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Abstract Foveation-based processing and communica-

tion systems can exploit a more efficient representation

of images and videos by removing or reducing visual

information redundancy, provided that the sequence

of foveation points, the visual scanpath, can be deter-

mined. However, one point that is neglected by the

great majority of foveation models is the “noisy” vari-

ation of the random visual exploration exhibited by

different observers when viewing the same scene, or

even by the same subject along different trials. Here, a

model for the generation and control of scanpaths that

accounts for such issue is presented. In the model, the

sequence of fixations and gaze shifts is controlled by a

saliency-based, information foraging mechanism imple-

mented through a dynamical system switching between

two states, “feed” and “fly.” Results of the simulations

are compared with experimental data derived from

publicly available datasets.
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1 Introduction

Visual systems have a limited informational capacity

[13], in the sense that only a small part of information

present is registered, at any given time, and reaches

levels of processing that directly influence behavior.

The human retina possesses a nonuniform spatial

distribution (resolution) of photoreceptors, with high-

est density on that small part of the retina (about 2◦–5◦

of visual angle) aligned with the visual axis, the fovea.

The photoreceptor density rapidly decreases with dis-

tance away from the fovea; hence, the local visual fre-

quency bandwidth also falls away. As a result, when a

human observer gazes at a point in a real-world image,

a variable resolution image is transmitted through the

front visual channel into the high level processing units

in the human brain. By contrast, traditional digital com-

puter vision systems represent images on rectangular

uniformly sampled lattices.

The motivation behind foveation image and video

processing is that there exists considerable high-

frequency information redundancy in the peripheral

regions; thus, a much more efficient representation

of images can be obtained by removing or reducing

such information redundancy, bottom-up provided that

foveation points (fixations) can be discovered [46].

In this perspective, visual attention plays a central

role in that it controls and ensures that selected in-

formation is relevant to behavioral priorities and ob-

jectives. Kustov and Robinson have suggested that the

attentional process evolved as part of the motor system

[31] and eye movements are directly related to the

capability of the observer for exploring the environ-

ment. In particular, the human visual system exploits

saccades to actively reposition fixations on regions of
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interest (the so-called focus Of attention, FOA) so

as to extract detailed information from the visual en-

vironment. The succession of saccades and fixations

is referred to as a scanpath. A scanpath of a subject

scanning a natural scene is shown in Fig. 1: circular

spots and lines joining spots, graphically represent, re-

spectively, fixations and gaze shifts between subsequent

fixations.

The selection of a fixation point, which allows to set

the observer’s FOA on the foveated region, appears

to be driven by two different mechanisms: a “bottom-

up” process which produces rapid scans in a saliency-

driven, task-independent manner and a slower “top-

down” process which is object based, task dependent,

and volition controlled [39]. The degree to which these

two mechanisms play a role in determining attentional

selection under natural viewing conditions has been

for a long time under debate [39, 41]. Certainly, top-

down semantic influences do affect attentional guid-

ance: faces and text are very attractive and are difficult

to ignore, even if there is a real cost associated with

looking at them [10, 11].

Thus, the possibility of realizing foveation image

and video processing systems is strictly related to the

capability of coping with visual attention mechanisms.

The latter has gained currency in computer vision and

robotics systems (see [2, 8, 18] for in-depth surveys);

more recently, the efficient coding principle underlying

visual attention has been exploited for image/video

coding [7, 24, 32, 46] and image/video retrieval domains

[4, 15]. Also, work has been done on integrating the

Fig. 1 Different scanpaths on a pair of images eye tracked from
different human observers. Left, free viewing of a natural scene;
right, natural scene embedding a face. The area of yellow disks

marking fixations between saccades is proportional to fixation
time (images from the Fixations in FAces dataset)

human attention analysis into video quality assessment

(see [47] for a broad survey). The rationale behind

foveation coding and quality assessment is that it may

not be necessary or useful to encode each image or

video frame with uniform quality, since human ob-

servers will crisply perceive only a very small fraction

of each frame, dependent upon their current point of

fixation.

Despite of this flourishing interest in attention-based

image and video coding systems, one important point

that is neglected by the great majority of computational

models (cfr. the recent review by Borji and Itti [8]),

is the “noisy” variation of the exploration exhibited

by different observers when viewing the same scene.

Indeed, though some particular locations in the image

attract the gaze of different observers (and might be

predicted by bottom-up or top-down visual attention

models), the moment-to-moment relocation of gaze is

different among observers or even by the same subject

along different trials [30, 39]. This peculiar character-

istic can be appreciated by considering Fig. 1. Such

random variation in individual scanpaths (with regard

to chosen fixations, spatial scanning order, and fixation

duration) still holds even when the image contains

semantically rich “objects” (cfr. Fig. 1, images on the

right).

The variability of saccades is interesting because a

number of prior studies have shown that it occurs ubiq-

uitously, and it may mediate a variety of saccadic and

perceptual phenomena. At a low level, variability in

motor responses originates from endogenous stochastic

variations that affect each stage between a sensory

event and the motor response sensing, information

processing, movement planning, and executing [1]. At

this level, the issue of stochasticity in scanpaths, de-

bated in early studies [17, 37], may be more generally

understood on the basis that randomness assumes a

fundamental role in adaptive optimal control of gaze

shifts; in this perspective, variability is an intrinsic part

of the optimal control problem, rather than being sim-

ply “noise” [21].

At a higher level, it might reflect the individual’s

learnt knowledge of the structure of the world, the

distribution of objects of interest, and task parameters.

The latter factors can be summarized in terms of ocu-

lomotor tendencies or biases. Systematic tendencies in

oculomotor behavior can be thought of as regularities

that are common across all instances of and manipula-

tions to the behavior. Such tendencies can be seen, for

instance, in saccade amplitudes, which show a positively

skewed, long-tailed distribution in most experimental

settings in which complex scenes are viewed [43]. Un-

der certain conditions, these can provide a signature of
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the oculomotor behavior peculiar to an individual (the

idiosyncrasy of scanpaths [35]).

