
Noname manuscript No.

(will be inserted by the editor)

Federating Policy-driven Autonomous Systems:

Interaction Specification and Management Patterns

Alberto Schaeffer-Filho · Emil Lupu ·

Morris Sloman

Received: date / Accepted: date

Abstract Ubiquitous systems and applications involve interactions between mul-
tiple autonomous entities — for example, robots in a mobile ad-hoc network col-
laborating to achieve a goal, communications between teams of emergency workers
involved in disaster relief operations or interactions between patients’ and health-
care workers’ mobile devices. We have previously proposed the Self-Managed Cell
(SMC) as an architectural pattern for managing autonomous ubiquitous systems
that comprise both hardware and software components and that implement policy-
based adaptation strategies. We have also shown how basic management interac-
tions between autonomous SMCs can be realised through exchanges of notifica-
tions and policies, to effectively program management and context-aware adapta-
tions. We present here how autonomous SMCs can be composed and federated into
complex structures through the systematic composition of interaction patterns. By
composing simpler abstractions as building blocks of more complex interactions
it is possible to leverage commonalities across the structural, control and com-
munication views to manage a broad variety of composite autonomous systems
including peer-to-peer collaborations, federations and aggregations with varying
degrees of devolution of control. Although the approach is more broadly applica-
ble, we focus on systems where declarative policies are used to specify adaptation
and on context-aware ubiquitous systems that present some degree of autonomy
in the physical world, such as body sensor networks and autonomous vehicles. Fi-
nally, we present a formalisation of our model that allows a rigorous verification

Neither the entire paper nor any part of its content has been published or has been accepted
for publication elsewhere. It has not been submitted to any other journal.

Alberto Schaeffer-Filho
Institute of Informatics, Federal University of Rio Grande do Sul, Brazil
E-mail: alberto@inf.ufrgs.br

Emil Lupu
Department of Computing, Imperial College London, United Kingdom
E-mail: e.c.lupu@imperial.ac.uk

Morris Sloman
Department of Computing, Imperial College London, United Kingdom
E-mail: m.sloman@imperial.ac.uk

2 Alberto Schaeffer-Filho et al.

of the properties satisfied by the SMC interactions before policies are deployed in
physical devices.

Keywords Network management · Adaptive policy · Federation · Autonomic ·
Architectural pattern

1 Introduction

Ubiquitous systems typically comprise numerous devices, such as smartphones,
robots and intelligent sensors and actuators that interact via wireless commu-
nications in applications such as body sensor networks for healthcare, teams of
emergency workers and unmanned robots for disaster relief operations, sensor net-
works for environmental and infrastructure monitoring, etc. Such systems must
operate continuously, but their configuration and management are too complex
and cumbersome for non-technical users. Autonomic, self-managing techniques
are therefore needed to build these systems and make them adaptive to context
changes, failures and mobile components which join or leave the system frequently.

Previous work introduced the Self-Managed Cell (SMC) [1] as a paradigm for
structuring the management of ubiquitous applications. An SMC consists of a set of
autonomous hardware and software components, which may themselves be SMCs.
In essence, an SMC provides an architectural pattern for the implementation of
a MAPE-K loop [2] where management policies are used to specify adaptation
strategies to be enacted in response to changes in context, failures, components
joining or leaving the system, and authorisation policies restrict which resources
and services can be accessed, including by other SMCs. We have applied SMCs in
multiple areas including body sensor networks for e-health, autonomous vehicles,
and management of larger networks and systems [3,4]. For example, a typical
SMC for health monitoring comprises a smartphone supporting user interaction
and management services that control several intelligent body sensor nodes1 (BSN)
for monitoring heart rate, temperature and oxygen saturation, which may be SMCs
themselves. The conditions monitored by the sensors may result in alerts to the
user or actions on actuators such as a pacemaker or a drug delivery SMC. If
the patient’s state indicates a critical condition, a remote emergency/healthcare
service could also be summoned. A healthcare worker may have a smartphone or
netbook able to perform specific diagnostic services that require interaction with
the patient’s SMC or may update the patient’s policies to modify the care strategy.
Communication with BSN nodes typically occurs through IEEE 802.15.4 radio
links while communication between smartphones occurs through Bluetooth or Wi-
Fi. Similarly, disaster management situations require the collaboration of first-
responder organisations such as police, ambulance and fire brigade but may also
involve local authorities and charities such as the Red Cross. These have their own
management structures and policies but still need to interact, coordinate activities,
assign tasks and so on. Rescue operations may include unmanned vehicles to search
dangerous environments. A team of collaborating unmanned autonomous vehicles
(UAVs) could be used for search and rescue where each UAV can be seen as an
SMC with basic capabilities for controlling movement and sensing the environment
e.g., detecting chemicals, video camera, microphone for monitoring sound, GPS

1 http://vip.doc.ic.ac.uk/bsn/

Federating Policy-driven Autonomous Systems 3

for location sensing and infrared sensors for detecting physical obstacles. A UAV
may support various communication options including Wi-Fi for interacting with
other vehicles, satellite or cellular 3G (in urban environments) for long distance
interactions.

In the above scenarios both peer-to-peer relations, e.g., between first-responder
organisations, as well as compositions, e.g., in a healthcare body sensor network
managed by the smartphone controller, need to be catered for. Some applications
combine both peer-to-peer and composition relations such as a network of UAVs
collaborating on a search and rescue mission, which may indicate a peer-to-peer
relationship between them but also be composed into a single SMC with a con-
troller which manages the mission, assigns tasks and controls access from/to the
external world. Although the ways in which autonomous systems interact in such
applications are endless, common patterns are often encountered in relation to:

– Communication and how the distributed entities exchange information;
– Management in terms of how entities are discovered, how tasks are allocated,

how policies are exchanged;
– Structuring of the potentially large number of entities forming a complex SMC,

e.g., composition, peer-to-peer or some form of federation and how interfaces
of an outer SMC can be used to control access to inner SMCs.

These patterns can be identified, codified and used as building blocks in the
creation of application-specific patterns as well as for the rapid assembly of SMCs
into complex structures by instantiating appropriate patterns.

In this paper we describe how this can be achieved, how management patterns
can be implemented and codified, how they can be formally checked for correct-
ness and how interactions can be deployed. We advocate ways of structuring these
collaborations, as well as the specification, instantiation and reuse of common pat-
terns between SMCs. We show how the different SMC interaction patterns can all
be expressed as combinations of three fundamental abstractions: policy exchange,
event forwarding, and interface visibility. We further show how SMCs can dynami-
cally exchange policies to prescribe how remote SMCs must behave; how SMCs can
forward events which are required for communicating changes of context and trig-
gering management policies in another SMC; and how SMCs are structured with
respect to interface access, to enforce abstractions such as visibility and encapsu-
lation. Patterns are used to prescribe the protocols through which the exchanges
of policies, events and interfaces are achieved. The use of patterns supports the
construction of SMC interactions in a methodical manner, by reusing simpler ab-
stractions as design elements of a more complex interaction. To achieve this we
have extended, integrated and consolidated work presented in earlier workshop
and conference publications in a coherent framework [5–7]. In particular, we add
to the SMC an extensible set of interaction patterns relating to the management
structures, types of control and types of communication that are useful for feder-
ating autonomous SMCs; we individually discuss and give examples of the most
common patterns in our catalogue; we present the formalisation of pattern-based
SMC interactions; and we present a comprehensive evaluation, not only in terms
of the performance of our implemented prototype but also in terms of the overall
scalability of the model. Note that this paper deals specifically with the interaction
specification and management patterns for composing SMCs. We do not cover all
aspects of SMC integration regarding coordination, orchestration, governance and

4 Alberto Schaeffer-Filho et al.

decomposition. Although these are interesting research challenges in their own
right, and some have been partially addressed in separate publications, further
work is required to integrate them within the context of the work in this paper.

This paper is organised as follows: Section 2 presents the Self-Managed Cell
and the basics of cross-SMC interactions. Section 3 introduces the use of patterns
for systematically realising policy-based SMC interactions. Section 4 presents the
formalisation of the model and the verification of SMC interactions. Section 5
describes our implementation and evaluation. Section 6 discusses the related work
and Section 7 presents the concluding remarks.

2 Self-Managed Cells and their Interactions

2.1 Self-Managed Cell

The Self-Managed Cell (SMC) provides a paradigm for structuring the manage-
ment of autonomous ubiquitous systems [1,3], and has evolved from previous work
on policy-based management at Imperial College. An SMC facilitates easy addition
or removal of components, caters for error prone sensors, failures and automatically
adapts to the user’s current activity or environment. It uses policies as the pri-
mary means of implementing adaptation but further decision making components
and services (e.g., planning [8]) can be integrated as additional services. The SMC
manages a set of heterogeneous components such as body sensor nodes, smart-
phones, Gumstix2, robots or network elements and could range from body-area
networks to large-scale distributed applications.

Fig. 1 Self-managed cell architecture comprising its core services

The SMC is itself a pattern that can be instantiated for different application
areas using different implementations for its core services. For example, one im-
plementation can be used for an individual device SMC such as a smartphone or
an autonomous vehicle, and a different one when catering for the management of
larger networked systems. The management functionality in the SMC is provided

2 http//:www.gumstix.com

Federating Policy-driven Autonomous Systems 5

through a dynamic set of management services (Fig. 1) integrated through an
asynchronous event bus that carries management events between the components
and services. A policy service that enforces adaptive and access control rules, and
a discovery service that can discover new components and maintain the member-
ship of the SMC are the core services that a minimal implementation requires.
The event bus provides loose coupling between the services thereby realising an
extensible architecture where additional services, e.g. for retrieving a specific type
of contextual information, can be added as required [1]. Whilst a similar architec-
ture may in some circumstances also be appropriate for realising the functional
interactions between the SMCs components, we focus here solely on the manage-
ment interactions. In particular, we do not consider the case where the event bus
carries all the functional messaging traffic.

2.1.1 Discovery Service

The discovery service is used to detect new devices capable of joining an SMC,
e.g. intelligent sensors or other SMCs, when they come into communication range.
Typically, a sensor node may contain various resources such as storage, processing
power, GPS receivers, cameras, etc, and discovery protocols are needed so other
nodes can discover and use the desired resources [9]. In the SMC model, the dis-
covered device is authenticated, and if necessary a secure channel is established for
further communication. The device is interrogated to determine the capabilities it
offers in terms of services or resources. This is achieved by exchanging SMC inter-
faces specifying the operations and events supported (see Section 2.2.2), described
in a simplified notation based on Ponder2. The discovery service is responsible for
maintaining the membership of the SMC, functioning as a registry – a reference to
the discovered device is stored in a domain structure within the SMC in the form
of a managed object (MO), which works as an adapter that abstracts the commu-
nication protocol, e.g. sockets, RMI, HTTP, between the discoverer and discovered
SMCs. The discovery service broadcasts its identity message (id;type[;extra]) at
frequency R. This enables the SMC to advertise itself to both devices and other
SMCs, and enables current SMC members to determine whether they are still
within reach of the SMC. Each member device unicasts its identity message at
frequency D, and if the discovery service misses nD successive messages from a
particular device, it concludes that the device has left the SMC permanently. The
discovery service thus detects when one of the SMC’s resources has left and can
distinguish between transient failures and permanent departures. The event de-
scribing the departure of one of the components is published on the event bus
allowing all relevant management services to react to it concurrently.

2.1.2 Event Bus

A publish/subscribe event bus is used to communicate notifications, alerts and
other events between managed resources and management services or between
management services themselves. This de-couples services and resources, as event
publishers do not need prior knowledge of the recipients when sending a mes-
sage [10]. This also permits adding new services to the SMC without disrupting
existing ones. The event bus must guarantee reliable event delivery since managed
events are used to trigger adaptation and reconfiguration actions. For embedded

6 Alberto Schaeffer-Filho et al.

systems such as body-area networks we have developed a simple publish/subscribe
event system supporting minimal functional requirements. In particular it supports
at-most-once persistent event delivery (it attempts to deliver an event until it de-
termines that the subscriber is no longer a member of the SMC) and content-based
subscriptions, where subscriptions can be matched against any field of the event.
Messages are routed by the event bus using filters, which match the subscriptions
with the content of the events published. Furthermore, the event bus must guar-
antee that events from the same publisher will be delivered to the subscriber in
the same order as they have been received by the router (FIFO ordering).

