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Abstract: This work presents a soft-sensor approach for estimating critical mechanical properties of
sandcrete materials. Feed-forward (FF) artificial neural network (ANN) models are employed for
building soft-sensors able to predict the 28-day compressive strength and the modulus of elasticity
of sandcrete materials. To this end, a new normalization technique for the pre-processing of data is
proposed. The comparison of the derived results with the available experimental data demonstrates
the capability of FF ANNs to predict with pinpoint accuracy the mechanical properties of sandcrete
materials. Furthermore, the proposed normalization technique has been proven effective and robust
compared to other normalization techniques available in the literature.
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1. Introduction

Low-cost buildings have been constructed at numerous different locations across the globe during
history. Eco-friendly, low-cost, sustainable construction materials for utilization in civil engineering
projects have attracted much attention during the last decades. At present, low-cost construction
materials are mainly used in Africa and Asia and involve a wide variety, like gypsum, lime, clay,
sand and stabilised soil, rice husk ash, ground granulated blast furnace slag etc., as partial or total
replacement of cement, aggregates, and concrete. An average cost reduction of up to 30% as compared
to conventional construction methods can be achieved. As reviewed by Bahar et al. [1], different
types of earth construction such as soil-based construction blocks have been used in North Africa
for centuries, especially in rural regions and in the desert. Soil can be stabilised either by manual
compaction, mechanical compaction, or, the addition of natural fibers. However, with the development
of masonry and reinforced concrete, soil-based constructions are designed and addressed to poor
population and, hence, are of lower quality. This is mainly due to their durability problems such
as the lack of water resistance and erosion [1]. However, due to its higher cost and lower thermal
performance, much interest is going back to earth construction, which is known for its cheap labour
and low cost and comparable thermal insulation characteristics [1]. This was primarily owed to the
inefficiencies associated with such materials, mainly in terms of strength and durability (i.e., lack of
water resistance and erosion [1]), as well as the high cost associated mainly with masonry construction.
Furthermore, materials such as concrete and steel were easier to use in construction and required less
skilled labour.
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The nature of soils available for such applications is very diverse due to their origin from very
different types of geological deposits including several types of clays, sand resources, crushed rock
formations, etc. Apart from the inorganic constituents, a very diverse group of organic components
can be also identified.

To this end, a promising alternative is soilcrete, a type of non-conventional construction material
produced by mixing natural soil, such as natural clay or limestone sand, with a hydraulic binder [2–6].
Soilcrete belongs to a family of concretes that can be used under conditions whereby environmental
or economic constraints limit the use of coarse aggregates, as it exploits amounts of proper soils,
rocks or even recycled concrete materials that are present in abundance. Its main components are
fine aggregate (clay or/and sand), ordinary Portland cement, water at an appropriate ratio and rarely
mineral admixtures, thus rendering it a composite material.

Artificial neural networks (ANNs) have emerged over the last decades as an attractive
meta-modelling technique applicable to a vast number of scientific fields including material science
among others. An important characteristic of ANNs is that they can be used to build soft-sensors,
i.e., models with the ability to estimate critical quantities without having to measure them [7].
In particular, such surrogate models can be constructed after a training process with only a few
available data, which can be used to predict pre-selected model parameters, reducing the need for time-
and money-consuming experiments. Thus far, the literature includes studies in which ANNs were used
for predicting the mechanical properties of concrete materials [8–16]. In their study Asteris et al. [16]
used ANNs to estimate the compressive strength of self-compacting concrete through a training
process involving as input parameters the eleven parameters of synthesis with output parameter
the value of the compressive strength. Moreover, similar methods such as fuzzy logic and genetic
algorithms have also been used for modelling the compressive strength of concrete materials [17–24].
A detailed state-of-the-art report can be found in [25–28].

The mechanical properties of sandcrete materials exhibit a strong nonlinear nature derived from
the parameters involved in their composition; it is this nonlinear behaviour that makes the development
of an analytical formula for the prediction of the mechanical properties using deterministic methods
a rather difficult task. In this work, the modelling of the mechanical characteristics of soilcrete
materials has been investigated in-depth using soft-computing techniques such as artificial intelligence
(AI) techniques. In particular, this study investigates the application of Artificial Neural Networks
(ANNs) models for the prediction of the 28-day compressive strength and the modulus of elasticity of
sandcrete materials, using the four parameters of synthesis and the value of the ultrasonic velocity as
input parameters.

2. Significance of the Subject

Much effort in recent years involves the development of reliable methods for the assessment of
the vulnerability of existing structures by means of the accurate estimation of the in-situ mechanical
characteristics of materials used. The estimation of the mechanical characteristics of concrete has
been traditionally carried out through either destructive or non-destructive methods. The greatest
disadvantages of the conventional destructive method of extracting cylindrical specimens (cores) to
evaluate the mechanical properties of concrete include cost of intervention, damage caused during the
execution of the test, and limited number of extracted specimens, which in turn affects negatively the
reliability of results.

