
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2020.3036276, IEEE Open

Journal of Signal Processing

> SUBMITTED AS AN OVERVIEW PAPER< 1

FedLoc: Federated Learning Framework for Data-Driven

Cooperative Localization and Location Data Processing

Feng Yin, Zhidi Lin, Qinglei Kong, Yue Xu, Deshi Li, Sergios Theodoridis, Shuguang (Robert) Cui

In this overview paper, data-driven learning model-based cooperative localization and location data processing are considered,
in line with the emerging machine learning and big data methods. We first review (1) state-of-the-art algorithms in the context of
federated learning, (2) two widely used learning models, namely the deep neural network model and the Gaussian process model,
and (3) various distributed model hyper-parameter optimization schemes. Then, we demonstrate various practical use cases that are
summarized from a mixture of standard, newly published, and unpublished works, which cover a broad range of location services,
including collaborative static localization/fingerprinting, indoor target tracking, outdoor navigation using low-sampling GPS, and
spatio-temporal wireless traffic data modeling and prediction. Experimental results show that near centralized data fitting- and
prediction performance can be achieved by a set of collaborative mobile users running distributed algorithms. All the surveyed use
cases fall under our newly proposed Federated Localization (FedLoc) framework, which targets on collaboratively building accurate
location services without sacrificing user privacy, in particular, sensitive information related to their geographical trajectories. Future
research directions are also discussed at the end of this paper.

Index Terms—Cooperation, Data-driven models, Distributed processing, Federated learning, Gaussian processes, Location services,
User privacy.

I. INTRODUCTION

W ITH the explosion of data and the ever-increasing

computing power, we have witnessed nowadays the

popularity of machine learning models and algorithms which

are data-driven. In principal, with more data, an underlying

complex system/dynamic/regression function can be closely

approximated. However, when the data size increases beyond

a limit, both the scale of the model and the computational

complexity of an associated learning algorithm can become

computationally tough. For instance, the computational com-

plexity for training a Gaussian process model scales cubically

with the data size [1]. This renders the required computational

load for sophisticated data-driven learning models prohibited

for practical cases.

The recently proposed federated learning framework [2] has

received a lot of attention, as it enables a large-scale machine

learning models to be trained jointly by a large number of

mobile users through cooperation. Actually, there exist various

similar works before the federated learning, for instance [3],

[4], but federated learning emphasizes more on the following

aspects: (1) non-i.i.d. data; (2) unbalanced local data size; (3)

large number of local users; (4) limited communication; and

(5) data privacy [2]. It deserves to highlight that federated

Feng Yin, Zhidi Lin, Qinglei Kong and Shuguang (Robert) Cui are with
both the Future Network of Intelligence Institute (FNii) and the School of
Science and Engineering at The Chinese University of Hong Kong (Shenzhen)
and Shenzhen Research Institute of Big Data (SRIBD), 518172, China. Email:
yinfeng@cuhk.edu.cn, zhidilin@link.cuhk.edu.cn, kongqinglei@cuhk.edu.cn,
shuguangcui@cuhk.edu.cn

Yue Xu was with Beijing University of Posts and telecommunications
and is now with Alibaba corporation, Hangzhou, 311121, China. Email:
avexuyue@gmail.com

Deshi Li is with the School of Electronic Information, Wuhan University,
Wuhan, 430079, China. Email: dsli@whu.edu.cn

Sergios Theodoridis was with the Department of Informatics and Telecom-
munications at National and Kapodistrian University of Athens, 15784, Athens,
Greece, and is now partially with The Chinese University of Hong Kong
(Shenzhen) and SRIBD, Shenzhen, 518172, China. Email: stheodor@di.uoa.gr

*The corresponding author is Feng Yin. E-mail: yinfeng@cuhk.edu.cn

learning is a promising technical solution to solve the ever-

increasing concerns about the loss of user privacy and to

meet the ever-stringent data protection regulations world-wide,

for instance, the General Data Protection Regulation (GDPR)

implemented by the European Union in 2018. Federated

learning has triggered various potential applications in the

sectors of smart medicine, finance, and next-generation wireless

communications [5], [6], [7]. In this paper, we extend federated

learning to a new application sector, namely target localization

and location-related services.

Target localization is meant to provide an estimate of the

desired position as accurate as possible. There exist a plethora

of state-of-the-art techniques for static target localization, target

tracking, navigation, and interested readers can refer to [8], [9],

[10] and the references therein for more information. Most of

these techniques rely on empirical, parametric transition and

measurement models, which can be regarded as an individual

abstract of human experience, thus they may severely mismatch

the underlying mechanism in complicated environments such as

office, shopping mall, museum, etc. However, directly learning

from a huge volume of historical data may help alleviate such

a model mismatch and improve the positioning accuracy even

further.

Apart from the traditional localization service, a new type

of location related services have emerged in the recent years

under the umbrella of smart cities, namely the spatio-temporal

location data prediction. This type of services include, but

not limited to, wireless traffic prediction, taxi supply and de-

mand prediction, energy consumption prediction, air pollution

prediction at specific locations. Data-driven, learning model-

based solutions have demonstrated great data representation

and generalization capability [11], [12], [13], [14].

However, the greatest difficulty that we confronted when

applying machine learning models to localization and location

data modeling lies in the big amount of labeled training data,

which can be solved by aggregating small data collected from

a large number of mobile users. Yet, such data gathering

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2020.3036276, IEEE Open

Journal of Signal Processing

> SUBMITTED AS AN OVERVIEW PAPER< 2

processes may cause severe data privacy issues, particularly

when location is involved. As a special example, during the

COVID-19 pandemic we have seen the value of sharing

trajectories to track the spread of infections and predicting high-

risk regions, meanwhile, there is an urgent need for location

privacy preservation of the mobile users [15]. The federated

learning framework is an outstanding solution for enhancing

wireless localization accuracy and maintaining safe cooperation

among users at the same time.

The gist of the proposed Federated Localization (FedLoc)

framework is to let each mobile user/smart agent collect

a smaller scale, local dataset and approximate the global

machine learning model in a cooperative manner. Some

concrete examples are as follows: (1) For static localization,

a number of mobile users collect radio features at specific

positions obtained either from the global positioning system

(GPS) (for outdoor scenarios) or from the proximity to indoor

reference points/landmarks (for indoor scenarios); (2) For

target tracking and navigation, the mobile users collect diverse

trajectories of inertial sensor- and wireless observations; (3) For

wireless traffic prediction, base stations work as smart agents

to collect local wireless data usage generated by their serving

mobile users. We believe that the FedLoc framework is an

up-and-coming solution for futuristic data-driven cooperative

localization, not only because of the rapid development of

distributed optimization techniques that serve as the algorithmic

core, but also largely owing to the rapid development of

smart phones with ever-increasing computation power and

network throughput, the widespread use of quick-response (QR)

codes, and the high-precision indoor/outdoor maps, altogether.

Therefore, we believe it is timely to exploit all relevant

federated learning techniques for localization and location data

processing.

This overview paper is a four-mode mixture of review,

new proposals, real evaluations, and outlook, being different

from the majority that solely review the existing works. We

focus on a specific application sector of federated learning,

namely the data-driven cooperative localization and location

data processing. The models and algorithms to be reviewed

are carefully tailored for our desired applications. Besides, we

focus on real use cases and their practical implementations

from our own works as well as some other related works

that all fall under this new cooperative paradigm. Detailed

contributions of this overview paper are as follows.

• First, we propose a federated localization framework,

called FedLoc, which elegantly addresses the privacy

issue in cooperation among a massive number of mobile

users for target localization and location data processing.

We also proposed two potential wireless network infras-

tructures, namely a cloud-based one and an edge-based

one, that can potentially help meet the communication

requirements of the FedLoc framework.

• Second, we clarify the differences between the proposed

FedLoc framework and the existing cooperative localiza-

tion framework for sensor networks as well as the classic

crowd-sourcing framework.

• Third, we review some state-of-the-art federated learning

procedures, two widely used learning models, namely the

deep neural network (DNN) and Gaussian process (GP),

and a few distributed model hyper-parameter optimization

schemes that work reasonably well for the two learning

models. We put more emphasis on the Bayesian GP

models than deterministic DNN models due to their unique

welcome features for modeling location data.

• Fourth, we discuss four concrete use cases, namely (1)

static target localization/fingerprinting; (2) outdoor vehicle

navigation; (3) indoor pedestrian tracking; and (4) spatio-

temporal wireless traffic prediction, to explain the use of

the FedLoc framework. In the first use case, a static target

localization system is built based on a DNN that maps a

vector of radio features to a desired position. In the second

use case, we propose a DNN-based accurate vehicle

navigation with low-sampling-rate GPS. In the third case,

the state transition function, as represented by the GP

model, maps the current state to the next state in a non-

parametric way for indoor pedestrian motion modeling.

In the fourth use case, wireless traffic is modeled by a

scalable GP under 5G Cloud-Radio Access Network (C-

RAN) infrastructure. Various other related applications

are also mentioned in this paper.

• Lastly, we evaluate the proposed FedLoc framework with

real datasets for two aforementioned use cases to demon-

strate their practical implementations and effectiveness in

reality.

In this overview paper, we concentrate on federated learning

tailored to target localization and location data processing. Due

to the space limitation as well as the expertise of the authors,

the following aspects are only briefly touched upon.

• Distributed optimization methods in the contexts of

robustness, communication efficiency, and low-complexity.

Some recent works include [16], [17].

• Adversarial attacks and advanced privacy-preserving

schemes such as the block-chain based ones for federated

learning. Some recent works include [18], [19], [20].

• General techniques and challenges of federated learning

as well as its applications in other industry sectors, as

surveyed by [21], [22].

The rest of this paper is organized as follows. In Section II,

we briefly review the existing “cooperation” frameworks

proposed primarily for wireless sensor networks. In Section III,

we introduce two important learning models, namely the deep

neural network and Gaussian process, for learning from data.

In Section IV, we introduce the proposed FedLoc framework

in detail, followed by two different wireless network infrastruc-

tures given in Section V to support the real deployment of the

FedLoc framework. Various use cases of the proposed FedLoc

framework are showcased in Section VI. Simulation results

are given in Section VII to demonstrate the effectiveness of

the FedLoc framework. In Section VIII, we discuss the major

challenges of the FedLoc framework and give a few future

research directions. Lastly, Section IX concludes this paper.

Figure 1 gives a clear global picture of our work.

II. RELATED WORK

In this section, we survey all related works and clarify their

differences from our FedLoc framework to be introduced in

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2020.3036276, IEEE Open

Journal of Signal Processing

> SUBMITTED AS AN OVERVIEW PAPER< 3

Section III

FedLoc Framework
Section IV-D

Cloud

Based

Network

Section

V-A

Edge

Based

Network

Section

V-B

DNN GP

Algorithm & Theory
Section IV

Privacy Protection

Learning

Models

Distributed

Optimization

Algorithm

Survey on use cases
Section VI

Real Example

I

Real Example

II

Section VII-A Section VII-B

Future

Direction
Section

VIII

Fig. 1. Overall organization of this paper and links between different sections.

Section IV.

A. Sensor Network Localization

When speaking of “cooperation” in the context of wireless

localization, it will certainly remind us the class of algorithms

for determining a number of agents (nodes with unknown

positions) with the aid of a few anchors (nodes with known

positions) and a bunch of wireless measurements made between

these nodes.

Cooperative localization has gained much attention since

2005 owing to the seminal work by Patwari and Hero

[23], where they proposed to use the simple least-squares

estimation criterion with time-of-arrival (ToA) or received-

signal-strength (RSS) measurements to localize dozens of

agents. The proposed method was evaluated with two sets

of real measurements collected in an indoor environment.

This seminal work has triggered a plethora of methods in

the following years. Representative works include [24], [25],

[26], [27], [28], [29], [30], to mention a few.

The fundamental differences between the aforementioned

cooperative localization algorithms and our proposed FedLoc

are the following:

• The aforementioned classic cooperative localization algo-

rithms focus on determining unknown positions of a batch

of distributed agents given their mutual position-related

measurements. In this setting, position inference is the only

task to be solved by the designed algorithm. In contrast,

the proposed FedLoc aims to train a global learning model

cooperatively by a batch of distributed devices with rather

well-calibrated position-related data in the first place. After

the global learning model has been trained, it can be used

both by the existing distributed devices and new users to

infer their positions with hopefully improved positioning

accuracy.

• The above mentioned algorithms adopt empirical mod-

els, such as the log-distance path-loss model for RSS

measurements [31], and Gaussian mixture model for non-

line-of-sight propagation [29]. In contrast in the FedLoc

framework, we solely consider data-driven, machine

learning-based models.

B. Distributed Target Tracking

Distributed target tracking is mostly considered for sensor

networks without a central node. For such network infrastruc-

tures, the traditional Kalman filter or particle filters cannot

be used due to lack of the posterior belief/distribution of the

desired target state (evolving in time) given all observed sensor

measurements. To meet this challenge, various distributed

implementations of the Kalman filter and particle filters, for

instance [32], [33], [34], [35], were proposed with similar

ideas of approximating the posterior belief/distribution as a

product of local posteriors. Afterwards, local state estimates are

communicated in a message consensus stage. The idea behind

these two steps is similar to that of our FedLoc framework.

However, the major differences between the distributed target

tracking and our FedLoc are the following:

• Distributed Kalman filter and particle filters are based on

empirical models, while our FedLoc framework relies on

data-driven, machine learning models.

• Distributed Kalman and particle filters exchange target

state estimates directly over the air, which is fragile to

malicious attacks; in contrast FedLoc trains a global

deep learning model and advocates changing local model

parameters under privacy-preserving schemes.

• Distributed Kalman and particle filters do not require

training data, but need a good prior distribution of the

initial target state. Therefore, they are agile for new

deployments. In contrast, our FedLoc framework needs

to train the global model beforehand.

C. Crowdsourcing

Crowdsourcing is a sourcing model in which services

are built from a large, relatively open, and often rapidly-

evolving group of internet users. Building and maintaining

a location system/service based on crowdsourcing is somewhat

related to our FedLoc idea. However, the state-of-the-art

crowdsourcing methods place more emphasis on raw data

sharing and aggregation from a bunch of collaborating users,

therefore there is no model in mind. Representative works

are as follows. In geography, voluntary users collaboratively

build a street map, fill in street information, etc. Open-

StreetMap (http://www.openstreetmap.com) and Wikimapia

(http:// www.wikimapia.org) are two successful crowdsourcing

projects among others. Crowdsourcing of virtual maps, such as

RSS map or magnetic map, becomes trendy for big multi-storey

buildings [36], [37], [38].

The fundamental differences between the crowdsourcing and

the FedLoc are the following:

• Crowdsourcing is more about raw location data aggre-

gation for map construction with less calibration effort,

while position determination will be done in a separate

stage later on. In contrast, FedLoc focuses on training

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2020.3036276, IEEE Open

Journal of Signal Processing

> SUBMITTED AS AN OVERVIEW PAPER< 4

a global machine learning model for positioning in one

step.

• Crowdsourcing is mostly model-free. In contrast, FedLoc

is built around advanced machine learning models, making

it diverse and vibrant.

• Crowdsourcing aggregates raw data without any safeguard,

which will incur severe privacy issues. In contrast, FedLoc

processes sensitive data locally and exchanges only the

model hyper-parameters that are difficult to decode in

general.

D. Location Data Modeling

In this paper, location data specifically refers to spatio-

temporal data measured across space as well as time. Rep-

resentative spatio-temporal data include environmental data,

climate data, transportation data, human mobility data, social

data, etc. Spatio-temporal data processing and modeling

have been well studied over the past decades, ranging from

traditional statistical methods to recent data-driven learning

model-based methods. Traditional statistical methods include

the autoregressive methods for multivariate random fields,

factor analysis methods, stochastic process-based methods,

tensor decomposition-based methods, see for instance [39], [40].

Data-driven learning models, such as recurrent neural network

with long short-term memory and graph neural network have

been used to model spatio-temporal data. A comprehensive

survey on harnessing deep learning models for spatio-temporal

data mining is given in [41]. A special note is given here

on the Gaussian process model, which is also called Kriging

in geostatistics and can be categorized into the traditional

statistical models; however, it can also be regarded as a machine

learning model for representing a spatial-temporal function

with two inputs, namely the location and the time. In [42],

[43], Gaussian processes implemented via recursive Kalman

filtering are used to model spatio-temporal data with rather low

computational complexity. Learning models are believed to be

able to generate better modeling and prediction performance

compared with the traditional statistical methods. In this work,

we are keen on training learning models in a distributed manner

by a large number of collaborating mobile users.

III. LEARNING MODELS

This section aims to introduce two representative learning

models that can be used as the “brain” of the proposed

FedLoc framework. We will first briefly review the deep

neural network (DNN) model in Subsection III-A, followed

by a short introduction to Gaussian process (GP) model in

Subsection III-B. Lastly, we will shed some light on the

connections of the two learning models and further highlight

the benefits of using GP models over DNN models for FedLoc

in Subsection III-C.

A. Deep Neural Network

Deep neural network (DNN) here refers to the class of feed-

forward networks. The term “feed-forward” means data are

fed from the input layer through several hidden layers to the

……
…

……
…

H
id

d
en

 L
ay

er
s

Input

Output

… …

Fig. 2. Block diagram of deep neural network architecture. The input-, hidden-,
and output variables are represented by nodes, and the weight parameters
linking between the nodes at each layer are denoted by W j , where j ∈
{1, 2, . . . , L+1}. θ , {W 1,W 2, . . . ,WL+1} comprises all model hyper-
parameters, namely the neural network weights of all layers. Green arrows
indicate the forward direction of information flow through the network in
the inference stage, while the blue arrows indicate the backward direction of
the gradient flow for hyper-parameter optimization using back-propagation by
default.

output layer. Typically, a standard DNN, depicted in Fig.2,

demonstrates a chain structure in math as

y = f(x;θ) = WL+1f
(L)
(
· · ·W 3f

(2)
(
W 2f

(1)(W 1x)
))

,

(1)

starting from the inputs/features x and passing L hidden layers

to the output. Here we term W j the weight matrix in the

j-th layer where j ∈ {1, 2, . . . , L+ 1} and θ the collection of

all hyper-parameters, i.e., θ , {W 1,W 2, . . . ,WL+1}. The

mapping function f (j−1)(·)1 in each hidden layer, comprises a

bunch of elementary activation functions that mimic the role of

neurons in our brain. The commonly used activation functions

include the sigmoid function, rectified linear unit (ReLU)

function, and some other variants. According to the universal

approximation theorem [44], a DNN can well approximate any

smooth function by tuning the number of hidden layers and

the number of neurons in each hidden layer.

