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For predicting the key technology indicators (concentrate grade and tailings recovery rate) of 	otation process, a feed-forward
neural network (FNN) based so
-sensor model optimized by the hybrid algorithm combining particle swarm optimization
(PSO) algorithm and gravitational search algorithm (GSA) is proposed. Although GSA has better optimization capability, it has
slow convergence velocity and is easy to fall into local optimum. So in this paper, the velocity vector and position vector of
GSA are adjusted by PSO algorithm in order to improve its convergence speed and prediction accuracy. Finally, the proposed
hybrid algorithm is adopted to optimize the parameters of FNN so
-sensor model. Simulation results show that the model has
better generalization and prediction accuracy for the concentrate grade and tailings recovery rate to meet the online so
-sensor
requirements of the real-time control in the 	otation process.

1. Introduction

Flotation is known as froth 	otation, and it is a physico-
chemical reaction process. Flotation is the process which
is based on the di�erences of the surface property of solid
materials to separate useful minerals and gangue by means
of the buoyancy of air bubbles from ore pulp by this method
to improve the concentrate grade [1]. In the production
process of 	otation, concentrate grade and other economic
and technical indicators are key control indicators of the
production process. Process control indicators of domestic
	otation process are mainly based on an experienced oper-
ator to observe the information (such as foam color, size,
	ow rate, and texture features) which is provided by the
bubble state formed on the surface of the 	otation tank and
to adjust the 	otation level and change agents system [2, 3].
Inference estimate (so
-sensor) technology can e�ectively
solve the online estimation problems where the 	otation
process is dicult to online measure the economic and
technical indicators.

Domestic and foreign scholars carry through the research
on so
-sensor modeling of the key technical indicators in
the 	otation process and make a lot of achievements [4–16].
Hargrave and Hall study the diagnosis and analysis methods
of the metal grade, quality, and 	ow rate in 	otation process
by using the color and surface tissue [4]. Bartolacci et al. use
multivariate image analysis (MIA) and partial least squares
(PLS) methods to establish the experience prediction model
of 	otation grade [5]. Morar et al. utilize the machine vision
method to predict the performance of the 	otation process,
such as concentrate grade and tailings recovery rate [6].
Moolman andmany other scholars created a bubble dynamic
model based on image processing through researching 	ota-
tion foam structure and calculated the content of useful
minerals in foam through this model [7].

At home, Yang et al. put forward a bubble image seg-
mentation method based on the clustering presplit and
the accuracy distance reconstruction [8]. In that the so
-
sensor method with multiple models can improve the overall
prediction accuracy and have the characteristic of robustness;
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Figure 1: Technique 	owchart of 	otation process.

Wang et al. present a multi-T-S fuzzy neural network so
-
sensor model of 	otation process based on the FCM clus-
tering algorithm [9]. Yang et al. use the 	otation froth video
image features as auxiliary variables and establish a so
-
sensor model of the 	otation pulp pH value based on the
sparse polynuclear least squares support vector machine
(SVM) and use Schmidt orthogonalization theory to reduce
the multinuclear matrix [10]. Li et al. set up a so
-sensor
mode by combining the principal component analysis (PCA)
and extreme learning machine (ELM) methods [11]. Zhou
et al. extracted color and size characteristics of the foam
by using digital image processing method and established a
recovery prediction model [12]. Wang and Zhang proposed a
kind of so
-sensor model of economic and technical index
based on PCA and ANFIS and combining PSO algorithm
with LSM put forward a new learning process to optimize
parameters of ANFIS [13]. Geng and Chai utilized least
squares support vector machine to establish so
-sensor
model of concentrate grade and tailing grade in the 	otation
process based on analyzing related in	uencing factors of
concentrate grade and tailing grade of the 	otation process
technology indicators [14]. Wang et al. proposed the features
extraction method of 	otation froth images and BP neural
network so
-sensor model of concentrate grade optimized
by shu�ed cuckoo searching algorithm [15]. Wang et al.
proposed an echo state network (ESN) based fusion so
-
sensor model optimized by the improved glowworm swarm
optimization (GSO) algorithm. Simulation results show that
the model has better generalization and prediction accuracy
[16].