Our implementation of the event bus is aimed at resource constrained devices
and thus does not intend to support the functionality of an Enterprise Service
Bus (ESB) [11]. In larger scale systems where the event bus is not only used
for management events but also for functional interactions between the managed
resources and services an ESB may need to be used. Similarly, fine grained control
over the information flow can be implemented in large scale publish/subscribe
systems, for example as described in [12].

2.1.3 Policy Service

A policy service manages the policies specifying the behaviour of the SMC. Our im-
plementation is based on the Ponder2 framework3, but we also provide a lightweight
implementation that can run on BSNs and other constrained devices [13]. Ponder2
comprises a general-purpose object management system. It implements a policy
execution framework that supports the enforcement of both obligation and autho-
risation policies. Obligation policies are event-condition-action rules which define
the adaptive behaviour of an SMC — how discovered devices are controlled, how
to recover from component failures, which adaptation strategies to apply when
context changes, which events and notifications should be generated within the
SMC or for the benefit of external SMCs such as collaborators in a mission. Au-
thorisation policies specify the conditions for permitting other parties to access
services or resources within the SMC. New policies may be downloaded into an
SMC at run-time or existing policies may be enabled/disabled to change the adap-
tation strategy of an SMC. For example, the following policies could be specified
for healthcare monitoring and recovery of a patient:

1 . on hr (l e v e l)
if l e v e l > 100 do / os . setFreq (10min) ;

2 . auth+ / pat i en t
→ / os .{ setFreq , setMinVal , s t a r t , stop } ;

The first policy is an obligation which is triggered by a heart rate (hr) event
produced by a body sensor. If the level measured is above a certain threshold, the
policy reconfigures the monitoring frequency of the oxygen saturation (os) device.
The second policy is an authorisation required to permit management of the oxy-
gen saturation device. Policies are written in terms of managed objects (MOs),
which are stored in a local domain that implements a hierarchical namespace
within Ponder2. Ponder2 provides built-in support for the creation of a set of core
managed objects, e.g. events, policies, etc, however the infrastructure is extensible

3 http://www.ponder2.net

Federating Policy-driven Autonomous Systems 7

and allows the creation of user-defined custom managed objects, e.g. adapters for
interfacing with a temperature sensor. Managed objects may also be held trans-
parently in a remote Ponder2 system, and different underlying transport protocols
are natively supported to facilitate remote communication, e.g. RMI, HTTP, etc.
A command interpreter provided by Ponder2 supports a high-level configuration
and control language called PonderTalk, which allows the invocation of actions on
these managed objects.

2.1.4 Additional Services

Whilst the services described above constitute the minimal functionality of the
SMC [1], the architecture described in Fig. 1 is extensible and other services may
be added depending on the requirements of the application domain. A security
service can implement authentication, secure device association and support con-
fidentiality and anomaly detection [14]. A service to optimise performance and
resource allocation could be added in more complex SMCs. Work on policy re-
finement [15], policy learning [16], orchestration/planning [17], QoS and conflict
analysis [18] has been done at Imperial College for some time in the context of
policy-based systems. These aspects could be integrated in the SMC, and the work
presented here may need to be extended to cater for the additional interactions
required for these services (e.g., propagation of constraints for orchestration and
planning). However, we leave these aspects for future work and concentrate in
this paper on the interactions required for the basic SMC functionality and the
use of management patterns. A variety of communication and transport protocols
may be necessary in order to interact with heterogeneous components in an SMC.
For example, body sensors typically use IEEE 802.15.4 wireless links or bluetooth
whereas smartphone controllers may include Wi-Fi and 3G for interactions with
the infrastructure. To achieve this, adapter objects are created when the device is
discovered and are used to provide a uniform interface to the SMC and convert
interactions to the specific protocols supported by the devices.

2.2 Cross-SMC Interactions

Large systems need to be built in terms of SMCs that cooperate between them.
This requires realising complex SMC structures including peer-to-peer collabora-
tions, federations and compositions, which need to be defined in terms of the inter-
actions between the SMCs. Such interactions depend on the type of the SMCs but
also on the context in which the interactions take place. Thus, the implementation
of the interactions cannot be hard-coded but must be extensible and configurable.
Cross-SMC interactions rely on a set of basic underlying mechanisms including
the interfaces SMCs expose to each other, the roles interacting SMCs play in each
other’s structure, and events and policies exchanged between them. Policies specify
the obligations of an interacting party in the collaborations. Interfaces are needed
to define the methods that are exposed by an SMC, the events that it can generate
and which notifications it can receive. These aspects are discussed below.

8 Alberto Schaeffer-Filho et al.

2.2.1 Roles

Policies for the management of an SMC need to take into account possible inter-
actions with other SMCs and apply to those SMCs when the interactions occur.
For example, authorisations may need to be specified that give a remote SMC
access to some of the interfaces and managed resources. To achieve this we define
within an SMC placeholders for interacting SMCs; we refer to such placeholders
as roles to which specific devices or external SMCs can be assigned depending on
their capabilities and credentials. This enables policies relating to interactions or
management to be defined in advance in terms of the roles, and applied to the ap-
propriate SMC or device when they are assigned to that role. For example, a body
area network for a patient may have roles defined for the nurse and doctor with
which it would typically interact. Similarly a doctor’s SMC can have a role for a
patient to which the patient’s SMC is assigned when the doctor visits the patient.
This role allows the doctor to read specific sensors and adjust alarm thresholds
within the patient’s SMC so the interface to the patient’s SMC must support this
interaction.

2.2.2 Interface

An SMC specifies the functionality it provides to other SMCs through an interface.
This must support both the core management functions of the SMC and also the
management of application-specific behaviour (customised interfaces). An interface
defines the operations supported by the SMC, as well as the events that can be
sent and received to/from remote SMCs and effectively specifies its capability.
Formally, an interface description is defined as:

Interfacei = 〈O,E,N〉

Where:

– O is a set of operations, which are methods the interface provides to remote
SMCs;

– E is a set of events, which are generated (published externally) by the SMC
(i.e. to which external SMCs can subscribe);

– N is a set of notifications, which are incoming events to which the SMC has
subscribed.

Interfaces in the SMC model are specified in terms of the events that an SMC
can send or receive and the operations it supports. Rather than using an interface
definition language (IDL), SMC interfaces are described in Ponder2 notation us-
ing coding conventions to restrict the interface specification. Our work focuses on
the management and adaptation interactions between SMCs and we do not seek
to define general protocols for communication between arbitrary software compo-
nents. Thus, SMC interfaces do not define request/reply protocols or sequences of
events as typically found in WSDL descriptions [19], although application-specific
protocols may be defined by an application programmer. SMC interfaces also do
not currently implement software contracts [20] for validating SMC invocations
through preconditions, postconditions and invariants that must be satisfied, al-
though contracts are being considered as part of our future work.

Federating Policy-driven Autonomous Systems 9

The functions that an SMC exposes to another do not depend solely on the
type of the SMCs but also on the specific instances concerned and the context
for the interaction. For example the interfaces to a patient’s SMC provided to a
doctor may be different depending on the doctor’s specialisation and whether the
interaction occurs in the context of a hospital or in the street during an emergency.
For this reason, SMCs expose to each other customised interfaces depending on the
SMCs type, identity and context of the interaction. An SMC can support multiple
customised interfaces, which allow different interacting SMCs to have a different
view of the functionality the SMC exports.

Although it would be possible to expose all the functions on a single interface
and use authorisation policies to restrict access from external entities, this would
make all operations to services and resources visible externally even if they are not
accessible. This may have both security implications, e.g., in terms of revealing
capabilities of an autonomous system, and privacy implications, e.g., in e-health
applications. Instead, the customised interfaces enable different SMCs to have
different ‘views’ of the functionality provided by an SMC.

2.2.3 Interaction Establishment

The establishment of an interaction is a three-step process: (1) a remote SMC
that is capable of joining an interaction is dynamically discovered; (2) information
about the discovered SMC is used to determine to which role the SMC will be
assigned; and (3) the policies relating to that role are downloaded into the SMC.
The first two steps of the process are detailed below, and the third step is discussed
in Section 2.2.4.

Interaction establishment is initiated as a result of the discovery service of an
SMC detecting the presence of another SMC in response to the identity message
(id;type[;extra]), where id is the address of the SMC, e.g. rmi://gumstix4.doc.ic.ac
.uk/smc if RMI communication is being used, type is the kind of SMC, e.g. doc-
tor or patient, and extra is additional information about the SMC, e.g. a digital
certificate. When a remote SMC is detected, the discoverer generates the event
found SMC within its local event bus [1]. The event contains information about
the discovered SMC, and allows the components and services within the discoverer
SMC to handle it as appropriate. In particular, the address of the remote SMC is
used to obtain that SMC’s interface.

The patient provides one interface to a doctor which is possibly different from
the interface provided to a nurse. When an SMC provides an interface to another,
this is pre-determined by the type information of both discoverer and discovered
SMCs. In our implementation, local policies running in each SMC define which
interfaces should be provided to other SMCs based on their types. An SMC may
need to authenticate its partner using the extra information supplied in the identity
message before handling a specific customised interface.

Each role specifies an expected interface, in terms of operations, events and
notifications, that a remote SMC needs to satisfy in order to be assigned to that
role. Formally, let Intfc = 〈Oc, Ec, Nc〉 be the customised interface provided
by a discovered SMC, let r be a role defined within the discoverer SMC, and let
Intfr = 〈Or, Er, Nr〉 be the expected interface for that role, then the assignment
of the SMC which provides Intfc to role r is subject to the following condition
being satisfied:

10 Alberto Schaeffer-Filho et al.

Fig. 2 SMC mission exchange between Doctor SMC and Patient SMC, allowing them to
dynamically load management policies into each other [1]

assign(Intfc, r) → (Or ⊆ Oc) ∧ (Er ⊆ Ec) ∧ (Nr ⊆ Nc)

Thus policies can be written in terms of the functionality specified by the role’s
expected interface because any SMC assigned to the respective role must support
at least that minimum functionality. This ensures that SMCs complying with a
role’s expected interface will be capable of executing the policies previously written
for that role.

2.2.4 Missions

A mission is a set of policies which can be downloaded into an SMC assigned
to a role. The policies specify how it should react to both internal events and
external notifications by invoking management actions locally or on remote SMCs.
Thus a mission provides the means for dynamically defining the behaviour of the
assigned SMC in the context of the interaction. Missions are normally pre-specified
by an application ‘programmer’. Roles and expected interfaces define a scope for
specifying the policies contained in a mission. When a new SMC is discovered,
missions defined within the discoverer SMC can be downloaded and instantiated
on the discovered SMC. Mission downloading and instantiation are dependent on
the existence of authorisation policies allowing one SMC to perform these actions
on another.

Fig. 2 illustrates a mission exchange between a doctor and a patient SMC.
When a doctor SMC discovers a patient’s body-area network SMC, a mission
is downloaded and instantiated on the patient device if permitted, e.g. for ECG
monitoring relying on the sensors and devices available within the patient SMC.
Similarly, the patient may also load and instantiate a mission at the doctor, defin-
ing the policies it expects the doctor to fulfil, e.g. for re-calibration of the patient’s
sensors. In essence, missions are a constrained form of programming a remote
SMC. Before instantiating the mission and its policies, the receiving SMC must
validate the mission to prevent it from compromising the integrity of the SMC.
Mission specification and validation is described in great detail in [5].

