(1 + γ)

µ̄µ

− L(1 + γ)2B2

2µ̄2
− LB2(1 + γ)2

µ̄2K

(

2
√
2K + 2

)

)

‖∇f(wt)‖2.

A.2 Proof for Bounded Variance

Corollary 10 (Bounded variance equivalence). Let Assumption 1 hold. Then, in the case of bounded variance, i.e.,

Ek

[

‖∇Fk(w)−∇f(w)‖2
]

≤ σ2, for any ǫ > 0 it follows that Bǫ ≤
√

1 + σ2

ǫ
.

Proof. We have,

Ek[‖∇Fk(w)−∇f(w)‖2] = Ek[‖∇Fk(w)‖2]− ‖∇f(w)‖2 ≤ σ2

⇒ Ek[‖∇Fk(w)‖2] ≤ σ2 + ‖∇f(w)‖2

⇒ Bǫ =

√

Ek[‖∇Fk(w)‖2]
‖∇f(w)‖2 ≤

√

1 +
σ2

ǫ
.

With Corollary 10 in place, we can restate the main result in Theorem 4 in terms of the bounded variance assumption.

Federated Optimization in Heterogeneous Networks

Theorem 11 (Non-convex FedProx convergence: Bounded variance). Let the assertions of Theorem 4 hold. In addition,

let the iterate wt be such that ‖∇f(wt)‖2 ≥ ǫ, and let Ek

[

‖∇Fk(w)−∇f(w)‖2
]

≤ σ2 hold instead of the dissimilarity

condition. If µ, K and γ in Algorithm 2 are chosen such that

ρ=

(

1

µ
−
(

γ

µ
+
(1+γ)

√
2

µ̄
√
K

+
L(1+γ)

µ̄µ

)
√

1+
σ2

ǫ
−
(

L(1+γ)2

2µ̄2
+
L(1+γ)2

µ̄2K

(

2
√
2K+2

))(

1+
σ2

ǫ

))

>0,

then at iteration t of Algorithm 2, we have the following expected decrease in the global objective:

ESt

[

f(wt+1)
]

≤f(wt)−ρ‖∇f(wt)‖2,

where St is the set of K devices chosen at iteration t.

The proof of Theorem 11 follows from the proof of Theorem 4 by noting the relationship between the bounded variance

assumption and the dissimilarity assumption as portrayed by Corollary 10.

A.3 Proof of Corollary 7

In the convex case, where L− = 0 and µ̄ = µ, if γ = 0, i.e., all subproblems are solved accurately, we can get a decrease

proportional to ‖∇f(wt)‖2 if B <
√
K. In such a case if we assume 1 << B ≤ 0.5

√
K, then we can write

ESt

[

f(wt+1)
]

/ f(wt)− 1

2µ
‖∇f(wt)‖2 + 3LB2

2µ2
‖∇f(wt)‖2 . (15)

In this case, if we choose µ ≈ 6LB2 we get

ESt

[

f(wt+1)
]

/ f(wt)− 1

24LB2
‖∇f(wt)‖2 . (16)

Note that the expectation in (16) is a conditional expectation conditioned on the previous iterate. Taking expectation of both

sides, and telescoping, we have that the number of iterations to at least generate one solution with squared norm of gradient

less than ǫ is O(LB2∆
ǫ

).

Federated Optimization in Heterogeneous Networks

B CONNECTIONS TO OTHER SINGLE-MACHINE AND DISTRIBUTED METHODS

Two aspects of the proposed work—the proximal term in FedProx, and the bounded dissimilarity assumption used in our

analysis—have been previously studied in the optimization literature, but with very different motivations. For completeness,

we provide a discussion below on our relation to these prior works.

Proximal term. The proposed modified objective in FedProx shares a connection with elastic averaging SGD

(EASGD) (Zhang et al., 2015), which was proposed as a way to train deep networks in the data center setting, and

uses a similar proximal term in its objective. While the intuition is similar to EASGD (this term helps to prevent large

deviations on each device/machine), EASGD employs a more complex moving average to update parameters, is limited to

using SGD as a local solver, and has only been analyzed for simple quadratic problems. The proximal term we introduce

has also been explored in previous optimization literature with different purposes, such as Allen-Zhu (2018), to speed up

(mini-batch) SGD training on a single machine, and in Li et al. (2014b) for efficient SGD training both in a single machine

and distributed settings. However, the analysis in Li et al. (2014b) is limited to a single machine setting with different

assumptions (e.g., IID data and solving the subproblem exactly at each round).

