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ABSTRACT Widely deployed smart cameras are generating a large amount of video data and capable of

processing frames on devices. Empowered by edge computing, the video data can also be offloaded to edge

servers for processing. By leveraging the on-device processing and computation offloading, we propose a

federated video analytics system named FedVision to efficiently provision video analytics across devices and

servers. The challenge of designing FedVision is to optimally use the computing and networking resources for

video analytics. Since there is no closed-form expression of the system performance, black-box optimization

is employed to optimize the system performance. However, using black-box optimization directly incurs

excessive system queries that lead to very poor system performance. To solve this problem, we design a

new optimization method that integrates black-box optimization with Neural Processes (NPs) as a system

performance approximator. This method allows black-box optimizer to query NPs instead of the real system.

We validate the performance of FedVision and the new optimization method using both numerical results and

experiments with a testbed.

INDEX TERMS Edge computing, black-box optimization, neural process, machine learning, video analytics.

I. INTRODUCTION

Edge computing coupled with advances in 5G is enabling a

plethora of emerging applications, where various smart de-

vices can be connected with each other via the internet and

empowered with data analytics [1], [2]. In particular, a large

number of smart cameras can be connected to the network and

produce a huge volume of video data. To analyze these data

efficiently poses pressing challenges to current networking

and computing architectures. For a video analytics service,

video frames can be either processed on devices or in remote

servers. For frames processed on devices, the analytics ac-

curacy is limited because the computation models, e.g., deep

neural networks (DNNs), are tailored for resource-constrained

devices. Offloading the frame analytics to servers can improve

the accuracy, but the service latency may increase because

of transmission delays in the network. Some works have

discussed dynamic resource allocation in cloud computing

for video analytics and optimization methods for process-

ing video frames on devices [3], [4]. However, to our best

FIGURE 1. An example of video analytics in the FedVision System.

knowledge, none of them discusses how to optimize a

federated video analytics system that enable a cooperative

processing of video frames.

Fig. 1 shows an example of the federated video analytics

system named FedVision. The user queries cars in live video
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streams. Live video frames are streamed from the cameras to

the edge devices. Frames are sampled in the edge devices.

A selection of them are processed on devices, e.g., frames

containing cars are detected and returned to the user from the

edge devices. The other part of sampled frames are transmitted

to the edge server for object detection, i.e., detecting a car.

In the life cycle of processing the video analytics query, the

edge devices and the edge server are federated to provide the

detection results to the user.

A series of configurations on edge devices and remote

servers can be selected to improve the end-to-end performance

of FedVision. Owing to the dynamic network conditions and

computing workloads, it is almost impossible to derive a

closed-form expression of the system performance for differ-

ent configurations. Black-box optimization is usually adopted

to solve the system optimization problem in which the system

performance is considered as a black-box function [5]. The

black-box optimizer (BBO) interacts with the system to find

the optimal configurations. In each iteration of optimization,

the optimizer generates a set of configurations within the

predefined constraints as a query to the system. The system

applies the configurations from the BBO and feeds the perfor-

mance metrics back to the BBO. Based on the (query, feed-

back), the BBO approaches the optimal point gradually. How-

ever, for optimizing the end-to-end performance of FedVi-

sion, changing the configurations and obtaining performance

metrics from the system are time consuming and expensive.

Besides, some of the queries from BBO may lead to very poor

system performance. Hence, it is impractical for the black-box

optimizer (BBO) to query the FedVision system hundreds of

times for the optimal configuration.

In this paper, we design the FedVision system and solve the

end-to-end system optimization problem by a novel method

that integrates black-box optimization and Neural Processes

(NPs). In order to decrease the number of querying the FedVi-

sion system, we use NPs to approximate the system and enable

BBO to interact with NPs during the system optimization.

NPs are designed by using a neural networks to approximate

distributions over functions [6] and it combines the benefits

of neural networks and Gaussian Process (GP). NPs can learn

prior knowledge of the data like GP and be trained by using

the gradient descent method like neural networks. Using NPs

as the system approximator, we can approximate the distri-

bution of the system performance functions that reflect the

system performance under various networking and computing

conditions. Leveraging NPs as an approximator, we can elim-

inate the interactions between BBO and the FedVision system.

The contributions are summarized below.

1) We design a federated video analytics system named

FedVision that optimally uses the computing resources

on edge devices and servers to achieve efficient video

analytics.

2) We develop a new end-to-end system optimization

method that combines the merits of both black-box op-

timization and Neural Processes for efficient and safe

system optimization.

FIGURE 2. FedVision system architecture.

3) We validate the performance of FedVision with the pro-

posed end-to-end system optimization method through

both numerical results and experiments.

The rest of the paper is organized as follows. Section II

explores the architecture of the system. Section III studies

the analytical model for FedVision and formulates the opti-

mization problem. Section IV provides an overview of our

method. Section V explores using Neural Processes in system

performance approximation. Section VI shows the optimiza-

tion pipeline. Section VII discusses details of implementation

of key components in the FedVision system. Section VIII

includes numerical results and system experimental results

based on our testbed. Section IX provides a brief review of

related work. Section X concludes the paper.