In a different perspective, by analyzing the spatial

pattern of gaze shifts—local exploration followed by

long shifts, see Fig. 2—Brockmann and Geisel [9] have

shown that a visual system producing Lévy flights im-

plements a more efficient strategy of shifting gaze in a

random visual environment than any strategy employ-

ing a typical scale in gaze shift magnitudes; evidence of

Lévy diffusive behavior of scanpath has been presented

in [42]. Indeed, such behavior gives rise to saccade

amplitude distributions of the kind discussed by Tatler

and Vincent [43].

Building upon [9], in [5], a gaze-shift model (the

Constrained Lévy Exploration, CLE) has been pro-

posed. Such model is somehow akin to models of simple

animal foraging, where the visual system hunts for areas

that are rich in visual saliency, under the assumption

that eye movements and animal foraging address in

some way the problem of searching randomly distrib-

uted sites whose exact locations are not known a priori.

Under the foraging metaphor, the eye (and the brain

modules controlling the eye behavior) is the forager,

the visual saliency surface is the foraging landscape,

points of fixations are foraging sites, and saccades are

flights from one site to another.

In [5], eye gaze shifts are modeled by Lévy flights,

constrained by a potential which is a function of the

saliency (landscape). Lévy flights, as opposed, for in-

stance, to usual random walk, may be essential for

optimal search in foraging, where optimality is related

to efficiency; that is, the ratio of the number of sites vis-

ited to the total distance traversed by the forager [45].

The model, while accounting for scanpath randomness,

roughly mimicked a straight reactive behavior of the

observer/forager with respect to the potential designed

on the basis of landscape saliency. In other terms, it rep-

resented a low-level layer of a complex sensorimotor

control module.

However, one could argue, from an evolutionary

standpoint, that specific search mechanisms could have

been subsequently learned and “wired” in order to

improve the exploration reliability and efficiency. For

example, it has been suggested [16] that to optimize the

search of the target sites, locomotion rules need to be

embedded within the search mechanism.

Thus, in [6], a model has been presented where the

process of random search can, under certain conditions

on the saliency of the image, be overruled by a simple

local deterministic rule, resulting in a hybrid dynamical

system (hybrid constrained search, HCS). Such process

can be seen as the result of the action of a higher-level

control system superimposed to the lower stochastic

one. This idea is consistent with view, dating back to

Jackson’s work [27], that the evolution of the nervous

system can be conceived as an incremental process

in which higher level control systems overrule lower

levels.

The results presented in [6] make clear that the

addition of deterministic rules results in more efficient

and robust processes of visual exploration. In this sense,

the layered organization of the HCS model provides a

better model of human gaze-shift behavior than CLE,

in that humans appear able to perform an efficient

scanpath under different environmental conditions.

Here, we extend the basic insight of HCS by taking

into account some issues which are critical in the char-

acterization and control of scanpath generation such

as the degree of information about the scanned scene

available to the observer, fixation duration, inhibition

of return (IOR) to the same fixation point. In the

following, it will be shown how the HCS model can

be extended so to embed such issues yielding to the

informed HCS model (IHCS).

2 Background

Consider a random walker moving under the influence

of an external force; at time t, the transition from the

current position r(t) to a new position rnew(t), r(t) →

rnew(t), is given by

rnew(t) = r(t) + g(r(t)) + η. (1)

The trajectory of the variable r is determined by a

deterministic part g, the drift, and a stochastic part η,

where η is a random vector with components

ηx = l cos(θ), ηy = l sin(θ), (2)

where the angle θ represents the flight direction and

l = |η| is the jump length.

If a uniform distribution of directions is assumed,

then, the walker’s motion is determined by the proba-

bility density function f from which amplitude l is sam-

pled, l ∼ f . For instance, if f is a Gaussian distribution,

the usual Brownian motion occurs.

However, Brownian motion is nothing but a special

case within the family of stochastic processes qualifying

as natural models for random noise sources. Other

types of motion can be generated by resorting to the

class of the so-called α-stable distributions [19]. These

form a four-parameter family of continuous probabil-

ity densities, say f (x; α, β, γ, δ), parametrized by the

skewness β (measure of asymmetry), scale γ (width of

the distribution) and location parameters δ and, most
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important, the characteristic exponent α or index of

the distribution that specifies the asymptotic behavior

of the distribution.

More precisely, a random variable X is said to have

a stable distribution if the parameters of its probability

density function (pdf) f (x; α, β, γ, δ) are in the follow-

ing ranges α ∈ (0; 2], β ∈ [−1; 1], γ > 0, δ ∈ R and if its

characteristic function E
[

exp(itx)
]

=
∫

R
exp(itx)dF(x),

F being the cumulative distribution function, can be

written as

E
[

exp(itx)
]

=

{

exp(−|γ t|α)(1 − iβ t
|t|

) tan(πα
2

) + iδt)

exp(−|γ t|(1 + iβ 2
π

t
|t|

ln |t|) + iδt)
.

The first expression holding if α �= 1 and the second

if α = 1.

Special cases of stable distributions whose pdf can

be written analytically are given for α = 2, the normal

distribution f (x; 2, 0, γ, δ), for α = 1, the Cauchy dis-

tribution f (x; 1, 0, γ, δ), and for α = 0.5, the Lévy dis-

tribution f (x; 0.5, 1, γ, δ); for all other cases, only the

characteristic function is available in closed form, and

numerical approximation techniques must be adopted

for both sampling and parameter estimation [12, 29, 34].

When stable distributions are used to characterize

the step lengths l of a random walker as given by

Eq. 1, since f scales, asymptotically, as l−1−α , then

relatively long jumps are more likely when α is small.

In fact, by sampling l ∼ f (l; α, β, γ, δ), for α ≥ 2, the

usual random walk (Brownian motion) occurs; if α < 2

, the distribution of jump lengths is “broad” and the so-

called Lev́y flights take place.