In addition, DANE (Shamir et al., 2014) and AIDE (Reddi et al., 2016), distributed methods designed for the data center

setting, propose a similar proximal term in the local objective function, but also augment this with an additional gradient

correction term. Both methods assume that all devices participate at each communication round, which is impractical

in federated settings. Indeed, due to the inexact estimation of full gradients (i.e., ∇φ(w(t−1)) in Shamir et al. (2014, Eq

(13))) with device subsampling schemes and the staleness of the gradient correction term (Shamir et al., 2014, Eq (13)),

these methods are not directly applicable to our setting. Regardless of this, we explore a variant of such an approach in

federated settings and see that the gradient direction term does not help in this scenario—performing uniformly worse than

the proposed FedProx framework for heterogeneous datasets, despite the extra computation required (see Figure 4). We

refer interested readers to Li et al. (2020) for more detailed discussions.

Finally, we note that there is an interesting connection between meta-learning methods and federated optimization meth-

ods (Khodak et al., 2019), and similar proximal terms have recently been investigated in the context of meta-learning for

improved performance on few-shot learning tasks (Goldblum et al., 2020; Zhou et al., 2019).

0 25 50 75 100 125 150 175 200
Rounds

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 L
os

s

Synthetic-IID

=0, E=20, FedProx
=1, E=20, FedProx
=0, E=20, FedDANE
=1, E=20, FedDANE

0 25 50 75 100 125 150 175 200
Rounds

0

5

10

15

20

25

30
Synthetic (0,0)

0 25 50 75 100 125 150 175 200
Rounds

0

5

10

15

20

25

30

35

40
Synthetic (0.5,0.5)

0 25 50 75 100 125 150 175 200
Rounds

0

20

40

60

80

100

Synthetic (1,1)

0 25 50 75 100 125 150 175 200
Rounds

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 L
os

s

Synthetic-IID

=0, E=20, c=10, FedProx
=0, E=20, c=10, FedDANE
=0, E=20, c=20, FedDANE
=0, E=20, c=30, FedDANE

0 25 50 75 100 125 150 175 200
Rounds

0

5

10

15

20

25

30
Synthetic (0,0)

0 25 50 75 100 125 150 175 200
Rounds

0

5

10

15

20

25

30

35

40
Synthetic (0.5,0.5)

0 25 50 75 100 125 150 175 200
Rounds

0

20

40

60

80

100

Synthetic (1,1)

Figure 4. DANE and AIDE (Shamir et al., 2014; Reddi et al., 2016) are methods proposed in the data center setting that use a similar

proximal term as FedProx as well as an additional gradient correction term. We modify DANE to apply to federated settings by allowing

for local updating and low participation of devices. We show the convergence of this modified method, which we call FedDane, on

synthetic datasets. In the top figures, we subsample 10 devices out of 30 on all datasets for both FedProx and FedDane. While

FedDane performs similarly as FedProx on the IID data, it suffers from poor convergence on the non-IID datasets. In the bottom

figures, we show the results of FedDane when we increase the number of selected devices in order to narrow the gap between our

estimated full gradient and the real full gradient (in the gradient correction term). Note that communicating with all (or most of the)

devices is already unrealistic in practical settings. We observe that although sampling more devices per round might help to some extent,

FedDane is still unstable and tends to diverge. This serves as additional motivation for the specific subproblem we propose in FedProx.

Federated Optimization in Heterogeneous Networks

Bounded dissimilarity assumption. The bounded dissimilarity assumption we discuss in Assumption 1 has appeared in

different forms, for example in Schmidt & Roux (2013); Yin et al. (2018); Vaswani et al. (2019). In Yin et al. (2018), the

bounded similarity assumption is used in the context of asserting gradient diversity and quantifying the benefit in terms of

scaling of the mean square error for mini-batch SGD for IID data. In Schmidt & Roux (2013); Vaswani et al. (2019), the

authors use a similar assumption, called strong growth condition, which is a stronger version of Assumption 1 with ǫ = 0.

They prove that some interesting practical problems satisfy such a condition. They also use this assumption to prove optimal

and better convergence rates for SGD with constant step-sizes. Note that this is different from our approach as the algorithm

that we are analyzing is not SGD, and our analysis is different in spite of the similarity in the assumptions.