�is paper proposes a feed-forward neural network
(FNN) so
-sensor model by using process datum in the
	otation process for predicting the 	otation concentrate
grade and recovery rate, which is optimized by the PSO-
GSA algorithm. Simulation results verify the validity of
the proposed so
-sensor model. �e paper is organized as

follows. In Section 2, the technique 	owchart of 	otation
process is introduced.�eFNNso
-sensormodel of 	otation
process optimized by PSO-GSA algorithm is presented in
Section 3. In Section 4, experiment and simulation results are
introduced in detail. Finally, the conclusion illustrates the last
part.

2. Technique Flowchart of Flotation Process

Flotation process is used to separate useful minerals and
gangue based on the di�erences of the surface property of
solid materials. Figure 1 is a typical iron ore 	otation process
consisting of the roughing, concentration, and scavenging
[11]. �e system input is the �ne concentrate pulp which
is early output of bene�ciation process in the forepart. �e
pulp density is about 38% and concentrate grade is about
64%. Inlet pulp is fed into the high-stirred tank through the
pulp pipeline by feed pump. At the same time, the 	otation
reagent according to a certain concentration ratio is also fed
into high-stirred tank through dosing pump. On the other
hand, the pulp temperature must reach a suitable 	otation
temperature by heating. If the dosage is appropriate, the
	otation cells can output a grade of 68.5%–69.5% concentrate
[15, 16].

�e control objective of 	otation process is to ensure
the concentrate grade and the tailings recovery rate are
within a certain target range. In common, based on the
o�ine arti�cial laboratory to get grade values, the operators
adjust the 	otation cell level and the amount of 	otation
reagent addition. Due to the arti�cial laboratory for two
hours at a time, when the process variables and boundary
conditions change in the 	otation process, they cannot timely
adjust the 	otation operation variables, which results in
such phenomena that the 	otation concentrate grade and
the tailings recovery rate are too high or too low [15, 16].
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Table 1: So
-sensor modeling data of 	otation process.

Number

Auxiliary variables Dominant variables

Feed
concentration

(%)
Feed 	ow (m3/h) Feed grade (%)

Feed granularity
(%)

Medicament 	ow
(L/min)

Concentrate
grade (%)

Recovery rate
(%)

1 62.76 329 35 90 15.5 70.51 97.7

2 63.67 297 35 90 11.5 69.74 97.2

3 65.07 285 37 92 11.3 69.69 97.0

4 65.48 214 36 95 7.5 68.98 93.5... ... ... ... ... ... ... ...
600 65.9 310 36 96 5.5 67.29 90.2
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Figure 2: Structure of the proposed so
-sensor model of 	otation
process.

By analyzing the 	otation technique, the process variables
and boundary conditions mainly include feed grade �1, feed
	ow rate �2, feed concentration �3, feed granularity �4, and
medicament 	ow rate �5. �e modeling data is shown in
Table 1.

3. Soft-Sensor Modeling of Flotation Process

3.1. Structure of So�-Sensor Model. �e structure of the
proposed feed-forward neural network (FNN) so
-sensor
model of the 	otation process based on PSO-GSA algorithm
is shown in Figure 2.

�e auxiliary variables of so
-sensor model proposed
in this paper are feed grade, feed concentration, feed 	ow,
feed granularity, and medicament 	ow. �en the samples
composed of the auxiliary variable are normalized as the
model input. Finally, parameters of FNN so
-sensor model
are optimized by PSO-GSA algorithm. �ereby, the accurate
prediction of concentrate grade and tailing recovery rate
of the 	otation process is achieved. Considering a multi-
input single-output (MISO) system, the training set can be
represented as � = {�,�� | � = 1, 2, . . . , �}, where �
represents the output and �� denotes the �th input vector
and it can be represented as �� = [�1�, �2�, . . . , ���]� (� is
the number of the training samples and � is the number of
the input variables). �e establishment of so
-sensor model
needs a data set from the normal working condition as the
modeling data. Assuming the � process variables, � data
vector samples comprise the test data matrix � ∈ 
�×�. In
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Figure 3: Structure of feed-forward neural network (FNN).