Examples of Lévy flights, obtained from Eq. 1 with

no drift (g = 0), are presented in Figs. 2b, c: these

typically exhibit local walk interleaved with long jumps

and should be compared to Brownian motion plot in

Fig. 2a. The bottom plot illustrates a random walk

pattern obtained as a composite process simulated by

sampling the step length from a mixture of two α-

stable distributions indexed by α1 = 2 and α2 = 1, re-

spectively, and mixture weights w1 = 0.4 and w2 = 0.6.

It is worth noting in the latter case that the walking

pattern could be identified as a Lévy pattern though, in

contrast with the other cases, the pattern is composite

(Brownian and Cauchy).

The general applicability of Lévy flights in ecology

and biological sciences is still open to debate, as recent

experimental data show that the movement patterns of

various marine predators and terrestrial animal exhibit

a Lévy walk pattern in areas with low abundance of

preys or foods and Brownian walk pattern (a sort of

food tracking) in areas with high abundance [14].

(a) Gaussian walk

(b) Levy walk´

(c) Levy walk (Cauchy)´

(d) Composite walk

Fig. 2 Different random walks obtained by sampling lengths l

for different α parameters; the walks shown have been generated
setting α = 2 in plot (Fig. 2a), α = 1.6 in plot (Fig. 2b), α = 1 in
plot (Fig. 2c); bottom plot (Fig. 2d) represents a composite walk
sampled from a mixture of two stable distributions indexed by
α = 2 and α = 1 parameters

Foraging patterns obtained through a composite

strategy have gained currency in the literature as being

the most effective from a behavioral and evolutionary

standpoint. Indeed, in complex environments, optimal

searches should result from a mixed/composite strategy

(generating patterns similar to that of Fig. 2d), different
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kinds of motion can be adopted depending on the

structure of the landscape in which the organism moves

[36, 38]. In order to account for a composite strategy

in a simple and efficient way, the HCS model was

introduced [6] whose basic features can be summarized

as follows.

Assume as input a color image. Each color image is a

vector, I, that is a map from the support 	 ⊆ R2 to an

m-dimensional range, I : 	 → C ⊆ Rm.

A saliency field s upon the image is a landscape upon

which the visual exploration is performed. Formally,

s is a scalar field obtained through a transformation

I 	→ s(I) ∈ R (see [8] for different ways of defining the

mapping).

Let r(t) ∈ 	 be the current position of the gaze, and

let ρ be an arbitrary positive number; define r∗(t) as

r∗(t) = arg max
r
′
(t)

{s(r
′

(t))}r
′
(t)∈Nr(t)

, (3)

where Nr(t) is the circle of radius ρ centered on r(t) and

r(t) �= r
′

(t), and let �s = s(r∗(t)) − s(r(t)).

The HCS model determines the next position rnew(t)

of the gaze, computed at time t, as follows.

Let ν > 0 be an arbitrary threshold and η a stochastic

vector with components (ηx, ηy)
T defined as in Eq. 2.

Finally, consider a potential V as a time-varying scalar

function of the saliency

V(x, y, t) = exp(−τVs(x, y, t)) (4)

where τV is a damping parameter.

Then, the next position rnew(t) is given by developing

Eq. 1 in the following system of equations:

rnew(t) = ξr∗(t) + (1 − ξ) [r(t) − ∇V + η] (5a)

ξ = H (�s − ν) (5b)

Here ,∇V is the gradient of V and H is the Heaviside

function.

If �s > ν, then ξ = 1 and the foraging eye is in the

intensive stage : the gaze moves directly to rnew(t) =

r∗(t); in other words, if there exist candidate target sites

within a “direct vision” distance ρ with associated an

increase of saliency large enough, the visual system

carries out a deterministic search selecting the one with

the largest saliency.

On the other hand, if ξ = 0, the extensive stage is

performed and Eq. 5a becomes

rnew(t) = r(t) − ∇V + η, (6)

showing that the new gaze position is determined by:

a) −∇V, the force field shaped by the saliency land-

scape; b) the stochastic vector η.

Direction and length of the random vector η are

sampled from the uniform and α-stable distribution,

respectively:

θ ∼ Unif (0, 2π), (7)

l ∼ ϕ(s) f (l; α, β, γ, δ). (8)

In [6], following [5] and [9], symmetric Cauchy flights

(α = 1, β = 0) have been exploited.

Along the extensive stage, θ and l summarize the

internal action choice of the forager and the function

ϕ(s) modifies the pure Lévy flight, since the probability

to move from a site to the next site depends on the

“strength” of a bond

ϕ(s) =
exp(−βP(s(r(t)) − s(rnew(t))))

∑

r
′
new

exp(−βP(s(r(t)) − s(r
′

new(t))))
(9)

that exists between them, and βP being a parameter

modulating such strength.

It should be remarked that the stochastic process

underlying long gaze shifts should be in principle subdi-

vided in two steps: flight proposal and acceptance of the

flight; these two steps together provide an approxima-

tion of a highly complex sensory-motor process, which

is far from being fully understood [39]. In this per-

spective, the plausible center of a new fixation rnew(t),

should be eventually accepted on the basis of some de-

cision function D(rnew(t), T), where T is a parameter or

a set of parameters akin to summarize the “readiness”

of the forager to engage in the flight. Clearly, this is

a complex issue to take into account and encompasses

subtleties that are far beyond the scope of this paper. A

simplified decision rule is to evaluate the jump proposal

r(t) → r(t)new through an acceptance process, imple-

mented by a Metropolis algorithm [6]: the the target site

rnew(t) is accepted with probability

p(a|r(t)new, r(t)) = min {1, exp(�s/T)} , (10)

where a is a binary random variable (a = 1, acceptance,

a = 0 rejection). Such probability depends on the gain

of saliency and on a “temperature” T. The values of

T determine the amount of randomness in scanpath

generation, and the role of this parameter has been

extensively discussed in [6].

Finally, if no suitable candidate FOA r(t)new has been

determined during either the intensive or extensive

stage, the current fixation point r(t) is retained.

Although, the layered organization of the HCS sys-

tem provides a better model of human gaze-shift be-

havior than CLE, yet some issues that are crucial for
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modeling scanpaths on images, and in turn visual atten-

tion, are only implicitly considered or overlooked.

