
FedX: Optimization Techniques for Federated
Query Processing on Linked Data

Andreas Schwarte1, Peter Haase1, Katja Hose2,
Ralf Schenkel2, and Michael Schmidt1

1fluid Operations AG, Walldorf, Germany
2Max-Planck Institute for Informatics, Saarbrücken, Germany

Abstract. Motivated by the ongoing success of Linked Data and the
growing amount of semantic data sources available on the Web, new chal-
lenges to query processing are emerging. Especially in distributed settings
that require joining data provided by multiple sources, sophisticated op-
timization techniques are necessary for efficient query processing. We
propose novel join processing and grouping techniques to minimize the
number of remote requests, and develop an effective solution for source
selection in the absence of preprocessed metadata. We present FedX, a
practical framework that enables efficient SPARQL query processing on
heterogeneous, virtually integrated Linked Data sources. In experiments,
we demonstrate the practicability and efficiency of our framework on a
set of real-world queries and data sources from the Linked Open Data
cloud. With FedX we achieve a significant improvement in query perfor-
mance over state-of-the-art federated query engines.

1 Introduction

In recent years, the Web more and more evolved from a Web of Documents to a
Web of Data. This development started a few years ago, when the Linked Data
principles [3] were formulated with the vision to create a globally connected data
space. The goal to integrate semantically similar data by establishing links be-
tween related resources is especially pursued in the Linking Open Data initiative,
a project that aims at connecting distributed RDF data on the Web. Currently,
the Linked Open Data cloud comprises more than 200 datasets that are inter-
linked by RDF links, spanning various domains ranging from Life Sciences over
Media to Cross Domain data.

Following the idea of Linked Data, there is an enormous potential for inte-
grated querying over multiple distributed data sources. In order to join infor-
mation provided by these different sources, efficient query processing strategies
are required, the major challenge lying in the natural distribution of the data.
A commonly used approach for query processing in this context is to integrate
relevant data sets into a local, centralized warehouse. However, accounting for
the decentralized structure of the Semantic Web, recently one can observe a
paradigm shift towards federated approaches over the distributed data sources

with the ultimate goal of virtual integration [8, 13, 14, 16]. From the user per-
spective this means that data of multiple heterogeneous sources can be queried
transparently as if residing in the same database.

While there are efficient solutions to query processing in the context of RDF
for local, centralized repositories [5, 15, 23], research contributions and frame-
works for federated query processing are still in the early stages. Available sys-
tems offer poor performance, do not support the full SPARQL standard, and/or
require local preprocessed metadata and statistics. The problem we deal with
in this work is to find optimization techniques that allow for efficient SPARQL
query processing on federated Linked Data. Our goal is to provide optimizations
that do not require any preprocessing – thus allowing for on-demand federation
setup – and that are realizable using SPARQL 1.0 language features. Given that
in a distributed setting communication costs induced by network latency and
transfer of data are a considerable factor, we claim that reducing the number of
(remote) requests that are necessary to answer a query must be minimized. Thus,
join processing strategies as well as other sophisticated optimization approaches
are needed to find an appropriate solution.

In summary, our contributions are:

• We propose novel optimization techniques for federated RDF query processing
(Section 3), including new join processing strategies for query processing
targeted at minimizing the number of requests sent to federation members,
mechanisms to group triple patterns that can be exclusively evaluated at
single endpoints, and an effective approach for source selection without the
need of preprocessed metadata.

• We present FedX (Section 4), a practical framework allowing for virtual inte-
gration of heterogeneous Linked Open Data sources into a federation. Our
novel sophisticated optimization techniques combined with effective vari-
ants of existing approaches constitute the FedX query processing engine and
allow for efficient SPARQL query processing. Linked Data sources can be
integrated into the federation on-demand without preprocessing.

• We evaluate our system (Section 5) using experiments with a set of real-world
queries and data sources. We demonstrate the practicability and efficiency
of our framework on the basis of real data from the Linked Open Data cloud
and compare our performance to other competitive systems.

2 Related Work

Driven by the success of Linked Data, recently various solutions for federated
query processing of heterogeneous RDF data sources have been discussed in the
literature. A recent overview and analysis of federated data management and
query optimization techniques is presented in [6]. [9,10] discuss the consumption
of Linked Data from a database perspective. Federated query processing from a
relational point of view has been studied in database research for a long time

[11,21]. Although the architectures and optimization approaches required in the
context of RDF query processing have the same foundation, several problems
arise due to differences in the data models.

Generally, in the context of Linked Data query processing, we can distinguish
(a) bottom-up strategies that discover sources during query processing by fol-
lowing links between sources, and (b) top-down strategies that rely on upfront
knowledge about relevant sources [7,12]. Several bottom-up techniques including
active discovery of new sources based on Linked Data HTTP lookups have been
proposed in the literature [8,13]. New relevant sources are discovered at runtime
by following URIs of intermediate results using an iterator-based pipelining ap-
proach [8] or using the novel Symmetric Index Hash Join operator [13].

In our work, we focus on top-down strategies, where the relevant sources
are known, hence guaranteeing sound and complete results over a virtually in-
tegrated data graph. In the research community various systems implementing
these strategies have been proposed. DARQ [16] is a query engine allowing for
SPARQL query processing on a number of (distributed) SPARQL endpoints.
DARQ uses so-called service descriptions to summarize capabilities and statis-
tics of data providers. This information is used in the optimization steps for
source selection, i.e. sources for a triple pattern are determined based on predi-
cate index lookups. Consequently, DARQ restricts query processing to queries in
which all predicates are bound. A similar approach is employed in SemWIQ [14].
SemWIQ uses a concept-based approach and performs source selection based on
type information of RDF entities available in a local dynamic catalog. SemWIQ
requires that all subjects in a SPARQL query are variables. In addition, the type
of each subject must be explicitly or implicitly known. In contrast to previous
systems, our solution does not need any local preprocessed metadata since a
different technique is employed for source selection. This makes it suitable for
on-demand federation setup and practical query processing. Moreover, there is
no limitation with respect to the SPARQL query language.