II. SYSTEM DESCRIPTION

In this section, the architecture of FedVision and the specifica-

tion for video analytics services are described.

A. FedVision ARCHITECTURE

FedVision consists of an edge controller and a series of edge

devices and servers as illustrated in Fig. 2. There are two paths

of data flows: data path and control path. A query from a

user will be executed in the workflow across the edge device

and server. A workflow consists a chain of functions such as

encode, decode, compress, sample and detect. In the data path,

video frames are executed from the first function to the last

function in the workflow in sequence. After data are processed

through the workflow, the output results are returned to the

user.

In Fig. 2, video frames are sampled in the sample function.

Then, the sampled frames are resized by the compress func-

tion and sent to the edge server. Before being sent to the edge

server, the frames are encoded in encode in the edge device.

In the edge server, after frames are received and decoded in

the function decode, the detect function will detect the objects

in the frames.

The control path in FedVision is independent of the data

path. Each variable of the functions is configured by the edge

controller. In the control path, every edge device and server

run a control process to communicate with the edge controller.
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The edge controller sends updates of the configuration vari-

ables to the edge device and the edge server via the control

process. The edge controller receives the information of net-

work status from the control process in the edge server.

B. VIDEO ANALYTICS SERVICE SPECIFICATION

For video analytics services in FedVision, several configura-

tion variables can be controlled by the edge controller.

The edge controller controls the detection accuracy and

latency by choosing different neural network (NN) models

running in the edge device. The edge controller controls the

resize rate in the compress function to control the size of

frames transmitted in the network. The controlled variable in

the sample function is the number of frames that are skipped

from sending to the edge server after one frame is sent,

e.g., if the variable equals to two, the edge device skips two

frames for every frame sent to the edge server. The edge

controller updates these configuration variables in the opti-

mization pipeline.

III. PROBLEM FORMULATION

In FedVision, video frames are processed across the edge

device and server. FedVision optimizes the end-to-end perfor-

mance for video analytics services. In this section, we formu-

late the system performance in terms of the end-to-end latency

and object detection accuracy. Both the latency and accuracy

are viewed as functions of the configuration variables x and

the network status l , where x is the vector of all available

configuration variables. The system performance is evaluated

in the unit of session which includes N video frames.

The end-to-end latency T is defined as the average latency

of N frames for each session:

T (x, l ) =
1

N

N
∑

i=1

τi =
1

N

N
∑

i=1

(ζi + ηi + θi ) (1)

In the equation, ζ is the processing time in the edge device; η

is the network transmission latency; θ is the processing time

in the edge server. For the case that the ith frame is processed

in the edge device, ηi = 0 and θi = 0. Otherwise, ζi = 0.

The object detection accuracy A is defined as the average

detection accuracy of N frames for each session:

A(x, l ) =
1

N

N
∑

i=1

αi =
1

N

N
∑

i=1

(γi + σi ) (2)

γ and σ are the detection accuracy in the edge device and

server, respectively. For each frame, it is processed in either

the edge device or the edge server.

In FedVision, we aim to ensure that the system performance

meets the requirements given by users. Hence, the optimiza-

tion problem can be formulated as to minimize the difference

FIGURE 3. FedVision controller architecture.

between the system performance and the users’ requirements.

min
x

(Treq − T )2 + (Areq − A)2

s.t. ∀i : τi ≥ 0, 0 ≤ αi ≤ 1,

γiσi = 0, ζi(ηi + θi ) = 0;

x ∈ 	, l ≥ 0 (3)

IV. SOLUTION OVERVIEW

It is challenging to solve the optimization problem. First, the

space of the network status l is unlimited, which makes the

space of the dependent variables (x, l ) infinite. Second, there

are no analytical models to estimate the end-to-end latency

and accuracy under different configurations and network sta-

tus. Thus, we have no closed-form functions of ζ , η, θ, γ , σ

to design optimization algorithms. Third, it is intractable to

query the system performance with different values of config-

uration variables. For most video analytics systems, it takes a

long time to reconfigure the system. Besides, the new config-

uration may deteriorate the system performance if the values

of the configuration variables are not properly chosen.

As shown in Fig. 3, FedVision controller consists of an ap-

proximator and optimizer running in two phases: offline train-

ing described in Section V and online updating in Section VI.

In the offline training stage, we apply different configuration

variables under different levels of network status to attain the

system performances T and A. These configuration and per-

formance pairs are used to train the approximator. In the on-

line updating stage, the optimizer takes the requirements Treq

and Areq in the user’s query as the target for optimization. It

obtains the corresponding approximate system performances

T̂ and Â from the pretrained approximator and then applies

T̂ and Â to evaluate the value of the objective function in

Section III. FedVision controller can adjust the configuration

variables across the edge device and edge server.