First, the switch between intensive and extensive

search based on thresholding, Eq. 5b, is a rather rough

solution. The decision to stay in one state or the other

may depend by several factors: internal state of the for-

aging eye, waiting (fixation) time, and general appear-

ance of the landscape (or related fluctuations, in case

of a time-varying landscape such as that generated in

videos). Indeed, the intensive stage can be interpreted

in terms of visual fixation. Yet, a fixation is not simply

the maintenance of the visual gaze on a single location

but rather a slow oscillation of the eye [30]. They are

never perfectly steady and different mechanisms can

be at their origin, e.g., microsaccades. One possible

function for microsaccades is to bring the line of sight

to a succession of locations of interest, functioning as

a search or scan pattern, analogous to the function of

larger saccades. Thus, eye fixations are better defined

as the amount of continuous time spent looking within

a circumscribed region (e.g., minimum 50 ms within

a spatially limited region, typically 0.5◦–2.0◦ of visual

angle [22]). To account for all such complex factors, a

probabilistic mechanisms could be more suitable and

flexible.

Second, the kind of information foraging performed

by the eye, especially on static images, is a sort of

foraging with depletion of visited sites (destructive for-

aging) [28]: speed and accuracy with which a site or

an object is detected are first briefly enhanced (for

perhaps 100–300 ms) after the object is attended, and

then, detection speed and accuracy are impaired (for

perhaps 500–3,000 ms); this is well known as the IOR

mechanism, which promotes exploration of new, previ-

ously unattended loci in the scene during visual search

or foraging by preventing attention from returning to

already-attended sites. Clearly, the amount of depletion

in a circumscribed region is related to the previously

discussed fixation time issue.

Third, the total amount of information about the

visual landscape available to the forager can influence

the generated scanpath or foraging pattern. Total ab-

sence of information or full information gives rise to

different scanpaths. In practical terms, by fixing the

landscape, the amount of information may also sim-

ply depend on the viewing distance display dimension:

looking at a picture or a video on a cell phone is

different than looking on 40 in. TV. Thus, a scan-

path generation model should provide some control on

this point.

In the following section, we present how such issues

can be taken into account by the extended version of

the HCS model, namely, the informed HCS.

3 The IHCS model

Rewite Eq. 5a more generally as

rnew(t) = r(t) + ξg1(r(t)) + (1 − ξ)
[

g2(r(t)) + η
]

, (11)

where g2 = −∇V and the drift term g1 will be discussed

later.

When ξ = 1, the forager is engaged in an intensive

search, while depleting the sites, he visits; denote such

state “feed.” When ξ = 0 the forager performs exten-

sive search, a state denoted “Fly”. The dynamics of

the system can be described in terms of a stochastic

machine (a probabilistic finite-state machine) as rep-

resented in Fig. 3, whose behavior is detailed in the

following paragraph.

Feed or f ly switching Let q be the probability of re-

maining in the feeding state, while the transition ξ =

1 → ξ = 0 occurs with probability 1 − q. Then, we can

use q as the parameter of the Bernoulli distribution,

Bern(ξ ; q) = qξ (1 − q)1−ξ for ξ ∈ {0, 1}.

This way, the choice of action, keep feeding (ξ = 1)

or engage in a flight (ξ = 0), can be conceived as

a decision sampled from Bern(ξ ; q) with probability

p(ξ = 1) = q or p(ξ = 0) = 1 − q.

On the other hand, it is clear that the bias of such

“coin tossing” procedure is time and space dependent.

In order to account for the dependency of the fixation

time on the information (saliency) contained in the

direct vision range of the current FOA, we allow q

to depend on the number of visited interest points

(food items) present in this FOA “patch” (space de-

pendency). Formally, we model q with an exponential

function,

q = exp

(

−
ns(t)

μ

)

, (12)

Fig. 3 The probabilistic
finite-state machine
representing the stochastic
forager
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where ns(t) is the number of saliency points locally

explored at time t and μ represents the mean feeding

rate of the forager.

Eventually, the transition ξ = 0 → ξ = 1 occurs with

probability 1; namely, after a flight, the foraging eye

always is prompted to engage in the intensive stage.

This in principle does not imply that local search be

always actually performed: if conditions for feeding

are not met and/or because of the randomness of the

process, the transition ξ = 1 → ξ = 0 may occur before

such stage takes place, as detailed in the sequel.

Intensive search with site depletion Coming back to

Eq. 11, the drift term g1 applied in the Feed state is

modeled in order to account for the external force ex-

erted by salient points within the FOA patch of current

fixation r(t). Set g1 = −∇U . In a foraging framework,

animals are expected to be attracted or repelled from

certain food sources (interest sites); therefore, U(r, t)

can be assumed to depend on the distance between the

position rF of the animal and the position r∗ of the near-

est of such sites. More precisely, U(r, t) = ψ(|r∗(t) −

r(t)|2) for some function ψ . Define, for simplicity, ψ as

the identity function ψ(|r∗(t) − r(t)|2) = |r∗(t) − r(t)|2

where r∗(t) belongs to a set of NU sites selected within

the FOA patch according to some rule, e.g, the top-NU

most attractive items in terms of saliency, or randomly

sampled. Then, at each time step, the gradient of the

potential can be obtained

−∇U(r, t) = −2(r(t) − r∗(t)). (13)

In ecology, this setting is adopted to model an animal

attracted to the point r∗ such as a food site

Under these assumptions, when the foraging eye is

in Feed state (ξ = 1), Eq. 11 becomes

rnew(t) = r(t) − 2(r(t) − r∗(t)), (14)

where points r∗(t) plays the role of local attractors.

Further, when any site rnew(t) is reached, destruc-

tive foraging is performed in a small neighborhood

Nε(rnew(t)):

snew(Nε(rnew(t))) = kds(Nε(rnew(t))), (15)

where kd is a depletion constant in the range [0, 1].