The W3C’s SPARQL Working Group started to work on language extensions
targeting the requirements and challenges arising in the context of distributed
SPARQL processing. In a recent working draft1, they propose the SERVICE oper-
ator, which allows for providing source information directly within the SPARQL
query. In addition, BINDING clauses are introduced, which make it possible to
efficiently communicate constraints to SPARQL endpoints. [2] provides a for-
mal semantics for these features and presents a system called SPARQL DQP,
which is capable of interpreting the new SERVICE keyword. SPARQL DQP does
not need any preprocessed metadata, however, requires the endpoint to inter-
pret SPARQL 1.1, which is typically not implemented in existing endpoints, as
SPARQL 1.1 is currently available as a W3C working draft only.

In contrast to SPARQL DQP, FedX does not require any SPARQL 1.1 ex-
tensions and achieves automatic source selection over a set of defined sources
(which can be dynamically extended) without additional input from the user.
Thus, query formulation is more intuitive for the user, while query processing

1 http://www.w3.org/TR/sparql11-federated-query/

in most cases is as efficient as with manual specification of service providers. In
fact, this is not a restriction: when implementing the SPARQL 1.1 federation ex-
tensions in a future release, FedX can exploit the SERVICE keyword for improved
source selection and use the BINDING clauses to further optimize queries.

Statistics can influence performance tremendously in a distributed setting.
The VoID vocabulary (Vocabulary of Interlinked Datasets) [1] allows to specify
various statistics and features of datasets in a uniform way at the endpoint.
In addition, the SPARQL Working Group proposes the SPARQL 1.1 service
descriptions2, which allow discovery of basic information about the SPARQL
service. Although these (remote) statistics are a good foundation for various
optimizations, the expressiveness is limited to basic statistics, such as the number
of triples or distinct subjects. Currently, we focus on optimizations without these
statistics, yet we are planning to incorporate them in a future release.

3 Optimization Techniques for Federated Linked Data

In a federated setting with distributed data sources it is important to optimize
the query in such a way that the number of intermediate requests is minimized,
while still guaranteeing fast execution of the individual requests. While we sup-
port full SPARQL 1.0, our optimization techniques focus on conjunctive queries,
namely basic graph patterns (BGPs). A BGP is a set of triple patterns, a triple
pattern being a triple (subject, predicate, object) with variables in zero
or more positions.

Given that the SPARQL semantics is compositional, our strategy is to apply
the optimizations to all conjunctive subqueries independently (including, e.g.,
BGPs nested inside OPTIONAL clauses) to compute the intermediate result
sets. Since we aim at a practical federation framework capable of on-demand
configuration, we additionally focus on optimizations that do not require pre-
processed metadata and that are realizable using SPARQL 1.0.

In practice, there are two basic options to evaluate a SPARQL query in a
federated setting: either (1) all triple patterns are individually and completely
evaluated against every endpoint in the federation and the query result is con-
structed locally at the server or (2) an engine evaluates the query iteratively
pattern by pattern, i.e., starting with a single triple pattern and substituting
mappings from the pattern in the subsequent evaluation step, thus evaluating
the query in a nested loop join fashion (NLJ). The problem with (1) is that, in
particular when evaluating queries containing non-selective triple patterns (such
as e.g. (?a,sameAs,?b)), a large amount of potentially irrelevant data needs to
be shipped from the endpoints to the server. Therefore, we opt for the second
approach. The problem with (2), though, is that the NLJ approach causes many
remote requests, in principle one for each join step. We show that, with careful
optimization, we can minimize the number of join steps (e.g., by grouping triple
patterns) and minimize the number of requests sent in the NLJ approach.

2 http://www.w3.org/TR/sparql11-service-description/

3.1 Federated Query Processing Model

In our work, we focus on top-down strategies, where a set of user-configured
sources is known at query time, hence guaranteeing sound and complete results
over a virtually integrated data graph. Figure 1 depicts our federated query pro-
cessing model, which closely follows the common workflow for general distributed
query processing [11]. First, the SPARQL query is parsed and transformed into
an internal representation (cf. Figure 2). Next, the relevant sources for each triple
pattern are determined from the configured federation members using SPARQL
ASK requests in conjunction with a local cache (Section 3.2). The remaining op-
timization steps include join order optimization (Section 3.3) as well as forming
exclusive groups (Section 3.4). The outcome of the optimization step is the ac-
tual query execution plan. During query execution, subqueries are generated and
evaluated at the relevant endpoints. The retrieved partial results are aggregated
locally and used as input for the remaining operators. For iterative join pro-
cessing the bound joins technique (Section 3.5) is applied to reduce the number
of remote requests. Once all operators are executed, the final query result is
returned to the client.

SPARQL Request Query Result

Parsing Source Selection Query Execution
(Bound Joins)

Global Optimizations
(Groupings + Join Order)

SPARQL
Endpoint 1 . . .