Federated Optimization in Heterogeneous Networks

C SIMULATION DETAILS AND ADDITIONAL EXPERIMENTS

C.1 Datasets and Models

Here we provide full details on the datasets and models used in our experiments. We curate a diverse set of non-synthetic

datasets, including those used in prior work on federated learning (McMahan et al., 2017), and some proposed in LEAF, a

benchmark for federated settings (Caldas et al., 2018). We also create synthetic data to directly test the effect of heterogeneity

on convergence, as in Section 5.1.

• Synthetic: We set (α, β)=(0,0), (0.5,0.5) and (1,1) respectively to generate three non-identical distributed datasets (Figure

2). In the IID data (Figure 5), we set the same W, b ∼ N (0, 1) on all devices and Xk to follow the same distribution

N (v,Σ) where each element in the mean vector v is zero and Σ is diagonal with Σj,j = j−1.2. For all synthetic datasets,

there are 30 devices in total and the number of samples on each device follows a power law.

• MNIST: We study image classification of handwritten digits 0-9 in MNIST (LeCun et al., 1998) using multinomial

logistic regression. To simulate a heterogeneous setting, we distribute the data among 1000 devices such that each device

has samples of only 2 digits and the number of samples per device follows a power law. The input of the model is a

flattened 784-dimensional (28 × 28) image, and the output is a class label between 0 and 9.

• FEMNIST: We study an image classification problem on the 62-class EMNIST dataset (Cohen et al., 2017) using

multinomial logistic regression. To generate heterogeneous data partitions, we subsample 10 lower case characters (‘a’-‘j’)

from EMNIST and distribute only 5 classes to each device. We call this federated version of EMNIST FEMNIST. There

are 200 devices in total. The input of the model is a flattened 784-dimensional (28 × 28) image, and the output is a class

label between 0 and 9.

• Shakespeare: This is a dataset built from The Complete Works of William Shakespeare (McMahan et al., 2017). Each

speaking role in a play represents a different device. We use a two-layer LSTM classifier containing 100 hidden units

with an 8D embedding layer. The task is next-character prediction, and there are 80 classes of characters in total. The

model takes as input a sequence of 80 characters, embeds each of the characters into a learned 8-dimensional space and

outputs one character per training sample after 2 LSTM layers and a densely-connected layer.

• Sent140: In non-convex settings, we consider a text sentiment analysis task on tweets from Sentiment140 (Go et al.,

2009) (Sent140) with a two layer LSTM binary classifier containing 256 hidden units with pretrained 300D GloVe

embedding (Pennington et al., 2014). Each twitter account corresponds to a device. The model takes as input a sequence

of 25 characters, embeds each of the characters into a 300-dimensional space by looking up Glove and outputs one

character per training sample after 2 LSTM layers and a densely-connected layer.

C.2 Implementation Details

(Implementation) In order to draw a fair comparison with FedAvg, we use SGD as a local solver for FedProx, and adopt

a slightly different device sampling scheme than that in Algorithms 1 and 2: sampling devices uniformly and averaging

updates with weights proportional to the number of local data points (as originally proposed in McMahan et al. (2017)).

While this sampling scheme is not supported by our analysis, we observe similar relative behavior of FedProx vs. FedAvg

whether or not it is employed (Figure 12). Interestingly, we also observe that the sampling scheme proposed herein results in

more stable performance for both methods. This suggests an added benefit of the proposed framework.

(Machines) We simulate the federated learning setup (1 server and N devices) on a commodity machine with 2 Intel R©

Xeon R© E5-2650 v4 CPUs and 8 NVidia R© 1080Ti GPUs.

(Hyperparameters) We randomly split the data on each local device into an 80% training set and a 20% testing set. We

fix the number of selected devices per round to be 10 for all experiments on all datasets. We also do a grid search on the

learning rate based on FedAvg. We do not decay the learning rate through all rounds. For all synthetic data experiments,

the learning rate is 0.01. For MNIST, FEMNIST, Shakespeare, and Sent140, we use the learning rates of 0.03, 0.003, 0.8,

and 0.3. We use a batch size of 10 for all experiments.

(Libraries) All code is implemented in Tensorflow Version 1.10.1 (Abadi et al., 2016). Please see

github.com/litian96/FedProx for full details.

https://github.com/litian96/FedProx

Federated Optimization in Heterogeneous Networks

C.3 Additional Experiments and Full Results

C.3.1 Effects of Systems Heterogeneity on IID Data

We show the effects of allowing for partial work on a perfect IID synthetic data (Synthetic IID).