Summing up, when the foraging eye is engaged in

the intensive stage of local search and feeding, at each

time step t, Eqs. 14 and 15 are computed, the num-

ber of visited sites is incremented, ns(t) ← ns(t) + 1,

and the parameter q is computed according to Eq. 12;

eventually, the choice of the next action, feed or fly, is

sampled:

ξ ∼ Bern(ξ ; q). (16)

Note that the probability 1 − q of leaving the feed

state strictly depends on the food intake ns(t) (and on

the mean feeding rate μ of the forager); however, the

decision to stay or to leave is sampled from Eq. 16.

Thus, it may occur earlier or later with respect to its

expected time. This provides a simple way to account

for statistical variability in fixation time at a given

spatial location [30].

Information guided Lévy f lights How does informa-

tion gathered at the preattentive stage and from periph-

eral (extrafoveal) regions of the retina influence the

generation of scanpaths? In visibility models of saccadic

eye movements [30], rather than taking the line of sight

to a region that already stands out from the neighboring

surround, each saccade is directed to the location that

would yield the highest probability of finding the target.

A search strategy can be seen as one of sending the

line of sight to locations that maximized search perfor-

mance by considering, before each saccade, the effect

of the eyes’ next landing position on the visibility of all

locations throughout the visual field.

Hence, under the assumption that a successful

action requires the capacity of predicting the ex-

pected consequences of action, the pair (θ, l) is cho-

sen in order to maximize the posterior distribution

p(θ, l|s(rnew(t)), s(r(t)), rnew(t), r(t)), namely,

(θ∗, l∗) =

arg max
θ,l

p(θ, l|s(rnew(t)), s(rnew(t)), rnew(t), r(t)).

(17)

The selection of action parameters should be con-

ditioned on the gain achievable by shifting to a new

information state (rnew(t), s(rnew(t))) from the current

state (r(t), s(r(t))) and can be formalized in terms of a

probabilistic generative model.

Define the joint probability

p(θ, l, s(rnew(t)), s(r(t)), rnew(t), r(t)).

The latter can be factorized as

p(θ, l, s(rnew(t)), s(r(t)), rnew(t), r(t))

= p(s(rnew(t))|s(r(t)), rnew(t), r(t), θ, l)

× p(rnew(t)|r(t), s(r(t)), θ, l)

× p(r(t), s(r(t))|θ, l)

× p(θ, l). (18)

Such factorization can be explained as follows.

The first factor in Eq. 18 provides the likelihood

of jumping at any site rnew(t), starting from current

position r(t) (the current FOA) evaluated in terms of
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saliency gain and does not depend on θ, l. The second

factor represents the motor action responsible for the

gaze shift, that is the probability of the shift r(t) →

rnew(t) given a pair (θ, l), and does not depend on cur-

rent saliency s(r(t)). The third factor stands for the joint

density of location and saliency and does not depend on

(θ, l), thus p(r(t), s(r(t))|θ, l) = p(r(t), s(r(t))); further,

since for the purposes of the present work we are not

making prior assumptions about any location r(t) being

more likely to be a salient point than other locations

r
′

(t) (as opposed, for instance, to context-based models

[8]), we set p(r(t), s(r(t))) = const. The latter term is the

joint prior probability on saccade amplitude and direc-

tions, which we assume as independently distributed.

Hence, Eq. 18 can be approximated as

p(θ, l, s(rnew(t)), s(r(t)), rnew(t), r(t))

≈ p(s(rnew(t))|s(r(t)), rnew(t), r(t))

× p(rnew(t)|r(t), θ, l)p(θ)p(l). (19)

In Eq. 19, the likelihood of jumping at a certain site

rnew(t), starting from current FOA r(t), can be eval-

uated as

p(s(rnew(t))|s(r(t)), rnew(t), r(t))

=
exp(−βP(s(r(t)) − s(rnew(t))))

∑

r
′
new

exp(−βP(s(r(t)) − s(r
′

new(t))))
. (20)

In other terms, the likelihood modifies the pure Lévy

flight, in that the jump has a higher probability to

occur if the target site is strongly connected in terms

of saliency to the current one, similarly to Eq. 9

The remaining factors in Eq. 19 summarize the mo-

tor action p(rnew(t)|r(t), θ, l) and the prior probabilities

on action parameters, p(θ) and p(l).

The prior distribution of flight directions can be

taken as the uniform distribution in the [0, 2π ] interval,

Unif (0, 2π); the prior distribution of jump lengths is

taken to be an instance of the family of α-stable dis-

tributions f (l; α, β, γ, δ). In such framework, the para-

meters of the distribution can be considered as akin

to “internal” motor parameters. Note that if θ and l

were straightforwardly sampled from the priors p(θ)

and p(l), respectively, and inserted in Eq. 2, a classic

Lévy flight driven by external potential would occur.

Eventually, by using Bayes’ rule and Eq. 19, the

choice of action parameters (Eq. 17) can be written as

arg max
θ,l

p(θ, l|s(rnew(t)), s(r(t)), rnew(t), r(t))

≈ arg max
θ,l

p(s(rnew(t))|s(r(t)), rnew(t), r(t))

× p(rnew(t)|r(t), θ, l)p(θ)p(l). (21)

Equation 21 can be evaluated by: (1) sampling

candidate gaze shifts using the prior p(rnew(t)|r(t),

θ, l)p(θ)p(l) and (2) weighting the samples through the

likelihood specified in Eq. 20.

Prior sampling can be accomplished through simple

ancestral sampling [3] on the probabilistic graphical

model tying random variables θ, l, r(t), rnew, namely,

the directed graph {θ, l, r(t)} 	→ rnew(t), where 	→ is

the edge denoting conditional dependency between

random variables (nodes); such procedure amounts to

forward sampling from ancestor or parent nodes of rnew,

pa (rnew) = {θ, l, r(t)} to the descendant node rnew:

θk ∼ Unif (0, 2π), k = 1, · · · , K (22)

lk ∼ f (lk; α, β, γ, δ) (23)

rnew,k(t) ∼ p(rnew(t)|r(t), θk, lk). (24)

where K is the number of samples.