Federating Policy-driven Autonomous Systems 11

3 Management Patterns for Building SMC Interactions

As previously discussed, the SMC is the basic autonomic building block compo-
nent for large-scale policy-based systems. However, a large system may have many
SMCs which need to interact. The disaster relief scenario indicated the need for
cooperation between teams from paramedics, police and fire departments, pos-
sibly with help from local authorities and international charities. To cater for
large-scale systems, it is necessary to compose and aggregate multiple SMCs into
a single larger SMC component with a well-defined interface so that the composed
SMC can be treated as a single management unit, hiding its internal complexity.
Manually specifying complex policy-driven interactions in terms of the basic mech-
anisms discussed in the previous section is cumbersome and error-prone. Instead,
support is needed for the design and establishment of policy-based interactions
between SMCs that can be built in a systematic and reusable manner.

3.1 A Catalogue of Patterns for SMC Interactions

The commonality exhibited by many applications relating to management rela-
tionships, communication relationships and the structuring of the components
can be exploited to simplify the design process by using predefined architectural
patterns. We distinguish between control patterns that indicate which component
is in overall control and capture task allocation strategies, communication patterns
that define event forwarding strategies between SMCs, and management structure
patterns that define the relationship between components, interface visibility and
encapsulation criteria for the interactions. These can be seen as complementary
dimensions for defining policy-based SMC interactions. They are complimentary
in that control patterns support the exchange of policies, communication pat-
terns support the exchange of events, which are required for triggering policies,
and structural patterns support the exchange of interfaces, which are required for
validating the actions prescribed by policies.

The concept of design patterns [21] has been used in software engineering for
many years as a means of providing standard solutions to recurring problems. In
our approach, each pattern defines the roles for the participants in the interaction
and the policies governing the behaviour of the participants in the interaction. A
library of patterns can then be specified and patterns can be instantiated dynam-
ically to compose and federate SMCs into larger structures. This has similarity to
the work on software architectures, which advocates the use of components and
connectors as a means of structuring software development for distributed systems
[22], although they do not cater for the use of policies or the adaptive behaviour
needed for mobile ubiquitous systems. Furthermore, structural, control, and com-
munication patterns can be combined into application-specific patterns e.g., for
the health and social care workers involved in the care of a patient with a chronic
disease who is living at home. Although a large number of different interactions
can be defined, typically applications tend to use small subsets of these interac-
tions. Table 1 presents a summary of the catalogue of architectural patterns for
SMC interactions and these are elaborated below.

12 Alberto Schaeffer-Filho et al.

Table 1 Catalogue of architectural patterns for SMC interactions

Category Architectural
Pattern

Description

Management
Structure

Peer-to-Peer
Management

Ordinary, symmetrical mode of interaction be-
tween SMCs that exchange interfaces

Management
Composition

One SMC encapsulates another’s interface and
determines its visibility through mediation

Management
Aggregation

Inner SMC becomes resource of outer but with-
out imposing encapsulation (allows sharing)

Fusion Combines the interfaces, policies, and managed
objects of two constituent SMCs into a new SMC

Control Hierarchical
Control

One top-level SMC controls the execution of a
set of leaf SMCs

Cooperative
Control

One leaf SMC is controlled by a set of cooperat-
ing manager top-level SMCs

Auction Task allocation employing a negotiation ap-
proach (issuers and bidders)

Distributed
Control

Fully decentralised interaction where SMCs can
both load and receive tasks from their partners

Communication Publish-subscribe Provides a way of directly forwarding events to
interacting SMCs

Shared
Blackboard

Provides a common means of sharing information
among SMCs

Diffusion Propagation via intermediate nodes in a network
Store-and-
Forward

Useful in ad-hoc settings where SMCs do not
have a permanent connection to their partners

3.1.1 Management Structure Patterns

Structural patterns define how SMCs are organised with respect to the access of
their interfaces. We strictly focus on management structures for organising SMCs
rather than on general software design patterns for component or service compo-
sition. We used the terms management composition and management aggregation
to distinguish them from the composition and aggregation designs that are tra-
ditionally used in the software engineering community. Management structures
provide abstractions for encapsulation, mediation and mapping of interfaces, and
also for combining two or more constituent SMCs to form a new SMC. To some
extent, data access and transformation patterns can also be supported by struc-
tural patterns through interface mediation. Structural patterns do not preclude
the use of other patterns, e.g., to define the internal structure of a composition,
or to define control or communication patterns between the SMCs.

Management Composition is an interaction in which an outer SMC encap-
sulates inner SMCs which are effectively its internal resources or managed objects.
The benefit of composing a number of smaller SMCs into a larger one is to reduce
the management complexity, encapsulating the policies and events required to
manage SMCs within a limited scope. Any interaction with an internal SMC from
the outside is mediated via the outer SMC interface. In this case an SMC can only
be a member of a single composition – thus a composed SMC does not respond
to other discovery requests. Composed components may be independent devices,
communicating over a network. If internal components fail, interaction with the
external world may temporarily fail but it is possible to have back-up internal in-

Federating Policy-driven Autonomous Systems 13

terface components which take over the internal role (not currently implemented)
to make failure transparent to the external world. The healthcare body sensor
network is an example of a composite SMC as the patient’s controller mediates
all interaction with the external world and may propagate events into or from the
BSN sensors for interactions with healthcare workers, or the environment. Body
sensors must be prevented from interacting with another nearby patient’s body
network e.g. in a hospital or in a public place. Security mechanisms such as access
control, authentication and encryption are needed to enforce this encapsulation
as described in [13,14]. Destroying a composite SMC would typically destroy the
management relationship across all internal components, but it does not imply
destroying the managed components themselves.

Peer-to-Peer management relationships are used to organise interactions in
which the components are equals, without encapsulation or interface management
i.e. no single component is in overall control. The exchanges of interfaces occur
in a symmetric manner and an SMC may take part in multiple peer-to-peer re-
lationships. Each peer will have a role relating to the other. Peers do not really
manage each other but they may interact in a client-server or collaborative pattern
relevant to the application. Peer-to-peer management is exemplified by the inter-
action between the doctor’s and patient’s mobile devices. For example, in Fig. 2
both doctor and patient SMC have remote role placeholders and can exchange in-
terfaces. Components within a management composition may form a peer-to-peer
management structure, but would have to be informed about their peers as they
are not discoverable.

Aggregation management is a ‘looser’ form of combining SMCs into a group
than composition. It facilitates the hierarchical structuring of SMCs but does not
imply mediation or encapsulation. Aggregated components are visible (i.e. discov-
erable) from outside the SMC and may be partly managed by external components.
In the disaster relief scenario, the SMCs representing the various organisations are
forming an aggregation. The SMCs may actually be managed by other SMCs rep-
resenting their parent organisations. Aggregation can be used to form hierarchical
relationships between sets of SMCs – lower level SMCs provide services to higher
level ones which combine these primitive services into higher level ones offered
to clients. For example, environmental monitoring sensors on cars could form a
mobile ad-hoc network for reporting readings to fixed data receivers around the
city. A web-based pollution service would query these data loggers to analyse and
provide a service for users to check pollution levels via smartphones or people with
specific sensitivity could subscribe to an SMS messaging service to receive warning
of high pollution levels in specific areas. Thus there are four levels of service hier-
archy in this aggregated application – mobile users, web-service, fixed data loggers
and mobile sensors.

Fusion merges two or more SMCs to form a single SMC. For example two
independent teams of robots, each with their own commanders may merge to
form a single team with one commander for the purposes of a particular mission.

3.1.2 Control Patterns

Control patterns capture task-allocation strategies and control aspects. While
missions define what policies are being exchanged, control patterns specify how

14 Alberto Schaeffer-Filho et al.

these exchanges occur. Control patterns also assist in the specification of man-
ager/managed relationships between SMCs, facilitating the deployment of the au-
thorisation policies which are required for mission downloading. Control patterns
are complementary to structural patterns: for example, the SMCs forming a com-
position or an aggregation structure may rely on different control patterns for
defining their task-allocation and policy-exchange behaviour.

Hierarchical Control exists when one SMC is responsible for managing an-
other as is the case between the outer SMC and inner SMCs in a composition.
A manager typically provides tasks and policies to subordinate components. For
example, in the body sensor network scenario, the patient’s controller is a smart-
phone with more powerful resources than the sensor nodes and 3G or Wi-Fi com-
munication links for interacting with the external world. There is a hierarchical
relationship between the controller and the body nodes and the controller will
allocate policies to the nodes. However hierarchical control does not imply man-
agement composition for all applications. The disaster relief scenario may have a
central command centre with a hierarchical control relationship to the collaborat-
ing organisational SMCs but there is no composition.

Cooperative Control occurs when a set of cooperating manager SMCs control
the execution of a subordinate SMC by delegating policies to it. This implies that
the manager SMCs have rights of programmability over the subordinate. These
multiple managers may cause conflicting policies to be loaded, which must be
addressed by mechanisms such as prioritisation of policies or use of application-
specific meta-policies. For example, a shared robot may be subject to policies
downloaded from two cooperating teams using a cooperative control relationship.

Auction-based Control in which SMCs bid for tasks to perform on behalf of
managers might suit some applications where processing is off-loaded from portable
devices to more powerful ones within the infrastructure, or when tasks are dis-
tributed to a collaboration of robots that have differing capabilities.

Distributed Control occurs when a number of SMCs cooperate to achieve
an overall goal by exchanging tasks and policies with each other but there is no
subordination relationship. This obviously maps onto a peer-to-peer structural
relationship, but elements in a peer-to-peer relationship may only exchange data
and not management information, so do not necessarily form a distributed control
relationship.

3.1.3 Communication Patterns

Communication between SMCs typically occurs through asynchronous event
exchanges, as events are required for triggering policies running on remote SMCs.
Communication patterns specify how events are exchanged and how event buses
of various SMCs are interconnected.

Publish-Subscribe is the primary means for disseminating events within the
SMC as well as between SMCs in composition, aggregation and peer-to-peer struc-
tures. A Publish-subscribe system is particularly useful for disseminating man-
agement and context information. This may be extended from simple events to
combining multiple correlated event sequences to form more complex events [23].

Shared Blackboard is the traditional pattern where all participants commu-
nicate by writing information into a shared knowledge base. Different implementa-

Federating Policy-driven Autonomous Systems 15

tions are possible depending on whether this shared knowledge base is replicated
to each of the participants, centrally maintained, etc. For example, this pattern
could be used as a means of sharing structured information such as casualties,
resources available or current search areas in the disaster scenario.

Diffusion is used in sensor networks with sensor readings and events propagat-
ing via intermediate nodes to one or more sinks where the data can be analysed and
aggregated. Algorithms for epidemic data dissemination in federated system [24],
possibly with built-in fault-tolerance mechanisms, could also be implemented.

Store-and-Forward is often used in delay tolerant ad-hoc networks. For ex-
ample, environment monitoring sensors could use this pattern for collecting data
and subsequently delivery to remote logging servers when network connectivity is
available.

The above are not meant to be an exhaustive list of possible patterns for
designing ubiquitous systems. We have indicated some of the generic patterns,
but there can be many different application-specific ones. Finally, the categories
(structural, control and communication) of architectural patterns are certainly
not all-inclusive. Instead, the categories above were identified through our need of
building policy-based interactions between SMCs. It is likely that new categories,
e.g., security patterns, will be added to the taxonomy presented in this paper as
we apply the pattern abstraction to a broader spectrum of autonomous systems.

3.2 Engineering Policy-based SMC Interactions

The control, communication and structural patterns can be seen as complemen-
tary perspectives for defining policy-based SMC collaborations. Each architectural
pattern defines a particular abstraction and can be used to specify independently
the different aspects of an interactions in terms of: (a) the exchange of policies;
or (b) the exchange of events for triggering policies; or (c) the exchange of in-
terfaces for validating the actions prescribed by policies. Based on the catalogue
presented above we now define a methodology for engineering policy-based SMC
interactions, which relies on the combination of patterns as design elements of a
collaboration.