Subquery Generation:
Evaluation at

Relevant Endpoints

Local
Aggregation of
Partial ResultsCache

Per Triple Pattern

SPARQL ASK queries
SPARQL

Endpoint 2
SPARQL

Endpoint N

Fig. 1: Federated Query Processing Model

As a running example, Figure 2 depicts Life Science query 6 from our bench-
mark collections (Section 5) and illustrates the corresponding unoptimized query
plan. The query computes all drugs in Drugbank3 belonging to the category “Mi-
cronutrient” and joins computed information with corresponding drug names
from the KEGG dataset4. A standard SPARQL query processing engine imple-
menting the NLJ technique evaluates the first triple pattern in a single request,
while the consecutive joins are performed in a nested loop fashion meaning that
intermediate mappings of the left join argument are fed into the right join pattern
one by one. Thus, the number of requests directly correlates with the number
of intermediate results. In a federation, it must additionally be ensured that the
endpoints appear virtually integrated in a combined RDF graph. This can in
practice be achieved by sending each triple pattern to all federation members,
using the union of partial results as input to the next operator.

3 http://www4.wiwiss.fu-berlin.de/drugbank/
4 http://kegg.bio2rdf.org/sparql

SELECT ?drug ?title WHERE {

?drug drugbank:drugCategory drugbank-category:micronutrient .

?drug drugbank:casRegistryNumber ?id .

?keggDrug rdf:type kegg:Drug .

?keggDrug bio2rdf:xRef ?id .

?keggDrug purl:title ?title .

}

π ?drug,?title

⋊⋉

⋊⋉

⋊⋉

⋊⋉

(?drug, d:drugCat, d:micronutr) (?drug, d:cas, ?id)

(?keggDrug, rdf:type, kegg:Drug)

(?keggDrug, bio2rdf:xRef, ?id)

(?keggDrug, dc:title, ?title)

1

Fig. 2: Life Science Query 6 and the Corresponding Unoptimized Query Plan.

3.2 Source Selection

Triple patterns of a SPARQL query need to be evaluated only at those data
sources that can contribute results. In order to identify these relevant sources, we
use an effective technique, which does not require preprocessed metadata: before
optimizing the query, we send SPARQL ASK queries for each triple pattern to the
federation members and, based on the results, annotate each pattern in the query
with its relevant source(s). Although this technique possibly overestimates the
set of relevant data sources (e.g., for (?s, rdf:type, ?o) any data source will
likely match during source selection, however, during join evaluation with actual
mappings substituted for ?s and ?o there might not be results), in practical
queries many triple patterns are specific to a single data source. Note also that
FedX uses a cache to remember binary provenance information (i.e., whether
source S is relevant/irrelevant for a triple pattern) in order to minimize the
number of remote ASK queries.

Source selection has been discussed in previous works, e.g., [7, 14, 16]. How-
ever, existing approaches either require extensive local metadata or are too
restrictive with respect to the SPARQL query language. In DARQ [16], for
instance, relevant sources are determined using predicate lookups in so-called
preprocessed service descriptions, hence requiring all predicates to be bound
in a SPARQL query. The SPARQL 1.1 federation extension requires to spec-
ify sources in the query using the SERVICE keyword. In our approach we do not
oblige the user to specify sources, while still offering efficient query computation.

3.3 Join Ordering

The join order determines the number of intermediate results and is thus a
highly influential factor for query performance. For the federated setup, we pro-
pose a rule-based join optimizer, which orders a list of join arguments (i.e., triple
patterns or groups of triple patterns) according to a heuristics-based cost estima-
tion. Our algorithm uses a variation of the variable counting technique proposed
in [22] and is depicted in Algorithm 1. Following an iterative approach it deter-
mines the argument with lowest cost from the remaining items (line 5-10) and
appends it to the result list (line 13). For cost estimation (line 6) the number of
free variables is counted considering already bound variables, i.e., the variables
that are bound through a join argument that is already ordered in the result list.

Additionally, we apply a heuristic that prefers exclusive groups (c.f. Section 3.4)
since these in many cases can be evaluated with the highest selectivity.

Algorithm 1 Join Order Optimization

order(joinargs: list of n join arguments) {
1: left← joinargs
2: joinvars← ∅
3: for i = 1 to n do
4: mincost←MAX VALUE
5: for all j ∈ left do
6: cost← estimateCost(j, joinvars)
7: if cost < mincost then
8: arg ← j
9: mincost← cost
10: end if
11: end for
12: joinvars← joinvars ∪ vars(arg))
13: result[i]← arg
14: left← left− arg
15: end for
16: return result }

3.4 Exclusive Groups

High cost in federated query processing results from the local execution of joins
at the server, in particular when joins are processed in a nested loop fashion.
To minimize these costs, we introduce so-called exclusive groups, which play a
central role in the FedX optimizer:

Definition 1. Let t1 . . . tn be a set of triple patterns (corresponding to a conjunctive
query), S1 . . . Sn be distinct data sources, and St the set of relevant sources for triple
pattern t. For s ∈ {S1, . . . , Sn} we define Es := {t | t ∈ {t1..tn} s.t. St = {S} } as the
exclusive groups for source S, i.e. the triple patterns whose single relevant source is S.

Exclusive groups with size ≥ 2 can be exploited for query optimization in a
federated setting: instead of sending the triple patterns of such a group sequen-
tially to the (single) relevant source, we can send them together (as a conjunc-
tive query), thus executing them in a single subquery at the respective endpoint.
Hence, for such groups only a single remote request is necessary, which typically
leads to a considerably better performance because the amount of data to be
transferred through the network and the number of requests often can be mini-
mized by evaluating the subquery at the endpoint. This is because in many cases
triple patterns that are not relevant for the final result are filtered directly at
the endpoint, and on the other hand because the communication overhead of
sending subqueries resulting from a nested loop join is avoided entirely. Correct-
ness is guaranteed as no other data source can contribute to the group of triple
patterns with further information.