We apply black-box optimization algorithms in the opti-

mizer. Without knowing either the closed-form expression of

the system performance function, the video analytics system

is viewed as a black box. We choose NPs as the approximator.

NPs are trained on data under a limited number of network
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bandwidth status to learn the distributions of the system per-

formance T and A. BBO can avoid querying the edge device

and server by interacting with NPs.

V. SYSTEM PERFORMANCE APPROXIMATION USING NP

In this section, we discussed the challenges in approximating

the system performance of the FedVision. We detail the design

of the system performance approximator based on NPs.

A. NEURAL PROCESSES BASED APPROXIMATOR

In FedVision, the edge device is connected with the edge

server via a wireless network. To estimate the latency T and

accuracy A of FedVision, we use NPs to approximate the

distributions of the system latency and accuracy. In designing

an approximator for mapping the configurations variables x to

the latency T and accuracy A, the challenge is the dynamic

change in the network between the edge device and the edge

server. When we take the network status l into consideration,

the approximation of T (x, l ) and A(x, l ) requires the approx-

imators to predict values of T and A under different network

status because the predicted T and A for the same values of

the configuration variables are different as the l changes.

One approach is to use Gaussian Processes (GPs) [7] to

learn the distribution of latency T and Accuracy A. GPs pro-

vide a stochastic framework for approximating distributions

by learning distributions over a series of functions. GPs learn

the prior knowledge of the data via kernel functions for ap-

proximating T and A. The kernel functions are predefined.

The choices available for the kernel functions limit the ap-

plicability of GPs in various video analytics systems. At the

inference stage, the predicted T̂ and Â are sampled randomly

over their posterior distributions. The priors are required to

calculate the posteriors. However, the computation of the pri-

ors become intractable as the amount of data increases.

NPs enhance the efficiency of inference in the neural net-

works (NNs) without calculating the priors as GPs do. NPs

can be viewed as models based on NNs framework to approx-

imate a distribution over functions. NPs combine the benefits

of NNs and GPs. In using an NP to learn the distribution, an

NN is used to parameterize the stochastic process with the

latent variable.

In the NP-based approximator, T and A are approximated

by two NPs separately. There are three main computation

modules: encoder, aggregator and decoder. In the computing

schema of an NP as shown in Fig. 4, the encoder h transforms

the input space (x, l, T )i into the representation space ri. The

aggregator a generates a single global representation r from

multiple ri to parameterize the distribution of the latent vari-

able z. The decoder g transforms the unknown data point (x, l )

concatenated with the sampled z and r to obtain the prediction

for T .

B. TRAINING FOR NEURAL PROCESSES

The approximators for T and A use similar training processes.

Here, we take the approximator for T as the example to de-

scribe how to train an NP in FedVision. To train the NPs-based

FIGURE 4. Neural Processes Computing Schema.

approximator, we first prepare the dataset. For each configu-

ration variables vector x, we run a session of N video frames

to get the corresponding latency performance T . The dataset

is collected under different network statuses in terms of low,

mid and high bandwidth. In each data pair, besides x and T ,

we include l to indicate the network bandwidth status. So, the

item in the data set is in the form of (x, l, T ). The network

status is dynamically changing in a continuous space and l

in the training dataset is a factor that varies in the sampled

discrete space. The NP is trained on a limited number of

system performance data points from different distributions

to infer T from x in a relatively wide range of the network

bandwidth space of l . For prediction, l is useful to measure

the distance between data points in different distributions.

The dataset is split into context points and target points:

(xc, lc, Tc), (xt , lt , Tt ). The latent variable z is modelled

by a Gaussian Process which is parameterized via rc =

r(xc, lc, Tc). The NP models the distribution of T below.

P(Tt |xt , lt , xc, lc, Tc) =

∫

P(Tt |xt , lt , z, rc)Q(z|rc)dz (4)

For the neural network model of the encoder h and decoder

g, the parameters are trained via variational approximation,

i.e., maximizing the evidence lower bound objective (ELBO)

below.

logP(Tt |xt , lt , xc, lc, Tc) ≥ EQ(z|rc )[logP(Tt |xt , lt , z, rc)]

− KL(Q(z|rt )||Q(z|rc)) (5)

The first term is the expected log-likelihood over the target

points. The second is the negative Kullback-Leibler diver-

gence between Q(z|rt ) and Q(z|rc).

VI. OPTIMIZATION PIPELINE

In this section, we mainly detail the optimization pipeline in

FedVision. Online updating, consisting of configuration gen-

eration and interaction between the optimizer and the approx-

imators, is the main part of the optimization pipeline.

A. CONFIGURATION GENERATION

The space of configurations for the video analytics system

can be large, depending on the complexity of the system. In

FedVision, we have three configuration variables in the vector
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x to adjust to minimize the single-objective function defined

in Section III.

Black-box optimization includes derivative-free optimiza-

tion methods and heuristic optimization methods. Evolution-

ary Algorithms (EA), or Genetic Algorithms, are popular and

effective heuristic methods [8]. In the EA framework, the

optimizer generates variables vector x to query the fitness

function fbbo for obtaining the value of ybbo = fbbo(x). In

our scenario, the fitness function is the objective function

(Treq − T )2 + (Areq − A)2.