0 50 100 150 200
Rounds

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 L
os

s

Synthetic IID (0% stragglers)

FedAvg
FedProx (=0)

0 50 100 150 200
Rounds

0.5

1.0

1.5

2.0

Synthetic IID (10% stragglers)

0 50 100 150 200
Rounds

0.5

1.0

1.5

2.0

Synthetic IID (50% stragglers)

0 50 100 150 200
Rounds

0.5

1.0

1.5

2.0

Synthetic IID (90% stragglers)

0 50 100 150 200
Rounds

0.2

0.4

0.6

0.8

Te
st

in
g

Ac
cu

ra
cy

Synthetic IID (0% stragglers)

FedAvg
FedProx (=0)

0 50 100 150 200
Rounds

0.2

0.4

0.6

0.8
Synthetic IID (10% stragglers)

0 50 100 150 200
Rounds

0.2

0.4

0.6

0.8
Synthetic IID (50% stragglers)

0 50 100 150 200
Rounds

0.2

0.4

0.6

0.8

Synthetic IID (90% stragglers)

Figure 5. FedAvg is robust to device failure with IID data. In this case, whether incorporating partial solutions from the stragglers would

not have much effect on convergence.

C.3.2 Complete Results

In Figure 6, we present testing accuracy on four synthetic datasets associated with the experiments shown in Figure 2.

0 50 100 150 200
Rounds

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 L
os

s

Synthetic-IID

FedAvg (FedProx, =0)
FedProx, >0

0 50 100 150 200
Rounds

1

2

3
Synthetic (0,0)

0 50 100 150 200
Rounds

1

2

3

Synthetic (0.5,0.5)

0 50 100 150 200
Rounds

1

2

3

Synthetic (1,1)

0 50 100 150 200
Rounds

0.2

0.4

0.6

0.8

Te
st

in
g

Ac
cu

ra
cy

Synthetic-IID

FedAvg (FedProx, =0)
FedProx, >0

0 50 100 150 200
Rounds

0.0

0.2

0.4

0.6

0.8
Synthetic (0,0)

0 50 100 150 200
Rounds

0.2

0.4

0.6

0.8
Synthetic (0.5,0.5)

0 50 100 150 200
Rounds

0.2

0.4

0.6

Synthetic (1,1)

0 50 100 150 200
Rounds

0.0

0.1

0.2

0.3

Va
ria

nc
e

of
 L

oc
al

 G
ra

d. Synthetic-IID

FedAvg (FedProx, =0)
FedProx, >0

0 50 100 150 200
Rounds

10

20

30

40

Synthetic (0,0)

0 50 100 150 200
Rounds

20

40

60

Synthetic (0.5,0.5)

0 50 100 150 200
Rounds

25

50

75

100

Synthetic (1,1)

Figure 6. Training loss, test accuracy, and dissimilarity measurement for experiments described in Fig. 2.

Federated Optimization in Heterogeneous Networks

In Figure 7, we show the testing accuracy associated with the experiments described in Figure 1. We calculate the accuracy

improvement numbers by identifying the accuracies of FedProx and FedAvg when they have either converged, started

to diverge, or run sufficient number of rounds (e.g., 1000 rounds), whichever comes earlier. We consider the methods to

converge when the loss difference in two consecutive rounds |ft − ft−1| is smaller than 0.0001, and consider the methods to

diverge when we see ft − ft−10 greater than 1.

0%

stragglers

50%

stragglers

90%

stragglers

Figure 7. The testing accuracy of the experiments in Figure 1. FedProx achieves on average 22% improvement in terms of testing

accuracy in highly heterogeneous settings (90% stragglers).

In Figure 8, we report the dissimilarity measurement on five datasets (including four real datasets) described in Figure 1.

Again, the dissimilarity characterization is consistent with the real performance (the loss).

0 50 100 150 200
Rounds

50

100

150

Va
ria

nc
e

of
 L

oc
al

 G
ra

d. Synthetic

FedAvg (FedProx, =0)
FedProx (>0)

0 100 200 300 400
Rounds

10

20

30
MNIST

0 50 100 150 200
Rounds

50

100

150

200

FEMNIST

0 5 10 15 20
Rounds

0

2

4

6

Shakespeare

0 200 400 600 800
Rounds

0

10

20

30
Sent140

Figure 8. The dissimilarity metric on five datasets in Figure 1. We remove systems heterogeneity by only considering the case when no

participating devices drop out of the network. Our dissimilarity assumption captures the data heterogeneity and is consistent with practical

performance (see training loss in Figure 1).