On the other hand, non-destructive methods, such as the ultrasonic pulse velocity method,
provide a simple, inexpensive method to approximate the concrete properties. Based on the measured
ultrasonic velocity, a number of analytical expressions for estimating the compressive strength and
dynamic modulus of elasticity of concrete have been proposed in the literature [29–34]. Nevertheless,
the relatively low correlation between the estimated values with the experimental results, highlights
the need to develop new methods for the reliable assessment of these important properties.
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To this end, soft-computing techniques, such as the Artificial Neural Networks (ANN), can
contribute as a feasible tool for the estimation of the mechanical properties of concrete [10,35–38]. In this
study, Artificial Neural Networks have been developed for the prediction of the compressive strength
and modulus of elasticity of sandcrete materials, using as input parameters the mix compositions and
the value of ultrasonic velocity, while as output parameter the value of compressive strength or the
value of modulus of elasticity.

3. Artificial Neural Networks

This section summarizes the mathematical and computational aspects of artificial neural networks.
In general, ANNs are information-processing models configured for a specific application through
a training process. A trained ANN maps a given input onto a specific output, and thereby can
be considered to be similar to a response surface method. The main advantage of a trained ANN
over conventional numerical analysis procedures (e.g., regression analysis) is that the results can be
produced with much less computational effort [16,25,39–45].

3.1. General

The concept of an artificial neural network is based on the concept of the biological neural
network of the human brain. The basic building block of the ANN is the artificial neuron, which is a
mathematical model trying to mimic the behaviour of the biological neuron. Information is passed
into the artificial neuron as input and processed with a mathematical function leading to an output
that determines the behaviour of the neuron (similar to fire-or-not situation for the biological neuron).
Before the information enters the neuron, it is weighted in order to approximate the random nature of
the biological neuron. A group of such neurons consists of an ANN in a manner similar to biological
neural networks. In order to set up an ANN, one needs to define: (i) the architecture of the ANN;
(ii) the training algorithm, which will be used for the ANN learning phase; and (iii) the mathematical
functions describing the mathematical model. The architecture or topology of the ANN describes
the way the artificial neurons are organized in the group and how information flows within the
network. For example, if the neurons are organized in more than one layers, then the network is
called a multilayer ANN. Regarding the training phase of the ANN, it can be considered as a function
minimization problem, in which the optimum value of weights need to be determined by minimizing
an error function. Depending on the optimization algorithms used for this purpose, different types
of ANNs exist. Finally, the two mathematical functions that define the behaviour of each neuron are
the summation function and the activation function. In the present study, we use a back-propagation
neural network (BPNN), which is described in the next section.

3.2. Architecture of BPNN

A BPNN is a feed-forward, multilayer network [39], i.e., information flows only from the input
towards the output with no feedback loops, and the neurons of the same layer are not connected to
each other, but they are connected with all the neurons of the previous and subsequent layer. A BPNN
has a standard structure that can be written as:

N − H1 − H2 − . . . − HNHL − M (1)

where N is the number of input neurons (input parameters); Hi is the number of neurons in the i-th
hidden layer for i = 1, . . . , NHL; NHL is the number of hidden layers; and M is the number of output
neurons (output parameters). Figure 1 depicts an example of a BPNN composed of an input layer with
five neurons, two hidden layers with seven and four neurons, respectively, and an output layer with
1 neuron, i.e., a 5-7-4-1 BPNN.
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Figure 1. Architecture of a 5-7-4-1 BPNN model.
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Figure 2. A neuron with a single R-element input vector.

For each neuron i, the individual element inputs p1, . . . , pR are multiplied by the corresponding
weights wi,1, . . . , wi,R and the weighted values are fed to the junction of the summation function,
in which the dot product (W·p) of the weight vector W = [wi,1, . . . , wi,R] and the input vector
p = [p1, . . . , pR]

T is generated. The threshold b (bias) is added to the dot-product forming the net
input n, which is the argument of the transfer function f :

n = W·p = wi,1 p1 + wi,2 p2 + . . . + wi,R pR + b (2)

The choice of the transfer (or activation) function f may strongly influence the complexity and
performance of the ANN. Although sigmoidal transfer functions are the most commonly used, one may
use different type of functions. Previous studies [46,47] have proposed a large number of alternative
transfer functions. In the present study, the Logistic Sigmoid and the Hyperbolic Tangent transfer
functions were found to be appropriate for the problem investigated. During the training phase, the
training data are fed into the network which tries to create a mapping between the input and the
output values. This mapping is achieved by adjusting the weights in order to minimise the following
error function:

E = ∑(xi − yi)
2 (3)

where xi and yi are the measured value and the prediction of the network, respectively, within an
optimization framework. The training algorithm used for the optimization plays a crucial role in
building a quality mapping, thus an exhaustive investigation was performed in order to find the most
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suitable for this problem. The most common method used in the literature is the back-propagation
technique, in which, as stated by its name, the information propagates to the network in a backward
manner in order to adjust the weights and minimize the error function. To adjust the weights properly,
a general method called gradient descent is applied, in which the gradients of the error function with
respect to the network weights is calculated. Further discussion on the training algorithms is given in
the numerical example section.

4. Results and Discussion

This section presents the process for tuning optimum ANNs used for the prediction of the 28-day
compressive strength and the modulus of elasticity of sandcrete materials, based on experimental data
available in the literature.