A pattern defines its own set of specific roles, i.e. the placeholders for the
participants in the interaction, according to the abstraction it enforces. These
pattern-specific roles are associated with the domain roles, e.g., patient and sensor,
through a process called binding. Therefore, patterns enforcing specific semantics
for event exchanges between SMCs, e.g., a diffusion, will have their pattern-specific
roles, e.g., source or target, bound to the domain roles in an SMC. These bindings
define how the SMCs that will be assigned to domain roles should execute their
event exchanges. Similarly, this is used to specify how SMCs execute their policy
downloading through control patterns, e.g., hierarchical or auction, and how SMCs
organise themselves in terms of interface access using structural patterns, e.g., peer-
to-peer or composition. Furthermore, each pattern defines a specific algorithm or
protocol for achieving the exchange of policies, events or interfaces, with well-
defined properties. The binding of pattern-specific roles to domain roles permits
the design of complex policy-based interactions incrementally. The pattern-specific
roles bound to a domain role ultimately dictate how an SMC will behave: as an
outer/inner w.r.t a composition, as an issuer/bidder w.r.t. an auction, or as a

16 Alberto Schaeffer-Filho et al.

source/target w.r.t. a diffusion pattern. A more exhaustive catalogue of patterns
for SMCs has been presented in [25].

We distinguish between specification and instantiation of an interaction. The
specification consists of binding architectural patterns to roles in the local domain
of an SMC. This defines how SMCs that will be assigned to these roles are expected
to establish their interactions. When actual SMCs are assigned to domain roles,
the patterns which were previously bound will be instantiated, and interactions
will be established in the form of exchanges of policies, events and interfaces as
prescribed by the patterns.

Fig. 3 Architectural patterns, bindings and roles

The relationship between domain roles in an SMC, patterns and pattern-
specific roles is illustrated in Fig. 3. For a given pattern, e.g. composition, pattern-
specific roles, e.g. outer and inner, are bound to roles in the SMC’s domain,
e.g. doctor, patient, sensor. This defines how the SMCs that will be assigned to
the roles are expected to establish their interactions.

A pattern implicitly specifies a set of requirements that are inherited by the
roles to which the pattern is bound. SMCs assigned to these roles must provide an
interface which can support the requirement. For example, a pattern that specifies
the forwarding of the event heart rate from one SMC to another will typically
require this event to be emitted by the source’s interface and defined as incoming at
the target ’s interface. Thus a requirement is a function which associates a pattern-
specific role with a number of operations, events or notifications which must be
supported by the SMC assigned to that specific role:

requirement : patternRoles → (O ∪ E ∪N)

Domain roles in an SMC aggregate both the behaviours and requirements of
all pattern-specific roles which were bound to them. For example, a given domain
role can be simultaneously bound to an inner (through a composition) and to a
source (through a diffusion) pattern-specific roles.

A pattern is defined as a set of pattern-specific roles, an associated behaviour
and a set of requirements:

pattern = 〈PatternRoles,Behaviour,Requirements〉

where PatternRoles is the set of roles defined by this pattern, Behaviour is the
implementation-specific behaviour defined by the pattern, and Requirements is the

Federating Policy-driven Autonomous Systems 17

set of requirements (in terms of operations, events and notifications) that must be
satisfied by each participant in order to accomplish the behaviour prescribed by
the pattern.

An interaction specification that is enforced by an SMC consists of a number of
domain roles, architectural patterns, and how they are bound to each other within
the SMC:

specification = 〈Roles, Patterns,Bindings〉

where Roles is the set of roles defined in the local domain of the SMC enforcing
this specification, Patterns is the set of architectural patterns bound to these roles
through the set of bindings Bindings.

A binding of a pattern with respect to an interaction specification associates
each pattern-specific role defined in the architectural pattern with a role within
the SMC’s domain. Hence:

binding(pattern, spec) →
∀x ∈ patternRolespattern, ∃y ∈ Rolesspec : y := y ⊙ x

where the ⊙ operator is defined as follows. Let ⊙ be a binary operator, when
applied to a pattern-specific role (right operand) and a domain role (left operand)
it performs the union (∪) of the set of behaviours associated with both operands,
and the union of the set of requirements that is also associated with both operands.
The resulting sets are then assigned to the domain role. Assigning a larger set
of requirements to a domain role means adding new restrictions to the expected
interface of that role, which will have to be satisfied by the SMC assigned to it,
as discussed in Section 2.2.3.

Fig. 4 Composition model: (1) patterns are bound to roles in the local domain; (2) remote
SMCs are assigned to these roles; (3) patterns are instantiated and the behaviour associated
with each pattern is enforced in the SMCs

When remote SMCs are discovered at run-time, they will be assigned to roles
in the domain of the discoverer SMC if they satisfy the requirements for these

18 Alberto Schaeffer-Filho et al.

roles, and the patterns which were previously bound will be instantiated. These
will dictate how these SMCs should interact with each other (Fig. 4). Hence,
an assignment of an SMC to a domain role within a specification will cause all
patterns bound to this role to be instantiated in the SMC:

assignment(SMC, rolespec) →
∀pt ∈ patternsspec : ∀x ∈ patternRolespt : x⊙−1 rolespec

→ instantiate(SMC, pt, x)

where the ⊙−1 operator is defined as follows. Let ⊙−1 be a binary operator, it
evaluates to true if a pattern-specific role (left operand) and a domain role (right
operand) are bound. This causes the instantiation of the respective architectural
pattern. The instantiation of a pattern is defined by the behaviour associated
with the pattern, in terms of how the exchange of interfaces, policies or events is
achieved. This operation takes as arguments an SMC, the pattern to be instanti-
ated and the specific role within the pattern that this SMC will be fulfilling.

This model allows us to define independent layers of management for policy-
based SMC interactions, where the structural, communication and control aspects
can be specified by reusing common abstractions expressed as architectural pat-
terns. There are dependencies among the patterns: structural patterns must be
instantiated first, as they enable the exchange of customised interfaces, e.g. doctor
interface, patient interface; communication patterns are then instantiated to define
patterns in terms of the events provided by these interfaces; control patterns must
be the last, as the policies downloaded depend both on the operations provided
by the interface, as well as on the events forwarded by a communication pattern.
The consistent use of patterns is discussed in Section 4.

3.3 Healthcare Scenario Revisited

Consider some of the requirements for a typical healthcare monitoring applica-
tion using the personal SMC representing a patient’s body-area network described
in Section 1. A doctor or nurse SMC running in his/her smartphone must inter-
act with patients, downloading monitoring tasks and collecting monitored results.
Monitoring tasks running on the patient body-area network allow the patient to
be self-monitored in his own home environment, thus promoting reduced usage of
hospital resources and better medical evidence data for the clinical condition and
its treatment. Tasks loaded by the healthcare worker continually run on the pa-
tient’s SMC, relying on information provided by his body sensors. Two situations
regarding the collected data are of interest: (a) under normal circumstances data
may be stored on a home server SMC, for synthesis and for subsequent delivery
to the GP surgery (e.g. a scheduling task that sends a subset of this data every
seventy-two hours); and (b) in an emergency situation, data is used to request
immediate assistance (e.g. if monitored information indicates a heart attack might
be imminent).

Fig. 5 outlines the SMCs involved in this scenario. The informal description
does not specify how their relationships are realised. Although the Self-Managed
Cell is suitable for representing autonomous components, we still need adequate
abstractions for expressing their interactions. For example, if multiple SMCs are

Federating Policy-driven Autonomous Systems 19

Fig. 5 Healthcare monitoring scenario: each triangle represents an interaction that requires
a different combination of management abstractions

used on a patient to monitor related conditions they would typically be com-
posed in a single autonomous SMC. In contrast interactions between the patient’s
body area network and healthcare personnel would typically be interactions be-
tween peers. Collected data is forwarded differently in a body-area network or in
a home environment. Finally, tasks for physiological monitoring or data synthesis
are loaded in specific situations and subject to different conditions. The purpose
of architectural patterns is to provide a systematic way of designing interactions
and clearly representing their management layers.

Fig. 6 shows a graphical representation of the scenario where abstractions were
chosen for interface, event and policy exchanges. Each of the five columns in Fig. 6
corresponds to one of the triangles in Fig. 5. The graphical representation shows
that the patient smartphone and the two sensor SMCs (heart-rate and accelerom-
eter) are bound through a composition structural relationship as encapsulation of
the sensor SMCs is needed to prevent interaction with other nearby patient body
networks. Although the resources are encapsulated, operations for reading sensor
measurements are typically mapped to the patient’s interface. Sensors forward
their events (e.g. the heart rate goes above a certain threshold) to the patient
smartphone SMC through a diffusion event forwarding, where each sensor plays
the source role while the patient smartphone plays the target.

The interaction between patient and doctor has different requirements. An en-
capsulation would not apply, as a patient may interact with multiple doctors, and
vice-versa. A peer abstraction is more suitable in this case, which leads to a simple
exchange of interfaces but with no additional mapping or encapsulation. In terms
of task-allocation, a doctor will typically specify policy downloading strategies into
the patient through a hierarchical control pattern. The tasks downloaded in the
form of missions are defined in the pattern parameterisation (e.g. an ECG mon-
itoring mission). Similarly, the conditions when such tasks must be downloaded
are also part of the pattern parameterisation. The example can be further elab-
orated with the specification of the remaining interactions with the home and

20 Alberto Schaeffer-Filho et al.

Fig. 6 Architectural representation of the health monitoring scenario: the illustration shows
the overall configuration of the collaboration with the selected abstractions

surgery SMCs. Details about the implementation of architectural patterns will be
presented in Section 5.

4 Formal Specification and Model-Checking

Consistent policy deployment is crucial as often SMCs form autonomous admin-
istrative domains. When these SMCs are composed or federated, inconsistencies,
conflicting policies or interface incompatibility between the devices available may
prevent them from operating as originally expected. The definition of a formal
model assists in the design of SMC collaborations and allows the verification of
the correctness of anticipated interactions before these are implemented or policies
are deployed in physical devices, e.g. smartphones, sensors, or network equipment.

We chose the Alloy Analyzer [26,27] as the platform for the formal specification
of the SMC behaviour. Alloy is a declarative modelling language based on first-
order logic and used for expressing complex structural constraints and behaviour
in a software system. It differs from pi-calculus [28], ambient calculus [29] and
channel ambient calculus [30] which model the computation operationally. We
found Alloy more natural and concise for describing SMC interactions and the
integrity constraints related to SMC management. Alloy is similar in spirit to
other formal specification languages such as Z [31], VDM [32] and B [33] but,
unlike those, is capable of fully automatic analysis in the style of a model-checker4.

Models written in Alloy are automatically checked for correctness using the Al-
loy Analyzer. The analyser performs a finite scope check, i.e. analysis is performed
over restricted scopes on the number of objects (instances) to be used, which is
defined by the user (the user-specified scope makes the problem finite and thus

4 http://alloy.mit.edu/alloy/

Federating Policy-driven Autonomous Systems 21

reducible to a boolean formula). This is based on the small scope hypothesis [27],
that for any flawed design a counter-example should be found by an exhaustive
search within a comparatively small, bounded scope. Defining a formal Alloy spec-
ification for the behaviour of SMCs enables: (1) formally capturing the static and
dynamic aspects of the structure and behaviour of their interactions; (2) auto-
matically verifying the consistency of SMC collaborations by using its analyser;
(3) simulating SMC behaviour in complex interactions. The toolset also provides
a visualisation tool which can be used to display examples or counter-examples
graphically (figures in this section were generated by this visualiser, with small
hand edits of names to aid comprehension).

4.1 Basic Self-Managed Cell Model

An Alloy model consists of a set of signatures and a set of predicates. Signatures
define the structure of the model, where each signature represents a concept in
the model and its relationship to other concepts. Predicates define the behaviour
of a model, showing what properties hold before and after the execution of an
operation. Predicates can be used to indicate the changes that happen when an
SMC is discovered, when an SMC departs, when an SMC is assigned to a role, etc.