Given n training samples D , {xi, yi}
n
i=1, one can train

the model hyper-parameters θ, such that the network output

f(x;θ) is close to the ground truth. Often, DNNs are trained

through minimizing the difference between f(x;θ) and y. The

minimization problem for a set of n training samples can be

written as

min
θ

l(θ) :=
1

n

n∑

i=1

ℓ(yi, f(xi;θ)), (2)

where ℓ(·, ·) is a certain loss function, e.g., the quadratic loss

function. In this paper, the input xi represents position related

1f (0)(x) = x

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2020.3036276, IEEE Open

Journal of Signal Processing

> SUBMITTED AS AN OVERVIEW PAPER< 5

Optimization Method Update Formulations Pros Cons

Gradient Descent (GD) θη+1 = θη − γt∇θl(θ;D)
• converge to global minimum for

convex loss surface

• slow convergence and intractable for
large dataset

• not suitable for online applications
and easily getting trapped in saddle
points when optimizing non-convex
loss surface

• choosing learning rate difficultly

Stochastic Gradient Descent
(SGD)

θη+1 = θη − γt∇θl(θ;xi, yi)
• faster convergence
• suitable for online applications

• high fluctuation of the gradients and
outcomes

• easily getting trapped in saddle points
• choosing learning rate difficultly

Mini-batch GD
Dm , traning batch

θη+1 = θη − γt∇θl(θ;Dm)

• mediate convergence
• smaller updates fluctuations
• more stable convergence com-

pared to SGD

• easy to get trapped in saddle points
• difficult to choose a proper learning

rate

Adaptive gradient methods:
SGD with Nesterov momen-
tum [45], AdaGrad [46], RM-
SProp [47], Adam [48] etc.

/

• boost robustness of SGD
• suitable for dealing with sparse

data
• less manual tuning of the learning

rate

• might cause infinitesimally small learn-
ing rate

TABLE I
COMMONLY USED NEURAL NETWORK TRAINING ALGORITHMS

measurements, and yi represents positions most of the time.

We will provide some concrete examples in Section IV, V and

VI. Gradient descent type methods with back-propagation are

commonly used to solve the above minimization problem in

spite of its numerical instability caused by gradient vanishing

or explosion. After the optimal set of weights θ̂ is obtained,

one can conduct prediction for a novel input x∗ using f(x∗; θ̂)
given in Eq.(1).

It is worth mentioning at this point that after decades of ex-

ploration, people have summarized various useful tricks to train

large networks effectively. For instance, careful initialization of

DNN weights and proper normalization are effective to resolv-

ing the headache from gradient explosion/vanishing. Widely

used initialization techniques include LeCun initialization [49],

Xavier initialization [50], Kaiming initialization [51], and so

on, while normalization techniques include batch normalization

[52], weight normalization [53], layer normalization [54], and

so on. For more training tricks, interested readers may refer to

[55], [56], [57], [58] for a better structured tutorial, and next

we will turn to a brief review of state-of-the-art optimization

algorithms for DNN training.

Commonly used DNN training methods are presented in

Table I, wherein η represents the iteration index. According to

the amount of data used in computing the gradient ∇θℓ, there

are generally three types of gradient descent methods, namely

batch gradient descent (GD), stochastic gradient descent (SGD)

and mini-batch gradient descent. Their corresponding update

formulations, pros and cons are shown in Table I. However,

these classic methods all face the difficulty of manually

selecting the learning rate γt. More recently, people turn to

adopting modern adaptive gradient methods such as RMSProp

[47] and Adam [48] to address this issue. It is said that

such adaptive gradient methods are likely to achieve the best

performance when the input data is sparse [55]. However, this

does not necessarily mean the adaptive gradient methods are

always superior to other type of GD-based methods. For more

details about the different optimization algorithms, interested

readers can refer to [55], [56] and the reference therein.

The DNN structure has a big impact on both the forward-

propagation and back-propagation computational complexity.

For ease of exposition, a specific DNN structure is depicted

in Fig. 2, wherein we assume L hidden layers and n neurons

in each hidden layer, being of the same order as the data size.

Typically, we assume n ≫ L. Moreover, we assume the number

of data samples n is way larger than the feature dimension

d, i.e., n ≫ d. For this configuration, the computational

complexity required by the forward-propagation is mainly due

to the product of the weight matrix and the input vector in

each layer, namely, W jf
(j−1)(x), where j ∈ {1, 2, . . . , L+1},

thus scales as O(n2) for one single data sample. The overall

computational complexity of the forward-propagation is O(n3)
for n data samples. As to the back-propagation, let us first

note that evaluating l(θ) in each iteration of the gradient

descent step requires a forward propagation. Assuming that the

gradient descent runs k (k ≪ n) iterations, the computational

complexity for the back-propagation scales as O(n3) too.

The aforementioned DNN is suitable for tabular data in

general. However, there exist a plethora of deep variants for

data with unique features, such as convolutional networks

[59] and capsule networks [60] for images, long-short-term-

memory (LSTM) networks for sequential data, and graph neural

networks [61] for spatial and spatio-temporal data. In order to

reduce the size of a deep model as well as its computational

complexity for use on smartphone and edge devices, one

could resort to model distillation techniques [62] or model

sparsification techniques [63].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2020.3036276, IEEE Open

Journal of Signal Processing

> SUBMITTED AS AN OVERVIEW PAPER< 6

-8 -6 -4 -2 0 2 4 6 8

x

-3

-2

-1

0

1

2

3

f(
x
)

sample 1

sample 2

sample 3

(a) Prior

-8 -6 -4 -2 0 2 4 6 8

x

-3

-2

-1

0

1

2

3

f(
x
)

mean function

sample 1

sample 2

sample 3

(b) Posterior

Fig. 3. Subfigure (a) shows three sample functions drawn randomly from a
GP prior with a specific squared-exponential kernel. Subfigure (b) shows three
sample functions drawn from the posterior conditioned on the prior in (a)
as well as four noisy observations indicated by red dots. The corresponding
posterior mean function is depicted by the black curve. The grey shaded area
represents the uncertainty region, namely the 95% confidence region for both
the prior and the posterior, respectively.

B. Gaussian Processes

Gaussian processes (GP) constitute an important class of

Bayesian non-parametric models, which are closely related

to several other salient machine learning models. A Gaussian

process is a collection of random variables, any finite subset

of which follows a Gaussian distribution [1]. In the sequel, we

solely focus on scalar, real-valued Gaussian processes that are

completely specified by a mean function and a kernel function

(a.k.a. covariance function). Concretely,

f(x) ∼ GP(m(x), k(x,x′;θh)), (3)

where m(x) is the mean function, which is often set to zero

in practice, especially when there is no prior knowledge about

the underlying process; and k(x,x′;θh) is the kernel function

tuned by the kernel hyper-parameters, θh.

Let us consider the GP regression model, y = f(x) + e,

where y ∈ R is a continuous-valued, scalar output; the unknown

function f(x) : Rd 7→ R is modeled as a zero mean GP; and

the noise e is assumed to be Gaussian distributed with zero

mean and variance σ2
e . Moreover, the noise terms at different

data points are assumed to be mutually independent. The set of

all unknown GP hyper-parameters is denoted by θ , [θT
h , σ

2
e]

T ,

and the dimension of θ is assumed to be equal to p.

Based upon these GP regression model settings, given

training dataset D , {xi, yi}
n
i=1 and test dataset D∗ ,

{x∗i, y∗i}
n∗
i=1, the joint prior distribution of the training output

y and test output y∗ can be written compactly as

[
y

y∗

]
∼ N

(
0,

[
K(X,X) + σ2

eIn, K(X,X∗)
K(X∗,X), K(X∗,X∗) + σ2

eIn∗

])
,

(4)

where K(X,X) is an n× n covariance matrix between the

training inputs; K(X,X∗) is an n × n∗ covariance matrix

between the training inputs and test inputs, K(X∗,X∗) is an

n∗ × n∗ covariance matrix between the test inputs. Here, we

let K(X,X) be the short term of K(X,X;θh).

Applying some known results of conditional Gaussian

distribution, we can easily derive the posterior distribution

as

p(y∗|D,X∗;θh) ∼ N
(
m̄, V̄

)
, (5)

where the posterior mean (vector) and the posterior covariance

(matrix) are respectively,

m̄ = K(X∗,X)
[
K(X,X) + σ2

eIn

]−1
y, (6)

V̄ = K(X∗,X∗) + σ2
eIn∗

−K(X∗,X)
[
K(X,X) + σ2

eIn

]−1
K(X,X∗). (7)

Given a novel input in the test dataset, the above posterior

mean gives the prediction, while the posterior covariance gives

the uncertainty region of the prediction. A graphical illustration

of GP working on a toy regression example is showcased in

Fig. 3

Just like the choice of activation functions and architecture

that highly affect the performance of neural networks, the kernel

function determines the expressive power of the GP model to a

large extent. More specifically, the kernel function profoundly

controls the characteristics (e.g., smoothness and periodicity)

of a family of functions. Therefore, in order to make a kernel

function full of expressive power and automatically adaptive to

a given dataset, the following works can be adopted. In [64], a

spectral mixture (SM) kernel was proposed to approximate the

spectral density with a Gaussian mixture model arbitrarily well

in the frequency domain and transform it back into a universal

stationary kernel. In [65], [66], the authors modified the SM

kernel to a linear multiple low-rank sub-kernels with a favorable

optimization structure, which enables faster and more stable

numerical search. In [67], [68], [69], [70], a DNN architecture

was combined with the automatic relevance determination

(ARD) kernel to approximate any kernel function (including

both the stationary and non-stationary ones). Yet, in a more

recent trend designing universal kernels may be obtained as a

byproduct of designing new fashioned deep GP models [71]

that link DNNs to GPs [72], [73], [74].

Next, we introduce the classical ML-based GP hyper-

parameter estimation. Due to the Gaussian assumption on the

noise, the log-likelihood function can be obtained in closed

form. The GP hyper-parameters can be optimized equivalently

by minimizing the negative log-likelihood function:

l(X,y;θ) = yTC−1(θ)y + log det (C(θ)) , (8)

where C(θ) , K(X,X;θh) + σ2
eIn and det(·) denotes the

determinant of a matrix. This optimization problem is mostly

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2020.3036276, IEEE Open

Journal of Signal Processing

> SUBMITTED AS AN OVERVIEW PAPER< 7

solved via gradient descent type methods, such as LFGS-

Newton or conjugate gradient [1], which requires the following

closed-form partial derivatives, for i = 1, 2, ..., p,

∂l(θ)

∂θi
= tr

(
C−1(θ)

∂C(θ)

∂θi

)
−yTC−1(θ)

∂C(θ)

∂θi
C−1(θ)y,

(9)

where tr(·) denotes the trace of a square matrix.

It should be noted that the minimization problem in Eq.(8)

may easily get stuck at a bad local optimum when the selected

learning model is over-parameterized and the associated cost

function does not show any favorable optimization structure.

Using the above ML method to train a GP model requires

O(n3) computational complexity thus forbids its practical use.

To address this difficulty, a plethora of scalable GP models have

been developed in the past decades. Some representative works

of different categories were obtained through using (1) low-

rank kernel matrix approximation [75]; (2) local structures of

the kernel matrix [76]; (3) the state-space model reformulation

and Kalman filter [42]; (4) the Bayesian committee machine

(BCM) with a number of distributed computing units [77]; and

(5) the variational Bayesian formulation [78]. A comprehensive

survey of the existing scalable GP models can be found in

[79].

C. DNN Versus GP

In the previous subsections, we briefly introduced DNN and

GP that can both be used as the core learning model. DNN is

quite popular nowadays due to various good reasons. Among

others, it can approximate any smooth function according to the

universal approximation theorem [44]. But the main drawbacks

of DNN lie in its opaque model interpretability and the large

number of hyper-parameters (DNN weights) to be trained. For

our FedLoc framework proposed in this paper, we put more

emphasis on the GP models due to their unique welcome

features compared with DNN.

First, GP models involve significantly fewer model hyper-

parameters than an equally-effective DNN. From [80] we know

that a single layer Bayesian neural network with i.i.d. weights

converges to a GP. Consequently, a neural network kernel was

designed with the following explicit form [1]:

kNN(x,x
′) =

2

π
sin−1

(
2x̃Σx̃′

√
(1 + 2x̃Σx̃)(1 + 2x̃′Σx̃′)

)
,

(10)

where x̃ , [1,xT]T is an augmented input vector. Often, we

assume Σ = diag(σ2
1 , σ

2
2 , ..., σ

2
d+1) to be a diagonal matrix,

thus the hyper-parameters θh = [σ2
1 , σ

2
2 , ..., σ

2
d+1]

T is of

dimension d + 1. If Σ is taken to be a general matrix, the

hyper-parameters to be tuned is in the order of d2, being much

smaller than the size of a fully-connected DNN in general.

Lately, the arc-cosine kernel [72], the neural tangent kernel

(NTK) [81], and the convolutional neural tangent kernel

(CNTK) [82] were developed to mimic a DNN with infinite

width. The arc-cosine kernel function [72] is given by

karccos(x,x
′) =

2

∫
e−

‖w‖2

2

(2π)d/2
Θ(w · x)Θ(w · x′)(w · x)q(w · x′)qdw,

(11)

where Θ(z) = 1
2 (1 + sign(z)) denotes the Heaviside step

function, and q is a non-negative integer for selecting a

particular activation function. The arc-cosine kernel for multi-

layer neural network can also be obtained via a recursive

kernel design. The hyper-parameters of the arc-cosine kernel

include the kernel order parameter q for specifing the activation

function and the number of hidden layers L.

The NTK captures the behavior of fully-connected deep

neural networks trained by gradient descent, and CNTK is

an extension of NTK to convolutional neural networks. The

analytic form of NTK can be derived recursively as

kNTK (x,x′) =
L+1∑

h=1

(
Σ(h−1) (x,x′) ·

L+1∏

h′=h

Σ̇(h
′) (x,x′)

)
,

(12)

where Σ(h−1) is the centered covariance matrix of the (h−1)th
layer’s output f (h)(x), and Σ̇ is the corresponding derivative

covariance.

It can be proven that a sufficiently wide and randomly

initialized DNN trained by gradient descent is equivalent to

a kernel regression predictor with the aforementioned NTK

kernel. Hence, the properties of the ultra-wide DNN, such

as the generalization capability, can be obtained by learning

the corresponding NTK, albeit with much less computational

effort. It is also noteworthy that the hyper-parameter of the

NTK is only the number of layers that can be tuned easily

using cross-validation.

Second, GP models can handle input uncertainty naturally.

In our considered applications, the model inputs often involve

position or position related measures that are intrinsically

subject to noise due to imperfect field calibration. Since GP

model is a probabilistic model, the input uncertainty can be

easily incorporated into the model. One way is to assume

the training input x to be a random variable with a known

distribution p(x). In [83], for instance, the mean function of

GP with input uncertainty was obtained as

m̃(x) =

∫
m(x)p(x)dx, (13)

and the kernel function obtained as

k̃(x,x′) =

∫∫
k(x,x′)p(x)p(x′)dxdx′. (14)

The only difficulty lies in the evaluation of the two integrals. In

general, they can be approximated by Monte-Carlo integration

[57], [84]. The rest of the steps remain the same as the standard

GP with clean input as given in (1). The computation can

be largely reduced for Gaussian distributed input x using

unscented transform, see for instance [85, Chapter 5.5].

Third, GP models can more easily encode prior informa-

tion about the data than DNN. This is inherited from the

meaningful interpretation of various elementary kernels with

known characteristics. For instance, when the data demonstrate

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2020.3036276, IEEE Open

Journal of Signal Processing

> SUBMITTED AS AN OVERVIEW PAPER< 8

periodicity, we could add elementary periodic kernel(s) or

locally periodic kernel(s) to the eventual composite kernel;

when the data demonstrate linear rising trend, we could add a

linear kernel to the eventual kernel; when the data profile is

verified to be smooth, we could use the squared-exponential

(SE) kernel with a large length scale parameter. Taking into

account the prior information about the data can be regarded

as regularizing the model fitting process, thus is effective for

avoiding data over-fitting. This is a welcome feature for our

applications in which the total amount of data is large but each

mobile user may only have a small amount of local data in

hand for training the global model. According to a recent white

paper released by Huawei, wireless big data in 6G will be

generated by a huge amount of mobile users and IoT devices,

each contributing only a small local dataset.

Fourth, GP models own a more robust generalization

capability compared to DNNs. Recently, double descent

phenomenon [86] has once again attracted broad attention.

Such phenomenon describes that with the increase of model

complexity, generalization error first decreases, increases, and

then again decreases, which has been presented as mysterious

generalization behavior in various learning algorithms [87].

Recent work in [88] further showed that double descent in

DNNs occurs not just as a function of model complexity, but

also as a function of the number of training samples, hence

it can lead to a regime where training with more data leads

to worse test performance. By contrast, Bayesian models is

more robust in terms of generalization capability due to the

effect of marginalization. Specifically, instead of using the point

estimation of the DNN models, Bayesian learning models make

the prediction in a different way, i.e.,

p(y∗ | x∗,D) =

∫
p(y∗ | x∗,θ)p(θ | D)dθ. (15)

That is, instead of taking only one single setting of parameters

θ, Bayesian learning models consider the whole parameter

space, weighted by the posterior probabilities, and finally

marginalize out θ to obtain the eventual predictive distribution.

This procedure can be interpreted as model averaging, and it has

been shown that such Bayesian model averaging can alleviate

even prominent double descent behavior [89]. If a reasonable

prior p(θ) is selected, the regression performance is supposed

to monotonically improve as we increase the training sample

size or the model complexity. This suggests that GP models,

as an important class of Bayesian non-parametric models, are

insensitive to double descent phenomenon.

Finally, it is noteworthy that DNNs and their variants are still

more widely used than GPs for machine learning empowered

applications. But for localization applications, yet, GP models

are very promising due to the aforementioned advantages.

IV. FEDERATED LOCALIZATION (FEDLOC)

The organization of this section is the following. In Subsec-

tion IV-A, the main idea of federated learning is introduced,

followed by a review of various existing distributed training

methods proposed for DNN and GP learning models in Sub-

section IV-B. Privacy-preserving schemes are briefly surveyed

in Subsection IV-C. Lastly, we conclude this section by giving

a full picture of the FedLoc framework.

A. Brief Review of Federated Learning

The idea of federated learning exists for a long time in

the context of distributed learning, and it was given the name

by some researchers at Google in 2016 [90], [2]. Federated

learning is a flexible and safe cooperation framework for

mobile users. The idea behind the federated learning is to

approximate a global model/objective as a summation of

local models/objectives trained individually by mobile users.