In Figure 3, we illustrate the optimized query execution plan for our running
example. During source selection, we annotate each triple pattern with its rele-
vant sources and identify two exclusive groups, denoted as

∑
excl. For this query,

we can reduce the number of local joins from four to just two.

π ?drug,?title

⋊⋉

⋊⋉
∑

excl

@ drugbank
(?drug, d:drugCat, d:micronutr.)

@ drugbank

(?drug, d:cas, ?id)

@ drugbank

∑
excl

@ KEGG
(?keggDrug, rdf:type, kegg:Drug)

@ KEGG

(?keggDrug, bio2rdf:xRef, ?id)

@ KEGG

(?keggDrug, dc:title, ?title)

@ drugbank, KEGG, dbpedia

Fig. 3: Execution Plan of Life Science Query 6 (Including Optimizations)

3.5 Bound Joins

By computing the joins in a block nested loop fashion, i.e., as a distributed
semijoin, it is possible to reduce the number of requests by a factor equivalent to
the size of a block, in the following referred to as an input sequence. The overall
idea of this optimization is to group a set of mappings in a single subquery using
SPARQL UNION constructs. This grouped subquery is then sent to the relevant
data sources in a single remote request. Finally, some post-processing is applied
locally to retain correctness. We propose the bound join technique and discuss
the technical insights below.

In the following, we illustrate bound join processing for the triple pattern
(?S, name, ?O). For the example, assume that values for ?S have been com-
puted yielding the input sequence I :=[?S=Person1,?S=Person2,?S=Person3].
Further, let us assume that the database (where we evaluate the triple pattern)
contains the RDF triples t1=(Person1, name, ‘Peter’) and t2=(Person3,

name, ‘Andreas’). When evaluating the query sequentially for the bindings in
the input sequence I, we obtain the result depicted in Figure 4 a). While the
naive NLJ approach requires distinct subqueries for each input mapping substi-
tuted into the triple pattern (e.g., Person1, name, ?O), our bound join solution
allows to evaluate the complete input sequence in a single grouped subquery. The
concrete subquery for this example is depicted in Figure 4 b).

a) Expected Result b) SPARQL subquery c) Subquery result

?S ?O
Person1 Peter
Person3 Andreas

SELECT ?O_1 ?O_2 ?O_3 WHERE {
{ Person1 name ?O_1 } UNION
{ Person2 name ?O_2 } UNION
{ Person3 name ?O_3} }

?O 1 ?O 2 ?O 3
Peter

Andreas

Fig. 4: Sample execution for bound join processing of (?S, name, ?O)

To guarantee correctness of the final result, we have to address three issues
within the subquery: (1) we need to keep track of the original mappings, (2) pos-
sibly not all triple patterns yield results, and (3) the results of the subquery may
be in arbitrary order. Our solution to this is an effective renaming technique: we
annotate variable names in the subquery with the index of the respective map-
ping from the input sequence, e.g., for the first input mapping the constructed
bound triple pattern is (Person1, name, ?O 1). This renaming technique al-
lows to implicitly identify correspondences between partial subquery results and
input mappings in a post-processing step. Figure 4 c) depicts the results of this
subquery evaluated against our sample database. In the post-processing step

the final result is reconstructed by matching the retrieved partial results to the
corresponding input mapping using the index annotation in the variable name,
and then performing the inverse renaming. In our running example, for instance,
variable ?O 1 is linked to the first position in the input sequence; therefore, the
binding from ?O 1 to ‘Peter’ is combined with the first binding for ?S in the
input sequence, yielding the first result in Figure 4 a). Bound join processing
can be trivially generalized to an input sequence of N mappings. For a detailed
formalization and a technical discussion we refer the interested reader to [19].

A similar technique is discussed in [6, 24]. The authors propose to use a
distributed semijoin sending the buffered mappings as additional conditions in
a SPARQL FILTER expression. Although the theory behind this technique is
similar to bound joins, in practice it is far less efficient than using UNIONs. We
observed that for many available SPARQL endpoints the whole extension for
a triple pattern is evaluated prior to applying the FILTER expressions. In the
working draft for SPARQL 1.1 federation extensions, the W3C proposes the
BINDINGS keyword to efficiently communicate constraints in the form of map-
pings to SPARQL endpoints, allowing to process sets of mappings corresponding
to a block in a single subquery. We achieve a distributed semijoin without re-
quiring this feature, using only SPARQL 1.0 language constructs. Clearly, our
approach can easily be extended to utilize SPARQL 1.1 BINDINGS in the future.

4 FedX - Implementation

Having introduced various optimizations for distributed federated query process-
ing on Linked Data, in this section we present FedX5, a solution implementing
the previously discussed techniques. FedX represents a practical solution for ef-
ficient federated query processing on heterogeneous, virtually integrated Linked
Data sources. The practicability of FedX has been demonstrated in various sce-
narios in the Information Workbench6 [20].

4.1 Architecture & Design

FedX has been developed to provide an efficient solution for distributed query
processing on Linked Data. It is implemented in Java and extends the Sesame
framework with a federation layer. FedX is incorporated into Sesame as SAIL

(Storage and Inference Layer), which is Sesame’s mechanism for allowing seam-
less integration of standard and customized RDF repositories. The underlying
Sesame infrastructure enables heterogeneous data sources to be used as end-
points within the federation. On top of Sesame, FedX implements the logics for
efficient query execution in the distributed setting utilizing the basic Sesame
infrastructure (i.e., query parsing, Java mappings, I/O components) and adding
the necessary functionality for data source management, endpoint communica-
tion and – most importantly – optimizations for distributed query processing.