4.1. Experimental

A detailed description of the experimental set-up is given by Kolovos [2–4]. Data and results
within the provided research database (Table 1) present the measured compressive strength ( fc) at
28 days, as well as the modulus of elasticity (Figure 3) of a large set of cylindrical specimens (134)
with a height-to-diameter (h/d) ratio equal to 2 (h/d = 2) which have been tested under uniaxial
compression. For each sample, four to eight soilcrete specimens were tested and the mean value
of these measurements is presented in Table 1 [48]. Before the uniaxial compression test, the value
of ultrasonic velocity of all specimens has been measured using the widely-adopted TICO (testing
instrument of concrete) ultrasonic instrument.



(a) (b)

Figure 3. (a) Uniaxial compression test setup of sandcrete specimen; (b) Stress-strain curves.

The samples of the soilcrete material consisted of different contents of crushed quarry sand of a
limestone origin (CQLS) as replacement of the aggregate phase and high purity commercial metakaolin
(MK) supplied by Imerys Minerals (Roswell, GA, USA), added at variable contents as a mineral
additive to the ordinary Portland cement-based binder mix at different water/binder ratio values
(W/B). Batches of samples with CQLS were produced, by mixing 50 and 70% w/w CQLS (in the dry
mix) with 50 and 30% w/w binder at 3 different W/B ratio values of 0.4, 0.7 and 1.0. High workability
and optimal flow properties for samples with W/B equal to 0.4 were achieved by the addition of 2.0%
w/w (of the cementitious materials) common superplasticizer (SP) (CHEM SLP P), manufactured by
Domylco Ltd. (Athens, Greece), as listed in Table 1.
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Table 1. Experimental data/results and input and output parameters of BPNNs.

Sample
Input Output

Comments 1

W/B Ratio
MK

(% w/w in the Dry Mix)
B

(% w/w in the Dry Mix)
SP

(% w/w of the Cementitious Materials)
Ultrasonic

Velocity (m/s)
Compressive

Strength (MPa)
Modulus of

Elasticity (GPa)

1 0.40 0 50 2 4070.00 55.35 27.442 T
2 0.40 0 50 2 4016.67 62.25 24.325 T
3 0.40 0 50 2 4053.33 41.04 24.875 V
4 0.40 0 50 2 4100.00 58.00 27.754 T
5 0.40 0 50 2 4076.67 50.35 27.249 T
6 0.40 0 50 2 4040.00 46.48 26.476 Test
7 0.40 0 50 2 4090.00 61.49 28.976 T
8 0.40 0 50 2 4016.67 62.25 24.325 T
9 0.40 0 30 2 4006.67 62.35 25.690 V
10 0.40 0 30 2 4080.00 66.72 25.765 T
11 0.40 0 30 2 4040.00 57.17 29.371 T
12 0.40 0 30 2 4100.00 60.79 25.679 Test
13 0.40 0 30 2 4000.00 50.36 25.650 T
14 0.40 0 30 2 4070.00 64.64 27.577 T
15 0.40 0 30 2 4040.00 57.17 29.371 V
16 0.40 0 30 2 4063.33 50.66 28.145 T
17 0.40 5 50 2 3913.33 49.36 24.745 T
18 0.40 5 50 2 3931.67 48.30 24.160 Test
19 0.40 5 50 2 3916.67 48.86 28.668 T
20 0.40 5 50 2 3980.00 49.01 26.747 T
21 0.40 5 50 2 3840.00 41.86 23.543 V
22 0.40 5 50 2 3900.00 39.87 28.434 T
23 0.40 5 50 2 3931.67 48.30 24.160 T
24 0.40 5 50 2 3810.00 59.82 26.746 Test
25 0.40 3 30 2 4090.00 62.01 28.182 T
26 0.40 3 30 2 4053.33 59.44 28.644 T
27 0.40 3 30 2 4053.33 59.44 28.644 V
28 0.40 3 30 2 4070.00 58.03 28.360 T
29 0.40 3 30 2 4003.33 60.87 29.478 T
30 0.40 3 30 2 3966.67 46.26 28.360 Test
31 0.40 3 30 2 4023.33 63.05 29.625 T
32 0.40 3 30 2 3986.67 51.67 26.791 T
33 0.40 10 50 2 3926.67 76.90 26.513 V
34 0.40 10 50 2 3831.67 56.03 23.159 T
35 0.40 10 50 2 3763.33 68.21 24.276 T
36 0.40 10 50 2 3810.00 72.48 25.168 Test
37 0.40 10 50 2 3873.33 68.86 26.876 T
38 0.40 10 50 2 3831.67 56.03 23.159 T
39 0.40 10 50 2 3746.67 71.26 23.733 V
40 0.40 10 50 2 3756.67 71.57 27.914 T
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Table 1. Cont.