We choose (1+1) EA [9] which is the most simple evolu-

tionary algorithm. In each iteration of (1+1) EA, it applies the

replacement strategy of choosing the best between one parent

and one offspring. The mutation is adaptively updated by the

1/5 rule [10]. If xn is the parent, the offspring x̂n = xn +

σt N (0, I ). If y(x̂n) is better than y(xn), the child becomes the

parent for the next iteration, i.e., xn+1 = x̂n. In the meantime,

the mutation step size increases as σn+1 = 1.5σn. Otherwise,

if the offspring is worse than the parent, the mutation step size

σ decreases as σn+1 = 1.5−1/4σn. xn will continue to be the

parent. After a certain number of iterations, the configuration

x∗ = argmax fbbo(x, l ) is obtained. Here, the output of the

optimizer is x and the input to the fitness function is (x, l ).

B. BLACK-BOX OPTIMIZER WITH NEURAL PROCESSES

We notice that, in the black-box optimization, the BBO needs

to query the fitness function to search for the optimal point.

However, in FedVision, we cannot get the exact form of the

fitness function fbbo because the function T and the function

A are not obtainable. Instead, we use two NPs to approximate

T and A respectively. In the online updating stage, we use

the NP-based approximator as part of the fitness function to

interact with the BBO.

The user initiates the Treq and Areq for the video query. The

network status variable l is updated before the optimization

starts. In each optimization iteration, the BBO initiates con-

figuration variables vector x. We query the prediction at the

unknown point (x, l ) in NPs for T and A, respectively. Based

on the query point, the NPs can predict corresponding values

of T̂ and Â with conditioning on the number of randomly

chosen context points and the latent variable z. Then, the value

of ybbo can be calculated from T̂ and Â. Once the limit of

the budget is reached, the BBO outputs the current optimal

configuration variables vector x∗ and sends it to the edge

devices and the edge server.

The update mechanism in the edge controller is associated

with the dynamic change in the network. We have an interface

between the approximator and edge server. Network status l

is logged in the edge server. The edge controller fetches the

network status l from the edge server periodically when Fed-

Vision is running. 
l̂ is in a tolerable range of the disturbance

of network status l . When the disturbance 
l > 
l̂ , it will

trigger the online updating in the edge controller. Besides, the

interaction of BBO and NPs can be triggered when the user’s

requirements for Treq and Areq change.

VII. IMPLEMENTATION

In this section, we discuss the implementation details of key

components in FedVision.

Video process pipeline: we execute federated video ana-

lytics across the edge device and the edge server. The edge

device and the edge server are connected through a wireless

link. We use the edge device with the embedded GPU and the

edge server with the standard workstation GPU. In the edge

device, the processing results of video frames are put into a

queue in the form of (metadata, framedata). The metadata

contains the processing results such as frame id, frame size,

processing time, accuracy and timestamp. The framedata is

the encoded and compressed image data of each frame. The

NN model running in the device is optimized to perform infer-

ence at lower precision (FP16 and INT8) by TensorRT [11]. In

the edge server, the network transmission latency is calculated

from the timestamps recorded in the frame metadata. The edge

controller controls three configuration variables in FedVision:

1. NN model on the device; 2. ratio of frames in each session

processed in the edge server; 3. resize ratio of the frames

transmitted.

Neural Processes instances: Two NPs are implemented:

one to predict latency T and the other for accuracy A. We

notice the trade-off between T and A. We define the objec-

tive function to minimize the difference between the real T

and the requirement Treq along with the difference between

and the real A and the requirement Areq. We focus on the

distribution of T (x, l ) and A(x, l ) separately rather than on

the distribution of (T, A). So, we implement two NPs in-

stead of one NP. For preparing training data for NPs, data

are collected under different network bandwidths. We use the

SQM-QoS tool in the OpenWRT to limit the download and

upload speed in order to adjust the bandwidth available in the

network.

Interface between NP and BBO: One BBO in the op-

timizer and two NPs in the approximator are implemented

in the edge controller. The query point (x, l ) includes the

configuration variables vector x generated by the BBO and

the network status l . To improve the prediction accuracy

on the query point, we randomly choose 15 context points

with similar network status l as the query points for infer-

ring on the NPs. The BBO is implemented by using Nev-

ergrad [12]. The NPs are implemented in the TensorFlow

framework [13].

VIII. EVALUATION

In this section, we first evaluate the performance of the ap-

proximator and optimizer in the edge controller with the test

functions and the analytical models. This initially proves the

feasibility of our methodology for applying the neural process

for the black-box optimizer. Then, we illustrate the details of

our experiment setup in the testbed for the video analytics

application in FedVision. Finally, we analyze the experimental

results of FedVision in two scenarios.
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A. APPROXIMATOR AND OPTIMIZER SIMULATION

In this part, to evaluate the integration of approximator and

optimizer, we use three common test functions and one sim-

plified analytical model for the edge vision system.