Mathematically, the above idea can be expressed as

l(X,y;θ) ≈
K∑

k=1

l(k)(Xk,yk;θ), (16)

where X is the complete set of the training inputs, y is the

complete set of the training outputs, and they constitute the

complete training set D; l(·) is a global objective in terms of

the model hyper-parameters θ; while Xk is the k-th local set

of the training inputs, yk is the k-th local set of the training

outputs, and they constitute Dk, which is a subset of D; l(k)(·)
is a local objective of the k-th local dataset, Dk; K is the total

number of collaborating mobile users, which is assumed to

be large. Both l(·) and l(k)(·) are composite functions of a

selected learning model/regression function and a cost function.

Lastly, we note that the outputs y are mostly positions or

position related measurements in our work.

To shed some light on the objective l(·), let us consider the

following two different machine learning models and their cost

functions.

I: DNN model with the Least-Squares Cost. The global

objective for training a DNN is given as follows:

l(X,y;θ) =
n∑

i=1

(yi − f(xi;θ))
2
, (17)

where the outputs are assumed to be independent, and f(xi;θ)
is represented by a DNN with L hidden layers [58] with

θ = {W 1,W 2, ...,WL+1} representing the DNN weights to

be tuned for all hidden layers and output layer. It is obvious

that the global objective is already in form of sum-of-residual-

squared.

II: GP model with the Maximum Likelihood Cost. Due to

the Gaussian assumption on the noise, described in Subsection

III-B, the log-likelihood function can be obtained in closed

form. Therefore, the global objective for training the GP

regression model hyper-parameters is

l(X,y;θ) = log p(y;X,θ)

= logN (y;m(X),K(X,X;θ)) , (18)

where the vector m(X) and the matrix K(X,X;θ) are

respectively the mean function m(x) and the kernel function

k(x,x′;θ) evaluated for the complete dataset D. This global

objective is not directly in the form of summation, but

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2020.3036276, IEEE Open

Journal of Signal Processing

> SUBMITTED AS AN OVERVIEW PAPER< 9

commonly approximated by the product-of-expert (PoE) [77]

as

l(X,y;θ) ≈
K∑

i=1

logN (yk;m(Xk),K(Xk,Xk;θ)) .

(19)

Here, we note that the independent noise term has been

absorbed into the kernel function for notation brevity in Eq.(18)

and Eq.(19).

B. Distributed Training of the Learning Models

The original goal is to train a global model through

θ̂ = argmin
θ

l(X,y;θ), (20)

where the objective function is often non-convex and solved by

gradient descent type methods. When the complete dataset

is large, training the global model given above can be

computationally expensive. As mentioned before, federated

learning aims to distribute the heavy computation load to

a massive number of collaborating mobile users by solving

instead the following problem:

θ̂ = argmin
θ

K∑

k=1

l(k)(Xk,yk;θ). (21)

Each mobile user maintains a local update of the global

model hyper-parameters and sends it to a central node for

consensus. There exist various ways for updating the global

model hyper-parameters. In the following, we introduce the

classical federated averaging (FedAvg) [2] algorithm and a few

algorithms developed upon alternating direction of multipliers

method (ADMM) [91], [92].

We start with the state-of-the-art FedAvg algorithm. Typi-

cally, the k-th mobile user calculates the gradient ∇l(k)(θ) and

uploads it to the central node. The central node then aggregates

a batch of/all local gradients to approximate ∇θl(X,y;θ).
We illustrate this workflow in Fig. 4(a), which is named by

FedAvg and deemed as the optimization algorithmic core

of the federated learning framework [2]. A robust variant,

called FedProx [93], was proposed to improve local training

convergence by adding an extra proximal step at each client

to restrict the distance between the local parameter estimates

and the current global estimate.

Next, we introduce two ADMM-based hyper-parameter

optimization schemes, that can effectively balance the compu-

tation and communication efficiency. The first one, namely the

classical ADMM-based hyper-parameter optimization scheme

(short as cADMM), reformulates the optimization problem

in (21) as a nonconvex consensus problem [91] with a set

of newly introduced local hyper-parameters {θ1,θ2, . . . ,θK}
and the global hyper-parameter z. Concretely, we solve instead

min
∑K

k=1l
(k)(θk),

s.t. θk − z = 0, ∀ k = 1, 2, . . . ,K,
(22)

global gradient descent step for θr+1

∇l(1)(θr+1) ∇l(2)(θr+1) ∇l(K)(θr+1)

∇l(1)(θr)θr+1 ∇l(2)(θr)θr+1 ∇l(K)(θr)θr+1

· · ·

(a)

global consensus for zr+1

θr+1
1 ,βr+1

1 θr+1
2 ,βr+1

2 θr+1
K

,βr+1
K

θr
1 + 1

ρ1
βr
1zr+1 θr

2 + 1
ρ2

βr
2zr+1 θr

K + 1
ρK

βr
Kzr+1

· · ·

(b)

Fig. 4. Workflow of two existing distributed hyper-parameter optimization
schemes. (a) FedAvg [2]. (b) cADMM [91].

where l(k)(θk) is nonconvex in terms of the local hyper-

parameter θk in general. The augmented Lagrangian function

for Eq.(22) is given by

L({θk}, z, {βk}) =
∑K

k=1(l
(k)(θk) + βT

k (θk − z)

+ (ρk/2)‖θk − z‖22), (23)

where βk is a dual variable, and ρk stands for a predetermined

regularization parameter. The (r+1)-th iteration of the cADMM

for solving (Eq.22) can be decomposed into

zr+1 =
1

K

∑K
k=1(θ

r
k + 1

ρk
βr
k), (24a)

θr+1
k = argminθk

(l(k)(θk) + (βr
k)

T (θk − zr+1)

+ (
ρk
2
)‖θk − zr+1‖22), (24b)

βr+1
k = βr

k + ρk(θ
r+1
k − zr+1). (24c)

The above workflow is shown in Fig. 4(b) for clarity.

Next, we continue to introduce a more recent proximal

ADMM (short as pxADMM) scheme proposed in [92], which

is capable of reducing the communication overhead and the

computational time at the same time. Unlike in step Eq.(24b)

where the local hyper-parameters θk are updated through

minimizing the augmented Lagrangian function exactly, the

proximal ADMM takes a proximal step w.r.t. θk by applying

the first-order Taylor expansion to l(k)(θk) [92], i.e.,

θr+1
k =argminθk

∇T l(k)(zr+1)(θk − zr+1)

+(βr
k)

T (θk−z
r+1)+

(
ρk+Lk

2

)
‖θk−zr+1‖22, (25)

where Lk is a newly introduced positive constant making

‖∇l(k)(θk) − ∇l(k)(θ′
k)‖ ≤ Lk‖θk − θ′

k‖ satisfied for all

θk and θ′
k, k = 1, 2, . . . ,K. Note that the proximal step in

Eq.(25) for θk is a (convex) quadratic optimization problem

with the following closed-form solution:

θr+1
k = zr+1 −

(
∇l(k)(zr+1) + βr

k

ρk + Lk

)
. (26)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2020.3036276, IEEE Open

Journal of Signal Processing

> SUBMITTED AS AN OVERVIEW PAPER< 10

As a consequence, the (r + 1)-th iteration of the pxADMM

for solving Eq.(22) can be decomposed into

zr+1 = (1/K)
∑K

k=1(θ
r
k + 1

ρk
βr
k), (27a)

θr+1
k = zr+1 −

(∇l(k)(zr+1) + βr
k)

ρk + Lk
, (27b)

βr+1
k = βr

k + ρk(θ
r+1
k − zr+1). (27c)

The pxADMM shares the same workflow with the cADMM

as depicted in Fig. 4(b). Criteria for choosing ρk and Lk

are given in [92], where the authors also proved under mild

conditions that: (1) θr
k converges to zr for all k; and (2)

solution ({θr
k}, z

r, {βr
k}) converges to a stationary point of

Eq.(22).

The pxADMM reduces the communication overhead in

the same way as cADMM does, which was explained in

our previous work [11]. However, the proximal step shown

in Eq.(27b) leads to an inexact, but closed-form solution of the

local sub-problem Eq.(24b) with much cheaper computation

cost. Although more iterations may be required towards

convergence, the overall computational time can be well

reduced.

Yet, we must point out that there exist various different alter-

natives for distributed optimization, such as gossip algorithms

[94], as well as some new alternatives including for instance

distributed second-order Newton methods [95], distributed zero-

order optimization methods [96] and parallel coordinate descent

[97], etc. Depending on the task specification, these alternatives

might be more effective than ADMM.

C. Privacy Preservation

Federated learning emphasizes strongly on mobile users sole

ownership of data and preservation of user privacy. However,

recent studies have shown that the shared parameters of the

trained models are proved to be vulnerable to disclose sensitive

information [98]. Privacy preservation in federated learning

can be achieved through various security techniques like

secure multi-party computation, homomorphic encryption, and

differential privacy.

To protect the content of each individual piece of trained

model, secure multi-party computation involves multiple

participants to upload trained models towards the server

collaboratively. No matter DNN or GP is used, the distributed

gradient descent on user-held training data is protected by

secure aggregation with user dropout taken into consideration

[99]. By exploiting a secure aggregation protocol and a secret-

sharing scheme, the privacy of each user-provided model

can be guaranteed under an honest-but-curious and active

adversarial setting [100], which supports an arbitrary subset

of user dropouts. Other than the above schemes, to verify the

correctness of the final aggregation result, a privacy-preserving

and verifiable federated learning protocol has been designed

with a homomorphic hash function and a secret sharing protocol

[101]. However, secure multi-party computation may still leak

sensitive information during the learning process.

The key idea of differential privacy in federated learning

is to add some noise to the trained hyper-parameters with

a sensitivity-measured random mechanism, such as Laplace

mechanism or Gaussian mechanism [102], which helps mitigate

the risk of private information disclosure. However, the injected

noise may degrade the performance of the trained model. The

feasibility of differential privacy on a client level in federated

learning with Gaussian mechanism was demonstrated in [103],

in which the authors demonstrated the trade-off between the

loss of privacy and the modeling performance.

Various homomorphic encryption schemes were also de-

signed to protect the privacy of each independent participant,

whose benefits are: 1) sensitive information is kept from the

server; and 2) accuracy is kept intact [104]. Specifically, ho-

momorphic cryptosystems allow certain forms of computation

performed on ciphertexts and produce encrypted results, which

matches the results of operations conducted on the plaintext.

Furthermore, homomorphic cryptosystem is mainly classified

into two categories: partially homomorphic cryptosystem with

either additive or multiplicative homomorphism, and fully

homomorphic cryptosystem supports arbitrary computation

on ciphertexts. Under the context of federated learning privacy

protection, the stochastic gradient descent can be protected with

additive homomorphic encryption, when the server is assumed

to be collusion-resistant and honest-but-curious. That is, the

honest-but-curious server is restricted to follow the designed

protocol, but it may attempt to recover the content from

the gradient information. Another hybrid scheme combining

differential privacy technique and threshold homomorphic

encryption is also designed, which can further resist collusion

attacks between the colluding server and participants [105].

Note that in our proposed scheme, no matter which dis-

tributed model training method (FedAvg or cADMM or

pxADMM) is involved, we utilize a homomorphic encryption

algorithm for the mobile users to upload the local gradients

or hyper-parameter towards the server. In order to illustrate

the stochastic descent encryption and decryption process,

we take the widely exploited additive homomorphic Paillier

cryptosystem as an example [106], which consists of three

algorithms: key generation, encryption and decryption.

Key generation: Given security parameter κ, two large

prime numbers p, q are chosen, where |p| = |q| = κ. Then the

Rivest-Shamir-Adleman (RSA) modulus n = p · q and the least

common multiple λ = lcm(p− 1, q− 1) are computed. Define

a function L(u) = u−1
n , after choosing a generator g ∈ Z

∗
n2 ,

µ = L(gλ mod n2)−1 mod n is further calculated. Then the

public key is pk = (n, g) and the private key is sk = (µ, λ).

Encryption: Given a message m ∈ Zn, choose a random

number r ∈ Z
∗
n, and the ciphertext can be calculated as c =

E(m) = gm · rn mod n2, where set Zn = {0, 1, ..., n − 1},

and set Z∗
n only has elements coprime to n.

Decryption: Given the ciphertext c ∈ Z
∗
n2 , the corresponding

message can be recovered as m = D(c) = L(cλ mod n2) · µ
mod n.

For our federated learning scenario, the Paillier cryptosystem

[106] can be exploited to protect and aggregate the stochastic

descents. Interested readers can find more implementation

details in [21].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2020.3036276, IEEE Open

Journal of Signal Processing

> SUBMITTED AS AN OVERVIEW PAPER< 11

Algorithm 1: FedLoc Framework under Cloud-Based

Network Infrastructure

Input: (1) A massive number of collaborating mobile

terminals with index k = 1, 2, ...,K; (2) Local

data Dk = {Xk,yk}, where the inputs and

outputs are positions/position related measures; (3)

A learning model, for instance a DNN or a GP

model.

Output: Optimal hyper-parameters θ∗ of the global

learning model.

1 Initialization: Initial hyper-parameters of the selected

learning model, θ0; iteration index, η = 0.

2 for (outer iterations) η = 0, 1, ... do

3 1. The core network sends a probing signal to all

mobile terminals and identifies which ones are idle

during this round. The idle terminals form a set, Kη .

4 2. The core network sends a seed to the selected

terminals for encoding the messages as well as the

current hyper-parameter estimate, θη .

5 for (inner iterations) each idle mobile terminal

k ∈ Kη in parallel do

6 1. Use the local data, Dk, or a fraction of it to

update the hyper-parameter θ
η+1
k , for instance,

via FedAvg/FedProx for DNN or via

cADMM/proximal ADMM for GP.

7 2. Encrypt the local update of the global model

hyper-parameters as a message using for instance

homomorphic encryption.

8 3. Send the encrypted message to the core

network.
9 end

10 3. The core network receives all encrypted messages

from the mobile terminals indexed in Kη and

performs decryption.

11 4. The core network updates the global learning model

hyper-parameters via consensus.

12 5. Finish this round and reset η = η + 1.

13 6. Repeat the above iterations (1)-(5) until certain

stopping criteria are satisfied.
14 end

15 The approximated global hyper-parameters is θ∗ = θη .

D. FedLoc: A New Umbrella of Old Modules

In the previous sections, we have introduced two important

classes of learning models, namely the deep neural network

models and Gaussian process models, and a few distributed

hyper-parameter optimization schemes tailored to these two

models, as well as the state-of-the-art privacy preservation

methods for mobile data. These constitute the major ingredients

of a novel cooperative, data-driven, learning model-based

framework for localization and location data processing.

For clarity, we give a complete procedure of the FedLoc

framework in Algorithm 1, which can be adopted for both

the cooperative localization and the cooperative location data

processing. Various live use cases in different application

sectors already fall into or can be revised to suit our FedLoc

framework. In Section VI, we will show a few representative

use cases and survey some related works that can be made

adapt to the FedLoc.

V. NETWORK INFRASTRUCTURES FOR FEDLOC

As it is widely known, federated learning needs to com-

municate a big number of model parameters continuously

over the air, especially when DNN is adopted as the learning

model. In this section, we introduce two promising network

infrastructures to meet the communication requirements of

the proposed FedLoc framework. Specifically, a cloud-based

wireless network infrastructure is introduced in Subsection V-A,

while an emerging edge-based one is introduced in Sub-

section V-B. Some remarks are given in Subsection V-C.

More fresh discussions on using parallel infrastructures to

support scalable learning paradigms for data-driven wireless

applications can be found in our recent work [111].

A. Cloud-based Infrastructure

For ease of understanding, a complete picture of the network

infrastructure is depicted in Fig. 5 for learning model-based

cooperative localization. The key elements of this network as

well as their functionality are summarized as follows:

1) Reference Network Node is equipped with cache, storage,

and communication entities. A reference network node

communicates with the mobile terminals deployed in

its communication range to exchange learning model

related information. Both the position and the transmit

power of a reference network node are assumed to be

precisely known. Representative reference network nodes

include 5G macro and micro base stations, WiFi access

points, BLE beacons, etc. Especially the emerging 5G

and WiFi-6 network are able to provide low-latency,

high throughput wireless transmission to FedLoc, which

requires to transmit a big amount of model parameters in

every iteration. Table II gives some numbers. For better

intuitions, two specific examples are given below. The 5G

network with the highest throughput can support a 9-layer

fully-connected DNN with the network layout “20000-

30000-10000-100000-10000-10000-10000-1000-10” that

has around 300 million weights. The 4G network,

however, can only support an 8-layer fully-connected

DNN with a much smaller network layout “5000-5000-

10000-3000-9000-2000-200-10” with around 15 million

weights.

2) Mobile Terminal (MT) is equipped with sensing, log-

ging, computing, storage, and communication entities.

Moreover, the MT has installed the designated mobile

applications for carrying out the calibration work. The

MT collects position related measurements, obtains a

local update of the global learning model parameters, and

uploads them to the core network. All the computations

are conducted on-device using the local data only. Here,

the mobile terminal refers to a smartphone specifically.

It is noteworthy that modern smartphones are equipped

with a basket of inertial sensors, including accelerom-

eter, gyroscope, magnetometer, barometer, pedometer,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2020.3036276, IEEE Open

Journal of Signal Processing

> SUBMITTED AS AN OVERVIEW PAPER< 12

Wireless infrastructure Max uplink data rate

(Mbps)

Max downlink data

rate (Mbps)

Number of DNN weights

(Million)

Configuration

5G [107] 10,000 20,000 312.5 IMT-2020 peak rate

4G [108] 500 1000 15.625 IMT-advanced

WiFi-6(ax) [109] 2400 2400 75 160MHz 2*2MIMO 1024-
QAM 802.11ax

WiFi-5(ac) [110] 1733 1733 54.16 160MHz 2*2MIMO 256-
QAM 802.11ac

TABLE II
DOWNLINK AND UPLINK DATA RATE OF DIFFERENT WIRELESS INFRASTRUCTURES UNDER SPECIFIC CONFIGURATIONS AND THE NUMBER OF

HYPER-PARAMETERS OF A SELECTED LEARNING MODEL (TAKING THE DNN WEIGHTS AS EXAMPLE) THAT CAN BE SUPPORTED. THE NUMBER OF THE

DNN WEIGHTS (IN MILLION) SHOWN IN THE FOURTH COLUMN IS EQUAL TO THE UPLINK RATE (GIVEN IN THE SECOND COLUMN) DIVIDED BY 32 BITS PER

DNN WEIGHT.

···

Uplink (Local Parameters)
Downlink (Global Parameters)

Uplink (Local Parameters)
Downlink (Global Parameters)

Core Network

Router/Switch

Reference Node

Mobile Terminal

Smart Agent

Fig. 5. Cloud-based network infrastructure for supporting the proposed FedLoc
framework. For illustration purpose only, the whole deployment area is divided
into many non-overlapping sub-areas, and for each sub-area there is a bunch
of mobile terminals willing to collaborate.

barcode/QR code sensors, that can be exploited for

localization or localization-related tasks. Apart from the

rapid development of the hardware, a number of mobile

machine learning platforms are under development, such

as Tensorflow by Google, Core ML by Apple, Caffe2 by

Facebook, Paddle Lite by Baidu, MNN by Alibaba, etc.