Sample
Input Output

Comments 1

W/B Ratio
MK

(% w/w in the Dry Mix)
B

(% w/w in the Dry Mix)
SP

(% w/w of the Cementitious Materials)
Ultrasonic

Velocity (m/s)
Compressive

Strength (MPa)
Modulus of

Elasticity (GPa)

41 0.40 6 30 2 3886.67 64.65 25.695 T
42 0.40 6 30 2 3820.00 72.68 26.582 Test
43 0.40 6 30 2 3906.67 74.34 26.781 T
44 0.40 6 30 2 3880.00 67.92 25.120 T
45 0.40 6 30 2 3903.33 75.77 25.578 V
46 0.40 6 30 2 3863.33 70.94 26.992 T
47 0.40 6 30 2 3886.67 64.65 25.695 T
48 0.40 6 30 2 3890.00 60.81 26.798 Test
49 0.70 0 50 0 3523.33 27.87 15.884 T
50 0.70 0 50 0 3353.33 22.53 12.785 T
51 0.70 0 50 0 3333.33 25.16 16.654 V
52 0.70 0 50 0 3381.67 26.68 14.166 T
53 0.70 0 50 0 3356.67 25.18 13.710 T
54 0.70 0 50 0 3376.67 28.75 15.392 Test
55 0.70 0 50 0 3381.67 26.68 14.166 T
56 0.70 0 30 0 3486.67 26.72 17.402 T
57 0.70 0 30 0 3670.00 28.63 20.870 V
58 0.70 0 30 0 3536.67 23.53 21.957 T
59 0.70 0 30 0 3343.33 26.07 14.697 T
60 0.70 0 30 0 3516.67 28.83 16.694 Test
61 0.70 0 30 0 3486.67 26.44 15.622 T
62 0.70 0 30 0 3436.67 28.06 18.379 T
63 0.70 0 30 0 3413.33 33.32 15.280 V
64 0.70 5 50 0 3303.33 35.60 15.233 T
65 0.70 5 50 0 3406.67 31.48 13.865 T
66 0.70 5 50 0 3303.33 31.61 14.062 Test
67 0.70 5 50 0 3333.33 32.59 13.197 T
68 0.70 5 50 0 3533.33 30.51 15.296 T
69 0.70 5 50 0 3383.33 32.99 12.730 V
70 0.70 5 50 0 3333.33 32.59 13.197 T
71 0.70 5 50 0 3373.33 32.71 13.913 T
72 0.70 3 30 0 3473.33 31.53 16.269 Test
73 0.70 3 30 0 3530.00 30.69 15.240 T
74 0.70 3 30 0 3516.67 31.00 14.834 T
75 0.70 3 30 0 3473.33 29.55 14.138 V
76 0.70 3 30 0 3420.00 29.43 16.757 T
77 0.70 3 30 0 3493.33 33.11 15.356 T
78 0.70 3 30 0 3500.00 30.44 15.064 Test
79 0.70 3 30 0 3446.67 35.51 14.515 T
80 0.70 10 50 0 3386.67 40.78 12.960 T
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Table 1. Cont.

Sample
Input Output

Comments 1

W/B Ratio
MK

(% w/w in the Dry Mix)
B

(% w/w in the Dry Mix)
SP

(% w/w of the Cementitious Materials)
Ultrasonic

Velocity (m/s)
Compressive

Strength (MPa)
Modulus of

Elasticity (GPa)

81 0.70 10 50 0 3396.67 44.13 13.138 V
82 0.70 10 50 0 3386.67 38.48 12.989 T
83 0.70 10 50 0 3416.67 38.33 14.179 T
84 0.70 10 50 0 3416.67 38.33 14.179 Test
85 0.70 10 50 0 3386.67 38.28 13.626 T
86 0.70 10 50 0 3373.33 39.71 13.640 T
87 0.70 10 50 0 3426.67 41.75 14.144 V
88 0.70 6 30 0 3473.33 35.68 15.308 T
89 0.70 6 30 0 3466.67 34.94 16.008 T
90 0.70 6 30 0 3480.00 33.27 16.529 Test
91 0.70 6 30 0 3423.33 35.82 16.929 T
92 0.70 6 30 0 3456.67 39.31 16.124 T
93 0.70 6 30 0 3440.00 38.16 15.525 V
94 0.70 6 30 0 3446.67 33.79 17.725 T
95 0.70 6 30 0 3400.00 35.49 20.365 T
96 1.00 0 50 0 2996.67 12.21 11.080 Test
97 1.00 0 50 0 3076.67 15.41 12.005 T
98 1.00 0 50 0 3216.67 17.39 15.598 T
99 1.00 0 50 0 3086.67 16.39 10.943 V

100 1.00 0 50 0 3026.67 15.05 12.352 T
101 1.00 0 30 0 3430.00 17.21 18.732 T
102 1.00 0 30 0 3233.33 15.52 14.212 Test
103 1.00 0 30 0 3173.33 16.56 14.149 T
104 1.00 0 30 0 3083.33 15.28 12.740 T
105 1.00 5 50 0 3163.33 17.32 15.575 V
106 1.00 5 50 0 3230.00 16.03 13.224 T
107 1.00 5 50 0 3053.33 18.64 9.836 T
108 1.00 5 50 0 3180.00 17.20 11.299 Test
109 1.00 5 50 0 3040.00 14.37 10.686 T
110 1.00 5 50 0 2933.33 14.67 10.341 T
111 1.00 5 50 0 3010.00 14.74 11.803 V
112 1.00 3 30 0 3116.67 16.13 12.304 T
113 1.00 3 30 0 3350.00 20.84 12.832 T
114 1.00 3 30 0 3130.00 14.28 10.094 Test
115 1.00 3 30 0 2993.33 14.16 10.735 T
116 1.00 3 30 0 3180.00 14.42 10.125 T
117 1.00 3 30 0 3006.67 15.60 11.474 V
118 1.00 3 30 0 3063.33 15.74 11.834 T
119 1.00 10 50 0 2906.67 19.00 10.029 T
120 1.00 10 50 0 2983.33 20.26 9.171 Test
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Table 1. Cont.