1) TEST FUNCTIONS

We evaluate our proposed method by a collection of com-

monly used test functions for the BBO. Generally, test func-

tions are used to evaluate characteristics of optimization al-

gorithms such as convergence rate and precision [14]. During

optimization, the test function works as the fitness function to

interact with the optimizer.

The first test function is Gramacy-Lee Function [15], a con-

tinuous unimodal not-convex function defined on 1-dimension

space x ∈ [0.5, 2.5].

f (x) =
sin(10πx)

2x
+ (x − 1)4 (6)

The function has one local minimum f (x∗) = −0.86901

where x∗ = 0.54856.

The second test function is Ackley Function [16], a contin-

uous multimodal not-convex function defined on 2-dimension

space x1, x2 ∈ [−2, 2].

f (x1, x2)

= −20 exp

[

−0.2

√

0.5(x2
1 + x2

2 )

]

− exp [0.5(cos 2πx1 + cos 2πx2)] + e + 20 (7)

The function has one global minimum f (x∗) = 0 where x∗ =

(0, 0).

The third test function is Wolfe Function [17], a continu-

ous multimodal differentiable not-convex function defined on

3-dimension space x1, x2, x3 ∈ [0, 2].

f (x1, x2, x3) =
4

3
(x2

1 + x2
2 − x1x2)0.75 + x3 (8)

The global minima f (x∗) = 0 where x∗ = (0, 0, 0).

For each test function, the optimization problem is defined

as min f (x), s.t. x ∈ 	.

2) ANALYSIS OF TEST FUNCTIONS RESULTS

We mainly focus on two aspects. One is how close the NP can

approximate the real test function distribution. The other is

comparing the NP with standard fitness functions in the black-

box optimization.

Each test function is sampled randomly to build the dataset

respectively. The dataset is split into the context and target set

for training the neural process. We use the target negative log

likelihood (NLL) to evaluate how well the NP is trained. The

target NLL is defined as −(EQ(z|rc )[logP(Tt |xt , lt , z, rc)] −

KL(Q(z|rt )||Q(z|rc))) In the upper half of Fig. 5, we plotted

the target NLL of the NPs for the test functions. The orange

line is the 1-D test function’s target NLL while the blue line is

the 2-D’s. In the three figures on the lower half, we show the

FIGURE 5. Test functions: simulation results.

TABLE 1. Test Function

relation between the target NLL and how NP is approximating

the test function. In these three figures, we plot the prediction

on the 1-dimensional Gramacy-Lee Function as the training

iterates from 0 to 80000. Ten points are selected as context

points randomly while 100 test points are chosen evenly from

0.5 to 1 for plotting. The orange line in each figure is the line

of the mean predicted value of the test points x. At iteration

0 which is the random start point with the error of 1.03, the

predicted values of function are far away from the true val-

ues. At iteration 40000 with error of −0.47, the approximate

values of test points near the context points are pretty close to

the true values. When the iteration number reaches 80000, the

error goes down to −1.32 and the approximate function can fit

the test function very well. After 80000 iterations, the target

NLL bounces around −1.3 in a small range. Once the value of

the error enters the range around −1.2, the NP is considered

well trained.

Now we test the optimization results of the BBO with the

NP. Once target NLL of the NP do not vary too much, we use

the trained NP to predict the value of the test function at the

test point x. In each optimization iteration, the BBO queries

for a new set of configuration variables and obtains a feedback

value from the test environment. (x∗, y∗) is the optimal point

in the domain for each test function. (x̂np, ŷnp) is the optimal

point obtained after the BBO queries the NP for 100 iterations.

In comparison, (x̂ f unc, ŷ f unc) is the optimal point obtained

from interacting with the test function for 100 iterations. The

results for three test functions are listed in the Table 1. For

the one-dimension Gramacy function, x∗ = 0.54856 and the

optimal point found by our method is x̂np = 0.54592. The
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difference of x̂np and x∗ is less than 0.01. For the two-

dimension Ackley function, the difference of (x̂np and x∗

is larger than the difference of x̂ f unc and x∗. This is partly

because the start point of the BBO is the same as the optimal

point of the test function. When the dimension of test func-

tions increases to two or three, the differences become larger.

This is related to the space of context points for training the

NP.

3) ANALYTICAL MODELS

We build a simplified analytical model to test our proposed

method. This model consists of the functions for ζ , η, θ in T

and γ , σ in A.

a) Computing Performance Model: The computing perfor-

mance A includes two parts. For the first part, the computing

model for the edge device, γi = f (xk
i ) is the function of the

services xk available in the edge device. xk
i is the kth service

provided to the ith application request. Here, we suppose there

are more than one single service available in the edge device,

which is closer to a realistic situation.