We initially defined the basic concepts such as SMC, Role, Interface (contain-
ing Events, Operations and Notifications supported by that interface), and the
operations for discovery of a new SMC, departure of an SMC, role assignment
and role de-assignment. For example, an SMC provides one or more interfaces.
The signature Interface defines the operations (methods that can be invoked),
the events (which can be published externally) and the notifications (which are
external events of which the SMC can be notified) supported by that interface.
Interface is an abstract signature, which means it can be extended to define
specialised interfaces for different applications.

abstract sig I n t e r f a c e
{

ope ra t i on s : set Operation ,
events : set Event ,
n o t i f i c a t i o n s : set No t i f i c a t i o n

}

Simple predicates were defined to cater for the specification of discovery and
departure of SMCs, and assignment and de-assignment of SMCs to/from roles.
These, however, merely serve as the foundation for building more complex config-
urations, which rely on policy-based interactions and different management rela-
tionships that are encoded as architectural patterns. These concepts are defined
in the following.

4.2 Policies

We now discuss the specification of obligation and authorisation policies, and the
predicates related to policy downloading. In particular, the signature ConcreteObli-
gation defines the subject and target roles for a policy, the event that triggers the
policy and the action to be invoked in response.

22 Alberto Schaeffer-Filho et al.

sig ConcreteObl igat ion extends Obl igat ion
{

sub j e c t : one Role ,
event : one Event ,
a c t i on : one Operation ,
t a r g e t : one Role

}

Similarly, the signature ConcreteAuthorisation defines a subject role, a target
role, an action and the modality of the policy (which can be either positive or
negative).

sig ConcreteAuthor i sat ion extends Author i sa t ion
{

modal ity : one Modality ,
sub j e c t : one Role ,
a c t i on : one Operation ,
t a r g e t : one Role

}

The formal specification of policies in Alloy enables several types of analysis, in-
cluding policy conflict detection. Our focus, however, is not on the ability to detect
policy conflicts, but instead on the verification of SMC collaborations and whether
their participants are able to enforce the policies. For example, it is possible to
verify whether the SMCs assigned to roles are capable of enforcing the policies
associated with those roles, or whether all obligations enforced by collaborating
SMCs have a corresponding authorisation policy. Consider the interaction illus-
trated in Fig. 7(a). DoctorSMC enforces the obligation Obl, which states that the
subject role (Doctor) must invoke on the target role (Patient) the action startECG
in response to the event highHR. The interface IDoctor provided by DoctorSMC is
locally assigned to the subject role, and interface IPatient provided by PatientSMC
is assigned to the target role in DoctorSMC. Moreover, PatientSMC enforces au-
thorisation Aut, which states that the subject role (Doctor) is allowed to invoke
action startECG on the target role (Patient). The remote interface IDoctor pro-
vided by DoctorSMC is assigned to the Doctor role in PatientSMC, whereas the
local interface IPatient is assigned to the Patient role, which is also the target of
the policy being enforced by this SMC.

Verifications are specified as predicates in the Alloy model, which define prop-
erties to be checked for a specific configuration (a configuration is an additional
signature representing the current state of an interaction). For example, the role
assignment can be type-checked to verify whether the interfaces assigned to roles
satisfy the requirements for the policies associated with those roles. The assign-
ments given in the example above satisfy this property, as interface IDoctor (which
is assigned to the Doctor role in DoctorSMC) supports the event highHR (which is
required for triggering the obligation policy). Similarly, interface IPatient (which
is assigned to the Patient role in PatientSMC) supports action startECG (which
is the action to be allowed execution by the authorisation in that SMC). Each
obligation has a corresponding authorisation policy as validated by the checkAu-
thObl predicate in Fig. 7(b), which verifies that for all obligations there is some
authorisation such that the SMC assigned to the obligation’s subject (resp. target)
is the same assigned to the authorisation’s subject (resp. target), and both policies
refer to the same action. More traditional types of analysis, such as modality or
application-specific conflicts are defined in a similar manner.

Federating Policy-driven Autonomous Systems 23

(a)

pred checkAuthObl [conf : Con f igurat ion]
{

all smc1 : conf . pa r t i c i pan t s , ob l : (conf . a c t i v e & ConcreteObl igat ion)
{

obl in (smc1 . o b l i g a t i o n s + smc1 . (conf . l oad ing)) ⇒
some smc2 : conf . pa r t i c i pan t s ,

aut : (conf . a c t i v e & ConcreteAuthor i sat ion)
{

(aut in smc2 . au tho r i s a t i o n s)
and (aut . modal ity in Positive)
and (ob l . a c t i on == aut . a c t i on)
and ((ob l . s ub j e c t) .∼(conf . ass ignment)

== (aut . sub j e c t) .∼(conf . ass ignment))
and ((ob l . t a r g e t) .∼(conf . ass ignment)

== (aut . t a r g e t) .∼(conf . ass ignment))
}

}
}

(b)

Fig. 7 Alloy graphical representation of a policy configuration between SMCs (a), and check-
AuthObl predicate used to verify that for each obligation there is an authorisation policy (b)

4.3 Architectural Patterns

We now define the architectural aspects of an interaction. In particular, an archi-
tectural pattern defines a set of pattern-specific roles (e.g. a Composition defines
the roles Outer and Inner, a Diffusion defines the roles Source and Target, a Hier-
archicalControl defines the roles Managed and Manager, etc). These patterns can
be combined, arranged in a particular manner, into higher-level application-specific
patterns (e.g. a body-area network will often have a combination of structure, task-
allocation and event forwarding aspects).

Two distinct steps related to SMC interactions are of particular importance: (1)
interaction specification and (2) interaction enforcement. Interaction specification
is defined by the bindings between pattern-specific roles and the roles required
by an SMC − this defines how SMCs assigned to these roles will be expected to
behave. Interaction enforcement is the instantiation of patterns bound to a set
of roles, when actual SMCs are assigned to these roles, causing a new behaviour

24 Alberto Schaeffer-Filho et al.

to be added to the interaction in the form of a forwarding of events, mapping of
interfaces or exchange of policy.

Fig. 8 Alloy graphical representation of an architectural configuration using three patterns
to specify the interaction between Patient and Sensor roles

Fig. 8 shows an architectural configuration obtained from the Alloy model.
In this example, PatientSMC requires two roles, Patient and Sensor, and these
roles are bound to a number of pattern-specific roles. The Sensor role is bound to
Source (through a Diffusion), Managed (through a HierarchicalControl) and Inner
(through a Composition). Similarly, the Patient role is bound to Target (through a
Diffusion), Manager (through a HierarchicalControl) and Outer (through a Com-
position). This architectural configuration means that whichever SMCs are as-
signed to the Patient and Sensor roles, they will behave according to each pattern
bound to their roles. Each pattern specifies (a) what it expects from the SMCs
that will be assigned to the roles, as well as (b) the behaviour to be added to the
interaction after the pattern is instantiated. The example illustrates the instan-
tiation of a Diffusion (the pattern is labelled as “$deploy style”). This pattern
is marked as “expects: Source → alert”, which states that, for whichever SMC is
performing the Source role, its interface must provide the alert event. By follow-
ing the binding of the pattern-specific role Source to the role Sensor, observing
that interface ISensor, which is provided by SensorSMC is assigned to this role,
we can see that this interface indeed provides the alert event, thus satisfying the
requirements of the pattern. Similarly, this pattern is also labelled as “forwarding:
alert → highHR” (this corresponds to the behaviour that must be added to the

Federating Policy-driven Autonomous Systems 25

interaction). The deployment of this behaviour can be seen through the arrow la-
belled “forwarding” between the alert event (provided by interface ISensor, which
is assigned to the role Sensor) and the highHR notification (provided by IPatient,
which is assigned to the role Patient). The behaviour added by the instantiation
of other types of architectural patterns can be shown in a similar manner, in the
form of mapping of interfaces, forwarding of events or downloading of policies.

This model can be used to check whether all the SMCs enforcing policies have
the required events forwarded to them as well as whether all SMCs have access
to the interfaces required for validating the actions prescribed by policies. These
verifications increase the confidence in the robustness of policy-based interactions,
as the interactions can be rigorously verified prior to deployment in actual devices.

5 Implementation and Evaluation

In the following we present details about our prototype, based on the Ponder2
framework, which was implemented in order to demonstrate the feasibility of the
model and test its applicability. We also present an assessment of the model with
respect to scalability and reusability aspects, as well as the performance of the
prototype in devices with limited computational power and memory.

5.1 Prototype Implementation

In order to specify an SMC collaboration for a given purpose, e.g. healthcare mon-
itoring, an application-programmer can rely on: roles that define the placeholders
for actual SMCs, a repository of management policies pertinent to a particular
scenario, and a repository of architectural patterns that provide reusable abstrac-
tions to define how policies, events and interfaces are exchanged. This specification
is then given as input to the formal Alloy model for analysis. If the specification is
successfully validated, it is ready for deployment in physical devices. Upon receiv-
ing an interaction specification, a device will locate the necessary SMCs, instantiate
the patterns and establish an interaction among a group of SMCs. Sub-patterns in
this specification can be further re-deployed in other SMCs, which will be responsi-
ble for enforcing different parts of a large interaction. This process is illustrated in
Fig. 9(a). It would be possible to use the formal model to re-check the interaction
during runtime, e.g. if a sensor fails, to ensure the policies can still run, however
the use of model-checking in our implementation has been limited to design-time
checks.

The different SMCs responsible for instantiating parts of an interaction or
simply participating in an interaction instantiated by another SMC must run the
SMC runtime. The SMC runtime extends the Ponder2 interpreter to facilitate
SMC interactions (Fig. 9(b)). The standard functionality provided by Ponder2
implements a discovery service, which permits the SMC to advertise itself to both
devices and other SMCs, an event bus, which supports the underlying event-based
infrastructure within the SMC, and the policy service itself, which allows the
specification and enforcement of both obligation and authorisation policies. These
enable the basic functionality of the SMC as a feedback control-loop. Ponder2 also
provides a command interpreter, which allows PonderTalk commands to be sent

26 Alberto Schaeffer-Filho et al.

(a)

(b)

Fig. 9 (a) Specification and establishment of SMC interactions (b) SMC runtime (shaded
blocks are standard Ponder2 components)

to configure and control the Ponder2 system. The example policies in Fig. 10 were
specified in Ponder2, and they correspond to the policies presented more abstractly
earlier in Section 2.1.3. Policies are applied to managed objects (MOs), which are
stored in a local domain that implements a hierarchical namespace within Ponder2.
The first policy is an obligation which is triggered by a heart rate event producer,
and reconfigures the monitoring frequency of the oxygen saturation device, whereas
the second policy is an authorisation required to permit management of the oxygen
saturation device. Policies are also managed objects themselves, which means that
policies can specify actions to be performed on other policies, e.g., having a policy
that enables or disables another policy.

Our framework for SMC interactions adds a number of extensions to this infras-
tructure: a core interface enables the exchanges of policies, events and interfaces
between SMCs. The implementation of its functionality relies on managed objects
that implement parsing of missions and their verification, and brokers that allow

Federating Policy-driven Autonomous Systems 27

//Obligation policy to reconfigure the monitoring frequency
//of the oxygen saturation (OS) device
root / event at: ’HR’ put: (root / f a c t o r y / event create: #(’ value ’)) .
root / po l i c y

at: ’ myOblPolicy ’ put:

(p := root / f a c t o r y / e capo l i c y create .
p event: root / event /HR;

condition: [: va lue | value > 100] ;
action: [root /OS setFreq : 10min] .

) .
root / po l i c y /myOblPolicy active : t rue .

//Authorisation policy required to permit management of
//the oxygen saturation (OS) device
newauthpol := root load: ’ Author i sa t i onPo l i cy ’ .
root / f a c t o ry at: ’ newauthpol ’ put: newauthpol .
root /authdomain

at: ’ myAuthPolicy ’ put:

(newauthpol subject: root / pa t i en t
action: ’ s e tFreq : ’
target: root /OS
focus: ’ st ’

) .
root /authdomain/myAuthPolicy active: t rue .