Mobile users can easily deploy different deep learning

models on their smartphones in the near future.

3) Fixed Smart Agents are equipped with sensing, logging,

computing, storage and communication entities. Repre-

sentative smart agents include IoT machines, wireless

sensors, robots, smart traffic lights, unmanned aerial

vehicles (UAVs), micro-base stations that are collecting

location data continuously.

4) Core Network is equipped with high-speed computing,

cache/storage and communication entity. The local up-

dates from the mobile users are aggregated to the core

network to compute a global parameter update. After the

training phase is over, the approximated global learning

model will be stored in the core network and used for

predicting a new position in the online phase. Since the

heavy computations have been offloaded to a number

of mobile users, the core network can perform smarter

coordination of different tasks and resources, so as to

make the whole network agile and adaptive to the fast

changing environments.

···

Uplink (Raw Data)
Downlink (Global Parameters)

Uplink (Local Parameters)
Downlink (Global Parameters)

Core Network

Trustful Edge Node

Edge Router/Switch

Smart Agent

Fig. 6. Edge-based network infrastructure for supporting the FedLoc
framework.

B. Edge-based Infrastructure

In the second infrastructure, the mobile users or smart agents

can upload their local data to a trustful third-party edge node,

where there is sufficient storage and computation power for

handling learning tasks. For clarity, we show this network

infrastructure in Fig.6. The edge node first pre-processes the

received data and then offloads the model fitting task to a

number of computing units. Each edge node is in charge of

building a locally-global learning model and transmits the

trained hyper-parameters to the core network for consensus

and coordinated control. This infrastructure is more suitable

for building a number of regional global models for location

data processing. The third use case that we will show in the

next section can potentially benefit a lot from this edge-based

infrastructure.

It is noteworthy that our proposed FedLoc solution, as shown

in Algorithm 1, can be easily extended to work with edge nodes.

Specifically, we can simply let a batch of end devices upload

their raw data to the nearest neighboring edge for training a

regional local model; afterwards, all such edge nodes make

consensus on the global model parameters by following similar

steps given in Algorithm 1. In this way, the whole network

can be made hierarchical, and the latency in each level can be

minimized.

C. Concluding Remarks

First, we would like to stress again that the communication

requirement is sufficient broadband for transmitting a large

number of global model parameters between users and the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2020.3036276, IEEE Open

Journal of Signal Processing

> SUBMITTED AS AN OVERVIEW PAPER< 13

cloud/edge, which is more challenging for the deep neural net-

works than GP models as mentioned in Subsection III-C. Under

this communication constraint, people may be concerned about

the necessity of using the two above-mentioned infrastructures

and their corresponding pros and cons. Our understanding is

that when the distributed device is equipped with a powerful

computing unit and battery, then it is preferred to perform

a sufficient local numerical search before communicating its

local estimate of the model parameters. In this way, fewer

optimization epochs may be required (or equivalently less

communication overhead is required). This is suitable for the

distributed FedLoc system to be deployed in certain areas with

less developed wireless infrastructure, for instance, suburbs

covered by 3G only. On the other hand, if the end devices, such

as wireless sensors and smart meters, have rather low on-board

computation capacity but are deployed in certain areas with a

rather good network support, for instance, using 5G or private

IoT network, then we could simply increase the rounds of

communications to compensate for the quality of local updates

obtained using economical numerical searches.

The overwhelming benefit of the cloud-based solution lies

in the global model training accuracy. Principally, distributed

systems can only approach its performance. But the major

demerits of the cloud-based solution are also obvious, among

others, that response latency is the most serious one for big

data aggregation and dissemination even using 5G network.

Therefore, a promising solution is to employ edge nodes for

effective trade-off between computation and communication.

VI. USE CASES OF FEDLOC

This section aims to shed more light on the FedLoc

framework with various live use cases. In particular, we

showcase: (1) DNN-based static localization/fingerprinting;

(2) DNN-based smartphone sensor calibration for accurate

navigation with low-sampling-rate GPS; (3) GP-based state-

space model for target tracking and navigation; and (4) GP-

based wireless traffic prediction in 5G C-RAN. The first three

use cases relate to localization, while the last one relates to

location data processing and prediction. Most of the above use

cases are summarized from our recent works. We also survey

related works that can easily fit into the FedLoc framework.

A. DNN-Based Static Localization/Fingerprinting

There exist various statistical methods using wireless mea-

surements, such as ToA, RSS, proximity [112], [113], for

static target localization. These methods rely on empirical

propagation models. In this subsection, we show a different

static localization method using DNN, which can benefit from

the federated learning framework. DNN-based localization

is preferred for complex indoor wireless environments, for

which sophisticated empirical models are either not available or

incapable of capturing the underlying propagation mechanism.

Let us take a look at three representative indoor scenarios:

• Indoor shopping mall, where there are a bunch of

WiFi/BLE access points and micro base stations for public

data traffic. In addition, thanks to the rapid spread of 5G

for IoT and machine-type communications (MTC), there

Fig. 7. All the QR labels were photoed in a modern shopping mall in Shenzhen,
China. (a) QR codes for ordering foods for a specific dining table; (b) QR
code for promotion information at a shop; (c) QR codes for various different
services, including product recommendation, payment, etc at the cashier of a
shop; (d) QR code for renting mobile power bank.

are now a large number of machines/landmarks with QR

codes in the shops. By scanning the QR codes, customers

can easily get shopping mall information and promotional

information. Some live examples are demonstrated in

Fig. 7.

• Indoor museum, where there are a bunch of WiFi/BLE

access points in the exhibition rooms and a considerable

number of QR labels attached to the exhibits to serve

as references. Similarly, by scanning the QR codes a

visitor can easily get access to detailed interpretation of

the exhibits on his/her mobile terminal.

• Indoor office, where there are a bunch of WiFi/BLE

access points in the whole office area, and a large number

of QR labels are placed on all valuable assets in the room.

The DNN-based static localization/fingerprinting needs to

be trained with a big dataset D, where the training input,

X , contains the radio features at different locations and the

training output, y contains the corresponding locations. More

concretely, let us assume that a training input comprises

RSS measured with respect to P WiFi/BLE access points,

xi = [RSSi,1, RSSi,2, ..., RSSi,P], and the output y is a

position (2D or 3D) at which the radio feature is measured.

More sophisticated measurements such as magnetic fields and

channel state information (CSI) can be used instead of RSS

or jointly used with RSS. Note that an output yi is either

measured precisely at the calibration points by paid workers or

imprecisely (for instance, with the aid of the landmark points

and manual click on the indoor map displayed on the mobile

application) by voluntary users. In either case, we assume the

output is subject to additional independent noise. A concrete

example is illustrated in Fig. 8.

The regression problem can be formulated as

yi = f(xi;θ) + ni, (28)

where f(x;θ) : Rdx → R
dy represents a DNN with an input

of dx = P features and the neural network weights θ to be

tuned. The regression function f(x;θ) is also known as RSS

map or fingerprinting map in the literature.

In order to adopt the federated learning framework, we

deploy a large number of mobile terminals, and each is

responsible for a particular area, possibly overlapping with

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2020.3036276, IEEE Open

Journal of Signal Processing

> SUBMITTED AS AN OVERVIEW PAPER< 14

20 30 40 50 60

[m]

5

10

15

20

25

30

[m
]

WiFi AP

Fig. 8. A typical indoor office environment at the Chinese University of Hong
Kong (Shenzhen), where two dozens of WiFi access points are deployed in
the offices and laboratories. For this conceptual example, an input, xi, is a
vector of P = 26 RSS values, and the corresponding output, yi = [pxi , p

y
i]

is a 2D position.

its neighboring areas. The k-th mobile terminal collects a

dataset Dk = {Xk,yk} and uses it to train a local update of

the global parameters. Concretely, each mobile user solves

θk = argmin
θ

∑

∀{xi,yi}∈Dk

||yi − f(xi;θ)||
2
2. (29)

All the mobile terminals cooperate to perform Algorithm 1.

Since in this use case, the global objective is readily in the

form of summation, therefore we can set the weights βk to

be the ratio |Dk|/
∑

j∈Kη
|Dj | in the η-th iteration and update

θη+1 =
∑

k∈Kη
βkθ

η
k. When the messages are exchanged

between the core network and mobile terminals, they are first

encrypted by the mobile terminals and decrypted in the core

network using homomorphic techniques. The workflow of the

FedLoc for DNN-based static localization is shown in Fig. 9.

After the training procedure is terminated, the central

node will obtain an approximated global estimate of the

hyper-parameters, denoted by θ̂. Given a new vector of RSS

measurements, x∗ = [RSS∗,1, RSS∗,2, ..., RSS∗,P], reported

to the central node, the trained learning model will map it then

to the desired position estimate through p∗ = f(x∗; θ̂).
Various works on using deep learning models and RSS

measurements for indoor fingerprinting have been published in

recent years, for instance [114], [115], [116], [117], [118] based

on DNN, CNN, LSTM. Although these works are originally

centralized algorithms, they can be implemented in a distributed

manner under our FedLoc framework.

We have shown the general procedure of DNN-based static

localization. One may be concerned about the latency of

the proposed FedLoc framework using DNN-based models

in practical use. We believe that the latency issue would

not prohibit the wide use of sophisticated learning models

in next-generation wireless networks. The reasons are as

follows. First, federated global model training can be done

in the offline phase with historical data, which does not raise

any latency issue. Second, when the global model has been

trained, performing position inference using the well-trained

model is computationally cheap. For a neural network with

a modest number of layers and neurons in each layer, the

computational time for estimating a position is just slightly

higher than the KNN method, which should satisfy the LTE

latency requirement. Third, with the rapid development of AI

chips [119], we believe that the aforementioned inference time

can be significantly shortened in order to meet the low-latency

requirement of the 5G network and beyond.

Before leaving this subsection, let us give a concrete

example to shed more light on both the latency and the

positioning accuracy of KNN and CNN model. In [114], a

real office room is considered and a CNN model is applied

to predict some unknown 2-dimensional positions y. The

selected CNN architecture consists of 3 convolution layers

and each convolution layer has 5 kernels, followed by two

fully connected layers with 10 neurons in each layer. For

more details, interested readers can refer to the original paper

[114]. In the test phase, a number of 260 data samples (of

24-dimensional) are fed into CNN. The results show that the

inference time for a single data point takes 0.001s, with the

mean error distance around 160cm. In contrast, for the KNN

model with a regular fingerprint resolution, testing one data

point only takes 0.0002s, but the mean error distance is up to

230cm, being larger than that obtained using CNN.

B. DNN-Based Vehicle Navigation with Low Sampling Rate

GPS

For land vehicle navigation, combining the inertial mea-

surement unit (IMU) and global positioning system (GPS)

embedded in a smartphone is still the main-stream technical so-

lution. The GPS can readily provide accurate vehicle positions

when the majority of the satellite signals are in line-of-sight

(LOS) propagation with relatively high RSS. On the other

hand, the IMU assembles, primarily, a three-axis acceleration

sensor and a three-axis gyroscope, to determine the position

and velocity of a vehicle. The main functionality of the IMU is

to provide vehicle positions with a much higher sampling rate

(> 50 Hz) between two consequent GPS position estimates

(with 1 Hz by default). Unfortunately, when a vehicle enters

into certain areas with severe signal blockage, the received

GPS signal will be very weak or even undetectable, leading

to significantly degraded position estimate. On the other hand,

solely relying on low-end IMU measurements for high-accuracy

navigation is impractical due to the sensor bias, scale-factor

error, and other random errors that accumulate over time. How

can we maintain a satisfactory positioning accuracy for the case

that GPS signals are occasionally available for harsh wireless

environments, such as in the city center or forest? We demand

a smart solution with affordable computational complexity.

Towards this end, we introduce in this subsection a ma-

chine learning-based approach that can be implemented on

commercial smartphones and is able to provide high navigation

accuracy using low-end inertial sensors and low-sampling-rate

GPS. Inertial sensors are used to continuously estimate the

vehicle velocity and position at higher sampling rate, while

low-sampling-rate GPS signals are used for IMU calibration

occasionally (for example every 60 seconds). When the GPS

signal is not available, we use pre-trained DNNs to calibrate

the inertial sensor errors.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2020.3036276, IEEE Open

Journal of Signal Processing

> SUBMITTED AS AN OVERVIEW PAPER< 15

 ! " #

$
%=!

&%
& % =

USER 1 USER 2 USER K

 ! (! = ", # ··· $

Fig. 9. Illustration of DNN-based static localization. Here, [[W]] represents encrypted NN weight parameters using for instance Homomorphic Encryption
(HE). The P features are RSS values collected from the WiFi access points in the deployed area.

To be concrete, we adopt two DNNs to estimate/predict

the velocity vt,NN1 and the yaw angle yt,NN2 of the vehicle,

respectively. In the model training phase, both DNNs take

measurements from the smartphone inertial sensors as the

input while the GPS velocity and yaw angle measurements are

taken as the outputs/labels.

The first DNN takes the following inputs:

• The velocity ṽnt = ((vnxt)2 + (vnyt)2 + (vnzt)2)1/2 calcu-

lated from the inertial sensor data;

• The sequence of angular velocity {ωbz
t−l, ..., ω

bz
t } of the

vehicle;

• The sequence of smoothed linear acceleration along the

front direction of the vehicle, denoted as {anxt−l, ..., a
nx
t }.

The DNN output is the velocity vt,NN1 set to be the GPS

velocity vt,GPS as the ground-truth in the training dataset.

Similarly, the second DNN takes the following inputs:

• The sequence of smoothed linear acceleration, denoted as

{aby, ..., aby};

• The sequence of angular velocity {ωbz
t−l, ..., ω

bz
t };

• The compensated yaw sequence {yt−l, ..., yt}.

The DNN output is the yaw angle yt,NN2 set to the GPS yaw

angle ytGPS as the ground-truth in the training dataset.

Our recent work in [120] presented a centralized implemen-

tation, where interested readers can find more details about

the measurements, configurations of the DNNs, as well as a

diagram of the whole navigation system. In this paper, we are

interested in designing a distributed counterpart. To this end,

we let the two DNNs be trained individually by a batch of

collaborating mobile users according to Algorithm 1 with the

DNN weights optimized using either the FedAvg algorithm or

the FedProx algorithm. The information exchange procedure

remains the same as the first use case. In the online use phase,

the two DNNs will calibrate the inertial sensor error aggregation

when there is no GPS signal at hand. Some primary results

for this use case will be shown in Section VII.

C. GP-Based State-Space Model (GPSSM) for Target Track-

ing

State-space models (SSM) are outstanding for modeling a

time series y1:T , {yt}
T
t=1 with latent states x0:T , {xt}

T
t=0.

An SSM comprises a transition function, f(x) : Rdx → R
dx

and a measurement function, g(x) : Rdx → R
dy. Concretely,

an SSM is given by

xt = f(xt−1) + et−1,

yt = g(xt) + nt, (30)

where xt ∈ R
dx is the latent state, yt ∈ R

dy is the mea-

surement, et is the process noise, and nt is the measurement

noise at time instance t, respectively. Traditional SSM restricts

both the transition function f(x) and the measurement function

g(x) to empirical, parametric functions [10], whose parameters

can be learned through the expectation-maximization (EM)

algorithm [121] or Markov chain Monte Carlo (MCMC)

algorithm [122].

Since GP models provide outstanding performance in func-

tion approximation with a natural and inherent uncertainty

region, they have been adopted to model complicated nonlinear

functions in the SSMs, leading to the GPSSM [123]. Early

variants of GPSSM were learned by finding the maximum

a posteriori (MAP) estimates of the latent states, generating

various successful positioning applications, among others the

RSS-based WiFi localization [124], the human motion capture

[125], and the IMU-based slotcar tracking [126], etc. The first

fully probabilistic learning procedure of GPSSM was proposed

in [127] using particle Markov Chain Monte Carlo (PMCMC).

In order to reduce the heavy computational load of the sampling

method used in [127], a number of different variational learning

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2020.3036276, IEEE Open

Journal of Signal Processing

> SUBMITTED AS AN OVERVIEW PAPER< 16

x0 x1 · · · xt−1 xt · · ·

· · · f1 · · · f t−1 f t · · ·

· · · g1 · · · gt−1 gt · · ·

y1 · · · yt−1 yt · · ·

Fig. 10. Graphical representation of GPSSM. The shaded nodes represent
the measurements, while the transparent nodes represent the latent variables.
Variables belonging to the same GP are connected by a thick edge.

procedures were developed in [123], [128], [129], [130] upon

the classical variational sparse GP framework [78].

A general GPSSM can be formulated as

f(x) ∼ GP(mf (x), kf (x,x
′;θf)),

g(x) ∼ GP(mg(x), kg(x,x
′;θg)),

x0 ∼ p(x0),

f t = f(xt−1),

xt|f t ∼ N (xt|f t,Q),

gt = g(xt),

yt|gt ∼ N (yt|gt,R), (31)

with the model hyper-parameters {θf ,θg,Q,R}, where θf

and θg are the kernel hyper-parameters of the GPs, Q and

R are the covariance matrices of the process noise and the

measurement noise, respectively. For clarity, Fig. 10 shows a

graphical representation of GPSSM. In the following, we will

first introduce the standard GPSSM, which requires a big set

of calibrated data to train both the transition function f and

the measurement function g. Then, we will briefly mention the

advanced variational GPSSM proposed initially in [123].

We start with the transition function of the standard GPSSM.

The GP regression model for the transition function, f , is

xt+1 = f(xt) + et, where the output xt+1 ∈ R
dx is the state

at time t + 1, xt ∈ R
dx is the current state at time t, the

unknown function f(xt) : R
dx → R

dx is essentially a multi-

output GP [1], and et is a vector of noise terms. For simpler

implementation, we could model each entry of the state, say

the j-th, by an independent GP as [xt+1]j = fj(xt)+e, where

fj(xt) : R
dx → R is now a single-output GP. As discussed in

Section III, we need to select a kernel function, kf (xt,xt′ ;θ)
to represent the correlation between the states at different time

instances. When the input dimension is small/modest, using

the ARD kernel is often a good choice. While for large input

dimension, advanced kernels such as the arc-cosine kernel and

the NTK should better be tried out.

The above GP models can be trained with a dataset

of calibrated trajectories, Dj , {X, x̃j}, where x̃j =
[[x1]j , [x2]j , ..., [xT]j]

T is a vector of outputs and X =
[x0,x1, ...,xT−1]

T is a matrix of inputs. One could follow

Eq.(18) to solve for the global ML hyper-parameter estimate.