5 http://www.fluidops.com/FedX
6 http://www.fluidops.com/information-workbench/

In FedX, data sources can be added to a federation in the form of any im-
plementation of a Sesame repository. Standard implementations are provided
for local, native Sesame repositories as well as for remote SPARQL endpoints.
Furthermore, customized mediators can be integrated by implementing the ap-
propriate Sesame interface. With these mediators different types of federations
are possible: SPARQL federations integrating (remote) SPARQL endpoints, local
federations consisting of native, local Sesame repositories, or hybrid forms. In the
SPARQL federation, communication with the endpoints is done using HTTP-
based SPARQL requests, while in the local case the native Java interfaces are
employed. In the remainder of this paper, we focus on SPARQL federations.

4.2 Parallelization

Query processing in a federated, distributed environment is highly parallelizable
meaning that different subqueries can be executed at the data sources concur-
rently. FedX incorporates a sophisticated parallelization infrastructure, which
uses a multithreaded worker pool to execute the joins, i.e., bound joins (Sec-
tion 3.5), and union operators in a highly parallelized fashion. In addition, we
employ a pipelining approach such that intermediate results can be processed in
the next operator as soon as they are ready – yielding higher throughput.

The parallelization architecture in FedX is realized by means of a Scheduler

implementation managing a set of ParallelTasks and a pool of WorkerThreads.
A ParallelTask refers to a prepared subquery to be executed at a particular
data source. As an example, consider a task representing a single step of a nested
loop join. In the scheduler, all tasks are maintained in a FIFO queue that the
workers pull new tasks from. To reduce synchronization costs, worker threads
are paused when they are idle, and notified when there are new tasks available.
Note that only a single worker thread is notified if a new task arrives to avoid
unnecessary synchronization overhead. Moreover, worker threads only go to sleep
when there are no further tasks in the queue to avoid context switches. After
experimenting with different configurations, we defined 25 worker threads for
the scheduler as default.

4.3 Physical Join and Union Operators

For the physical JOIN operator, we tested with two variants: (1) parallel execu-
tion using a simple nested loop join and (2) our bound join technique, which we
call controlled worker join (CJ) and controlled bound worker join (CBJ), respec-
tively. Both variants generate tasks for each (block) nested loop iteration and
submit them to the scheduler (Section 4.2). The scheduler then takes care of the
controlled parallel execution of the tasks. For both, the CJ and CBJ implemen-
tation, synchronization is needed because the partial results of tasks belonging
to the same join are merged, i.e., all partial results of a particular join are added
to the same result set. In SPARQL federations, where (remote) requests cause
a certain base cost, the CBJ operator improves performance significantly (see
Section 5.2 for details) because the number of requests can be reduced tremen-
dously. This is also the default implementation used in a SPARQL federation.

Note that in local federations with native Sesame stores the first approach, i.e.,
the CJ operator, outperforms bound joins because simple subqueries with a sin-
gle triple pattern only, can be evaluated faster. This is because the data source
can be accessed through native Java interfaces using Sesame’s getStatements

method, i.e., without prior SPARQL query construction.
Similarly, we provide two implementations for the UNION operator: a syn-

chronous union (SU) and a controlled worker union (CU). The synchronous
union executes its operands in a synchronous fashion, i.e., one union task after
the other, thus avoiding synchronization overhead. In contrast, the controlled
worker union executes the particular operands using the above described par-
allelization infrastructure (Section 4.2). The decision which implementation to
use in a particular setup depends on the tradeoff between synchronization over-
head and execution cost of an operand. In a remote setup, for instance, FedX
benefits from parallel execution of a union since network latency and HTTP
overhead typically outweigh synchronization costs. Note that union in this con-
text does not solely refer to the SPARQL UNION operator but also to subqueries,
which have to be evaluated at several relevant data sources resulting in a union
of intermediate results. Consequently, for a SPARQL federation the controlled
worker union is the implementation of choice, and for a local federation unions
are evaluated using the synchronous union implementation. Note that SPARQL
UNIONs are always executed in the parallelization architecture described above.

5 Evaluation

In this section, we evaluate FedX and analyze the performance of our optimiza-
tion techniques. With the goal of assessing the practicability of our system, we
run various benchmarks and compare the results to state-of-the-art federated
query processing engines. In our benchmark, we compare the performance of
FedX with the competitive systems DARQ and AliBaba7 since these are compa-
rable to FedX in terms of functionality and the implemented query processing
approach. Unfortunately, we were not able to obtain a prototype of the system
presented in [2] for comparison.

5.1 Benchmark Setup

As a basis for our evaluation we use FedBench8 [17], a comprehensive bench-
mark suite, which in contrast to other SPARQL benchmarks [4, 18] focuses on
analyzing the efficiency and effectiveness of federated query processing strategies
over semantic data. FedBench covers a broad range of scenarios and provides a
benchmark driver to perform the benchmark in an integrative manner.