Sample
Input Output

Comments 1

W/B Ratio
MK

(% w/w in the Dry Mix)
B

(% w/w in the Dry Mix)
SP

(% w/w of the Cementitious Materials)
Ultrasonic

Velocity (m/s)
Compressive

Strength (MPa)
Modulus of

Elasticity (GPa)

121 1.00 10 50 0 2896.67 19.60 10.271 T
122 1.00 10 50 0 3060.00 16.73 10.539 T
123 1.00 10 50 0 2890.00 18.38 9.072 V
124 1.00 10 50 0 3023.33 19.54 10.013 T
125 1.00 10 50 0 2930.00 17.85 9.515 T
126 1.00 10 50 0 2896.67 18.82 9.079 Test
127 1.00 6 30 0 3070.00 16.67 12.034 T
128 1.00 6 30 0 3003.33 20.24 8.509 T
129 1.00 6 30 0 3013.33 17.89 9.197 V
130 1.00 6 30 0 3086.67 14.86 9.972 T
131 1.00 6 30 0 2926.67 18.16 9.338 T
132 1.00 6 30 0 3046.67 17.95 10.852 Test
133 1.00 6 30 0 2986.67 14.92 11.560 T
134 1.00 6 30 0 2983.33 14.89 11.570 T

1 T: Training Data; V: Validation Data; Test: Test Data.
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Three categories of binders (B), variable in synthesis, were investigated; the first that consisted of
100% w/w CEM I 42.5 N Portland cement (PC) was used as reference, the second produced by mixing
90% w/w PC and 10% w/w metakaolin (MK) in the dry mix, and the third by mixing 80% w/w PC
and 20% w/w MK (in the dry mix) as partial replacement. Homogeneity of all three categories of
blends was reached after mixing MK and PC without further grinding in a laboratory swing mill
for 1 h. Mixing of the binder-CQLS mixtures with tap water at 20 ◦C was conducted in an 80 L
capacity laboratory mixer appropriate for concrete production. After casting the molds were covered
to minimize water evaporation, stripped after 24 h and the specimens were immersed in lime-saturated
water at 20 ◦C, until testing. A detailed and in-depth description of the experimental set-up can be
found in the above-mentioned references.

Each input training vector p is of dimension 1 × 5 and consists of the values of the four parameters
of synthesis and the value of the ultrasonic velocity (R = 5), namely the water-to-binder ratio (W/B),
the metakaolin addition (MK), the binder (B), the superplasticizer (SP), and the ultrasonic velocity
(UV). The corresponding output training vectors are of dimension 1 × 1 and consist, in the first case,
of the value of the 28 days compressive strength and, in the second case, of the value of the modulus
of elasticity of the sandcrete specimens. Their mean values together with the minimum and maximum
values are listed in Table 2.

Table 2. The input and output parameters used in the development of BPNNs.

Code Parameter Type Variable
Data Used in NN Models

Minimum Average Maximum

01 Input Water-to-binder ratio 0.40 0.68 1.00
02 Input Metakaolin 0.00 4.24 10.00
03 Input Binder 30.00 40.00 50.00
04 Input Superplasticizer 0.00 0.72 2.00
05 Input Ultrasonic velocity (m/s) 2890.00 3511.82 4100.00
06 Output Compressive strength (MPa) 12.21 37.46 76.90
07 Output Modulus of Elasticity (GPa) 8.51 18.20 29.62

4.2. Normalization of Data

As mentioned previously, the normalization of the input and output parameters has a
significant impact on the ANN training. In the present study, during the pre-processing stage, the
Min-Max [49] and the ZScore normalization methods have been used. In particular, the five input
parameters (Table 1), as well as the output parameters of the 28-day compressive strength and the
modulus of elasticity have been normalized using the Min-Max normalization method. As stated
in Iruansi et al. [50], in order to avoid problems associated with low learning rates of the ANN, the
normalization of the data should be made within a range defined by appropriate upper and lower
limit values of the corresponding parameter. In this work, the input and output parameters have been
normalized in the range [0,1] and [−1,1], respectively. Moreover, in this work a recently proposed
transformation technique called Central has been applied [51], in which the origin of the training data
is shifted to the centre of the data with the following formula:

zi = xi −
max(x) + min(x)

2
(4)

where x (x1, x2, . . . , xn) are the original data and zi is the i-th transformed data.

4.3. BPNN Model Development

In this work, a large number of different BPNN models have been developed and implemented
in four different computers in order to investigate the sensitivity of the ANN results to the very nature
of the floating-point arithmetic of each computer. Each one of these ANN models was trained over
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90 data-points out of the total of 134 data-points, (66.86% of the total number) and the validation and
testing of the trained ANN were performed with the remaining 44 data-points. More specifically,
22 data-points (16.57%) were used for the validation of the trained ANN and 22 (16.57%) data-points
were used for the testing (estimating the Pearson’s correlation coefficient R). The parameters used for
the ANN training are summarized as follows.