To implement the FedLoc framework, one could let K mobile

users collaborate to approximate the global ML hyper-parameter

estimate according to Eq.(19) with the local trajectories walked

by each individual. The central node makes consensus on the

local hyper-parameter estimates.

The GP regression model for the measurement function is

yt = g(xt)+nt, where the input xt ∈ R
dx is the state at time

t, the output yt is a vector of wireless measurements, and the

unknown function g(xt) : R
dx → R

dy is essentially another

multi-output GP. Similar to the modeling of the transition

function, we apply an independent GP for each single entry

of the output. Training the measurement function is similar to

that of the transition function, f , introduced above. Interested

readers can find more details about using GPs to model f
and g in [131], [132]. After the GPSSM is built, it can be

combined with the celebrated particle filter or smoother [133]

to reconstruct unknown trajectories. In [134], we proposed

a practical real indoor navigation system prototype based on

GPSSM and achieved improved navigation accuracy in various

tests with smartphone sensory data. Moreover, we derived both

the posterior- and parametric Cramer-Rao bounds for general

nonlinear filtering problems based on GPSSM in [135].

One drawback of the above standard GPSSM lies in the

need for a relatively large training dataset with calibrated latent

states, which requires a large amount of labor force. To remedy

this drawback, some recent works [123], [129] incorporated the

variational inference technique [78] into the standard GPSSM

to jointly estimate the GPSSM model hyper-parameters and

the latent states on the fly. The variational GPSSM does not

require a historical calibrated dataset, but as a tradeoff, it has to

deal with a large-scale optimization problem. In order to make

it adapt to the FedLoc framework, one may consider using

the distributed variational inference techniques [136] with the

GPSSM.

D. GP-Based Wireless Traffic Modeling and Prediction

In 5G, wireless traffic prediction is vital to resource alloca-

tion, load-aware management, and proactive control in C-RAN.

In [11], we proposed a distributed GP-based wireless traffic

modeling and prediction framework that exploits the advanced

C-RAN specifying the edge-based network infrastructure given

in Section V. In the deployment area, several hundreds of micro

base stations with fixed geographical positions are installed to

serve mobile users and record the downlink physical resource

block (PRB) usage (a wireless traffic usage indicator) versus

time. In this work, the base stations serving as smart agents

are first clustered into groups according to their geographical

locations, and for each group an aggregated PRB usage

prediction model is to be built. To this end, all the micro

base stations in one cluster send their observed time series of

PRB usage to an edge node, in which the data are aggregated,

pre-processed and uniformly allocated to a number of parallel

computing units.

Specifically, a global GP regression model for the aggregated

wireless traffic data of each cluster in the C-RAN is given

as y = f(t) + e, where y ∈ R
1 represents the PRB usage;

e is a Gaussian distributed noise term with zero mean and

variance σ2
e ; f(t) is a temporal GP as introduced in Eq.(3) of

Section III.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2020.3036276, IEEE Open

Journal of Signal Processing

> SUBMITTED AS AN OVERVIEW PAPER< 17

Sep 13 Sep 20 Sep 27
10

15

20

25

P
R

B
 U

s
a

g
e

 (
%

)

Sep 13 Sep 20 Sep 27
3

4

5

6

7

P
R

B
 U

s
a

g
e

 (
%

)

Sep 13 Sep 20 Sep 27
4

5

6

7

P
R

B
 U

s
a

g
e

 (
%

)

Fig. 11. The PRB usage curves of three base stations collected in three
southern cities of China in 30 days. The data profile in the first panel reflects a
typical office area, in which the traffic pattern shows a strong weekly periodic
trend in accordance with weekdays and weekends. The data profile in the
second panel reflects a typical residential area, in which the traffic pattern
shows a strong daily trend with high demands in the daytime and low demands
in the night. The data profile in the third panel reflects a typical rural area, in
which the traffic pattern is more or less random.

In comparison with the “black-box” deep learning models

for sequential data modeling such as the recurrent neural

network (RNN) and long-short term memory (LSTM), GP

model owns better interpretability as prior information about

the wireless traffic pattern can be encoded more easily into

the kernel function design. As shown in Fig. 11, the wireless

traffic in our real datasets demonstrates the following general

patterns: (1) weekly periodic pattern, namely the variation in

accordance with weekdays and weekends; (2) daily periodic

pattern, namely the variation in accordance with weekdays and

weekends; and (3) deviations, namely the small scale variation

in addition to the above periodic trends. The first two patterns

can be well captured by the periodic or the locally periodic

kernel, while the third pattern can be well captured by the SE

kernel or the Matern kernel.

Our distributed GP for wireless traffic modeling and pre-

diction falls in the FedLoc framework. Both the training and

inference stages are performed in the edge nodes. Detailed

workflow of model training is as follows. First, each base

station in a specific cluster uploads its measured time series

to the edge node. The aggregated data is then divided into K
portions by the edge node, and each portion is allocated to

a local computing unit for distributed model training based

on the cADMM introduced in Section IV. The training frame-

work achieves excellent tradeoff between the communication

overhead and modeling accuracy, as explained in Section III.

For each local computing unit, the required computational

complexity can be reduced from O(n3) of the centralized,

standard GP to O(n3

K3), where n is the number of the data

points and K the number of parallel computing units.

In the online phase, one could use the generalized PoE [77]

to fuse the local predictions from all parallel computing units

to approximate the global prediction. The generalized PoE

model needs to introduce a set of fusion weight parameters,

βi, i = 1, 2, ...,K, to take into account the importance of the

local predictions. The resulting PoE predictive distribution is

p(f∗|x∗,D) ≈
K∏

i=1

pβi

i (f∗|x∗,D
(i)). (32)

The choice of βi, i = 1, 2, ...,K, is vital to the prediction. In

[11], we proposed to optimize the fusion weights according to

the cross-validation criterion. The corresponding weight opti-

mization problem can be solved efficiently with convergence

guarantee. More details about the optimization process can be

found in [11].

In the above work, we considered a temporal GP for

regression. Therein, each cluster of base stations is assumed

to be independent other clusters. For enhanced prediction

performance, we could use spatio-temporal GP that takes

into account the correlations between different clusters. A

straightforward way for building a spatio-temporal GP model

is to introduce an extra kernel to account for the spatial

correlations between different clusters and combine this spatial

kernel with the aforementioned temporal kernel either through

addition [137] or Kronecker product [138].

The recently proposed graph GP provides another way for

learning from high-dimensional data points living on non-

Euclidean domains, see for instance [139], [140], [141]. As

such, graph GP allows for better non-local generalization thus

can be used to model sophisticated correlation patterns across

time and space. In the illustrating example in Fig. 12, a graph

GP can be designed to capture three types of correlations,

including: (1) temporal correlation as discussed above; and (2)

spatial-temporal correlation, where closer geographical distance

indicates higher correlation in the temporal observations, and

(3) the event correlation, where an event nearby also indicates a

higher probability of an abrupt traffic change. It is noteworthy

that graph GP is still under development where many directions

remain to be explored, e.g., kernel design, stability issue, and

distributed processing among others.

E. Other Potential Use Cases

Due to space limitations, we are unable to give a full list of

all FedLoc related use cases with details. However, we want to

briefly demonstrate the following three use cases due to their

ever-increasing popularity.

(1) Radio feature map construction. The proposed FedLoc

framework can be used by a number of collaborating mobile

users to build accurate radio feature maps, such as RSS map and

magnetic field map, for indoor venues. In [132], we proposed

a distributed, recursive GP framework for building indoor

RSS maps. Therein, a batch of mobile users was employed

to collect RSS measurements from a dozen of WiFi access

points at Ericsson research, Linkoping, Sweden. In the training

phase, each mobile user trains a local GP empowered RSS map

individually, while in the inference phase a global prediction

is obtained by fusing all the local GP models via the classical

Bayesian committee machine. A follow-up work was then

proposed in [142]. These works can be revised to fit a global GP

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2020.3036276, IEEE Open

Journal of Signal Processing

> SUBMITTED AS AN OVERVIEW PAPER< 18

Sport Event

Nearby BS-1

Nearby BS-2

t

y

t

y

t

y

 Prediction with

Temporal Info

t

y

 Prediction with

Graph Info

Event
Correlation

Spatial Correlation

t

y

Target BS

Fig. 12. Conceptual illustration of graph GP for spatio-temporal data modeling.
Both the spatial correlation and event correlation information are helpful to
improve the prediction performance.

model in the training phase using the ADMM-based GP hyper-

parameter optimization algorithm introduced in Section IV.

(2) Simultaneous localization and mapping (SLAM) for

three-dimensional (3D) indoor scenario construction. The

proposed FedLoc framework can also be used for a number

of collaborating robots or low-flying unmanned aerial vehicles

(UAVs) equipped with cameras and LIDAR to reconstruct a

3D indoor scenario. A generic SLAM model [133] is given as

follows:

xt = f(xt−1,ut−1) + et−1,

mt = mt−1,

yt = g(xt,mt,ut) + nt, (33)

where the dynamic motion model takes an additional inertial

input ut of the sensory data from odometer, accelerometer,

gyroscope, and there is an additional map memory state, mt,

in which the positions of the landmarks are updated and

stored. We could potentially modify the GPSSM framework

for the federated SLAM. Different from the use cases given

in Section VI, federated SLAM imposes more stringent

requirements on both the computational power of the mobile

devices and the data throughput of the network, when dealing

with 3D environment reconstruction. The commercial 5G

network and futuristic wide-band generations (B5G and 6G)

could make the federated SLAM possible. Some recent attempt

in this regard can be found in [143].

(3) Ocean-of-Things (OoT) [144]. So far we have solely

considered ground applications. In addition, there will be a

plethora of emerging OoT applications that can benefit from

our FedLoc framework. We show a conceptual picture of

OoT in Fig. 13, where the whole network comprises a large

number of spatially distributed buoys, some moving ships

and UAVs, and satellites. The buoys are analogous to micro

Monitor

Data server

Monitor

Monitoring

Center

Ship
Buoy

UAV

Fig. 13. A conceptual picture of Ocean-of-Things. Here, buoys can be seen
as smart agents, ships and UAVs as edge nodes, and satellite as central node
with cloud facility.

base stations on the ground, serving as smart agents, and they

can perform data collection and monitor local environment.

New fashioned buoys will be equipped with different sensors,

ranging devices, GPS, and low-profile AI chips. They can be

used to measure the ocean surface temperature, sea state, sound

speed, etc, and track multi-target trajectories. The measured

local data can be uploaded either to a moving ship or a moving

UAV, which can be regarded as edge node. In addition to

information transmission, the UAVs can also be used to charge

the buoys if they are wireless powered [145], [146]. Each

edge node maintains a local update of the learning model

for spatio-temporal data processing and transmits the hyper-

parameter estimate to the satellite cloud for consensus. In

contrast to the ground IoT applications, the buoys may have

insufficient on-board processing capability and relatively short

communication range compared with a micro base station.

However, the communication channels on the sea are mostly

in line-of-sight. Since the buoys may be owned by different

operators, privacy-preservation can not be ignored either.

VII. RESULTS

In this section, we show the effectiveness of the FedLoc

framework with two examples evaluated using real datasets.

In the first example, we adopt GP as the learning model and

mainly focus on the effectiveness of the distributed training

of a small batch of model hyper-parameters. In the second

example, we adopt DNN as the learning model and focus on

practical implementation aspects.

A. GPSSM for Indoor Target Tracking

In this section, we will demonstrate the first example

of applying the FedLoc framework for target tracking. The

experimental setup aims for a quick and practical deployment

of the framework, thus may not be theoretically optimal. Our

focus is on both the training and prediction performance of the

global, centralized model versus its distributed approximation

under the FedLoc framework.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2020.3036276, IEEE Open

Journal of Signal Processing

> SUBMITTED AS AN OVERVIEW PAPER< 19

Due to space limitations, we will only show some results

for the transition function in GPSSM. The model is xt+1 =
f(xt) + et, where the vector xt = [xt, yt]

T contains the 2-D

position of a pedestrian at time instance t. We apply individual

GPs for each dimension, namely, we let

xt+1 = fx(xt) + ex,t, (34a)

yt+1 = fy(xt) + ey,t, (34b)

where both fx(xt) and fy(xt) are modeled by GP; for instance,

we let

fx(xt) ∼ GP (mx(xt), kx(xt,xt′)). (35)

For clear exposition, we let the mean function mx(xt) be zero

and the kernel function kx(xt,xt′) be the ARD kernel, i.e.,

kx(xt,xt′)=σ
2
s,x exp

[
−
(xt − xt′)

2

lxx
−

(yt − yt′)
2

lxy

]
, (36)

where the kernel hyper-parameters are [σ2
s,x, lxx, lxy]

T . For the

y-dimension, we adopt a similar ARD kernel, ky(xt,xt′), but

with a different set of kernel hyper-parameters [σ2
s,y, lyx, lyy]

T .

The above GP models can be trained globally with a training

dataset D via the global, centralized maximum-likelihood

estimation shown in Eq.(18). We know from Section III that

the computational complexity scales as O(n3) for centralized

model training. Using the FedLoc framework is beneficial. On

the one hand, mobile users can collect their own local training

data without worrying about the data leakage issue, which may

effectively encourage more people to collaborate. By adopting

the cADMM or the pxADMM introduced in Section IV to

approximate the global model hyper-parameters in a distributed

manner, the overall computational complexity can be reduced

to O(n3/K3), where K is the number of the collaborating

mobile users. This work can be seen as a collaborative, data-

driven method for learning the human walking trajectory, which

is valuable for us to understand the behavior of pedestrians

and predict their future positions.

To evaluate the performance of the FedLoc, we collected

a dataset in a live indoor office environment, as was shown

in Fig. 8. This dataset contains more than 50 trajectories with

around 25,000 samples. In the training phase, three mobile

users each collected 15 trajectories. Each mobile user obtained

an approximation of the global GP model shown in Eq.(18)

using its local 15 trajectories. In the test phase, we use the

model hyper-parameters trained from the FedLoc to perform

posterior prediction of the next state given a novel current

state.

We compare two distributed GP hyper-parameter opti-

mization schemes: (1) pxADMM-GP with the regularization

parameters ρi = 500 and Li = 5000, ∀i; and (2) cADMM-GP

with ρi = 500, for i = 1, 2, 3. We set the values for ρi and Li

empirically. We consider convergence when the difference in

all optimization variables between two consequent iterations is

within 10−3. The computer program was implemented using

MATLAB and executed on an ordinary computer with 4 cores.

We show the model training results for both dimensions (x
and y) in Fig. 14 and Fig. 15. The distributed schemes converge

to different model hyper-parameter estimates compared with

the ones trained centrally for the global model. One reason

0 100 200 300 400

Iterations

-8

-7

-6

-5

-4

-3

N
e
g
-l
o
g
 m

a
rg

in
a
l
lik

e
lih

o
o
d

10
3

centralized-GP

cADMM-GP

pxADMM-GP

(a)

0 100 200 300 400

Iterations

1

2

3

4

5

6

S
ig

n
a
l
s
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

centralized-GP

cADMM-GP

pxADMM-GP

(b)

0 100 200 300 400

Iterations

1

2

3

4

5

6

x
-l
e

n
g

th
s
c
a

le

centralized-GP

cADMM-GP

pxADMM-GP

(c)

0 100 200 300 400

Iterations

1

2

3

4

5

6

y
-l
e

n
g

th
s
c
a

le

centralized-GP

cADMM-GP

pxADMM-GP

(d)

Fig. 14. For GP modeling along the x-dimension, we show the negative
log-marginal likelihood functions (centralized formulation refer to Eq.(18) and
distributed formulation refer to Eq.(19)) in sub-figure (a); and the ARD kernel
hyper-parameter estimates as a function of training iterations for the 3 input
variables using pxADMM-GP and cADMM-GP in sub-figures (b-d) for model
variance, length-scale in x, and length-scale in y, respectively.

TABLE III
COMPARISONS OF TWO DISTRIBUTED GP MODEL TRAINING SCHEMES.

pxADMM-GP cADMM-GP

RMSE 0.1368m 0.1353m

CT 714s 10838s

is that the distributed scheme uses a different cost function

as shown in Eq.(19), which corresponds to approximating

the kernel matrix K(X,X;θ) to a block diagonal matrix.

Despite the difference in the hyper-parameter estimates, the

corresponding negative log-marginal likelihood as well as the

overall prediction root-mean-squared-error (RMSE in meters)

are fairly close. From the computational time (CT) shown in

Table III, we observed that the pxADMM-GP scheme consumed

the least computational time. On one hand, the pxADMM-GP

scheme circumvents frequent gradient synchronizations and

used less iterations toward convergence than the cADMM-GP

scheme. On the other hand, the closed-form proximal update

w.r.t. the local hyper-parameters only requires to compute the

expensive matrix inversion once.

We have shown above the distributed training of the GPSSM

model. Next, we would like to show the positioning accuracy

of the GPSSM-based tracking method compared with the em-

pirical WiFi-based localization method and the pedestrian dead

reckoning (PDR) method. To this end, we conduct experimental

comparisons in a 1600 m2 office environment, as depicted in

Fig. 8. We aim to recover a “U”-shape walking trajectory of a

pedestrian holding a smartphone. The geographical layout of

the 26 WiFi APs in the deployment area is shown in Fig. 8.

We developed a mobile application on a HUAWEI smartphone

running Android 7.0 operating system to collect WiFi RSS

measurements as well as IMU readings. We adopt a threshold

value for RSS collection according to [147]. A sampling rate

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2020.3036276, IEEE Open

Journal of Signal Processing

> SUBMITTED AS AN OVERVIEW PAPER< 20

0 50 100

Iterations

-12

-11

-10

-9

-8

-7

N
e

g
-l
o

g
 m

a
rg

in
a

l
lik

e
lih

o
o

d

10
3

centralized-GP

cADMM-GP

pxADMM-GP

(a)

0 50 100

Iterations

0

1

2

3

4

5

6

S
ig

n
a

l
s
ta

n
d

a
rd

 d
e

v
ia

ti
o

n

centralized-GP

cADMM-GP

pxADMM-GP

(b)

0 50 100

Iterations

0

1

2

3

4

5

6

x
-l
e

n
g

th
s
c
a

le

centralized-GP

cADMM-GP

pxADMM-GP

(c)

0 50 100

Iterations

0

1

2

3

4

5

6
y
-l
e

n
g

th
s
c
a

le
centralized-GP

cADMM-GP

pxADMM-GP

(d)

Fig. 15. Convergence results for the GP modeling along the y-dimension.

TABLE IV
TRACKING ACCURACY IN DIFFERENT METRICS.

MAE RMSE STD Largest Err.