As for the edge server, the performance is relevant to certain

factors. Here, we suppose only one kind of service available

for one application request in the edge server. The computing

performance in the edge server is defined as σi = λ(zi )g(ak
i ),

where ak
i is the ith service available in the edge server for

the kth application request. We notice that not all application

requests are processed in the edge server. If the edge server is

involved, higher computing performance is expected. Other-

wise, a satisfactory performance with a faster response can be

achieved. We use a decision factor λ(zi ) to indicate whether a

request will be sent to the edge server for further processing or

not. λ(zi ) is equal to 1 or 0 in terms of zi. The request will be

processed in the edge server if λ(zi ) = 1 and zero otherwise.

In this way, the edge computing system introduces flexibility

in the configuration space for end-to-end optimization.

b) Computing Latency Model: Following the computing

model defined in the previous part, we define the computing

latency model for functions running across the edge device

and the edge server. Computing latency includes both the

edge device processing time and the edge server processing

time. First, the edge device latency model is formulated as

ζi = h(xk
i ), where h(xk

i ) is the function of edge processing

time of the ith service for the kth application request. Here,

we model the edge server processing latency θi = j(y3
i ) as a

function of the cube of yi which is related to both computing

performance and latency.

c) Network Transmission Latency Model: As described in

the performance model, xi and zi have influence on the com-

puting performance. Here in the following equation, w(y2
i ) is a

function of the square of yi to represent a positively correlated

function to the network transmission latency. Let m(li ) be

the function of the network bandwidth which is negatively

correlated to the network transmission latency. Now, we have

the latency model ηi = λ(zi )
w(y2

i )

m(li )
for computing and trans-

mission.

FIGURE 6. System performance simulation results.

4) ANALYSIS OF ANALYTICAL MODELS RESULTS

Based on the analytical model, the end-to-end latency τi and

the computing performance αi for a single application request

are defined below.

αi = (1 − λ(zi )) f (xi ) + λ(zi )g(ak
i ) (9)

τi = (1 − λ(zi ))h(xi ) + λ(zi )

(

j(y3
i ) +

w(y2
i )

m(li )

)

(10)

For this analytical model simulation, we showcase a numeri-

cal instance of τ and α. In this instance, we have f (x) = (x −

0.5)/(4.5 − 0.5), g(ak
i ) = 1, h(x) = 1.5x + 2.5, j(y) = 24y3,

w(y) = 5y2, m(l ) = 2l . Here, we choose the target Treq = 20

and Areq = 0.8. We formulate the problem below.

min
x,y,z

(20 − T )2 − (0.8 − A)2

s.t. ∀i : τi ≥ 0, 0 ≤ αi ≤ 1;

x ∈ [2.5, 4.0], y ∈ [0.25, 1.0],

z ∈ [0, 3] (11)

For each session, T = (1.5x + 2.5)(1 − 1/(z + 1)) +

(24y3 + 5y2/2l )/(z + 1), A = (1 − 1/(z + 1))(x − 0.5)/3 +

1/(z + 1). We set the iteration budget to 100. We use one

NP for approximating the distribution of T and the other NP

for A. In each iteration, we set l = 1. The BBO updates the

optimal point (x, y, z)∗ after querying the NPs for getting

(T, A)i to calculate the feedback in the objective function.

To evaluate how well our method solves the optimization

problem in the analytical model, we compare the performance

of our method to the baseline method. In the baseline method,

The value of T and A are obtained from the numerical model

defined above. The value of the fitness function is calculated

from the same objective function in our method.

In Fig. 6, after about 50 iterations, our method can optimize

T to 20 and A to 0.8. In contrast, the baseline method can meet

the requirement Treq after around 20 iterations but A is stuck

at the point above 0.9 which is far away from the Areq. The

trade-off is between T and A. It may be because the BBO

changes y to make the first part in the objective function but A

is not the function of y in the second part.

In Fig. 7, the left part (a) shows the change of the value

of the objective function during the optimization. The right

part (b) shows the update of the optimal point in the BBO for

both methods. We notice that there is a slight increase in our

method at iteration 23. This is because the prediction of the
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FIGURE 7. Objective function simulation results.

NP on the query point is not always accurate but varying in

a small range. If the variation is within a tolerated range, the

optimizer works as well as the baseline method.

B. EXPERIMENT SETUP

In the previous two parts, the performance of our method is

evaluated in an analytical way. After obtaining some initial

results from conducting the analytical simulation, we want

to showcase the feasibility of our method in an edge-assisted

video analytics system. In this part, we describe the experi-

ment setup in our testbed for federated video analytics.

We utilize Nvidia Jetson TX2 [18] for the edge device in the

system. Nvidia Jetson TX2 is available in the market with two

Nvidia Pascal GPU, 128 CUDA cores each. Along with the

embedded GPU, a quad-core ARM Cortex-A57 contributes

multi-threading to the device alongside a dual-core Nvidia

Denver 2 for high single-thread performance with dynamic

code optimization. This combination of embedded GPU and

high-performance CPU enables the edge device to perform

at a speed of more than one TFLOP/s. The small size of the

device and the capability of running DNN make it suitable

in our testbed setup to deploy on-device AI processing and

stream videos to the edge server for further processing.