Fig. 10 Examples of obligation and authorisation policies for healthcare monitoring and pa-
tient recovery specified in Ponder2 syntax

the subscription and forwarding of events between remote SMCs. A particular
SMC can also have a dynamic set of application-specific managed objects that
implement non-standard functionality, e.g. adapters for local sensors, authentica-
tion algorithms, etc, and this functionality is made available to remote SMCs via
pre-specified customised interfaces. Roles are defined as placeholders in the do-
main structure provided by Ponder2, and we implemented syntactic verification
between a role’s expected interface and the SMC’s provided interface before as-
signing SMC’s to roles. Finally, a library of reusable architectural patterns enables
the systematic specification of how a group of roles must interact.

The implementation of patterns is inspired by a well-known technique for im-
plementing layered object-oriented design, called mixin layers [34]. Mixin layers
are presented as a programming artefact, to specify a collaboration between a set
of classes that are assigned to a set of roles. To some extent, collaborations in
the mixin layer model can be seen as patterns in the SMC model − i.e. each
pattern defines a number of roles, and SMCs play different roles in multiple pat-
terns. Patterns are implemented as managed objects in Ponder2, and we defined
a library of patterns divided into structural, task-allocation and communication
categories. Each architectural pattern MO specifies a given algorithm or protocol
for the exchange of policies, events or interfaces between a group of two or more
participants. Pattern-specific roles define what parts of the algorithm or protocol
each participant will be responsible for executing. This is achieved by ensuring that
fragments of Ponder2 code (defined in the pattern MO) are executed by the SMCs
when they are assigned to the respective roles. The implementation of patterns
was presented in greater detail in [25].

28 Alberto Schaeffer-Filho et al.

5.2 Reusability and Scalability of SMC Interactions

Evaluating the support for scaling-up SMC interactions includes aspects such as
reuse of code and ease in rapidly instantiating different types of interactions. Our
experience in developing policy-based SMC applications shows that the use of
architectural patterns satisfies these two issues. The parameterisation and instan-
tiation of an individual architectural pattern typically requires about 10 lines or
less of PonderTalk code. For comparison, the same interaction written manually
without the aid of patterns would require about 30 lines of code. This is a factor
of 3 increase, and for an application containing 100 of such interactions, that is
3,000 instead of 1,000 lines. An interaction for the exchange of interfaces, events
or policies between a set of SMCs can be set up using an architectural pattern,
by instantiating a single managed object which encapsulates the required support.
For example, manually setting an interaction such as an event sharing scheme sim-
ilar to the SharedBlackboard pattern, using only primitive abstractions not only
requires a considerable amount of code to be written, but it is also error-prone:
this is because the programmer is responsible for using the primitive commands
for correctly setting up policies for event forwarding and installing the required
event templates in separate locations − through the use of patterns, the pattern
itself is responsible for enforcing the semantics for a given interaction instead of
relying on the programmer to use the primitives appropriately.

The use of patterns also reduces the complexity and size of the interactions,
by structuring and decreasing the number of necessary bindings between SMCs.
A comparison can be made between abstractions for structuring an interaction;
between peer-to-peer collaborations and compositions. Indeed, one of the motiva-
tions for compositions is to hide the complexity of large SMCs that comprise a
set of smaller, yet autonomous, components, e.g. a body-area SMC. The number
of interface exchanges for completely unstructured interactions, e.g. peer-to-peer,
assuming that full connectivity is applied is given by the formula

2× ((n− 1) + (n− 2) + (n− 3) + ...+ (n− n));

by comparison, partitioning an interaction between two compositions of one
level only reduces the number of interface exchanges in the best case to

2 + 2× ((n− 2) + (n− 4) + (n− 6) + ...+ (n− n)).

This is more clearly indicated in Fig. 11 which illustrates the number of in-
terface exchanges for interactions involving from 2 to 6 SMCs, arranged either as
peer-to-peer collaborations or compositions.

This indicates that the use of architectural patterns mitigates the problems of
scaling to larger systems, with respect to both programming complexity and the
number of interactions that must be established among components. Engineering
SMC interactions through the use of patterns thus provides a measurable gain
over unstructured solutions.

5.3 Memory Consumption and Performance

To evaluate the performance of our prototype in resources with limited computa-
tional power and memory, we used two classes of lightweight, constrained devices:

Federating Policy-driven Autonomous Systems 29

Composition

interactions

P2P

interactions

Interface

exchanges

Interface

exchanges

2

6

12

20

30

2

4

6

10

14

Fig. 11 Interface exchanges in compositions and peer-to-peer interactions

Gumstix5 and Koala robots6. The Gumstix has a 400 MHz Intel XScale PXA255
processor with 16 MB flash memory and 64 MB SDRAM, running Linux and Wi-
Fi enabled. The Koala robot has a Motorola 68331, 22 MHz onboard processor, 1
MB ROM and 1 MB RAM. The robot is extended with a KoreBot module which
has a 400 MHz ARM PXA255 processor, 64 MB SDRAM and 32 MB flash mem-
ory, running Linux and also Wi-Fi enabled. In addition, the robot has 16 infrared
proximity sensors around its body, and a video camera. Both run the lightweight
JamVM7. In our setting we used JamVM version 1.4.5 and GNU Classpath version
0.91.

The size of the bytecodes required for running the prototype, including Ponder2
and necessary Java libraries, is 710 KB. The size of a typical policy written in
Ponder2 is about 620 bytes (but this certainly depends on the complexity of the
policy). The size of a typical interaction specification containing 5 roles, each
role specifying 5 policies, written in Ponder2 is about 20.4 KB (but this is also
subject to the complexity of the policies, number of policies, and number of roles
in the specification). In terms of memory usage during run-time, we observed
that a Gumstix keeping an interaction specification and all the objects loaded in
memory, required 15 MB for the Ponder2 process and 9,224 KB for the rmiregistry
process8 (RMI is one of the communication protocols supported by Ponder2, and
the one used in our experiments). A Koala robot running an application role
(containing 5 policies) required 8,384 KB for the Ponder2 process and 4,492 KB
for the rmiregistry process. Increasing the number of policies loaded in the robot
from 5 to 10 caused a negligible overhead in terms of memory consumption. The

5 http://www.gumstix.com
6 http://www.k-team.com
7 http://jamvm.sourceforge.net
8 By comparison, an empty JamVM and rmiregistry uses about 3,200 KB and 5,900 KB

respectively, and a JamVM running an empty Ponder2 instance and rmiregistry uses about
8,200 KB and 5,900 KB respectively.

30 Alberto Schaeffer-Filho et al.

Fig. 12 Total assignment time versus policy downloading and deployment time

small footprint needed for our role management infrastructure indicates that other
devices with a similar configuration and capacity could also have been used.

Performance tests were executed to measure the time taken for a Gumstix to
assign a discovered Koala robot to a role, and then to load a variable number
of policies. The graph in Fig. 12 depicts our results. We have measured both the
time taken to transfer and deploy only the policies, as well as the whole assignment
process. The latter involves the transfer of the policies, the transfer of additional
information such as event templates, the creation of role placeholders in the remote
SMC, sending an event informing that a new SMC has joined the interaction, and
the attribution of the discovered SMC to the role in question.

Our results show that for roles with a small number of policies the total cost
of assignment is dominated by the cost of tasks not related to policy transfer, i.e.,
the creation of role placeholders and the exchange of management information.
However, as we increase the number of policies per role, this cost remains constant
in comparison to the cost of transferring policies, which as can be observed in the
graph increases linearly with the number of policies. Thus, for roles with a higher
number of policies, the costs related to the creation of role placeholders and the
exchange of management information tend to become less important. This suggests
that the prototype is able to support more complex roles where the only significant
cost is the policy transfer, because the residual component of the assignment time
remains constant. We also observed that most of this time (about 97% on average)
is spent on RMI serialization and network delay when transferring data from the
Gumstix to the robot, and only a small part corresponds to the time that is actually
spent by the robot to instantiate the policies. We expect that Ponder2’s ability of
supporting alternative communication protocols will mitigate this overhead. The
evaluation of other aspects of the strategy, in particular the cost of role replacement
when an SMC fails, remains to be done as future work.

Federating Policy-driven Autonomous Systems 31

Fig. 13 Establishment time for deployments of increasingly large SMC interactions

5.4 Scalability of Large SMC Deployments

To further assess the scalability of the prototype we evaluated it with respect to the
establishment time for deployments of increasingly large SMC interactions. The
experiments were performed on a MacBook Pro 2.4GHz Intel Core 2 Duo with
8GB RAM memory. In particular, we use five SMCs to execute the interactions in
these experiments, as this could typically represent, for example, the interactions
between doctor and patient devices, with a small set of sensors and actuators.
Each SMC runs on its own Java VM, however in these experiments all SMCs are
executing on the same host.

In terms of workload, we characterise the scale of SMC interactions based on
two factors: the number of architectural patterns used to combine the SMCs (5,
10, 15, 20), and the size of each pattern (small and large). More specifically, we
determine the size of an architectural pattern based on the number of exchanges
of interface elements/events/policies performed by that specific pattern. In our
experiments, a small-size pattern performs 4 exchanges, whereas a large pattern
performs 8 exchanges.

We measured the interaction establishment time for each scenario, varying
the number of architectural patterns, both using small and large patterns. Each
experiment was run 30 times, amounting to a total of 240 executions. Fig. 13
shows the mean establishment time for different numbers and sizes of patterns
(vertical lines represent minimum and maximum values for each experiment), and
Table 2 summarises the mean establishment time, standard deviation and 95%
confidence interval for deployments of increasingly large SMC interactions. For
example, an interaction performing the establishment of 5 patterns, where each
pattern is based on the exchange of four policies, events or interface elements, takes
on average 731.93 milliseconds to complete. As we increase the number of patterns
(but still maintaining four exchanges per pattern), we observe that the mean es-
tablishment time grows linearly and an interaction involving 20 patterns takes

32 Alberto Schaeffer-Filho et al.

2,055.73 milliseconds to complete. The behaviour of interactions based on larger
patterns (involving the exchange of eight policies, events or interface elements)
also appears to grow linearly as we increase the number of patterns, however the
growth is steeper in this case, as can be observed in Fig. 13.

Table 2 Mean establishment time, standard deviation and 95% confidence interval for de-
ployments of SMC interactions

Small size 5 patterns 10 patterns 15 patterns 20 patterns
patterns
Mean (ms) 731.93 1253.23 1664.13 2055.73
Std dev 27.75 21.08 30.62 42.80
95% CI [721.59;742.28] [1245.37;1261.09] [1652.72;1675.55] [2039.78;2071.69]

Large size 5 patterns 10 patterns 15 patterns 20 patterns
patterns
Mean (ms) 942.67 1691.10 2558.77 3169.53
Std dev 59.3501 46.5939 85.8209 57.0872
95% CI [920.54;964.79] [1673.73;1708.47] [2526.77;2590.76] [3148.25;3190.82]

Our results suggest that the prototype is able to support more complex interac-
tions, in which the interaction establishment time increases linearly as a function
of the number of patterns and the number of exchanges performed by each pattern.
The results also show that the overhead for performing policy and interface ex-
changes and for setting up the communication for event exchanges remains within
acceptable bounds (i.e., an interaction that exchanges 8 policies, 2 sets of interface
exchanges with four elements each, and sets up the communication of 24 events –
10 small-size patterns – takes about 1.25 seconds to complete).

6 Related Work

The work described in this paper embraces several research areas, including en-
gineering and design of ubiquitous services, multi-agent systems and software
architecture-based approaches. These are discussed in the following.

In [35], the authors propose a new network architecture for deploying ubiqui-
tous services by designing a modular and extensible framework of roles. By means
of plug-in new roles [36], the architecture can evolve to fulfil new requirements,
dynamically adding new features and modes of operation. In contrast to our work,
those roles are typically associated to network layers 1-7 services, instead of focus-
ing on policy-based interactions. Also, in [35] there is only minimum ordering rules
amongst certain dependent roles, whereas we specifically focus on collaborating
roles in the context of an interaction. The notions of Netlets [37] and autonomic
functional blocks (AFBs) [38] aim to support new architectures for ubiquitous
systems and for the Future Internet, and are both inspired by component-based
software development approaches. They promote the composition of protocols out
of so-called building blocks during design-time. Components are collected within a
design repository for further reuse. However, both Netlets and AFBs components
are aimed at the specification of network stack protocol functionality.