We select the Cross Domain (CD) as well as the Life Science (LS) data
collections from the FedBench benchmark. The reason for our choice lies in
the nature of the queries and data sets: both query sets implement realistic

7 http://www.openrdf.org/
8 FedBench project page: http://code.google.com/p/fbench/

queries on top of real-world data from the Linked Open Data cloud. The queries
focus on aspects relevant for query processing over multiple sources and vary
in join complexity, query result size, the number of data sources involved, and
structure (i.e., star shaped, chain, or hybrid). Figure 2 in Section 3.1 depicts
Life Science query 6 as an example; for space reasons we refer the interested
reader to the FedBench project page for the complete query set. To give a better
understanding of the queries, we summarize some characteristics in Table 1 a).
In particular, we depict the number of triple patterns, reference the number of
results on the domain’s data sets, and an estimate of the relevant data sources
(possibly overestimated).

The used data sources in the two scenarios are part of the Linked Open
Data cloud. Table 1 b) summarizes the included data collections. Details to the
datasets and various advanced statistics are provided at the FedBench project
page. To ensure reproducibility and reliability of the service, we conducted our
experiments on local copies of the SPARQL endpoints using the infrastructure
provided by FedBench, i.e. for each data source a local process is started publish-
ing the respective data as individual SPARQL endpoint; we did not introduce
an additional delay to simulate network latency. All federation engines access
the data sources via the SPARQL protocol.

For the respective scenarios, we specify the relevant data sources as feder-
ation members upfront (Cross Domain: DBpedia, NYTimes, LinkedMDB, Ja-
mendo, GeoNames; Life Sciences: KEGG, Drugbank, ChEBI, DBpedia). Note
that DARQ required additional preprocessing of the service descriptions, which
are needed for their source selection approach. The duration of this preprocessing
is depicted in Table 1 b). Even with 32GB RAM provided, a service description
for GeoNames could not be generated with DARQ’s tools. Hence, we had to
omit the evaluation of DARQ for queries CD6 and CD7 (which require data
from GeoNames). Thus, the federation for the Cross Domain scenario had one
member less for DARQ.

a) Query Characteristics b) Datasets

Cross Domain (CD) Life Science (LS) #Triples DARQ SD
#Tp. #Src #Res #Tp. #Src #Res DBpedia 43.6M 01:05:46

1 3 2 90 1 2 2 1159 NYTimes 335k 00:00:09
2 3 2 1 2 3 4 333 LinkedMDB 6.15M 01:07:39
3 5 5 2 3 5 3 9054 Jamendo 1.05M 00:00:20
4 5 5 1 4 7 2 3 GeoNames 108M n/a
5 4 5 2 5 6 3 393 KEGG 1.09M 00:00:18
6 4 4 11 6 5 3 28 Drugbank 767k 00:00:12
7 4 5 1 7 5 3 144 ChEBI 7.33M 00:01:16

Table 1: Query characteristics of benchmark queries (a) and datasets used (b):
Number of triple patterns (#Tp.), data sources (#Src) and results (#Res); num-
ber of triples included in datasets (#Triples) and preprocessing time for DARQ
Service Description (SD) in hh:mm:ss

All experiments are carried out on an HP Proliant DL360 G6 with 2GHz
4Core CPU with 128KB L1 Cache, 1024KB L2 Cache, 4096KB L3 Cache, 32GB
1333MHz RAM, and a 160 GB SCSI hard drive. A 64bit Windows 2008 Server

operating system and the 64bit Java VM 1.6.0 22 constitute the software envi-
ronment. Sesame is integrated in version 2.3.2 and AliBaba’s 2.0b3 build was
used. In all scenarios we assigned 20GB RAM to the process executing the query,
i.e. the query processing engine that is wrapped in the FedBench architecture.
In the SPARQL federation we additionally assign 1GB RAM to each individual
SPARQL endpoint process. For all experiments we defined a timeout of 10 min-
utes and all queries are executed 5 times, following a single warm-up run. All
systems are run in their standard configurations.

5.2 Experimental Results

Figure 5 summarizes our experimental results of the Cross Domain and Life Sci-
ence scenarios in a SPARQL federation. We depict the average query runtimes
for AliBaba, DARQ, and FedX in Figure 5 a). As an overall observation, we find
that FedX improves query performance significantly for most queries. Only in
Query CD2 DARQ outperforms FedX. The reason is that FedX’ exclusive group
optimization in this query is more expensive than using simple triple patterns
because the used SPARQL endpoint is more efficient for simple triple patterns
for very small intermediate result sets (which is the case in this query as each
triple pattern yields only a single result). For many queries the total runtime is
improved by more than an order of magnitude. Moreover, timeouts and evalua-
tion errors for this set of realistic queries are removed entirely. The improvement
is best explained by the reduction in the number of requests, for which we pro-
vide a detailed analysis below. With our optimization techniques, we are able
to reduce the number of requests significantly, e.g., from 170,579 (DARQ) and
93,248 (AliBaba) to just 23 (FedX) for query CD3. Such a reduction is made pos-
sible by the combined use of our optimization approaches, in particular source
selection, exclusive groups, join reordering, and bound joins. Note that query
CD2 and LS2 are not supported in DARQ since the query contains an unbound
predicate, and that CD6 and CD7 are omitted since we were not able to generate
the service description with 32GB RAM.

To measure the influence of caching the results of ASK requests during source
selection, we performed a benchmark with activated and deactivated cache. The
results are summarized in Figure 5 b). We observe that there is a slight overhead
due to the additional communication. However, even with these ASK requests
FedX significantly outperforms the state-of-the art systems for most queries.
Our source selection technique – which in contrast to DARQ does not need
preprocessed metadata – thus is effective in the federated setting.