Note that together, Eqs. 22–24 provide a set of K

motor actions that a priori could be undertaken by

the forager. In particular, Eq. 24, since representing

the shift r(t) → rnew(t), can be implemented via Eq. 6

(in the molecular dynamics literature, this approach is

known as Langevin Monte Carlo [33]). In other terms,

the motor step specified through Eq. 6 is used at this

stage as an internal model to simulate possible candi-

date flights among which the most likely actual flight

is eventually determined by selecting the most suitable

flight parameters by Eq. 21.

The critical parameter here is the number K of

samples generated, which can be directly interpreted

as related to the information available to the observer:

in the limit of K equal to the dimension of the image

support, we are in the case of full information or full

visibility.

4 Simulation

The goal of experiments described here is twofold: on

the one hand, we wanted to quantitatively compare

IHCS against HCS with regard to exploration perfor-

mance and on the other hand, a qualitative compar-

ison of IHCS-generated scanpaths with scanpaths eye

tracked from human subjects was taken into account in

order to assess the capability of IHCS to mimic human

gaze behavior on images containing either low-level

cues and semantically relevant objects (faces).
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4.1 Datasets

Hou and Zhang CVPR07 dataset The dataset is

downloadable at http://www.klab.caltech.edu/∼xhou/

projects/spectralResidual/spectralresidual.html. This is

a collection of 62 natural scene images. Further, such

images were provided to four naive subjects. Each sub-

ject was instructed to select regions where objects are

presented; if each of the subject reported impossible to

define an object in a certain image, that image would be

rejected from the dataset. Note that the purpose of the

experiment was different from segmentation; the main

concern in segmentation tasks is the abrupt changes in

space. In building up the dataset, hand labelers concen-

trated only on the edges between the foreground and

the background, so to suggest a set of candidate proto-

objects. For details refer to [23].

Cerf f ixations in FAces dataset The dataset is down-

loadable at http://www.fifadb.com/. This dataset con-

tains Faces, a subset of 229 images (1024×768 pixels)

showing frontal faces in various sizes, locations, skin

colors, races, etc. Each image has a corresponding back-

ground image with no faces for comparison. The data

include the fixations recorded via eye tracking of eight

subjects (see [10, 11], for details). In addition to fixation

data, an annotation of the entire dataset is provided,

where the location and labeling of faces in images are

given.

4.2 Implementation details

The exploration of the visual field performed accord-

ing to the rules of selection described above can be

summarized in the informed hybrid constrained search

algorithm:

The input of the IHCS algorithm is the salience

map s computed from image I, the desired number

of fixations Nfix, and a set of parameters. The values

of the kd, μ parameters have been derived via ROC

analysis of results obtained from a preliminary trial of

experiment 1 described below by using a small subset of

10 images randomly chosen from the CVPR07 dataset.

The settings of the remaining parameters are discussed

in detail in the sequel.

Saliency and potential The (bottom-up) saliency map

is derived via the spectral residual (SR) method de-

scribed in [23] An example is provided in Fig. 4b. We

initially experimented with standard saliency from con-

spicuity maps [26], Bayesian surprise [25] , graph-based

visual saliency [20] and self-resemblance [40] methods.

However, the SR method provides comparable perfor-

mance to other methods but at a lower computational

Algorithm 1 IHCS Algorithm

Input: Normalized salience map s, number of fixations Nf ix,
Parameters: ρ, τV, ε, kd, μ, K, {α, β, γ, δ}, βP, T

Output: Sequence r(1), r(2), · · · of gaze positions
Compute potential V, Eq. 4
t ← 1 // gaze-shift counter
n ← 1 // f ixation counter
Shift gaze r(t) → center of s
repeat

// Local search and feeding.....
Compute the feeding patch Nr(t)

Sample the attraction site setA (t), Eq. 25
NS ← |A (t)|
if NS > 0 then

ns ← 1, ξ ← 1
while ξ = 1 & ns � NS do

Shift gaze r(t) → rnew(t), Eq. 14
Deplete site in Nǫ(rnew(t)), Eq. 15
Update potential, Eq. 4
Set r(t + 1) ← rnew(t)
t ← t + 1, ns ← ns + 1

// Action choice
Compute q, Eq. 12
Sample ξ ∼ Bern(ξ ; q)

end while
n ← n + 1

end if
// Flying.....
// Motor simulation of Lévy f lights

for k ← 1, K do
Sample rnew,k(t), Eqs. 22, 23, 24

end for
Weight the samples through the likelihood Eq. 20.
Estimate (θ∗, l∗), Eq. 21
Shift gaze r(t) → rnew(t), Eq. 6

// Metropolis step
Compute �ŝ = ŝ(rnew(t)) − ŝ(r(t))
if �ŝ > 0 then

Set r(t) ← rnew(t)
t ← t + 1, n ← n + 1

else
Generate a random number ι
if ι < exp(�ŝ/T) then

Set r(t + 1) ← rnew(t)
t ← t + 1, n ← n + 1

end if
end if

until n ≤ N f ix

complexity end it is easy to code (basically, five Matlab

lines [23]).

The map is then normalized within the [0, 100] range.

From s(·, t), landscape potential V(·, t) is computed via

Eq. 4, with τV = 0.01 [6]; then, ∇V = [∂Vx, ∂Vy]
T is ob-

tained using a finite difference method based on a cen-

tral difference scheme. The potential surface computed

from the saliency map shown in Fig. 4b is presented

in Fig. 5a.
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(a) Original image

(b) Saliency Map

Fig. 4 The original image (image 23 from the CVPR07 dataset)
and the corresponding saliency map obtained via the SR method
[23], superimposed on the original image

Local search and feeding The direct vision range ρ,

namely, the radius of the circle Nr(t), Eq. 3, is set equal

to the dimension of the FOA, |FOA|.

With regard to IHCS, to implement Eq. 14, a set A (t)

of attraction sites is obtained within the FOA patch by

simple thresholding [23],

A (t) = {r∗(t)|r∗(t) ∈ Nr(t) ∧ s(r∗(t)) > 3E [s(·, t)] , (25)

where E [s(·, t)] is the mean value of s.

Note that for what concerns the HCS method, r∗(t)

is computed within the same range via Eq. 3. This a

limit case of Eq. 14 when only the max saliency point

is retained.