Federated Optimization in Heterogeneous Networks

In Figure 9 and Figure 10, we show the effects (both loss and testing accuracy) of allowing for partial solutions under

systems heterogeneity when E = 1 (i.e., the statistical heterogeneity is less likely to affect convergence negatively).

0%

stragglers

50%

stragglers

90%

stragglers

Figure 9. The loss of FedAvg and FedProx under various systems heterogeneity settings when each device can run at most 1 epoch at

each iteration (E = 1). Since local updates will not deviate too much from the global model compared with the deviation under large E’s,

it is less likely that the statistical heterogeneity will affect convergence negatively. Tolerating for partial solutions to be sent to the central

server (FedProx, µ = 0) still performs better than dropping the stragglers (FedAvg).

0%

stragglers

50%

stragglers

90%

stragglers

Figure 10. The testing accuracy of the experiments shown in Figure 9.

C.3.3 Adaptively setting µ

One of the key parameters of FedProx is µ. We provide the complete results of a simple heuristic of adaptively setting µ on

four synthetic datasets in Figure 11. For the IID dataset (Synthetic-IID), µ starts from 1, and for the other non-IID datasets,

µ starts from 0. Such initialization is adversarial to our methods. We decrease µ by 0.1 when the loss continues to decrease

for 5 rounds and increase µ by 0.1 when we see the loss increase. This heuristic allows for competitive performance. It

could also alleviate the potential issue that µ > 0 might slow down convergence on IID data, which rarely occurs in real

federated settings.

Federated Optimization in Heterogeneous Networks

0 50 100 150 200
Rounds

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 L
os

s

Synthetic-IID

FedAvg (FedProx, =0)
FedProx, dynamic
FedProx, >0

0 50 100 150 200
Rounds

1

2

3
Synthetic (0,0)

0 50 100 150 200
Rounds

1

2

3

Synthetic (0.5,0.5)

0 50 100 150 200
Rounds

1

2

3

Synthetic (1,1)

Figure 11. Full results of choosing µ adaptively on all the synthetic datasets. We increase µ by 0.1 whenever the loss increases and

decreases it by 0.1 whenever the loss decreases for 5 consecutive rounds. We initialize µ to 1 for the IID data (Synthetic-IID) (in order to

be adversarial to our methods), and initialize it to 0 for the other three non-IID datasets. We observe that this simple heuristic works well

in practice.

C.3.4 Comparing Two Device Sampling Schemes

We show the training loss, testing accuracy, and dissimilarity measurement of FedProx on a set of synthetic data using two

different device sampling schemes in Figure 12. Since our goal is to compare these two sampling schemes, we let each

device perform the uniform amount of work (E = 20) for both methods.

0 50 100 150 200
Rounds

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 L
os

s

Synthetic-IID

0 50 100 150 200
Rounds

1

2

3
Synthetic (0,0)

0 50 100 150 200
Rounds

1

2

3

Synthetic (0.5,0.5)

0 50 100 150 200
Rounds

1

2

3

Synthetic (1,1)

0 50 100 150 200
Rounds

0.2

0.4

0.6

0.8

Te
st

in
g

Ac
cu

ra
cy

Synthetic-IID

0 50 100 150 200
Rounds

0.0

0.2

0.4

0.6

0.8
Synthetic (0,0)

0 50 100 150 200
Rounds

0.2

0.4

0.6

0.8
Synthetic (0.5,0.5)

0 50 100 150 200
Rounds

0.2

0.4

0.6

Synthetic (1,1)

0 50 100 150 200
Rounds

0.0

0.1

0.2

0.3

Va
ria

nc
e

of
 L

oc
al

 G
ra

d. Synthetic-IID

0 50 100 150 200
Rounds

20

40

Synthetic (0,0)

0 50 100 150 200
Rounds

20

40

60

Synthetic (0.5,0.5)

0 50 100 150 200
Rounds

50

100

Synthetic (1,1)

=0, E=20, uniform sampling+weighted average
=1, E=20, uniform sampling+weighted average

=0, E=20, weighted sampling+simple average
=1, E=20, weighted sampling+simple average

Figure 12. Differences between two sampling schemes in terms of training loss, testing accuracy, and dissimilarity measurement. Sampling

devices with a probability proportional to the number of local data points and then simply averaging local models performs slightly better

than uniformly sampling devices and averaging the local models with weights proportional to the number of local data points. Under

either sampling scheme, the settings with µ = 1 demonstrate more stable performance than settings with µ = 0.