Figure 5 c) summarizes the total number of requests sent to the data sources
during query evaluation in the SPARQL federation. In particular, we indicate
the results for AliBaba and DARQ, as well as for FedX with a nested loop imple-
mentation of the controlled worker join (CJ) and in the bound join variant using
the controlled worker bound join (CBJ). These numbers immediately explain the
improvements in query performance of FedX. With our optimization techniques,
FedX is able to minimize the number of subqueries necessary to process the
queries. Consider as an example query CD5: FedX is able to answer this query

a) Benchmark Results

 0.01

 0.1

 1

 10

 100

 1000

CD1 CD2 CD3 CD4 CD5 CD6 CD7 LS1 LS2 LS3 LS4 LS5 LS6 LS7

E
va

lu
at

io
n

T
im

e
(s

)

T
im

eo
ut

T
im

eo
ut

(E
va

lu
at

io
n

E
rr

or
)

T
im

eo
ut

(E
va

lu
at

io
n

E
rr

or
)

(E
va

lu
at

io
n

E
rr

or
)

(N
ot

 s
up

po
rt

ed
)

T
im

eo
ut

(N
ot

 s
up

po
rt

ed
)

(N
ot

 s
up

po
rt

ed
)

(N
ot

 s
up

po
rt

ed
)

T
im

eo
ut

SPARQL Federation (AliBaba)
SPARQL Federation (DARQ)
SPARQL Federation (FedX)

AliBaba DARQ FedX
CD1 0.125 x 0.015
CD2 0.807 0.019 0.330
CD3 >600 >600 0.109
CD4 >600 19.641 0.100
CD5 # 294.890 0.097
CD6 17.499 x 0.281
CD7 3.623 x 0.324
LS1 1.303 0.053 0.047
LS2 0.441 x 0.016
LS3 >600 133.414 1.470
LS4 20.370 0.025 0.001
LS5 12.504 55.327 0.480
LS6 # 3.236 0.034
LS7 # >600 0.481

x not supported

evaluation error

b) Caching in FedX c) Number of Requests d) Join Operators
No Caching Caching AliBaba DARQ FedX CJ FedX CBJ CJ CBJ

CD1 0.044 0.015 CD1 27 x 7 7 CD1 0.016 0.015
CD2 0.374 0.330 CD2 22 5 2 2 CD2 0.349 0.330
CD3 0.219 0.109 CD3 (93,248) (170,579) 63 23 CD3 0.203 0.109
CD4 0.134 0.100 CD4 (372,339) 22,331 69 38 CD4 0.134 0.100
CD5 0.131 0.097 CD5 (117,047) 247,343 35 18 CD5 0.115 0.097
CD6 0.508 0.281 CD6 6,183 x 2,457 185 CD6 1.560 0.281
CD7 0.449 0.324 CD7 1,883 x 1,508 138 CD7 1.336 0.324
LS1 0.062 0.047 LS1 13 1 1 1 LS1 0.053 0.047
LS2 0.038 0.016 LS2 61 x 38 18 LS2 0.025 0.016
LS3 2.202 1.470 LS3 (410) 101,386 14,221 2059 LS3 5.435 1.470
LS4 0.018 0.001 LS4 21,281 3 3 3 LS4 0.001 0.001
LS5 0.633 0.480 LS5 16,621 2,666 6,537 458 LS5 2.146 0.480
LS6 0.063 0.034 LS6 (130) 98 315 45 LS6 0.103 0.034
LS7 0.686 0.481 LS7 (876) (576,089) 5,027 485 LS7 1.763 0.481

Fig. 5: Experimental Results of Cross Domain (CD) and Life Science (LS) Queries
in SPARQL Federation: a) Benchmark Results of AliBaba, DARQ, and FedX. b) In-
fluence of Caching ASK Requests for Source Selection. c) Total Number of Requests
sent to Endpoints; Parentheses Indicate Timeouts after 10min or Evaluation Errors. d)
Comparison of Join Operator Implementations in the SPARQL Federation: Controlled
Worker Join (CJ), Controlled Worker Bound Join (CBJ). All Runtimes in Seconds.

in just 18 requests, while DARQ needs 247,343. This is obviously immediately
reflected in query runtime, which is just 0.097s in the case of FedX and 294.890s
for DARQ. Note that the timeouts and the long runtimes of AliBaba and DARQ
are easily explained with the number of requests sent to the endpoints.

In Figure 5 d) we compare the physical join operators of the controlled worker
join (CJ) and controlled worker bound join (CBJ), which use the NLJ and bound
joins (BNLJ) technique, respectively. We observe that the CBJ implementation
significantly improves performance over the simple CJ variant since in a SPARQL
federation we tremendously benefit from the reduction in the number of requests
due to bound joins.

6 Conclusion and Outlook

In this paper, we proposed novel optimization techniques for efficient SPARQL
query processing in the federated setting. As revealed by our benchmarks, bound
joins combined with our grouping and source selection approaches are effective
in terms of performance. By minimizing the number of intermediate requests, we
are able to improve query performance significantly compared to state-of-the-
art systems. We presented FedX, a practical solution that allows for querying
multiple distributed Linked Data sources as if the data resides in a virtually
integrated RDF graph. Compatible with the SPARQL 1.0 query language, our
framework allows clients to integrate available SPARQL endpoints on-demand
into a federation without any local preprocessing. While we focused on optimiza-
tion techniques for conjunctive queries, namely basic graph patterns (BGPs),
there is additional potential in developing novel, operator-specific optimization
techniques for distributed settings (in particular for OPTIONAL queries), which
we are planning to address in future work. As our experiments confirm, the opti-
mization of BGPs alone (combined with common equivalence rewritings) already
yields significant performance gains.