In IHCS, when the site rnew(t) is reached, the number

ns of visited points is incremented and destructive for-

aging is performed in a small neighborhood Nε(rnew(t))

via Eq. 15.

In the simulations presented below, the depletion

constant kd has been set experimentally to 0.2.

(a) Potential surface

(b) Potential surface after feeding

Fig. 5 The original potential obtained from the map in Fig. 4b
at the beginning of the scanning process and after feeding
(10 fixations of IHCS)

For what concerns the radius ε of the depletion

region, we assume that such region must cover at least

the minimum region covered by a fixation (0.5◦, [22]),

thus we set, conservatively, a visual angle of ϕ = 0.6◦ =

2ε. By using as a baseline the same viewing conditions

adopted to record the eye-tracking data comprised in

the Fixations in FAces dataset [10] (viewing distance

vd = 80 cm, screen resolution sr = 66.5 dpi), the diam-

eter dfix of the region Nε can be calculated in pixel

units as

d f ix = ϕ
1

2 tan−1

(

1
2vd

)

π

180

sr

2.54
(pxl). (26)

Thus, ε = d f ix/2 ≈ 10 pixels.

The effect of feeding is visualized in terms of the

potential surface V in Fig. 5b.
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Action choice In IHCS, the choice of the foraging

action is sampled from Eq. 16, with q obtained from

Eq. 12 where the mean feeding rate μ is experimentally

set to 80.

For HCS, the difference of saliency �s = s(r∗(t)) −

s(r(t)) is evaluated and compared with threshold ν

so to set the switching variable ξ in Eq. 5; follow-

ing the ROC-based procedure used for IHCS parame-

ter tuning, ν has been experimentally determined as

ν = 0.3 max{s(·, t)}.

Extensive search via Lévy f lights In IHCS, the optimal

l, θ components to be chosen according to the MAP

rule, Eq. 17, are obtained in practice by the forward

sampling procedure articulated in the sampling steps

of Eqs. 22–24. In order to ensure a partial visibil-

ity condition, the number of generated samples (that

(a) HCS sampling

(b) IHCS sampling

Fig. 6 Difference between HCS (a) and IHCS (b) in sampling
motor parameters. HCS either chooses the most salient point
within direct vision range (red spot) or blindly samples a Lévy
flight (yellow circle); IHCS either samples points within the direct
vision range or simulates a set of possible Lévy flights (yellow

circles) to perform an informed jump

is, the candidate gaze shift locations) is set equal to

K = ⌊ 1
10

max{width, heigth}⌋ , where width and height

are the dimensions of the original image and ⌊x⌋ =

max{m ∈ Z|m ≤ x} is the floor operator. The neutral

value of βP = 1 is used in Eq. 9.

The actual values of the “motor parameters”

{α, β, γ, δ} to be used in the sampling step of Eq. 8

have been derived from the small subset of 10 images

randomly chosen from the Fixations in FAces dataset.

Given the empirical distributions of gaze shifts, it is

possible to fit such distributions in order to derive

the parameters of the exhibited α-stable distribution.

The estimation of the α-stable distribution is compli-

cated by the aforementioned nonexistence of a closed

form pdf. As a consequence, a number of different

approximations for evaluating the density have been

proposed, see, e.g., [29, 34]. Based on these approxi-

mations, parameter estimation is facilitated using the

estimator proposed in [29]. Simulation results pre-

sented here have been obtained using α = 1.3, β3 = 1,

γ = 40, δ = 0, where we have set δ = 0, since the

drift is accounted for by the deterministic component

of Eq. 6

Having fixed the parameters of the α-stable distrib-

ution, an α-stable random variable lk can be sampled -

Eq. 24, in several ways. The one applied here is the well

known Chambers, Mallows, and Stuck procedure [12].

Fig. 7 Top row: Image 23 from the CVPR07 dataset and the
corresponding saliency map computed as in [23]. Below: Segmen-
tation of main objects by four human subjects
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Fig. 8 Top row: Image 41 from CVPR07 dataset and the corre-
sponding saliency map computed as in [23]. Below: Segmentation
of main objects by four human subjects

Fig. 9 Left column, HCS-generated scanpaths; right column,
IHCS-generated scanpaths

The decision to accept a candidate flight is accepted

according to the Metropolis rule given in Eq. 10. For

simulations presented here, T = 25 (cfr., [5, 6] for an

extensive discussion).

With respect to the determination of a candidate

long saccade (Lévy flight), the HCS method is an ex-

treme case of IHCS, in that sampling formalized in

Eqs. 7 and 8 can be seen as sampling via Eqs. 22

and 23 using K = 1 (that is, only one candidate flight

is conjectured ). The fundamental difference between

IHCS and HCS at this stage is illustrated in Fig. 6.

Finally, after Metropolis evaluation, if no candidate

FOA r(t)new has been accepted, the current fixation

point r(t) is kept.

The procedure described above is currently imple-

mented in plain MATLAB code, with no specific opti-

mizations and running on a 2.8-GHz Intel Core 2 Duo

processor, 2-GB RAM, under Mac OS X 10.6.8. With

regard to actual performance of the IHCS under such

setting, the average elapsed time for the whole process-

ing amounts to 22.508 s for a 534 × 800 pixel image.

More precisely, 0.36 s is taken to compute saliency,

Fig. 10 Left column, HCS-generated scanpaths; right column,
IHCS-generated scanpaths
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Table 1 HR and FAR for the HCS and the IHCS models

Method HR FAR

HCS 0.395 ± 0.143 0.109 ± 0.036

IHCS 0.468 ± 0.050 0.104 ± 0.009

while the average elapsed time to sample a scanpath

composed by 10 fixations is 22.148 s.

In the same conditions, the HCS method takes an

average elapsed time of 32.921 s for the generation of

the scanpath. The higher scanpath sampling time is to

be related to a low acceptance rate of candidate Lévy

flights, due to the uninformed procedure for generating

the flight paramters θ, l.