WiFi Localization Only 3.55 m 5.04 m 3.58 m 15.94 m

PDR Only 5.34 m 5.42 m 0.96 m 7.52 m

GPSSM (1 Traj) 2.29 m 2.69 m 1.43 m 6.63 m

GPSSM (5 Trajs) 2.11 m 2.45 m 1.26 m 5.80 m

of 100 Hz is specified for the IMUs. The collected data are

transmitted via wireless links to a computing server for further

processing.

For practical usage, we reduce the optimization complexity

in GPSSM by handling the measurement function and transition

function in a sequential manner, thereby alleviating non-

identifiability issues. Interested readers can find our latest

work in [134] for more details. Therefore, to learn the

measurement function g with a GP model, a total number

of N = 2059 ground-truth positions and their corresponding

WiFi localization results were recorded across the whole area.

To learn the transition function f with a GP model, we recorded

the WiFi localization results as well as the PDR control inputs

while walking in the area. We repetitively record up to 5
trajectories along the same predefined path, and recover the

first state trajectory that is tracked for 147 steps. For both f
and g, we chose the standard squared exponential kernel with

automatic relevance determination [1] in the GP models.

In Fig. 16, we show the state trajectories recovered by solely

using the WiFi localization, PDR, and the fusion results of

the GPSSM learned with data up to 5 trajectories. The corre-

sponding tracking accuracy in terms of mean-absolute-error

(MAE), root-mean-square-error (RMSE), standard deviation

(STD), and the largest error are reported in Table IV. The

MAE demonstrates that the GPSSM method reduces the mean

tracking error by up to 40.6% and 60.5%, respectively, when

compared to WiFi localization and PDR. Fig. 16a and 16b

illustrate the performance two empirical models. Specifically,

the WiFi localization gives unsatisfactory position estimates in

the trajectory segment around the two sharp turns. This is due

to the lack of APs deployed in that area and the unreliable RSS

values received from far-away APs. PDR recovers a drifted

state trajectory compared to the ground-truth. Since PDR only

provides relative information, we use the WiFi localization

result as the initial position for PDR. Clearly, both the WiFi

localization and PDR are unsatisfactory. However, fusing WiFi

localization and PDR in GPSSM takes the advantages of the

individual techniques, hence achieves higher tracking accuracy.

Fig. 16c and Fig. 16d show that the GPSSM keeps improving

the estimation quality when learning over more training data.

The outstanding modeling capacity of the GPSSM is exploited

by feeding the model with large datasets, which contains

comprehensive information about the indoor environment as

well as pedestrian’s motion patterns.

B. Outdoor Vehicle Navigation with Low-Sampling-Rate GPS

In this section, we will demonstrate the application of

FedLoc with DNN models for smart vehicle navigation using

low-sampling-rate GPS signals, which was introduced as a

representative use case in Section VI.

We start by introducing the implementation setups of our

new proposed federated learning empowered navigation system

prototype. First, real datasets (for both training and test) were

collected by three collaborating users with their own private car

driving on the campus of The Chinese University of Hong Kong

(Shenzhen), see Fig. 17. During the data collection process,

each car was equipped with a smartphone (Xiaomi), facing

upwards and heading to the moving direction of the car. The

sensor data were uploaded to the server through WiFi on the

fly. These three collaborating users traveled around the campus

and collected various trajectories of smartphone sensory data

that contain real-time motion information of their vehicles.

The duration of each trajectory ranges from a few minutes to

dozens of minutes.

After collecting all training datasets, we adopted the FedLoc

framework to train the two DNNs as was introduced in

Section VI for calibrating the sensor data, one for the velocity

and the other one for the yaw angle, so that accurate navigation

can be obtained even with low-sampling-rate GPS signals. Two

DNNs with five hidden layers (3000-3000-2000-1000-500) are

selected as the global model in our prototype, which can be

replaced with more sophisticated models, such as the LSTM,

for high-dimensional time series. The input is the sensor data

measured in a specific time window with dimension 600 for

the first DNN or with dimension 401 for the second DNN,

while the output is a scalar. In the training phase, the global

model is updated by the three collaborating users according to

Algorithm 1. Specifically, we tried two different model training

algorithms, namely the FedAvg algorithm and the FedProx

algorithm introduced in Section IV. We set the learning rate

to 10−4 for both the FedAvg and FedProx algorithms. For the

FedProx algorithm, the additional regularization parameter is set

to 104. In the following, we consider two different experimental

setups to mimic near i.i.d. and balanced data across the users

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2020.3036276, IEEE Open

Journal of Signal Processing

> SUBMITTED AS AN OVERVIEW PAPER< 21

20 30 40 50 60

x-position (m)

5

10

15

20

25

30

y
-p

o
s
it
io

n
 (

m
)

Ground Truth
WiFi Localization
WiFi AP

(a) WiFi Localization Only (Static Estimates)

20 30 40 50 60

x-position (m)

5

10

15

20

25

30

y
-p

o
s
it
io

n
 (

m
)

Ground Truth

PDR

(b) PDR Only

20 30 40 50 60

x-position (m)

5

10

15

20

25

30

y
-p

o
s
it
io

n
 (

m
)

Ground Truth
GPSSM (1 Traj)
WiFi AP

(c) GPSSM with 1 Trajectory Data

20 30 40 50 60

x-position (m)

5

10

15

20

25

30

y
-p

o
s
it
io

n
 (

m
)

Ground Truth
GPSSM (5 Trajs)
WiFi AP

(d) GPSSM with 5 Trajectory Data

Fig. 16. Layout of the WiFi APs (yellow stars), the ground-truth trajectory (blue dots), and the recovered trajectories (orange dots) by using different models.

Fig. 17. The satellite map of the CUHK(SZ), where we collected the outdoor
vehicle navigation data along two different routes.

as well as non-i.i.d. and unbalanced data across the users, to

test the FedLoc framework. We elaborate on the two different

setups in Table V.

We show the training performance of both the FedAvg and

FedProx algorithms in Fig. 18. Both algorithms can achieve a

low training loss after a certain number of epochs. In our

TABLE V
TWO DIFFERENT EXPERIMENTAL SETUPS.

user 1 user 2 user 3

i.i.d.

& balanced data

route 1 4 4 4
route 2 0 0 0

non-i.i.d.

& imbalanced data

route 1 0 2 6
route 2 2 0 1

experiments, the FedProx algorithm unfortunately did not

demonstrate smoother and more stable convergence profile

than that of the FedAvg algorithm. The reason may lie in the

improper setting of the regularization parameter of the FedProx

algorithm, which is supposed to help achieve good trade off

between the training loss and the discrepancy between the

global model and local ones.

Lastly, we test the trained global learning model with two

new trajectories of route 1. The GPS reference signals are

only available every 60 seconds, being much less frequent

than the default setup (1 sample per second). During the time

where there is no GPS signal available, the trained global

learning models are used to calibrate the observed sensor

data. For the i.i.d. and balanced data setup mentioned in

Table V, we show the test performance in Fig. 19. For this

case, the FedAvg algorithm is modestly superior to the FedProx

algorithms in the test phase. The navigation RMSE of the

FedAvg is around 9 meters, while around 12 meters for the

FedProx algorithm on average. Fine-tuning the learning rate of

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2020.3036276, IEEE Open

Journal of Signal Processing

> SUBMITTED AS AN OVERVIEW PAPER< 22

(a)

(b)

Fig. 18. Training loss versus optimization epochs for two different optimization
algorithms. (a) Setup 1: near i.i.d. and balanced data; and (b) Setup 2: non-i.i.d.
and imbalanced data.

the FedProx algorithm may further improve its generalization

performance. For the non-i.i.d and imbalanced data setup shown

in Table V, it is obvious that the FedAvg algorithm failed with

a significantly degraded navigation RMSE equal to 34 meters,

while the FedProx algorithm worked well with a navigation

RMSE around 17 meters. We show the test performance in

Fig. 20. For both cases, using either the FedAvg algorithm or

the FedProx algorithm leads to largely improved navigation

RMSE compared with 90 meters when solely using the IMU

for navigation.

(a) (b)

(c) (d)

Fig. 19. The test performance on two test trajectories provided by the two
algorithms for i.i.d. and balanced data setup. Subfigures (a) and (b) are drawn
for the FedAvg algorithm; Subfigures (c) and (d) are drawn for the FedProx
algorithm.

(a) (b)

(c) (d)

Fig. 20. The test performance on two test trajectories provided by the two
algorithms for non-i.i.d. and imbalanced data setup. Subfigures (a) and (b)
are drawn for the FedAvg algorithm; Subfigures (c) and (d) are drawn for the
FedProx algorithm.

VIII. FUTURE DIRECTIONS AND CHALLENGES

Potential challenges to the federated localization are the

following:

• An essential ingredient of the federated wireless localiza-

tion framework is the mobile terminals. To ensure that the

whole framework works smoothly, the mobile terminals

should be able to process a modest amount of data and

perform analysis with TensorFlow, PyTorch, etc. This

requires further development of powerful but compressed

deep learning models, mobile AI chips, etc. Advanced

WiFi and 5G technologies can fulfill the communication

requirements between the mobile terminals and the central

node. However, communication efficiency is a critical issue

that requires more attention. In addition, an agreement on

the standard protocolclos for synchronizing the mobile

terminals is to be made. Interested readers may refer to a

recent work [148] on how to design a scalable production

system for federated learning.

• In Section III, we mentioned that using DNN as the learn-

ing model will cause a lot of model parameters or gradients

to be communicated over the air. A more straightforward

and practical way to reduce the communication burden is

to quantize the DNN weights from 64 bits precision to 8

bits precision or even lower. In the context of distributed

optimization, a signSGD method was proposed in [149]

that quantizes every gradient update to its binary sign

thus reducing the communication load by a factor of 32.

However, better understandings on the converge properties

of such methods under practical setup, such as non-i.i.d.

data distribution and imbalanced data size across mobile

users, need to be built.

• The federated learning framework requires mobile users

to cooperate. However, there might be the case that some

voluntary mobile users are malicious or careless with

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2020.3036276, IEEE Open

Journal of Signal Processing

> SUBMITTED AS AN OVERVIEW PAPER< 23

their shared messages. A promising way to solve such

issues from the algorithmic perspective is to use robust

distributed optimization [150], [151], robust estimation

[152], and robust fusion [133] techniques for remedy.

• We have so far implicitly assumed that all the mobile

users have sufficient number of local data for updating

the global model hyper-parameters. This may not be true

for voluntary users with very limited amount of local data.

One effective way to alleviate this “small data” difficulty

from algorithmic perspective is to harness the full basket

of known canonical parametric models to generate some

virtual data and mix them with the small batch of real

data before training the model. In this way, we are able

to transfer the prior knowledge of the canonical models

to our desired data-driven, learning-based model [153].

• We have talked exclusively about wireless localization.

Actually, visual-based localization and target tracking

have also attracted a lot of attention these days. The

combination of wireless measurements and visual mea-

surements can effectively improve both the localization

accuracy and the robustness. For instance, in [154]

wireless positioning was adopted in visual trackers to

alleviate visual tracking pains, such as long-term tracking,

feature model drifting, and recovery. Their combination

is a key enabler for autonomous driving and other robotic

applications. However, the inhomogeneous data structure

is a big challenge to federated learning.

• Another interesting direction is to exploit semantic in-

formation for indoor wireless localization [155], [156].

For example, in [155], authors improved the calibration

of indoor wireless propagation models with the aid of

the semantic target-environment relation information. This

combination, in an unsupervised and automatic way, is

considered to be a promising solution when dealing with

a complex indoor environment.

• One could utilize the social relationship of mobile users

to invite more participants to join the learning process

and stimulate the activeness of current participants. To

this end, graph learning models, for instance graph neural

network [61] and graph GP [140], can be adopted for

efficient learning from graph-like structured datasets.

IX. CONCLUSION

In this overview paper, we reviewed all required building

blocks of a fundamentally new cooperative localization and

location data processing framework, called FedLoc. Being

different from most of the overview papers, we put more effort

on real use cases of the FedLoc framework as well as their

practical implementations. We strongly believe that the FedLoc

framework is promising for the following good reasons. First,

high-precision wireless localization is desperately demanded,

which can be achieved by combining empirical models with

data driven models. Second, calibrating a localization algorithm

often consumes a lot of time and workforce, and collaboration

among mobile users can largely facilitate the calibration effort.

Third, smartphones are becoming a powerful platform for heavy

computations. Fourth, we have seen rapid development in large-

scale non-convex optimization techniques, 5G communication

networks, data encryption, among other emerging techniques.

Lastly and most importantly, data privacy issue can be well

addressed by the federated learning framework so that mobile

users dare to share their location related information with

safeguard.

ACKNOWLEDGEMENT

We would like to thank Wenbiao Guo and Ang Xie from

Beijing Jiaotong University and Haole Chen from Wuhan

University for their kind help with preparing an early draft of

this work.

This work was mainly supported by the Natural Science

Foundation of China (NSFC) under Grant 61701426, and

in part by the National Key Research and Development

Program of China under Grant 2018YFB1800800, in part by the

Guangdong Research Project under Grant 2017ZT07X152 and

Grant 00201501, in part by Shenzhen Fundamental Research

Fund under Grant KQTD201503311441545, and in part by

the National Natural Science Foundation of China under Grant

61571334.

REFERENCES

[1] C. E. Rasmussen and C. I. K. Williams, Gaussian Processes for Machine

Learning, vol. 1, Cambridge, MA, USA: MIT Press, 2006.

[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Aguera y
Arcas, “Communication-efficient learning of deep networks from
decentralized data,” in Proc. Int. Conf. Artif. Intell. Stat. (AISTATS),
Fort Lauderdale, FL, USA, Apr. 2017, pp. 1273–1282.

[3] D. Povey, X. Zhang, and S. Khudanpur, “Parallel training of deep
neural networks with natural gradient and parameter averaging,” in
Proc. Int. Conf. Learn. Represent. (ICLR) Workshop, San Diego, CA,
USA, May 2015.

[4] N. Neverova, C. Wolf, G. Lacey, L. Fridman, D. Chandra, B. Barbello,
and G. Taylor, “Learning human identity from motion patterns,” IEEE

Access, vol. 4, pp. 1810–1820, Apr. 2016.

[5] N. H Tran, W. Bao, A. Zomaya, Nguyen M. NH, and C. S. Hong,
“Federated learning over wireless networks: Optimization model design
and analysis,” in Proc. IEEE INFOCOM, Paris, France, Apr. 2019, pp.
1387–1395.

[6] S. Samarakoon, M. Bennis, W. Saad, and M. Debbah, “Federated
learning for ultra-reliable low-latency V2V communications,” in Proc.

IEEE Glob. Commun. Conf. (GLOBECOM), Abu Dhabi, United arab
emirates, Dec. 2018, pp. 1–7.

[7] J. Lee, J. Sun, F. Wang, S. Wang, C-H Jun, and X. Jiang, “Privacy-
preserving patient similarity learning in a federated environment:
development and analysis,” JMIR Med. Inform., vol. 6, no. 2, pp.
e20, 2018.

[8] F. Gustafsson and F. Gunnarsson, “Mobile positioning using wireless
networks: Possibilities and fundamental limitations based on available
wireless network measurements,” IEEE Signal Process. Mag., vol. 22,
no. 4, pp. 41–53, June 2005.

[9] A. H. Sayed, A. Tarighat, and N. Khajehnouri, “Network-based wireless
location: Challenges faced in developing techniques for accurate wireless
location information,” IEEE Signal Process. Mag., vol. 22, no. 4, pp.
24–40, July 2005.

[10] Y. Bar-Shalom, X.-R. Li, and T. Kirubarajan, Estimation with

Applications to Tracking and Navigation, John Wiley & Sons, Inc.,
New York, NY, 2001.

[11] Y. Xu, F. Yin, W. Xu, J. Lin, and S. Cui, “Wireless traffic prediction with
scalable Gaussian process: Framework, algorithms, and verification,”
IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1291–1306, June 2019.

[12] L. Liu, Z. Qiu, G. Li, Q. Wang, W. Ouyang, and L. Lin, “Contextualized
spatial–temporal network for taxi origin-destination demand prediction,”
IEEE Trans. Intell. Transp. Syst., vol. 20, no. 10, pp. 3875–3887, May
2019.

[13] T. Y Kim and S. B Cho, “Predicting residential energy consumption
using CNN-LSTM neural networks,” Energy, vol. 182, pp. 72–81, Sep.
2019.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2020.3036276, IEEE Open

Journal of Signal Processing

> SUBMITTED AS AN OVERVIEW PAPER< 24

[14] Z. Qi, T. Wang, G. Song, W. Hu, X. Li, and Z. Zhang, “Deep air learning:
Interpolation, prediction, and feature analysis of fine-grained air quality,”
IEEE Trans. Knowl. Data Eng., vol. 30, no. 12, pp. 2285–2297, Apr.
2018.

[15] A. Greenberg, “How apple and google are enabling covid-19 contact-
tracing,” https://www.wired.com/story/apple-google-bluetooth-contact-
tracing-covid-19/.

[16] N. Guha, A. Talwlkar, and V. Smith, “One-shot federated learning,”
arXiv preprint arXiv:1902.11175, 2019.

[17] F. Sattler, S. Wiedemann, K. Mller, and W. Samek, “Robust and
communication-efficient federated learning from non-i.i.d. data,” IEEE

Trans. Neural Netw. Learn. Syst., pp. 1–14, Nov. 2019.
[18] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, “Analyzing

federated learning through an adversarial lens,” in Proc. Int. Conf.

Mach. Learn. (ICML), Long Beach, CA, United states, June 2019, pp.
634–643.

[19] E. Bagdasaryan, A.s Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How
to backdoor federated learning,” in Proc. Int. Conf. Artif. Intell. Stat.

(AISTATS), Online, Aug. 2020, pp. 2938–2948.
[20] H. Kim, J. Park, M. Bennis, and S-L Kim, “Blockchained on-device

federated learning,” IEEE Commun. Lett., pp. 1–4, June 2019.
[21] Q. Yang, Y. Liu, T. Chen, and Yong Tong, “Federated machine learning:

Concept and applications,” ACM Trans. Intell. Syst. Technol., vol. 10,
no. 2, pp. 492–503, Feb. 2019.

[22] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 50–60, May 2020.

[23] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero III, R. L. Moses,
and N. S. Correal, “Locating the nodes: Cooperative localization in
wireless sensor networks,” IEEE Signal Process. Mag., vol. 22, no. 4,
pp. 54–69, Jul. 2005.

[24] P. Biswas, T.-C. Lian, T.-C. Wang, and Y. Ye, “Semidefinite program-
ming based algorithms for sensor network localization,” ACM Trans.