Important features for federated query processing are the federation exten-
sions proposed for the upcoming SPARQL 1.1 language definition. These allow
to specify data sources directly within the query using the SERVICE operator, and
moreover to attach mappings to the query as data using the BINDINGS operator.
When implementing the SPARQL 1.1 federation extensions for our next release,
FedX can exploit these language features to further improve performance. In
fact, the SPARQL 1.1 SERVICE keyword is a trivial extension, which enhances
our source selection approach with possibilities for manual specification of new
sources and gives the query designer more control.

Statistics can influence performance tremendously in a distributed setting.
Currently, FedX does not use any local statistics since we follow the design goal
of on-demand federation setup. We aim at providing a federation framework, in
which data sources can be integrated ad-hoc, and used immediately for query
processing. In a future release, (remote) statistics (e.g., using VoID [1]) can be
incorporated for source selection and to further improve our join order algorithm.

Acknowledgments

Research reported in this paper was partially supported by the German BMBF
in the project CollabCloud. http://collabcloud.de/

References

1. Keith Alexander, Richard Cyganiak, Michael Hausenblas, and Jun Zhao. Describ-
ing linked datasets - on the design and usage of void. In In Linked Data on the
Web Workshop (LDOW 09), in conjunction with WWW ’09, 2009.

2. Carlos Buil Aranda, Oscar Corcho, and Marcelo Arenas. Semantics and optimiza-
tion of the SPARQL 1.1 federation extension. In ESWC. Springer, 2011.

3. Tim Berners-Lee. Linked data - design issues. Retrieved August 25th, 2011,
http://www.w3.org/DesignIssues/LinkedData.html, 2006.

4. Christian Bizer and Andreas Schultz. The Berlin SPARQL Benchmark. Int. J.
Semantic Web Inf. Syst., 5(2):1–24, 2009.

5. Orri Erling and Ivan Mikhailov. RDF support in the virtuoso DBMS. In CSSW,
volume 113 of LNI, pages 59–68. GI, 2007.

6. Olaf Görlitz and Steffen Staab. Federated Data Management and Query Opti-
mization for Linked Open Data. In New Directions in Web Data Management.
Springer, 2011.

7. Andreas Harth, Katja Hose, Marcel Karnstedt, Axel Polleres, Kai-Uwe Sattler,
and Jürgen Umbrich. Data summaries for on-demand queries over linked data. In
WWW, 2010.

8. Olaf Hartig, Christian Bizer, and Johann-Christoph Freytag. Executing SPARQL
Queries over the Web of Linked Data. In ISWC 2009. Springer, 2009.

9. Olaf Hartig and Andreas Langegger. A database perspective on consuming linked
data on the web. Datenbank-Spektrum, 10:57–66, 2010.

10. Katja Hose, Ralf Schenkel, Martin Theobald, and Gerhard Weikum. Database
Foundations for Scalable RDF Processing. In Reasoning Web. Springer, 2011.

11. Donald Kossmann. The state of the art in distributed query processing. ACM
Computing Surveys, 32(4):422–469, 2000.

12. Günter Ladwig and Duc Tran Thanh. Linked Data Query Processing Strategies.
In ISWC, 2010.

13. Günter Ladwig and Duc Tran Thanh. SIHJoin: Querying Remote and Local Linked
Data. ESWC, 2011.

14. Andreas Langegger, Wolfram Wöß, and Martin Blöchl. A semantic web middleware
for virtual data integration on the web. In ESWC, pages 493–507. Springer, 2008.

15. Thomas Neumann and Gerhard Weikum. The RDF-3X engine for scalable man-
agement of RDF data. The VLDB Journal, 19:91–113, 2010.

16. Bastian Quilitz and Ulf Leser. Querying Distributed RDF Data Sources with
SPARQL. In ISWC, volume 5021, pages 524–538. Springer, 2008.

17. Michael Schmidt, Olaf Görlitz, Peter Haase, Günter Ladwig, Andreas Schwarte,
and Thanh Tran. FedBench: A Benchmark Suite for Federated Semantic Data
Query Processing. In ISWC. Springer, 2011.

18. Michael Schmidt, Thomas Hornung, Georg Lausen, and Christoph Pinkel.
SP2Bench: A SPARQL Performance Benchmark. In ICDE, pages 222–233, 2009.

19. Andreas Schwarte. FedX: Optimization Techniques for Federated Query Processing
on Linked Data. Master’s thesis, Saarland University, Germany, 2011.

20. Andreas Schwarte, Peter Haase, Katja Hose, Ralf Schenkel, and Michael Schmidt.
FedX: A Federation Layer for Distributed Query Processing on Linked Open Data.
In ESWC Poster and Demo Session Proceedings. Springer, 2011.

21. Amit P. Sheth. Federated Database Systems for Managing Distributed, Heteroge-
neous, and Autonomous Databases. In VLDB ’91, page 489, 1991.

22. Markus Stocker, Andy Seaborne, Abraham Bernstein, Christoph Kiefer, and Dave
Reynolds. SPARQL basic graph pattern optimization using selectivity estimation.
In WWW, pages 595–604. ACM, 2008.

23. Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. Hexastore: sextuple
indexing for semantic web data management. PVLDB, 1(1):1008–1019, 2008.

24. Jan Zemanek, Simon Schenk, and Vojtech Svatek. Optimizing SPARQL Queries
over Disparate RDF Data Sources through Distributed Semi-Joins. In ISWC 2008
Poster and Demo Session Proceedings. CEUR-WS, 2008.