After a detailed and in-depth investigation among a plethora of training algorithms, the
Levenberg-Marquardt algorithm [52] has been used as the optimum training algorithm for the ANN
models. The development and training of the ANNs occurs with a number of hidden layers ranging
from one to two and with a number of neurons ranging from one to 30 for each hidden layer. Each one
of the ANNs is developed and trained for a number of different activation functions, such as the
Logistic Sigmoid and the Hyperbolic Tangent functions.

In order to achieve a fair comparison of the various ANNs, the datasets used for their training are
manually divided by the user into training, validation, and testing sets using appropriate indices to
state whether the data belongs to the training, validation or testing set. In the general case, the division
of the datasets into the three groups is made randomly.

Based on the above, a total of 372,000 different BPNN models have been developed and
investigated in order to find the optimum NN model for the prediction of the compressive strength
(186,000) and the modulus of elasticity (186,000) of sandcrete materials.

The developed ANN models were sorted in a decreasing order based on the Pearson’s correlation
coefficient value. The architectures of the top twenty models are presented in Table 3 for the case of
compressive strength and in Table 4 for the case of modulus of elasticity. Based on these results, the
optimum BPNN model for the prediction of the compressive strength is that of 5-7-7-1 (Figure 4) with
Pearson’s correlation coefficient R equal to 0.99001, while for the prediction of the modulus of elasticity
is that of 5-3-25-1 (Figure 5) with Pearson’s correlation coefficient R equal to 0.988105. Figures 4 and 5
present in detail the architectures of the two optimum NNs for the compressive strength and the
modulus of elasticity. Furthermore, these figures depict the methodology followed to achieve the
two NN models. Based on the information provided in these figures and the final values of weights
presented in the next section, one could readily develop a simple code to be used as a tool both for the
practicing engineers, as well as researchers in the field, for the prediction of the mechanical properties
of sandcrete materials.

 

 

Figure 4. Architecture of the optimum with two hidden layers 5-7-7-1 BPNN model for the case of
compressive strength of sandcrete materials based on Pearson’s correlation coefficient R.
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Table 3. Ranking of the top twenty best architectures of BPNNs (Compressive strength).

Ranking Computer Preprocess Cost Function 1 Training Functions 2 Initial Weights Architecture (Code) Pearson’s R Number of Epochs

1 C02 Central MSE T-L-T −0.10 5-7-7-1 0.990015 180
2 C04 MinMax [0,1] MSE T-L-T −0.70 5-30-7-1 0.989846 218
3 C03 MinMax [0,1] MSE T-L-T 0.90 5-6-24-1 0.989165 215
4 C03 MinMax [−1,1] SSE T-L-T −0.70 5-12-14-1 0.988943 168
5 C04 MinMax [−1,1] MSE T-L-T 0.10 5-6-24-1 0.988755 213
6 C04 MinMax [−1,1] SSE T-L-T 0.10 5-13-30-1 0.988752 213
7 C03 MinMax [0,1] MSE T-L-T 0.90 5-6-27-1 0.988698 215
8 C02 MinMax [0,1] MSE T-L-T −0.90 5-4-3-1 0.988587 211
9 C02 Central MSE T-L-T 0.10 5-30-3-1 0.988582 180

10 C02 Central SSE T-L-T −0.70 5-30-12-1 0.988463 225
11 C04 MinMax [−1,1] MSE T-L-T 0.90 5-6-30-1 0.988389 213
12 C01 ZScore MSE T-L-T 0.30 5-11-26-1 0.988233 227
13 C02 Central MSE T-L-T 0.90 5-14-29-1 0.988226 180
14 C03 NoPreprocess SSE T-L-T −0.70 5-22-15-1 0.988204 202
15 C04 MinMax [−1,1] SSE T-L-T 0.10 5-11-27-1 0.988033 213
16 C03 MinMax [−1,1] SSE T-L-T 0.10 5-11-27-1 0.988033 168
17 C03 Central SSE T-L-T −0.50 5-6-3-1 0.988025 250
18 C03 MinMax [−1,1] MSE T-L-T 0.30 5-5-25-1 0.987961 168
19 C03 ZScore MSE T-L-T −0.30 5-5-14-1 0.987953 193
20 C01 ZScore MSE T-L-T 0.70 5-9-6-1 0.987947 204

1 MSE: Mean Square Error; SSE: Mean Square Error; 2 T: Hyperbolic tangent sigmoid transfer function (tansig); L: Log-sigmoid transfer function (logsig).

Table 4. Ranking of the top twenty best architectures of BPNNs (Modulus of elasticity).

Ranking Computer Preprocess Cost Function 1 Training Functions 2 Initial Weights Architecture (Code) Pearson’s R Number of Epochs

1 C02 ZScore MSE T-L-T 0.90 5-3-25-1 0.988105 191
2 C03 ZScore MSE T-L-T 0.10 5-5-20-1 0.988094 148
3 C04 ZScore MSE T-L-T 0.70 5-5-28-1 0.987907 241
4 C03 ZScore MSE T-L-T 0.70 5-5-28-1 0.987907 148
5 C03 Central SSE T-L-T −0.70 5-6-27-1 0.987766 185
6 C01 MinMax [−1,1] MSE T-L-T 0.10 5-4-13-1 0.987665 174
7 C04 MinMax [−1,1] MSE T-L-T −0.90 5-5-30-1 0.987087 208
8 C02 ZScore MSE T-L-T 0.10 5-5-17-1 0.987033 131
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Table 4. Cont.