The edge server in our setup is implemented in the Dell

XPS 8930 workstation which is equipped with an Intel core

i7-8700 12-Core Processor, Nvidia GeForce GTX 1080, and

32GB RAM. For the scalability and flexibility of the deploy-

ment of services, we deploy the services for video analytics in

dockers. Since we need to access the GPU in the workstation

for running DNN at a higher speed, we use the GPU-enabled

Docker container, nvidia-docker. The nvidia-docker can limit

the numbers of CPU cores and specific network interface

bound while the GPU resources are not allowed to be lim-

ited in the docker. These features are convenient for running

multiple different services in the same edge server separately.

We initiate one nvidia-docker with 4 cores and 2.5GB memory

assigned.

The edge controller is connected to a router with the edge

server. The edge device is connected wirelessly through the

router to the edge server and the edge controller. The time

of the video frames streaming from the device to the server

makes up most of the network transmission latency in Fed-

Vision. The network transmission latency is relevant to the

data size transmitted and the available bandwidth of the link.

Fig. 8(b) shows the normalized network latency of transmit-

ting same frames under network bandwidths varying from

FIGURE 8. Configuration variables and network bandwidth analysis.

240 kbps to 3840 kbps. Fig. 8(c) shows the relation between

the resize factor on the frame transmitted and the scaled net-

work latency.

In a video processing system, object detection is an es-

sential function in the video analytics services. As for the

algorithms of object detection in video frames, the locations

of the objects and the kinds of objects in the frame are the

main benchmarks to evaluate the performance of the algo-

rithms. Another factor is the speed of detection. The pro-

cessing latency is associated with the NN model’s size. We

investigate four detection models for the edge device and one

detection model for the edge server. In Fig. 8(a), we compare

these five existing object detection models trained on coco

dataset [19]. D4 and D3 are tiny-yolo-v3 model [20] with in-

put frame size of 224 × 224 and 320 × 320, respectively. D2

is ssdlite-mobilenet-v2 with input frame size of 224 × 224.

D1 is ssd-inception-v2 with input frame size of 300 × 300.

In the edge server, we use the ssd-resnet-50-fpn model. The

NN model running in the edge server has the higher accuracy

and larger latency as compared to the models in the edge

device. These three pretrained SSD models are available in the

TensorFlow model zoo [21]. The accuracy shown in Fig. 8 is

the mAP scaled to one. The choice of the detector has a great

impact on the system’s end-to-end performance. The higher

the accuracy is, the bigger the latency is. Besides the native

characteristics of the object detectors, several techniques are

available for specialized NNs in the edge device. The main

outcome of these methods is to decrease the number of frames

to be processed and the processing time for each frame. As a

result, the gap between accuracy and latency is eliminated.

For instance, in Fig. 8(d), without considering the frame con-

tents and other techniques, the accuracy will be deteriorated

as the sample rate decreases. These methods can benefit the

end-to-end performance. We consider these methods in the

experiments but these are not our focus. Instead, we view all

these methods as the configuration variables for the system.

In the experiments done in the following, we have three

configuration variables x1, x2, x3 to adjust. x1 is the choice
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FIGURE 9. Neural Processes for latency and accuracy prediction.

of the detector on the device. x2 is the resize rate of the

frames. x3 is the number of frames to skip for offloading.

For the end-to-end latency T , both computing latency and net-

work transmission latency are considered. For the computing

performance A, we use the object detection accuracy as our

metrics. The accuracy of one frame would be only determined

by the on-device detector if the frame is not offloaded to the

server. Otherwise, the accuracy would be determined by the

accuracy in the server. We use the video dataset from [4] to

detect the object, car, in the video frames.

C. ANALYSIS OF FedVision EXPERIMENTAL RESULTS

In our experiments, we evaluate our optimization pipeline in

two cases. (1) Given the performance requirements by the

user, FedVision starts with the initial configuration. We study

the performance of our method for optimizing end-to-end

accuracy and latency with respect to the requirements when

the network status changes dramatically. (2) After the system

starts, we study the case that our method updates the con-

figuration variables when the user changes the performance

requirements.

We train two NPs for the approximator in the edge con-

troller. The context data (X, l,Y ) for training NP is in the

form of (x1, x2, x3, l,Y ). l is the bandwidth factor calculated

by averaging network latency over 1800 frames. Y in the NP

for approximating system accuracy is A, while the other Y for

the latency is T . The dataset for training NPs is collected by

processing one-minute video with different configurations in

various network bandwidths.

In Fig. 9, each NP is trained for 20,000 iterations. For every

1000 iterations, the target NLL is plotted in the top half of the

figure and the query point will be queried in both NPs for the

corresponding latency and accuracy. We choose a configura-

tion vector (2,1,0) with a measured bandwidth factor equal to

1.325. From the bottom half of the figure, we can tell that after

FIGURE 10. Configuration update as network status changes.

about 10,000 iterations, the values of the query become stable.