4.3 Experiment 1

The aim of the experiment was to compare IHCS

against HCS by quantitatively assessing the explo-

Fig. 11 Left, eye-tracked human observers; right, IHCS model
output

ration performance of the scanpath, given a bottom-

up saliency map, with respect to main objects or proto-

objects present in the scene. To this end, we exploited

the Hou and ZHang CVPR07 dataset. Two examples

of the kind of input data are provided in Figs. 7 and 8,

showing the original images, the related saliency maps,

and the proto-object hand-labeled maps.

The dataset has been processed in order to produce

25 scanpaths for each image by the HCS model with

an average of 10 to 15 fixations per scanpath. The

10 images used in the preliminary trial for parameter

setting have been discarded. The same was performed

by using the IHCS model. Some examples of typical

scanpath obtained are shown in Figs. 9 and 10.

It is apparent, from a qualitative standpoint, that

IHCS scanpaths have a more plausible behavior with

respect to those generated by HCS. In some cases, the

HCS might fall in a “potential trap,” where no Lévy

flights are accepted but the local search is not able to

Fig. 12 Left, eye-tracked human observers; right, IHCS model
output

Author's personal copy



214 Ann. Telecommun. (2013) 68:201–217

disengage from the fixated site (see, for example, the

result in Fig. 9, left image on the bottom row).

Beyond qualitative evaluation, following [23], per-

formance was assessed by measuring the hit rate (HR)

and the false alarm rate (FAR) for each image,

HRs = E

[

∏

k

Ok · FM s

]

(27)

FARs = E

[

∏

k

(1 − Ok) · FM s

]

, (28)

where E [] denotes expectation and s = 1, · · · , 25 in-

dexes the sth scanpath; Ok denotes the binary map

(Ok(x, y) = 1 for points of target objects, 0 for points in

the background) obtained from kth hand labeler; and

FM f is the binary fixation map obtained by setting to

1 points of the circular region around a fixation of area

equal to1/2|FOA| and to 0 points outside such regions.

Fig. 13 Left, eye-tracked human observers; right, IHCS model
output

The reason for considering a small foveal region rather

than simply the fixation point itself is to provide a

different weight for fixations falling in the neighbor-

hood of objects border with respect to fixations occur-

ring within object. Then HRs and FARs are averaged

with respect to all scanpaths and to all images. The

final total average HR and FAR rates are reported in

Table 1, where the better performance of IHCS can be

appreciated. It is worth noting that on single images

with many objects to be visited (and coherent object

maps between subjects), such difference is much higher

(for instance in the case of the Giraffe image, the IHCS

HR is approximately 0.6 and the HCS HR is 0.3).

It is worth noting that, with regard to computational

efficiency, the IHCS runs in a number of iterations of

the feed and fly cycles, roughly corresponding to the

number of fixations desired; in order to obtain a com-

parable number of fixations (10–15) via HCS, a much

higher number of iterations must be exploited (here

Fig. 14 Left, eye-tracked human observers; right, IHCS model
output
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150) due to the higher rejection rate of the proposed

Lévy flights than in the IHCS run.

4.4 Experiment 2

The aim of this experiment was to qualitatively com-

pare the motor behavior represented in the IHCS-

generated scanpaths with scanpaths eye tracked from

human subjects. For this experiment, we used the Fixa-

tions in FAces dataset. We generated 20 scanpaths for

each image and compared them to those exhibited by

human observers by choosing most similar scanpaths in

terms of fixations coordinates, duration, and time oc-

currence. Some typical results are shown in Figs. 11, 12,

and 13 showing the ability of IHCS to mimic observer

oculomotor behavior (K = 100).

Further, we explored the condition in which the

same images contained ecologically relevant objects

like faces and tested the capability of IHCS to pro-

Fig. 15 Left, eye-tracked human observers; right, IHCS model
output

Fig. 16 Left, eye-tracked human observers; right, IHCS model
output

vide plausible scanpaths. To this end, we combined the

bottom-up saliency map with the detected face map, in

the vein of [10, 11]. The face saliency map is formed by

convolving delta functions at the detected facial centers

with 2-D Gaussians having standard deviation equal to

the estimated facial radius [11]. The values of this map

were normalized to a fixed range and linearly added

to the bottom-up saliency map, so to obtain a master

saliency map. Here, the number of fixations per image

was 6/7; the other critical parameters of the method

(μ, kd, T) were the same as in the no face experiment.

The scanpaths produced are compared to human eye-

tracked data in Figs. 14, 15, and 16.

5 Conclusions

The IHCS model for the generation and control of

scanpaths has been presented. The model accounts
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for the randomness of visual exploration exhibited by

different observers when viewing the same scene, or

even by the same subject along different trials. This

is a point that is neglected by the great majority of

foveation models, although it could be critical for appli-

cations of foveation image processing like image/video

coding [7, 24, 32, 46], image/video retrieval [15], and

quality assessment [47], but it is also relevant to com-

puter vision and learning tasks.

The rationale behind the work presented here is that

the exploitation of systematic tendencies characterizing

oculomotor behaviors [43] can be an advantage for sim-

ulating the visual sampling of the surrounding world.

More generally, this approach may be developed for

a principled modeling of individual differences, a key

issue in cognitive science [44], since providing cues for

defining the informal notion of scanpath idiosyncrasy in

terms of individual gaze-shift distribution parameters.

The model, which further extends and improves on

the HCS model presented in [6], generates sequences

of fixations and gaze shifts under the control of an

information foraging mechanism implemented through

a stochastic dynamical system that switches between

two states: “feed” and “fly.” A novelty introduced in

the present study is an internal gaze-shift simulation

step to estimate the best motor parameters for the

actual shift, akin to visibility or value-based models of

eye movement behaviors [30, 39].

The simulations show that the method is indepen-

dent from features adopted to derive saliency and can

reliably cope with either bottom-up or top-down se-

mantic cues. Also, the method could be easily extended

to embed object-based paradigms. For instance, rather

than looking for a point with large saliency values the

model could be amended to give priority to fixations

dwelling upon regions/patches representing objects or

proto-objects that have relevance in determining organ-

ism behavioral responses [8, 18].
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