Work on multi-agents has investigated the use of organisational structures
for designing multi-agent systems. Holonic models [39] for example often support

Federating Policy-driven Autonomous Systems 33

hierarchical structures, but not more sophisticated abstractions. Few studies how-
ever have attempted to identify a catalogue of generic and reusable patterns for
agent interactions [40]. In [41], the authors present a preliminary catalogue of pat-
terns for collaborations in a multi-agent system. Those patterns are presented in
terms of how the goals of a collaboration are specified, and include, for example,
“swarm intelligence” (goals are implicit) and “negotiation” (goals are explicit).
The Gaia methodology [42], for example, supports the modelling and the devel-
opment of multi-agent systems that could undergo organisational adaptations –
an organisation describes the control regime of agent interactions, e.g., command-
based, peer-based, market-based, norm-based, etc. Whereas [42] is concerned with
general-purpose agent interactions, our focus is on policy-based interactions. The
SMC resembles a sentient object [43] in that both are intended to model a set
of interacting hardware and software components, and provide an infrastructure
to support large-scale distributed systems composed of mobile autonomous com-
ponents. However, while SMCs can dynamically exchange policies to define how
remote SMCs must interact, sentient objects only rely on static rules. Also, sen-
tient objects follow a WAN-of-CANs [44] structure (wide-area network of local
controller-area networks) and cannot be dynamically assembled using more general
and reusable patterns of interaction. Furthermore, in the system presented in [45],
the notion of location context is used to support a location-based publish/sub-
scribe (LPS) mechanism to address geographic dependency between distributed
components. Natively, the SMC model does not offer support for delivery of events
based on proximity, but this could be implemented in our framework as an LPS
communication pattern.

To support the systematic construction of policy-based SMC interactions we
also sought inspiration from the software engineering area. This community has
long investigated software architecture-based approaches, which separate compu-
tation (components) from interactions (connectors). The benefits brought by this
distinction have been widely recognised as a means of structuring software de-
velopment [22]. Intuitively, interaction patterns could be seen as the hierarchical
composition of distributed programmable connectors. The work presented in [46]
also uses Alloy for model-checking the architectural properties of a software sys-
tem, including pattern consistency, validity of specific structures, equivalence of
global and local constraints, and checking for compatibility between patterns. The
authors of [46] developed a toolset that automatically maps an architectural pat-
tern specification to an Alloy model; at the moment, patterns in the SMC model
have to be manually ported to Alloy for verification. However, components and
connectors are low level implementation abstractions for general-purpose software
interactions. In contrast, we have focussed on the compositionality of manage-
ment and adaptation interactions. Some recent efforts have proposed a software
architecture-based approach for engineering heterogeneous robotics systems [47].
They rely on architectural abstractions such as peer-to-peer and client-server to
enable the exchange of high-level design solutions and assist in the creation and
reuse of hierarchical components. None of these efforts, however, addresses pat-
terns for building policy-based interactions in specific.

Finally, although the benefits of the use of architectural patterns for build-
ing policy-based systems are irrefutable, patterns are certainly not the only soft-
ware engineering principle that is important for good design practices and that
we have sought to apply and promote. The dependency inversion principle [48]

34 Alberto Schaeffer-Filho et al.

states that high-level modules should not depend on low-level modules, but in-
stead they should both depend on abstractions. Dependency inversion aims to
minimise system-wide changes due to cascading effects when a component is mod-
ified, reduce the possibility of breaking one part of the system due to changes
in other parts, and facilitate reuse of components. In the SMC framework, de-
pendency inversion is used for example in the specification of missions, which are
high-level specifications that are decoupled from the low-level SMCs, via the role
abstraction. Liskov substitution principle (LSP) [49] intends to guarantee seman-
tic interoperability of types in a hierarchy. This principle defines that objects of
a type T may be replaced with objects of type S, provided S is a subtype of T .
Liskov substitution is related to the open/closed principle [50], which states that
well-designed code can be extended by adding new code, rather than by changing
already working code. If a module does not conform to LSP, then that module
uses a reference to a base type but must know about all the subtypes of that
type. This in turn violates the open/closed principle in the sense that the mod-
ule would have to be modified whenever a new subtype is created. Thus ensuring
that a role hierarchy satisfies LSP is a desirable property, because the application
programmer can define policies and missions that will work for any subtype of a
role. Another important design aspect necessary for building large-scale systems
is the interface-segregation principle [48]. It defines that a component should not
be forced to depend on methods it does not use. Interface-segregation is used in
the SMC model to split large SMC interfaces into more specific ones such that
remote components will only have to know about the methods that are of interest
to them. Also important for supporting the specification of large-scale systems and
component reuse is the single responsibility principle [48], which determines that
every component should have a single responsibility, and that responsibility should
be entirely encapsulated by the component. The rationale behind this principle is
that if a component has more than one responsibility, it might need to be modified
due to more than one reason. Single responsibility thus implies that coupling in
a single component two implementation aspects that might change independently
for different reasons is a bad design choice. We advocate in this paper that the
proper use of patterns and relevant software design abstractions can assist engi-
neers to build more scalable, robust and reusable components of a policy-based
management system.

7 Concluding Remarks

This paper presented an integrated framework for supporting the design and the
rapid establishment of policy-based interactions between management components
of autonomous systems. We distinguish between the overall organisation of the in-
teraction (structural aspects), the manner in which policies are exchanged (task-
allocation aspects) and how events are forwarded between SMCs (communication
aspects). These can be seen as complementary perspectives of a policy-based in-
teraction, and for each of them we propose the use of interaction patterns that can
be independently specified, instantiated and reused to form larger SMC collabora-
tions. Whilst we focus here on the interaction patterns and their combination to
compose SMCs, other aspects such as coordination, orchestration and governance

Federating Policy-driven Autonomous Systems 35

of distributed autonomous systems require further investigation and remain in the
domain of future work.

Although the identification and specification of patterns does require human
involvement, this is unavoidable because frequently best design practices tend to
be domain-specific and dependent on experience. In [51,52], the authors proposed
a system that reorganises network configurations into a more manageable config-
uration. It aims to identify and group common policies by discovering a set of
shared features between them. In principle, a similar approach could be used to
assist in the early identification of policy interactions in an existing system, which
could be subsequently encoded as reusable patterns.

Devolved management is the key for addressing the complexity of large-scale
networked systems which are formed as collaborations of smaller, yet autonomous,
components. This paper investigated how policy-based autonomous components
can be federated and composed to form larger applications. This relies on previous
research to address a new problem: engineering policy-based autonomous systems.
We adapted and incorporated techniques from autonomous systems, multi-agents
and software engineering principles, and identified how these studies could benefit
the construction of policy-based systems. The use of patterns for systematically
building policy-based systems is a novel and promising approach. Although we
have concentrated on management of Self-Managed Cells, the principles and tech-
niques proposed provide initial insights towards the engineering process of ubiqui-
tous and autonomous systems in general. Note however that a more general theory
of the composition of self-managed software systems is beyond the scope of this
paper. Research communities such as the SEAMS symposium [53] aim to bring
together researchers working towards this more fundamental goal.

More recently, we have shown how the architectural abstractions presented in
this paper can be applied to compose policy-based autonomous systems for net-
work security and resilience, and in particular to address network-wide anomalies
such as Distributed Denial of Service (DDoS) attacks and worm propagations [54,
55]. Our focus on these aspects is in part motivated by the recurrence of com-
mon issues and patterns across the application and deployment of security tech-
niques [56–58]. Further work on the use of management patterns for enforcing
reusable configurations for security and resilience properties is ongoing.

Acknowledgements This work was partly funded by the UK Engineering and Physical Sci-
ences Research Council through grant GR/S68040/01; the International Technology Alliance
sponsored by the U.S. Army Research Laboratory and the U.K. Ministry of Defence under
Agreement Number W911NF-06-3-0001; and the EC IST EMANICS Network of Excellence
(#26854).

References

1. E. Lupu, N. Dulay, M. Sloman, J. Sventek, S. Heeps, S. Strowes, K. Twidle, S.-L. Keoh,
A. Schaeffer-Filho, AMUSE: autonomic management of ubiquitous systems for e-health,
Concurrency and Computation: Practice and Experience, John Wiley 20(3) (2008) 277–
295.

2. IBM, An architectural blueprint for autonomic computing. third edition, Tech. rep., IBM
(June 2005).

3. M. Sloman, E. Lupu, Engineering policy-based ubiquitous systems, The Computer Journal
53 (7) (2010) 1113–1127. doi:10.1093/comjnl/bxp102.

36 Alberto Schaeffer-Filho et al.

4. E. Asmare, A. Gopalan, M. Sloman, N. Dulay, E. Lupu, Self-management framework for
mobile autonomous systems, Journal of Network and Systems Management 20 (2012) 244–
275. doi:10.1007/s10922-011-9201-5.
URL http://dx.doi.org/10.1007/s10922-011-9201-5

5. A. Schaeffer-Filho, E. Lupu, N. Dulay, S.-L. Keoh, K. Twidle, M. Sloman, S. Heeps,
S. Strowes, J. Sventek, Towards supporting interactions between self-managed cells, in:
Proceedings of the 1st International Conference on Self-Adaptive and Self-Organizing Sys-
tems (SASO), IEEE Computer Society, Boston, USA, 2007, pp. 224–233.

6. A. Schaeffer-Filho, E. Lupu, M. Sloman, Realising management and composition of
self-managed cells in pervasive healthcare, in: Pervasive Computing Technologies for
Healthcare, 2009. PervasiveHealth 2009. 3rd International Conference on, 2009, pp. 1 –8.
doi:10.4108/ICST.PERVASIVEHEALTH2009.5979.

7. A. Schaeffer-Filho, E. Lupu, M. Sloman, S. Eisenbach, Verification of policy-based self-
managed cell interactions using alloy, in: Proceedings of the 10th IEEE international con-
ference on Policies for distributed systems and networks, POLICY’09, IEEE Press, Pis-
cataway, NJ, USA, 2009, pp. 37–40.
URL http://dl.acm.org/citation.cfm?id=1812664.1812673

8. J. Ma, A. Russo, K. Broda, K. Clark, Dare: a system for distributed abductive reasoning,
Autonomous Agents and Multi-Agent Systems 16 (3) (2008) 271–297. doi:10.1007/s10458-
008-9028-y.
URL http://dx.doi.org/10.1007/s10458-008-9028-y

9. C. Hwang, E. Talipov, H. Cha, Distributed geographic service discovery for
mobile sensor networks, Computer Networks 55 (5) (2011) 1069 – 1082.
doi:10.1016/j.comnet.2010.09.015.

10. C. Esposito, D. Cotroneo, S. Russo, On reliability in publish/subscribe services, Computer
Networks (0) (2013) –. doi:10.1016/j.comnet.2012.10.023.

11. M.-T. Schmidt, B. Hutchison, P. Lambros, and R. Phippen, “The enterprise service bus:
making service-oriented architecture real,” IBM Syst. J., vol. 44, no. 4, pp. 781–797, Oct.
2005. [Online]. Available: http://dx.doi.org/10.1147/sj.444.0781

12. J. Singh, D. M. Eyers, J. Bacon, Disclosure control in multi-domain publish/sub-
scribe systems, in: Proceedings of the 5th ACM international conference on Dis-
tributed event-based system, DEBS ’11, ACM, New York, NY, USA, 2011, pp. 159–170.
doi:10.1145/2002259.2002283.
URL http://doi.acm.org/10.1145/2002259.2002283

13. Y. Zhu, S. L. Keoh, M. Sloman, E. Lupu, A lightweight policy system for body sensor
networks, IEEE Transactions on Network and Service Management 6 (3) (2009) 137 –148.

14. S.-L. Keoh, E. Lupu, M. Sloman, Securing body sensor networks: Sensor association and
key management, in: Proceedings of the IEEE International Conference on Pervasive Com-
puting and Communications, IEEE Computer Society, Los Alamitos, CA, USA, 2009, pp.
1–6. doi:http://doi.ieeecomputersociety.org/10.1109/PERCOM.2009.4912756.