Specifically, the predicted latency is bouncing around the real

value at 1.4427. The predicted accuracy is close to the real

number of 1.0 based on the accuracy of models implemented

in the devices and the server. In this set of configuration, every

frame is processed in the edge server. With the well-trained

NPs, we intend to solve the problem defined in the Section III

for FedVision.

In the first case of the our experiment, we plot the per-

formance of accuracy and latency in four stages in Fig. 10.

From stage 0, the system starts working with the performance

requirement pair (Treq, Areq ) in (0.8, 0.8), i.e., the accuracy is

supposed to be around 0.8 and latency around 0.8. At stage

0, the optimizer generates a configuration vector (2, 0.25, 0)

with a bandwidth factor measured at 0.5. From 0 to 1, the

actual latency is 0.6233 and the accuracy is 1.0. We find

the gap between the actual performance and the requirements

is big. This is partially attributed to the chosen requirement

being relatively relaxed for the trade-off between accuracy and

latency. At stage 1, we change the network bandwidth limit for

links between the edge device and the edge server. As a result,

the measured bandwidth factor changes from 0.5 to 1.7. In our

setup, the accuracy is irrelevant to the change of bandwidth

and so it remains the same in stage 1 while the end-to-end

latency surges from 0.6233 to 1.8226. This triggers the edge

controller to start generating a new configuration vector to

meet the performance requirement of (0.8,0.8). At stage 2, the

new configuration vector, (2,1,1), is applied. Both accuracy

and latency are closer to the requirements. The accuracy drops

from 1.0 to 0.81 and latency drops from 1.8226 to 0.92. We

see the gap becomes smaller as the network status becomes

more critical to the end-to-end performance. Although 0.92

of latency is slightly larger than 0.8, it is only about half

of the latency without configuration update. FedVision can

efficiently update the system configurations for optimizing

the end-to-end latency and accuracy as the network changes

dramatically.

For the second case, as shown in Fig. 11, the requirement is

changed from (0.8, 0.8) to (0.2,0.7) at the stage one. This use

case shows how FedVision may strive for much lower latency

at the slightest expense of accuracy. At stage 2, the system
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FIGURE 11. Configuration update as performance requirements change.

is updated to (2, 0.75, 3) with a bandwidth factor of 0.5.

Then, the latency drops to 0.18 below 0.2 and the accuracy

turns out to be 0.715 which is closer to the requirement 0.7.

Technically, the performance is satisfactory as compared to

the performance without configuration update. In this case, we

require a more critical latency. We can see the new require-

ment can still be met by adjusting the configurations within

the constraints. In other words, we can test the limit of the

system by imposing more extreme requirements. When the

requirement is out of the limit, our method would not meet the

requirement either. Then, we can have the approximate limit

of the system performance.

In this part, we have tested our optimization method in

FedVision from two perspectives. The first is to show that our

method can adapt to the network dynamics in optimizing the

configurations. The second is to show that our method can

optimize the configurations to meet the user’s requirement

change. From the results in both cases, we validate the perfor-

mance of FedVision using our proposed optimization method.

IX. RELATED WORK

Distributed multi-camera systems have been deployed in big

cities around the world. In [22], a pervasive smart camera

prototype based on standard hardware and Linux software

architecture was implemented. In the applications of video

analytics, object detection is widely implemented as a fun-

damental function. The combination of the neural network

partition, data compression, and differential communication

was proposed and evaluated for video analytics [23]. A wide-

area visual surveillance system integrated with automated

video analytics ability is presented [24]. A scheme was pro-

posed to minimize the data transmission for geo-distributed

data analytics [25]. A scheduler was designed to automat-

ically partition Neural Network computation between edge

and cloud [26]. A reinforcement learning based method was

used to decide when and where to migrate tasks among

edge servers [27]. These works investigated the multi-camera

video analytics system from system architecture perspective

to the computer vision perspective. Techniques for accelerat-

ing video frames processing and tailoring neural networks for

both edge devices and cloud servers are illustrated. However,

they ignored the influence of the dynamic change in the net-

work on the system end-to-end performance. We find that the

dynamic changes in network is unpredictable and have direct

influence on the video anlytics system performance. In FedVi-

sion, we utilize some of the techniques from these papers as

configuration variables, and we propose a new optimization

method to automatically configure the system for desired per-

formance. We address the problem of how the configurations

of the system can be adjusted based on network dynamics.

X. CONCLUSION

In this paper, we have designed the federated video analytics

system named FedVision and developed a new method for

end-to-end performance optimization in the FedVision system.

Our method integrates Neural Processes and the Black-box

optimization to optimize the latency and accuracy of queried

video analytics. Our method allows the black-box optimizer to

optimize the system performance via querying the NPs instead

of the real edge computing system. The evaluation results

show that the proposed method can adapt to network dynam-

ics in optimizing the configuration variables and meeting the

latency and accuracy requirements.
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