Sen. Netw., vol. 2, no. 2, pp. 188–220, May 2006.
[25] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization in

wireless networks,” Proc. IEEE, vol. 97, no. 2, pp. 427–450, Feb. 2009.
[26] Y. Shen, H. Wymeersch, and M. Z. Win, “Fundamental limits of

wideband localization—Part II: Cooperative networks,” IEEE Trans.

Inf. Theory, vol. 56, no. 10, pp. 4981–5000, Sept. 2010.
[27] M. Z. Win, A. Conti, S. Mazuelas, Y. Shen, W. M. Gifford, D. Dardari,

and M. Chiani, “Network localization and navigation via cooperation,”
IEEE Commun. Mag., vol. 49, no. 5, pp. 56–62, May 2011.

[28] M. Z. Win, A. Conti, S. Mazuelas, Y. Shen, W. M. Gifford, D. Dardari,
and M. Chiani, “Network localization and navigation via cooperation,”
IEEE Commun. Mag., vol. 49, no. 5, pp. 56–62, May 2011.

[29] F. Yin, C. Fritsche, D. Jin, F. Gustafsson, and A. M. Zoubir, “Cooperative
localization in WSNs using Gaussian mixture modeling: Distributed
ECM algorithms,” IEEE Trans. Signal Process., vol. 63, no. 6, pp.
1448–1463, Mar. 2015.

[30] D. Jin, F. Yin, C. Fritsche, F. Gustafsson, and A. M. Zoubir, “Bayesian
cooperative localization using received signal strength with unknown
path loss exponent: Message passing approaches,” IEEE Trans. Signal

Process., vol. 68, pp. 1120–1135, Jan. 2020.
[31] N. Patwari, A. O. Hero III, M. Perkins, N. S. Correal, and R. J. O’Dea,

“Relative location estimation in wireless sensor networks,” IEEE Trans.

Signal Process., vol. 51, no. 8, pp. 2137–2148, Aug. 2003.
[32] M. Rosencrantz, G. Gordon, and S. Thrun, “Decentralized sensor fusion

with distributed particle filters,” in Proc. Conf. Uncertain. Artif. Intell.

(UAI), San Francisco, CA, USA, Aug. 2002, pp. 493–500.
[33] D. Gu, “Distributed particle filter for target tracking,” in Proc. IEEE

Int. Conf. Rob. Autom. (ICRA), Rome, Italy, Apr. 2007, pp. 3856–3861.
[34] R. Olfati-Saber, “Distributed kalman filtering for sensor networks,” in

Proc. IEEE Conf. Decis. Control. (CDC), New Orleans, LA, USA, Dec.
2007, pp. 5492–5498.

[35] M. Kamgarpour and C. Tomlin, “Convergence properties of a
decentralized kalman filter,” in Proc. IEEE Conf. Decis. Control. (CDC),
Cancun, Mexico, Dec. 2008, pp. 3205–3210.

[36] C. Wu, Z. Yang, and Y. Liu, “Smartphones based crowdsourcing for
indoor localization,” IEEE Trans. Mobile Comput., vol. 14, no. 2, pp.
444–457, Feb. 2015.

[37] C. Zhang, K. P. Subbu, J. Luo, and J. Wu, “GROPING: Geomagnetism
and crowdsensing powered indoor navigation,” IEEE Trans. Mobile

Comput., vol. 14, no. 2, pp. 387–400, Feb. 2015.
[38] E. Arias-de Reyna, D. Dardari, P. Closas, and P. M. Djuric, “Estimation

of spatial fields of NLOS/LOS conditions for improved localization in
indoor environments,” in IEEE Stat. Signal Process. Workshop (SSP),
Freiburg, Germany, June 2018, pp. 658–662.

[39] P. J. Diggle, Statistical analysis of spatial and spatio-temporal point

patterns, Chapman and Hall/CRC, third edition, 2013.

[40] G. Atluri, A. Karpatne, and V. Kumar, “Spatio-temporal data mining:
A survey of problems and methods,” ACM Comput. Surv., vol. 51, no.
4, pp. 1–41, Aug. 2018.

[41] S. Wang, J. Cao, and P. S. Yu, “Deep learning for spatio-temporal
data mining: A survey,” IEEE Trans. Knowl. Data Eng., pp. 1–1, Sept.
2019.

[42] S. Sarkka, A. Solin, and J. Hartikainen, “Spatiotemporal learning
via infinite-dimensional Bayesian filtering and smoothing: A look at
Gaussian process regression through Kalman filtering,” IEEE Signal

Process. Mag., vol. 30, no. 4, pp. 51–61, June 2013.

[43] Y. Kuang, T. Chen, F. Yin, and R. Zhong, “Recursive implementation
of gaussian process regression for spatial-temporal data modeling,” in
Proc. Int. Conf. Wirel. Commun. Signal Process. (WCSP), Xi’an, China,
Oct. 2019, pp. 1–7.

[44] K. Hornik, “Approximation capabilities of multilayer feedforward
networks,” Neural Networks, vol. 4, no. 2, pp. 251–257, 1991.

[45] Y. E. Nesterov, “A method for unconstrained convex minimization
problem with the rate of convergence o(1/k2),” Dokl. Akad. Nauk

SSSR, vol. 269, no. 3, pp. 543–547, 1983.

[46] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization.,” J. Mach. Learn. Res., vol.
12, no. 7, pp. 2121–2159, July 2011.

[47] T. Tieleman and G. Hinton, “Divide the gradient by a running average
of its recent magnitude. COURSERA: Neural networks for machine
learning,” Technical Report, 2017.

[48] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic
optimization,” in Proc. Int. Conf. Learn. Represent. (ICLR), San Diego,
CA, United states, May 2015.

[49] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient
backprop,” in Neural networks: Tricks of the trade, pp. 9–48. Springer,
2012.

[50] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proc. Int. Conf. Artif. Intell. Stat.

(AISTATS), Sardinia, Italy, May 2010, pp. 249–256.

[51] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proc. IEEE Int. Conf. Comput. Vision (ICCV), Santiago, Chile, Dec.
2015, pp. 1026–1034.

[52] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. Int. Conf.

Mach. Learn. (ICML), Lile, France, July 2015, pp. 448–456.

[53] T. Salimans and D. P. Kingma, “Weight normalization: A simple
reparameterization to accelerate training of deep neural networks,” in
Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), Barcelona, Spain, Dec.
2016, pp. 901–909.

[54] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” in Proc.

NeurIPS Deep Learning Symposium, Barcelona, Spain, Dec. 2016.

[55] S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv preprint arXiv:1609.04747, 2016.

[56] R. Sun, “Optimization for deep learning: theory and algorithms,” arXiv

preprint arXiv:1912.08957, 2019.

[57] S. Theodoridis, Machine Learning: a Bayesian and Optimization

Perspective, Academic Press, 2nd edition, 2020.

[58] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, Cambridge,
MA,USA: MIT Press, 2016.

[59] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks
and applications in vision,” in Proc. IEEE Int. Symp. Circuits Syst.,
Paris, France, June 2010, pp. 253–256.

[60] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between
capsules,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), Long
Beach, California, USA, Dec. 2017, pp. 3856–3866.

[61] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. Int. Conf. Learn. Represent. (ICLR),
Toulon, France, Apr. 2017.

[62] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” in Proc. NeurIPS Deep Learning and Representation

Learning Workshop, Montreal, QC, Canada, Dec. 2015.

[63] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” in Proc. Int. Conf. Learn. Represent. (ICLR),
New Orleans, LA, USA, May 2019.

[64] A. G. Wilson and R. P. Adams, “Gaussian process kernels for pattern
discovery and extrapolation,” in Proc. Int. Conf. Mach. Learn. (ICML),
Atlanta, USA, July 2013, pp. 1067–1075.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2020.3036276, IEEE Open

Journal of Signal Processing

> SUBMITTED AS AN OVERVIEW PAPER< 25

[65] F. Yin, X. He, L. Pan, T. Chen, Z.-Q. Luo, and S Theodoridis,
“Sparse structure enabled grid spectral mixture kernel for temporal
Gaussian process regression,” in Proc. Int. Conf. Inf. Fusion (FUSION),
Cambridge, UK, July 2018, pp. 47–54.

[66] F. Yin, L. Pan, T. Chen, S. Theodoridis, Z.-Q. Luo, and A. M. Zoubir,
“Linear multiple low-rank kernel based stationary gaussian processes
regression for time series,” IEEE Transactions on Signal Processing,
vol. 68, pp. 5260 – 5275, Sept. 2020.

[67] A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing, “Deep kernel
learning,” in Proc. Int. Conf. Artif. Intell. Stat. (AISTATS), Cadiz, Spain,
May 2016, pp. 370–378.

[68] A.G Wilson, Z Hu, R Salakhutdinov, and E. P Xing, “Stochastic
variational deep kernel learning,” in Proc. Adv. Neural Inf. Process.

Syst. (NeurIPS), Barcelona, Spain, Dec. 2016, pp. 2586–2594.

[69] M. Al-Shedivat, A. G. Wilson, Y. Saatchi, Z. Hu, and E. P Xing,
“Learning scalable deep kernels with recurrent structure,” J. Mach.

Learn. Res., vol. 18, no. 1, pp. 2850–2886, Aug. 2017.

[70] H. Xue, Z-F Wu, and W-X Sun, “Deep spectral kernel learning,” in
Proc. IJCAI Int. Joint Conf. Artif. Intell. (IJCAI), Macao, China, Aug.
2019, pp. 4019–4025.

[71] A. Damianou and N. Lawrence, “Deep Gaussian processes,” in Proc.

Int. Conf. Artif. Intell. Stat. (AISTATS), Scottsdale, AZ, USA, Apr. 2013,
pp. 207–215.

[72] Y. Cho and L. K. Saul, “Kernel methods for deep learning,” in Proc.

Adv. Neural Inf. Process. Syst. (NeurIPS), Vancouver, BC, Canada, Dec.
2009, pp. 342–350.

[73] A. Matthews, J. Hron, M. Rowland, R. E. Turner, and Z. Ghahramani,
“Gaussian process behaviour in wide deep neural networks,” in Proc. Int.

Conf. Learn. Represent. (ICLR), Vancouver, BC, Canada, Apr. 2018.

[74] J. Lee, J. Sohl-dickstein, J. Pennington, R. Novak, S. Schoenholz, and
Y. Bahri, “Deep neural networks as Gaussian processes,” in Proc. Int.

Conf. Learn. Represent. (ICLR), Vancouver, BC, Canada, Apr. 2018.

[75] C. K. Williams and M. Seeger, “Using the Nyström method to speed
up kernel machines,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS),
Denver, CO, USA, December 2001, pp. 682–688.

[76] S. Ambikasaran, D. Foreman-Mackey, L. Greengard, D. W Hogg, and
M. ONeil, “Fast direct methods for Gaussian processes,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 38, no. 2, pp. 252–265, Feb. 2015.

[77] M. P. Deisenroth and J. W. Ng, “Distributed Gaussian processes,” in
Proc. Int. Conf. Mach. Learn. (ICML), Lille, France, July 2015, pp.
1481–1490.

[78] M. K. Titsias, “Variational learning of inducing variables in sparse
Gaussian processes,” in Proc. Int. Conf. Artif. Intell. Stat. (AISTATS),
Clearwater Beach, Florida, USA, Apr. 2009, pp. 567–574.

[79] H. Liu, Y-S Ong, X. Shen, and J. Cai, “When Gaussian process meets
big data: A review of scalable GPs,” IEEE Trans. Neural Netw. Learn.

Syst., pp. 1–19, Jan. 2020.

[80] R. M. Neal, Bayesian Learning for Neural Networks, Ph.D. thesis,
University of Toronto, Canada, 1995.

[81] A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent kernel:
Convergence and generalization in neural networks,” in Proc. Adv.

Neural Inf. Process. Syst. (NeurIPS), Montreal, Canada, Dec. 2018, pp.
8571–8580.

[82] S. Arora, SS Du, W. Hu, Z. Li, RR Salakhutdinov, and R. Wang, “On
exact computation with an infinitely wide neural net,” in Proc. Adv.

Neural Inf. Process. Syst. (NeurIPS), Vancouver, BC, Canada, Dec.
2019, pp. 8139–8148.

[83] A. Girard, Approximate Methods for Propagation of Uncertainty with

Gaussian Process Model, Ph.D. thesis, Univerity of Glasgow, Glasgow,
UK, 2004.

[84] C. Bishop, Machine Learning and Pattern Recognition, New York,
USA: Springer, 2006.

[85] Simo Särkkä, Bayesian Filtering and Smoothing, Cambridge University
Press, 2013.

[86] M. Loog, T. Viering, A. Mey, J. H. Krijthe, and D. M. J. Tax, “A brief
prehistory of double descent,” Proc. Natl. Acad. Sci. U.S.A., vol. 117,
no. 20, pp. 10625–10626, 2020.

[87] M. Belkin, D. Hsu, S. Ma, and S. Mandal, “Reconciling modern
machine-learning practice and the classical biasvariance trade-off,” Proc.

Natl. Acad. Sci. U.S.A., vol. 116, no. 32, pp. 15849–15854, Aug. 2019.

[88] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever,
“Deep double descent: Where bigger models and more data hurt,” in
Proc. Int. Conf. Learn. Represent. (ICLR), Online, Apr. 2020.

[89] A. G. Wilson and P. Izmailov, “Bayesian deep learning and a proba-
bilistic perspective of generalization,” arXiv preprint arXiv:2002.08791,
2020.

[90] J. Konecný, H. McMahan, X. Yu, P. Richtárik, A. Suresh, and D. Bacon,
“Federated learning: Strategies for improving communication efficiency,”
arXiv preprint arXiv:1610.05492, 2016.

[91] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
Jan. 2011.

[92] M. Hong, Z.-Q. Luo, and M. Razaviyayn, “Convergence analysis of
alternating direction method of multipliers for a family of nonconvex
problems,” SIAM J. Optimiz., vol. 26, no. 1, pp. 337–364, Jan. 2016.

[93] A. K. Sahu, T. Li, M. Sanjabi, M. Zaheer, A. Talwalkar, and V. Smith,
“On the convergence of federated optimization in heterogeneous
networks,” arXiv preprint arXiv:1812.06127, 2018.

[94] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and A. Scaglione,
“Gossip algorithms for distributed signal processing,” Proc. IEEE, vol.
98, no. 11, pp. 1847–1864, Nov. 2010.

[95] C.-H. Fang, S. B. Kylasa, F. Roosta-Khorasani, M. W. Mahoney,
and A. Grama, “Newton-ADMM: A distributed GPU-accelerated
optimizer for multiclass classification problems,” arXiv preprint

arXiv:1807.07132v3, 2020.
[96] Y. Tang, J. Zhang, and N. Li, “Distributed zero-order algorithms for

nonconvex multi-agent optimization,” IEEE Trans. Control Netw. Syst.,
pp. 1–12, Sept. 2020.

[97] P. Richtárik and M. Takáč, “Parallel coordinate descent methods for
big data optimization,” Math. Program., vol. 156, no. 1-2, pp. 433–484,
Mar. 2016.

[98] L. Melis, C. Song, E. D. Cristofaro, and V. Shmatikov, “Inference
attacks against collaborative learning,” arXiv preprint arXiv:1805.04049,
2018.

[99] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for federated learning on user-held data,” in Proc. Adv. Neural Inf.

Process. Syst. (NeurIPS), Barcelona, Spain, Dec. 2016.
[100] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,

S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in Proc. ACM Conf. Computer

Commun. Secur., Dallas, TX, USA, Oct. 2017, pp. 1175–1191.
[101] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, “Verifynet: Secure and

verifiable federated learning,” IEEE Trans. Inf. Forensics Secur., vol.
15, pp. 911–926, July 2020.

[102] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang,
D. Niyato, and C. Miao, “Federated learning in mobile edge networks:
A comprehensive survey,” IEEE Commun. Surv. Tutor., vol. 22, no. 3,
pp. 2031–2063, Apr. 2020.

[103] RC. Geyer, T. Klein, and M. Nabi, “Differentially private federated
learning: A client level perspective,” arXiv preprint arXiv:1712.07557,
2017.

[104] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai, “Privacy-
preserving deep learning via additively homomorphic encryption,” IEEE

Trans. Inf. Forensics Secur., vol. 13, no. 5, pp. 1333–1345, May 2018.
[105] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, R. Zhang, and

Y. Zhou, “A hybrid approach to privacy-preserving federated learning,”
in Proc. ACM Conf. Computer Commun. Secur., New York, NY, USA,
Nov. 2019, pp. 1–11.

[106] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in Proc. Advances in Cryptology—EUROCRYPT

1999, Berlin, Heidelberg, May 1999, pp. 223–238.
[107] E. Mohyeldin, “Minimum technical performance requirements for

imt-2020 radio interface(s),” https://www.itu.int/en/ITU-R/study-groups/
rsg5/rwp5d/imt-2020/Documents/S01-1 Requirements%20for%
20IMT-2020 Rev.pdf, 2020.

[108] “3gpp release 10,” https://www.3gpp.org/specifications/releases/
70-release-10, 2013.

[109] “IEEE draft standard for information technology – telecommunications
and information exchange between systems local and metropolitan
area networks – specific requirements part 11: Wireless lan medium
access control (mac) and physical layer (phy) specifications amendment
enhancements for high efficiency wlan,” IEEE P802.11ax/D6.0,

November 2019, pp. 1–780, Dec 2019.
[110] “IEEE standard for information technology– telecommunications and

information exchange between systems local and metropolitan area
networks– specific requirements–part 11: Wireless lan medium access
control (mac) and physical layer (phy) specifications–amendment 4:
Enhancements for very high throughput for operation in bands below 6
ghz.,” IEEE Std 802.11ac-2013 (Amendment to IEEE Std 802.11-2012,

as amended by IEEE Std 802.11ae-2012, IEEE Std 802.11aa-2012, and

IEEE Std 802.11ad-2012), pp. 1–425, Dec 2013.

https://www.itu.int/en/ITU-R/study-groups/rsg5/rwp5d/imt-2020/Documents/S01-1_Requirements%20for%20IMT-2020_Rev.pdf
https://www.itu.int/en/ITU-R/study-groups/rsg5/rwp5d/imt-2020/Documents/S01-1_Requirements%20for%20IMT-2020_Rev.pdf
https://www.itu.int/en/ITU-R/study-groups/rsg5/rwp5d/imt-2020/Documents/S01-1_Requirements%20for%20IMT-2020_Rev.pdf
https://www.3gpp.org/specifications/releases/70-release-10
https://www.3gpp.org/specifications/releases/70-release-10

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2020.3036276, IEEE Open

Journal of Signal Processing

> SUBMITTED AS AN OVERVIEW PAPER< 26

[111] Y. Xu, F. Yin, W. Xu, C-H Lee, J. Lin, and S. Cui, “Scalable learning
paradigms for data-driven wireless communication,” arXiv preprint

arXiv:2003.00474, March 2020.