Ranking Computer Preprocess Cost Function 1 Training Functions 2 Initial Weights Architecture (Code) Pearson’s R Number of Epochs

9 C01 Central MSE T-L-T −0.70 5-7-15-1 0.986940 153
10 C03 MinMax [−1,1] MSE T-L-T −0.70 5-4-2-1 0.986897 147
11 C01 Central MSE T-L-T 0.90 5-25-15-1 0.986894 190
12 C01 MinMax [−1,1] SSE T-L-T 0.50 5-18-21-1 0.986871 174
13 C04 MinMax [0,1] MSE T-L-T 0.30 5-8-13-1 0.986859 130
14 C02 MinMax [−1,1] MSE T-L-T −0.90 5-4-21-1 0.986707 207
15 C01 NoPreprocess MSE T-L-T 0.90 5-20-14-1 0.986605 196
16 C03 ZScore MSE T-L-T −0.10 5-5-10-1 0.986596 240
17 C03 MinMax [0,1] MSE T-L-T −0.90 5-24-7-1 0.986517 181
18 C01 Central MSE T-L-T −0.10 5-5-6-1 0.986478 153
19 C01 Central MSE T-L-T −0.90 5-8-27-1 0.986463 241
20 C03 NoPreprocess MSE T-L-T −0.50 5-8-29-1 0.986440 91

1 MSE: Mean Square Error; SSE: Mean Square Error; 2 T: Hyperbolic tangent sigmoid transfer function (tansig); L: Log-sigmoid transfer function (logsig).
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Figure 5. Architecture of the optimum with two hidden layers 5-3-25-1 BPNN model for the case of
modulus of elasticity of sandcrete materials based on Pearson’s correlation coefficient R.

Figures 6 and 7 depict the comparison of the exact experimental values with the predicted values
of the optimum BPNN model with topology 5-7-7-1 for the case of compressive strength, while
Figures 8 and 9 for the case of modulus of elasticity of sandcrete materials. These results clearly show
that the 28-day compressive strength and the modulus of elasticity of sandcrete material predicted
from the multilayer feed-forward neural network are very close to the experimental results.

 

Figure 6. The Pearson’s correlation coefficient R of the experimental and predicted compressive
strength for the best with two hidden layers BPNN (5-7-7-1).
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Figure 7. Experimental vs predicted values of compressive strength for the best with two hidden layers
BPNN (5-7-7-1).

 

Figure 8. The Pearson’s correlation coefficient R of the experimental and predicted modulus of elasticity
for the best with two hidden layers BPNN (5-3-25-1).

 

Figure 9. Experimental vs predicted values of modulus of elasticity for the best with two hidden layers
BPNN (5-3-25-1).
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4.4. Final Values of Weights of the FF-NN Model

It is common practice in the majority of published papers on NN models, for authors to present
the architecture of the optimum NN model without providing any information regarding the final
values of NN weights. Admittedly, this practice has very little value for other researchers and
practicing engineers. In order to be useful, a proposed NN architecture should be accompanied by
the (quantitative) values of weights. In such a case, the NN model can be readily implemented in an
MS-Excel spreadsheet, thus available to anyone interested in the problem of modelling.

In this study, the final values of weights and biases for both cases of compressive strength
and modulus of elasticity are explicitly reported in Figures 10 and 11 and Tables A1 and A2 of the
Appendix A. By employing the properties defined in Table 1 and using the reported values of weights
and biases, one can easily build an ANN-based estimator for the compressive strength and the modulus
of elasticity of sandcrete materials.

 

Figure 10. Final Weights and Bias Values of the optimum FF-NN model 5-7-7-1 for the case of
compressive strength of sandcrete materials (The values are presented in Table A1).

 

Figure 11. Final Weights and Bias Values of the optimum FF-NN model 5-3-25-1 for the case of modulus
of elasticity of sandcrete materials (The values are presented in Table A2).
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5. Discussion

Based on the above optimum NN models for the prediction of the compressive strength and
modulus elasticity of sandcrete materials, the following can be stated:

1. Among the training algorithms available in the literature, the best by far ANN prediction of the
sandcrete compressive strength was achieved by using the Levenberg-Marquardt algorithm.

2. Different optimum ANN architectures were found in different computers, which means that
the computational environment affects the procedure of ANN training, and subsequently its
performance. This can be attributed to the fact that the tested algorithms ultimately rely on basic
arithmetic operations that can yield different results, when performed in different environments,
due to the very nature of floating-point arithmetic.

3. The recently-proposed formula for the normalization of data proved effective and robust
compared to available ones.

4. For the top twenty models the optimum number of hidden layers was found to be two. This is
an indication that the complexity of the problem cannot be dealt with effectively with a single
hidden layer.

5. The best activation functions corresponding to all of the top-twenty best NN models, both for the
case of compressive strength and modulus of elasticity, are the same, namely Hyperbolic tangent
sigmoid transfer function for the first hidden layer, Log-sigmoid transfer function for the second
hidden layer, and also Hyperbolic tangent sigmoid transfer function for the output layer.