15. R. Craven, J. Lobo, E. Lupu, A. Russo, and M. Sloman, “Policy refinement: Decomposition
and operationalization for dynamic domains,” in 7th International Conference on Network
and Service Management (CNSM). IEEE, 2011, pp. 1–9.

16. D. Corapi, O. Ray, A. Russo, A. Bandara, and E. Lupu, “Learning rules from user be-
haviour,” in Artificial Intelligence Applications and Innovations III, ser. IFIP Interna-
tional Federation for Information Processing, Iliadis, Maglogiann, Tsoumakasis, Vlahavas,
and Bramer, Eds. Springer US, 2009, vol. 296, pp. 459–468.

17. J. Ma, K. Broda, A. Russo, and E. Lupu, “Distributed abductive reasoning
with constraints,” in Declarative Agent Languages and Technologies VIII, ser. Lec-
ture Notes in Computer Science, A. Omicini, S. Sardina, and W. Vasconcelos,
Eds. Springer Berlin Heidelberg, 2011, vol. 6619, pp. 148–166. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-20715-0 9

18. M. Charalambides, P. Flegkas, G. Pavlou, J. Rubio-Loyola, A. Bandara, E. Lupu, A. Russo,
N. Dulay, and M. Sloman, “Policy conflict analysis for diffserv quality of service manage-
ment,” Network and Service Management, IEEE Transactions on, vol. 6, no. 1, pp. 15–30,
March 2009.

19. M. Stal, “Web services: beyond component-based computing,” Communications
of the ACM, vol. 45, no. 10, pp. 71–76, Oct. 2002. [Online]. Available:
http://doi.acm.org/10.1145/570907.570934

20. B. Meyer, “Applying ”design by contract”,” Computer, vol. 25, no. 10, pp. 40–51, Oct.
1992. [Online]. Available: http://dx.doi.org/10.1109/2.161279

Federating Policy-driven Autonomous Systems 37

21. E. Gamma, R. Helm, R. Johnson, J. M. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software, 1st Edition, Professional Computing Series, Addison-Wesley,
1995, 416 pages.

22. R. N. Taylor, N. Medvidovi, I. E. Dashofy, Software Architecture: Foundations, Theory,
and Practice, John Wiley & Sons, 2009.

23. S. Salah, G. Macia-Fernandez, J. E. Diaz-Verdejo, A model-based survey of alert correla-
tion techniques, Computer Networks (0) (2013) –. doi:10.1016/j.comnet.2012.10.022.

24. M. Cinque, C. D. Martino, C. Esposito, On data dissemination for large-scale
complex critical infrastructures, Computer Networks 56 (4) (2012) 1215 – 1235.
doi:10.1016/j.comnet.2011.11.016.

25. A. Schaeffer-Filho, Supporting management lnteraction and composition of self-managed
cells, Ph.D. thesis, Imperial College London, London, UK (2009).

26. D. Jackson, Alloy: a lightweight object modelling notation, ACM Trans-
actions on Software Engineering Methodologies 11 (2) (2002) 256–290.
doi:http://doi.acm.org/10.1145/505145.505149.

27. D. Jackson, Software Abstractions: Logic, Language, and Analysis, The MIT Press, 2006.
28. R. Milner, J. Parrow, D. Walker, A calculus of mobile processes, I, Information and Com-

putation 100 (1) (1992) 1–40. doi:http://dx.doi.org/10.1016/0890-5401(92)90008-4.
29. L. Cardelli, A. D. Gordon, Mobile ambients, in: Proceedings of the 1st International

Conference on Foundations of Software Science and Computation Structure (FoSSaCS),
Springer-Verlag, London, UK, 1998, pp. 140–155.

30. A. Phillips, Specifying and implementing secure mobile applications in the channel ambient
system, Ph.D. thesis, Imperial College London (April 2006).

31. J. M. Spivey, The Z notation: a reference manual. Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1989.

32. D. Bjørner and C. B. Jones, Eds., The Vienna Development Method: The Meta-Language.
London, UK, UK: Springer-Verlag, 1978.

33. K. Lano, The B Language and Method: A Guide to Practical Formal Development, 1st ed.
Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1996.

34. Y. Smaragdakis, D. Batory, Mixin layers: an object-oriented implementation technique for
refinements and collaboration-based designs, ACM Transactions on Software Engineering
Methodologies 11 (2) (2002) 215–255. doi:http://doi.acm.org/10.1145/505145.505148.

35. X. Sanchez-Loro, J. L. Ferrer, C. Gomez, J. Casademont, J. Paradells, Can future in-
ternet be based on constrained networks design principles?, Computer Networks 55 (4)
(2011) 893 – 909, special Issue on Architectures and Protocols for the Future Internet.
doi:10.1016/j.comnet.2010.12.018.

36. X. Sanchez-Loro, A. Gonzalez, R. Martin-De-Pozuelo, A semantic context-aware network
architecture, in: Future Network and Mobile Summit, 2010, 2010, pp. 1 –9.

37. D. Martin, L. Volker, M. Zitterbart, A flexible framework for future internet design, as-
sessment, and operation, Computer Networks 55 (4) (2011) 910 – 918, special Issue on
Architectures and Protocols for the Future Internet. doi:10.1016/j.comnet.2010.12.015.

38. M. Sifalakis, A. Louca, G. Bouabene, M. Fry, A. Mauthe, D. Hutchison, Functional com-
position in future networks, Computer Networks 55 (4) (2011) 987 – 998, special Issue on
Architectures and Protocols for the Future Internet. doi:10.1016/j.comnet.2010.12.006.

39. V. Hilaire, A. Koukam, S. Rodriguez, An adaptative agent architecture for holonic multi-
agent systems, ACM Transactions on Autonomous and Adaptive Systems 3 (1) (2008)
1–24. doi:http://doi.acm.org/10.1145/1342171.1342173.

40. F. Zambonelli, N. R. Jennings, M. Wooldridge, Developing multiagent systems: The Gaia
methodology, ACM Transactions on Software Engineering Methodologies 12 (3) (2003)
317–370. doi:http://doi.acm.org/10.1145/958961.958963.

41. G. Cabri, M. Puviani, F. Zambonelli, Towards a taxonomy of adaptive agent-based
collaboration patterns for autonomic service ensembles, in: Collaboration Technolo-
gies and Systems (CTS), 2011 International Conference on, 2011, pp. 508 –515.
doi:10.1109/CTS.2011.5928730.

42. L. Cernuzzi, A. Molesini, A. Omicini, F. Zambonelli, Adaptable multi-agent systems: The
case of the gaia methodology, International Journal of Software Engineering and Knowl-
edge Engineering 21 (04) (2011) 491–521. doi:10.1142/S0218194011005384.

43. A. F. Gregory, G. Biegel, S. Clarke, V. Cahill, Towards a sentient object model, in: In
Workshop on Engineering Context-Aware Object Oriented Systems and Environments
(ECOOSE’2002), 2002.

38 Alberto Schaeffer-Filho et al.

44. P. Veŕıssimo, V. Cahill, A. Casimiro, K. Cheverst, A. Friday, J. Kaiser, Cortex: Towards
supporting autonomous and cooperating sentient entities, in: Proceedings of European
Wireless 2002, Florence, Italy, 2002, pp. 595–601.

45. A. Holzer, P. Eugster, B. Garbinato, Alps – adaptive location-based publish/subscribe,
Computer Networks 56 (12) (2012) 2949 – 2962. doi:10.1016/j.comnet.2012.05.007.

46. J. S. Kim, D. Garlan, Analyzing architectural styles, Journal of Systems and Software
83 (7) (2010) 1216–1235. doi:10.1016/j.jss.2010.01.049.

47. N. Medvidovic, H. Tajalli, J. Garcia, I. Krka, Y. Brun, G. Edwards, Engineering heteroge-
neous robotics systems: A software architecture-based approach, Computer 44 (5) (2011)
62–71. doi:10.1109/MC.2010.368.
URL http://dx.doi.org/10.1109/MC.2010.368

48. R. C. Martin, Agile Software Development: Principles, Patterns, and Practices. Prentice-
Hall (2002).

49. B. H. Liskov, J. M. Wing, A behavioral notion of subtyping, ACM Trans Program Lang
Syst 16 (6) (1994) 1811–1841. doi:10.1145/197320.197383.

50. R. C. Martin, The open-closed principle, Cambridge University Press (2000), New York,
NY, USA, pp 97–112. URL http://dl.acm.org/citation.cfm?id=331120.331143

51. S. Lee, T. Wong, H. S. Kim, Improving manageability through reorganization
of routing-policy configurations, Computer Networks 56 (14) (2012) 3192 – 3205.
doi:10.1016/j.comnet.2012.06.014.

52. S. Lee, T. Wong, H. Kim, Improving dependability of network configuration
through policy classification, in: Dependable Systems and Networks With FTCS and
DCC, 2008. DSN 2008. IEEE International Conference on, 2008, pp. 297 –306.
doi:10.1109/DSN.2008.4630098.

53. SEAMS ’13: Proceedings of the 8th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems. Piscataway, NJ, USA: IEEE Press, 2013.

54. A. Schaeffer-Filho, P. Smith, A. Mauthe, D. Hutchison, Y. Yu, M. Fry, A framework
for the design and evaluation of network resilience management, in: Proceedings of the
13th IEEE/IFIP Network Operations and Management Symposium (NOMS 2012), IEEE
Computer Society, Maui, Hawaii, USA, 2012, pp. 401–408.

55. A. Schaeffer-Filho, P. Smith, A. Mauthe, and D. Hutchison, “Network resilience with
reusable management patterns (to appear),” IEEE Communications Magazine, July 2014.

56. Y. Zhou, Y. Fang, Y. Zhang, Securing wireless sensor networks: a survey, IEEE Commu-
nications Surveys & Tutorials 10 (3) (2008) 6 –28. doi:10.1109/COMST.2008.4625802.

57. J. P. Sterbenz, D. Hutchison, E. K. Cetinkaya, A. Jabbar, J. P. Rohrer, M. Scholler,
P. Smith, Resilience and survivability in communication networks: Strategies, principles,
and survey of disciplines, Computer Networks 54 (8) (2010) 1245 – 1265, resilient and
Survivable networks. doi:10.1016/j.comnet.2010.03.005.

58. X. Chen, K. Makki, K. Yen, N. Pissinou, Sensor network security: a survey, IEEE Com-
munications Surveys & Tutorials 11 (2) (2009) 52–73. doi:10.1109/SURV.2009.090205.
URL http://dx.doi.org/10.1109/SURV.2009.090205

Author Biographies

Alberto Schaeffer Filho is an Associate Professor in the Institute of Informatics at Federal

University of Rio Grande do Sul (UFRGS). Prior to that he was a Research Associate in

Lancaster University for three years. He obtained his PhD in Computing from Imperial College

London in 2009. His research interests include network management, autonomous systems,

software engineering principles, security and resilience of networks. He is a member of the

IEEE. See http://www.inf.ufrgs.br/∼alberto for more details and selected papers.

Emil Lupu is a Reader in Adaptive Computing Systems and Associate Director of the Insti-

tute for Security Science and Technology at Imperial College London. He leads several research

projects in the areas of pervasive computing, adaptive and autonomous systems, trust and se-

curity. He has over 120 publications in these areas, serves on the editorial boards of the IEEE

Trans. on Network and Service Management, Journal of Network and Systems Management

Federating Policy-driven Autonomous Systems 39

and the International Journal of Network Management, and on the program committees of

numerous conferences. See http://www.imperial.ac.uk/people/e.c.lupu for further details and

selected publications.

Morris Sloman is a Professor of Distributed Systems Management, and Deputy Head of the

Department of Computing, Imperial College London. His research interests include autonomic

management of pervasive systems, adaptive security management, privacy and security for

pervasive systems. He is a member of the editorial board of the Journal of Network and

Systems Management and IEEE Transactions on Network and Services Management. See

http://www.doc.ic.ac.uk/∼mss for selected papers.