[112] F. Gustafsson and F. Gunnarsson, “Measurements used in wireless sensor
networks localization,” in Localization Algorithms and Strategies for

Wireless Sensor Networks: Monitoring and Surveillance Techniques for

Target Tracking, pp. 33–53. IGI Global, Hershey, PA, USA, 2009.

[113] F. Yin, Y. Zhao, and F. Gunnarsson, “Proximity report triggering
threshold optimization for network-based indoor positioning,” in Proc.

Int. Conf. Inf. Fusion (FUSION), Washington, DC, USA, July 2015, pp.
1061–1069.

[114] R. P. Ghozali and G. P. Kusuma, “Indoor positioning system using
regression-based fingerprint method,” Int. J. Adv. Comput. Sci. Appl.

(IJACSA), vol. 10, no. 8, pp. 231–239, 2019.

[115] A. Sahar and D. Han, “An LSTM-Based indoor positioning method
using Wi-Fi signals,” in Proc. Int. Conf. Vis., Image Signal Process.

(ICVISP), Las Vegas, NV, USA, Aug. 2018, pp. 1–5.

[116] J. Liu, N. Liu, Z. Pan, and X. You, “Autloc: Deep autoencoder for
indoor localization with RSS fingerprinting,” in Proc. Int. Conf. Wirel.

Commun. Signal Process. (WCSP), Hangzhou, China, Oct. 2018, pp.
1–6.

[117] C.-H. Hsieh, J.-Y. Chen, and B.-H. Nien, “Deep learning-based indoor
localization using received signal strength and channel state information,”
IEEE Access, vol. 7, pp. 33256–33267, Mar. 2019.

[118] X. Wang, X. Wang, and S. Mao, “Deep convolutional neural networks
for indoor localization with CSI images,” IEEE Trans. Netw. Sci. Eng.,
vol. 7, no. 1, pp. 316–327, 2020.

[119] A.P. James, “Towards strong AI with analog neural chips,” in Proc.

IEEE Int. Symp. Circuits Syst. (ISCAS), Sevilla, Spain, Oct. 2020, pp.
1–5.

[120] J. Qi, H. Li, F. Yin, B. Ai, and S. Cui, “Navigation with low-
sampling-rate GPS and smartphone sensors: A data-driven learning-
based approach,” in Proc. IET Int. Conf. Wireless, Mobile and

Multimedia Netw. (ICWMMN), Beijing, China, Nov. 2019, pp. 1–6.

[121] T. Schön, A. Wills, and B. Ninness, “System identification of nonlinear
state-space models,” Automatica, vol. 47, no. 1, pp. 39–49, Jan. 2011.

[122] C. Andrieu, A. Doucet, and R. Holenstein, “Particle Markov chain
Monte Carlo methods,” J. Roy. statistical Soc. B-Stat. Method., vol. 72,
no. 3, pp. 269–342, June 2010.

[123] R. Frigola, Y. Chen, and C. E. Rasmussen, “Variational Gaussian
process state-space models,” in Proc. Adv. Neural Inf. Process. Syst.

(NeurIPS), Montreal, Canada, Dec. 2014, pp. 3680–3688.

[124] B. Ferris, D. Fox, and N. Lawrence, “WiFi-SLAM using Gaussian
process latent variable models,” in Proc. IJCAI Int. Joint Conf. Artif.

Intell. (IJCAI), Hyderabad, India, Jan. 2007, pp. 2480–2485.

[125] J. M. Wang, D. J. Fleet, and A. Hertzmann, “Gaussian process dynamical
models for human motion,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 30, no. 2, pp. 283–298, Feb. 2008.

[126] J. Ko and D. Fox, “Learning gp-bayesfilters via gaussian process latent
variable models,” Auton. Robots, vol. 30, no. 1, pp. 3–23, Jan. 2011.

[127] R. Frigola, F. Lindsten, T. B Schön, and C. E. Rasmussen, “Bayesian
inference and learning in Gaussian process state-space models with
particle MCMC,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS),
Lake Tahoe, Nevada, USA, Dec. 2013, pp. 3156–3164.

[128] S. Eleftheriadis, T. Nicholson, M. Deisenroth, and J. Hensman, “Identi-
fication of Gaussian process state space models,” in Proc. Adv. Neural

Inf. Process. Syst. (NeurIPS), Long Beach, California, USA, Dec. 2017,
pp. 5309–5319.

[129] A. D. Ialongo, M. van der Wilk, and C. E. Rasmussen, “Closed-form
inference and prediction in Gaussian process state-space models,” in
Proc. Adv. Neural Inf. Process. Syst. (NeurIPS) Time Series Workshop,
Long Beach, California, USA, Dec. 2017.

[130] A. D. Ialongo, M. van der Wilk, J. Hensman, and C. E. Rasmussen,
“Non-factorised variational inference in dynamical systems,” in
Proceedings of Symposium on Advances in Approximate Bayesian

Inference, Montreal, Canada, Dec. 2018.

[131] Y. Zhao, F. Yin, F. Gunnarsson, F. Hultkratz, and J. Fagerlind, “Gaussian
processes for flow modeling and prediction of positioned trajectories
evaluated with sports data,” in Proc. Int. Conf. Inf. Fusion (FUSION),
Heidelberg, Germany, July 2016, pp. 1461–1468.

[132] F. Yin and F. Gunnarsson, “Distributed recursive Gaussian processes
for RSS map applied to target tracking,” IEEE J. Sel. Topics Signal

Process., vol. 11, no. 3, pp. 492–503, Apr. 2017.

[133] F. Gustafsson, Statistical Sensor Fusion, Studentlitteratur, Lund, Sweden,
2012.

[134] A. Xie, F. Yin, B. Ai, S. Zhang, and S. Cui, “Learning while tracking:
A practical system based on variational Gaussian process state-space
model and smartphone sensory data,” in Proc. Int. Conf. Inf. Fusion

(FUSION), Rustenburg, South Africa, July 2020, pp. 1–7.
[135] Y. Zhao, C. Fritsche, F. Yin, and F. Gunnarsson, “Cramer-rao bounds

for filtering based on Gaussian process state-space models,” IEEE Trans.

Signal Process., vol. 67, no. 23, pp. 5936–5951, Dec. 2019.
[136] Y. Gal, M. van der Wilk, and C. E. Rasmussen, “Distributed variational

inference in sparse Gaussian process regression and latent variable
models,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), Montreal,
Canada, Dec. 2014, pp. 3257–3265.

[137] R. Senanayake, S. O’Callaghan, and F. Ramos, “Predicting spatio-
temporal propagation of seasonal influenza using variational Gaussian
process regression,” in Proc. AAAI Conf. Artif. Intell., Phoenix, AZ,
USA, Feb. 2016, pp. 3901–3907.

[138] E. V Bonilla, K. M. Chai, and C. Williams, “Multi-task gaussian
process prediction,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS),
pp. 153–160. Vancouver, BC, Canada, Dec. 2008.

[139] M. Van Der Wilk, C. E. Rasmussen, and J. Hensman, “Convolutional
gaussian processes,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS),
pp. 2849–2858. Long Beach, CA, USA, Dec. 2017.

[140] Y. C. Ng, N. Colombo, and R. Silva, “Bayesian semi-supervised learning
with graph Gaussian processes,” in Proc. Adv. Neural Inf. Process. Syst.

(NeurIPS), Montreal, Canada, Dec. 2018, pp. 1690–1701.
[141] I. Walker and B. Glocker, “Graph convolutional Gaussian processes,”

in Proc. Int. Conf. Mach. Learn. (ICML), Long Beach, California, USA,
June 2019, pp. 6495–6504.

[142] Y. Zhao, C. Liu, L. S. Mihaylova, and F. Gunnarsson, “Gaussian
processes for RSS fingerprints construction in indoor localization,” in
Proc. Int. Conf. Inf. Fusion (FUSION), Cambridge, UK, Sept. 2018, pp.
1377–1384, IEEE.

[143] Z. Li, L. Wang, L. Jiang, and C. Xu, “FC-SLAM: Federated learning
enhanced distributed visual-LiDAR SLAM in cloud robotic system,” in
Proc. IEEE Int. Conf. Robot. Biomimetics (ROBIO), Dali, China, Dec.
2019, pp. 1995–2000.

[144] J. Waterston, J. Rhea, S. Peterson, L. Bolick, J. Ayers, and J. Ellen,
“Ocean of things : Affordable maritime sensors with scalable analysis,”
in OCEANS 2019 - Marseille, Marseille, France, Oct. 2019, pp. 1–6.

[145] H. Chen, D. Li, Y. Wang, and F. Yin, “UAV Hovering Strategy Based
on a Wirelessly Powered Communication Network,” IEEE Access, vol.
7, pp. 3194–3205, Dec. 2018.

[146] Y. Hu, X. Yuan, J. Xu, and A. Schmeink, “Optimal 1d trajectory
design for uav-enabled multiuser wireless power transfer,” IEEE Trans.

Commun., vol. 67, no. 8, pp. 5674–5688, Apr. 2019.
[147] F. Yin, Y. Zhao, F. Gunnarsson, and F. Gustafsson, “Received-signal-

strength threshold optimization using Gaussian processes,” IEEE Trans.

Signal Process., vol. 65, no. 8, pp. 2164–2177, Apr. 2017.
[148] K. Bonawitz, H. Eichner, W. Grieskamp, and D. Huba et.al., “Towards

federated learning at scale: System design,” in Proc. SysML Conf., Palo
Alto, CA, USA, Mar. 2019.

[149] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar,
“signSGD: Compressed optimisation for non-convex problems,” in Proc.

Int. Conf. Mach. Learn. (ICML), Stockholm, Sweden, July 2018, pp.
560–569.

[150] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust Optimization,
Princeton University Press, 2009.

[151] B. L Gorissen, İ. Yanıkoğlu, and D. den Hertog, “A practical guide to
robust optimization,” Omega, vol. 53, pp. 124–137, June 2015.

[152] A. M. Zoubir, V. Koivunen, E. Ollila, and M. Muma, Robust Statistics

for Signal Processing, Cambridge University Press, 2018.
[153] A. Zappone, M. Di Renzo, M. Debbah, T. T. Lam, and X. Qian, “Model-

aided wireless artificial intelligence: Embedding expert knowledge in
deep neural networks for wireless system optimization,” IEEE Veh.

Technol. Mag., vol. 14, no. 3, pp. 60–69, Sept. 2019.
[154] P. Hu, Z. Yan, R. Huang, and F. Yin, “How effectively can indoor

wireless positioning relieve visual tracking pains: A Cramer-Rao bound
viewpoint,” in Proc. IEEE Int. Conf. Image Process. (ICIP), Taipei,
Taiwan, Sept. 2019, pp. 3083–3087.

[155] H. Ahmadi, A. Polo, T. Moriyama, M. Salucci, and F. Viani, “Semantic
wireless localization of WiFi terminals in smart buildings,” Radio Sci.,
vol. 51, no. 6, pp. 876–892, June 2016.

[156] S. Guo, H. Xiong, X. Zheng, and Y. Zhou, “Activity recognition and
semantic description for indoor mobile localization,” Sensors, vol. 17,
no. 3, pp. 649, Mar. 2017.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2020.3036276, IEEE Open

Journal of Signal Processing

> SUBMITTED AS AN OVERVIEW PAPER< 27

Feng Yin is currently an assistant professor in the School of Science and
Engineering at the Chinese University of Hong Kong, Shenzhen, China. He
received the B.Sc. degree from Shanghai Jiao Tong University, China, in 2008,
and the M.Sc. and Ph.D. degrees from Technische Universität Darmstadt,
Germany, in 2011 and 2014, respectively. From 2014 to 2016, he was with
Ericsson Research, Linkoping, Sweden, working on the European Union FP7
Marie Curie Training Programme on Tracking in Complex Sensor Systems
(TRAX). Since 2016, he has been with The Chinese University of Hong Kong,
Shenzhen and also affiliated with the Shenzhen Research Institute of Big Data
(SRIBD). His research interests include statistical signal processing, Bayesian
deep learning, and sensory data fusion. He was a recipient of the Chinese
Government Award for Outstanding Self-Financed Students Abroad in 2013.
He received the Marie Curie Scholarship from the European Union in 2014.
He is currently serving as the handling editor of the Elsevier Signal Processing
and Elsevier Digital Signal Processing.

Zhidi Lin received the M.Sc. degree in communication and information
systems from Xiamen University, Xiamen, China in 2019. He is currently
pursuing the Ph.D. degree with the School of Science and Engineering, The
Chinese University of Hong Kong, Shenzhen, China. His research interests
lie in the areas of statistical signal processing, Bayesian deep learning, and
related fields.

Yue Xu received his B.S. and Ph.D. degree from Beijing University of Post
and Telecommunication (BUPT) in 2020. He has been a Visiting Researcher
with University of California, Davis, USA, The Chinese University of Hong
Kong, Shenzhen, China, and Shenzhen Research Institute of Big Data. He is
currently a research scientist at Alibaba Group. His research interests include
data-driven wireless network management, machine learning, large-scale data
analytics and system control.

Qinglei Kong received her PhD degree from the School of Electrical and
Electronics Engineering, Nanyang Technological University, Singapore, in
2018; the M.Eng. degree in electronic and information engineering from
Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, China,
in 2015; and the B.Eng. degree in communication engineering from Harbin
Institute of Technology, Harbin, China, in 2012. She used to work in Cyber
Security Cluster, Institute for Infocomm Research, Singapore and Tencent
Security, Shenzhen, as a research scientist. Now she is working in The
Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), as a postdoc
researcher. Her research interests include applied cryptography, blockchain,
VANET, and game theory.

Deshi Li received his PhD degree in Computer Application Technology from
Wuhan University. He was a visiting scholar of the Network Lab of the
University of California at Davis.

He is a professor of Electronic Information School, Wuhan University.
His research interests include wireless communication, Internet of Things,
intelligence system and SOC design. He has published more than 100 research
papers. He serves as a reviewer for many international academic journals and
an expert evaluator for the Ministry of Science and Technology of China,
Ministry of Education of China and NSF China.

Currently Dr. Li serves as a member of the Internet of Things Expert
Committee and member of the Education Committee of Chinese Institute
of Electronics, and the Associate Chief scientist in Space Communication
area of Collaborative Innovation Center of Geospatial Technology, also is an
Executive Trustee member of China Cloud System Pioneer Strategic Alliance.
His recent research projects include National Science and Technology Major
Project of China (973 Program), National High Technology Program of China
(863 Program), and National Natural Science Foundation of China (NSFC).

Sergios Theodoridis is Professor Emeritus of Signal Processing and Machine
Learning in the Department of Informatics and Telecommunications of the
National and Kapodistrian University of Athens, Greece and with the Shenzhen
Research Institute of Big Data (SRIBD), the Chinese University of Hong Kong,
Shenzhen, China. His research interests lie in the areas of Online Algorithms,
Distributed and Sparsity-Aware Learning, Machine Learning, Signal Processing
and Learning for Bio-Medical Applications and Audio Processing and Retrieval.

He is the author of the book “Machine Learning: A Bayesian and
Optimization Perspective” Academic Press, 2nd Ed., 2020, the co-author
of the best-selling book “Pattern Recognition”, Academic Press, 4th ed.
2009, the co-author of the book “Introduction to Pattern Recognition: A
MATLAB Approach”, Academic Press, 2010, the co-editor of the book
“Efficient Algorithms for Signal Processing and System Identification”, Prentice
Hall 1993, and the co-author of three books in Greek, two of them for the
Greek Open University.

He is the co-author of seven papers that have received Best Paper Awards
including the 2014 IEEE Signal Processing Magazine Best Paper award and
the 2009 IEEE Computational Intelligence Society Transactions on Neural
Networks Outstanding Paper Award.

He is the recipient of the 2017 EURASIP Athanasios Papoulis Award, the
2014 IEEE Signal Processing Society Education Award and the 2014 EURASIP
Meritorious Service Award. He has served as a Distinguished Lecturer for
the IEEE Signal Processing as well as the Circuits and Systems Societies.
He was Otto Monstead Guest Professor, Technical University of Denmark,
2012, and holder of the Excellence Chair, Dept. of Signal Processing and
Communications, University Carlos III, Madrid, Spain, 2011.

He currently serves as Vice President IEEE Signal Processing Society. He
has served as President of the European Association for Signal Processing
(EURASIP), as a member of the Board of Governors for the IEEE Circuits
and Systems (CAS) Society, as a member of the Board of Governors (Member-
at-Large) of the IEEE SP Society and as a Chair of the Signal Processing
Theory and Methods (SPTM) technical committee of IEEE SPS

He has served as Editor-in-Chief for the IEEE Transactions on Signal
Processing. He is Editor-in-Chief for the Signal Processing Book Series,
Academic Press and co-Editor in Chief for the E-Reference Signal Processing,
Elsevier.

He is Fellow of IET, a Corresponding Fellow of the Royal Society of
Edinburgh (RSE), a Fellow of EURASIP and a Life Fellow of IEEE.

Shuguang (Robert) Cui received his Ph.D in Electrical Engineering from
Stanford University, California, USA, in 2005. Afterwards, he has been
working as assistant, associate, full, Chair Professor in Electrical and Computer
Engineering at the Univ. of Arizona, Texas A&M University, UC Davis, and
CUHK at Shenzhen respectively. He has also been the Vice Director at
Shenzhen Research Institute of Big Data. His current research interests focus
on data driven large-scale system control and resource management, large
dataset analysis, IoT system design, energy harvesting based communication
system design, and cognitive network optimization. He was selected as the
Thomson Reuters Highly Cited Researcher and listed in the Worlds Most
Influential Scientific Minds by ScienceWatch in 2014. He was the recipient of
the IEEE Signal Processing Society 2012 Best Paper Award. He has served
as the general co-chair and TPC co-chairs for many IEEE conferences. He
has also been serving as the area editor for IEEE Signal Processing Magazine,
and associate editors for IEEE Transactions on Big Data, IEEE Transactions
on Signal Processing, IEEE JSAC Series on Green Communications and
Networking, and IEEE Transactions on Wireless Communications. He has
been the elected member for IEEE Signal Processing Society SPCOM Technical
Committee (2009 2014) and the elected Chair for IEEE ComSoc Wireless
Technical Committee (2017 2018). He is a member of the Steering Committee
for IEEE Transactions on Big Data and the Chair of the Steering Committee
for IEEE Transactions on Cognitive Communications and Networking. He was
also a member of the IEEE ComSoc Emerging Technology Committee. He
was elected as an IEEE Fellow in 2013 and an IEEE ComSoc Distinguished
Lecturer in 2014.