6. Conclusions

This study investigated the application of Artificial Neural Networks (ANNs) models for the
prediction of the mechanical properties of sandcrete materials. The comparison of the derived results
with the experimental findings demonstrates the effectiveness of ANNs to build soft sensors with the
ability to predict in a reliable manner the mechanical properties of sandcrete materials. Moreover, the
results obtained using the proposed technique for pre-processing the data were favourably compared
to the results obtained by other known normalization techniques available in the literature. This fact
demonstrates the need for further research on data pre-processing, prior to the use of the data toward
the training and the development of ANNs, taking into account the present-day limitations and
constraints in this promising research area.
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Appendix A

Table A1. Final Weights and Bias Values of the optimum FF-NN model 5-7-7-1 for the case of
compressive strength of sandcrete materials.

iw{1,1} b{1,1}

−3.1454 5.7724 8.9543 −6.7047 22.5041 −2.9032
−2.4742 −1.5216 3.6697 1.0200 −0.7726 3.5424
−3.9296 1.9843 1.4874 2.6574 −6.9825 0.9965
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Table A1. Cont.

iw{1,1} b{1,1}

iw{2,1} b{2,1}
−2.0427 3.5493 −0.4779 −0.0410 7.5813 0.5879
−7.6746 −1.5906 0.4895 1.3043 −9.5646 −3.1589
−0.3579 7.9553 −1.0003 −2.5111 3.4250 0.2015
2.4607 0.2907 −4.4205 −1.9332 16.6615 −1.6439

0.3389 −1.8205 0.9802 −1.9670 3.3510 2.3617 2.2468 −2.7143
1.2257 −1.1260 −0.0406 −2.1345 3.2631 0.7258 1.0570 −2.7688
−6.0180 4.5068 −0.2757 2.4946 5.8850 0.2355 2.6817 −2.2599
12.5716 −1.6461 −6.4402 −3.7017 4.0460 4.3573 8.8892 −3.9000
−2.0902 −0.9018 2.1424 −1.2080 3.0220 3.7258 2.7311 −3.1176
1.5583 −1.8878 0.4010 −2.7070 3.1374 1.0304 2.0414 −2.7023
3.7293 −2.2113 2.1434 −0.4837 4.4761 5.6031 −0.3302 −3.9391

iw{3,2} b{3,1}

1.4109 0.7937 1.7777 2.0058 0.8540 1.6295 1.9678 −1.4850

iw{1,1} = Weights values for Input Layer; iw{2,1} = Weights values for First Hidden Layer; iw{3,2} = Weights values
for Second Hidden Layer; b{1,1} = Bias values for First Hidden Layer; b{2,1} = Bias values for Second Hidden Layer;
b{3,1} = Bias values for Output Layer.

Table A2. Final Weights and Bias Values of the optimum FF-NN model 5-3-25-1 for the case of modulus
of elasticity of sandcrete materials.

iw{1,1} b{1,1}

−0.7749 −0.9128 0.4512 0.2054 −1.9381 0.0422
1.7987 0.4968 −0.3772 −1.0875 4.3027 −0.6290
−8.7504 0.5531 −0.1747 3.4623 −2.8384 2.6341

iw{2,1} (iw{3,2})’ b{2,1}

−1.1246 3.7720 −2.0741 3.9137 −2.1271
2.8413 2.5212 0.8341 0.3920 −0.3034
−3.0563 9.7899 −5.9379 −2.4649 −5.1664
3.2099 2.3507 1.7487 −0.6487 −0.2885
3.1650 2.0482 1.3610 −0.2791 −0.2298
3.1411 2.7374 0.1086 1.3271 −0.4980
3.0513 2.1228 1.3024 −0.1487 −0.2583
3.2524 2.1063 1.4924 −0.4534 −0.2283
3.1566 2.0521 1.3569 −0.2689 −0.2322
4.1909 2.3250 1.1062 −0.0453 1.2783
4.9801 4.2184 3.2779 2.7336 1.8558
3.1562 2.0523 1.3567 −0.2685 −0.2323
3.0853 2.0961 1.3216 −0.1870 −0.2508
3.0732 2.1052 1.3150 −0.1734 −0.2536
2.8481 2.5424 0.7734 0.4513 −0.3137
3.1216 2.1056 1.2121 0.1486 −0.7483
4.0254 4.6646 1.5502 1.8815 1.2186
2.9450 2.1427 3.2016 −1.8828 1.1351
2.9880 6.4671 −0.1321 −6.6844 −0.8629
6.0950 12.6888 1.0980 4.1027 −1.2059
3.2443 2.2189 1.6067 −0.5419 −0.2548
3.0972 2.0876 1.3278 −0.2005 −0.2479
3.4909 2.0370 1.3709 −0.5782 −0.2315
4.0724 7.2089 5.6700 −4.5069 0.6307
7.0715 9.1544 9.1090 6.0504 1.6593

b{3,1}

−1.4004

iw{1,1} = Weights values for Input Layer; iw{2,1} = Weights values for First Hidden Layer; iw{3,2} = Weights values
for Second Hidden Layer; b{1,1} = Bias values for First Hidden Layer; b{2,1} = Bias values for Second Hidden Layer;
b{3,1} = Bias values for Output Layer.
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