order to avoid the e�ect of di�erent dimensions of process
variables for results and be convenient for mathematical
handling, it is necessary to normalize the data. Assume the
mean vector of� is � and the standard deviation vector is �.
�e process variables a
er the normalization are described as
follows:

�̂ = (� − �)� . (1)

�en the input vectors �̂ of the training samples are fed
into FNN so
-sensor model to obtain the predictive output�̂. On the other hand, the root mean square error (RMSE) is
adopted as the �tness value of so
-sensor model:

RMSE = √ �∑
�=1

(�̂� − �∗� )2� , (2)

where �∗ is the actual output of the training samples.

3.2. Feed-Forward Neural Network (FNN). In accordance
with di�erent layers of the feed-forward neural network
(FNN), it can be divided into single-layer feed-forward neural
network and multilayer feed-forward neural network. �e
multilayer FNN is adopted in this paper, which includes
an input layer, a hidden layer, and an output layer, whose
structure is shown in Figure 3.
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Assume that the input layer has � inputs; � (� =1, 2, . . . ,�) represents any input. �e hidden layer has �
inputs; � (� = 1, 2, . . . , �) represents any inputs. �e
connection weight values between the input layer and the
hidden layer are ��� (� = 1, 2, . . . ,�; � = 1, 2, . . . , �). �e
connection weight values between the hidden layer and the
output layer are ��� (� = 1, 2). Assume that the input of the
hidden layer neurons is ��; output is V�. Input of output layer
neurons is ��; total output is ��. So the calculation of FNN
can be represented as follows:

�� = 	∑
�=1
���� (�) ,

V� = � [��] = �[	∑
�=1
���� (�)] ,

�� = 
∑
�=1
���V�,

�� = � [��] = �[[

∑
�=1
���V�]] ,

(3)

where�() represents the transfer function between input and
output of the hidden layer and the output layer, which is also
called the activation function.

3.3. FNN So�-Sensor Model Optimized by

Hybrid PSO-GSA Algorithm

3.3.1. Particle Swarm Optimization (PSO) Algorithm. Particle
swarm optimization (PSO) algorithm is a kind of swarm
intelligent optimization algorithm, which is inspired by the
birds’ migration and swarming behavior during the foraging
process. Due to its simplicity, it has been widely used inmany
optimization problems. It uses a large number of particles
(potential solutions) to �nd the best solution in the search
space, where each particle corresponds to a �tness value, and
the velocity of the particles is decided by their 	ight direction
and distance. Adjust the individual best value and the global
best value to meet the requirements dynamically [17, 18].

Assume that, in an *-dimensional searching space, �
particles consist of the population � = (�1, �2, . . . , ��),
where the �th particle is expressed as an *-dimensional vector�� = (��1, ��2, . . . , ���)�. It represents the position of the �th
particle in the searching space (the potential solutions of

the discussed problem). V� = (V�1, V�2, . . . , V��)� represents the
velocity of the �th particle, +-/03� = (+�1, +�2, . . . , +��)� repre-
sents the individual best value, and 4-/03 = (41, 42, . . . , 4�)�
represents the global best value. According to the following

equations, the position and velocity vector of the particles are
updated:

V
+1
� = �V� + 61 × rand× (+-/03� −��) + 62 × rand× (4-/03 − ��) , (4)

�+1� = �� + V+1� , (5)

where � is the inertia weight, 3 is the number of iterations,
V

� represents the velocity of �th particle in 3 iteration, 61 is
the particle’s acceleration weighting coecient, 62 is a global
acceleration weighting coecient, 61 and 62 are learning
factors (usually 61 = 62 = 2), rand is a random number
between 0 and 1, and �� represents the current location of the�th particle in 3th iteration.

�e �rst part �V of (4) represents the search capability of
PSOalgorithm, and the secondpart 61×rand×(+-/03�−��) and
the third part 62× rand×(4-/03−��) represent individual and
global optimization ability of particles. In the searching space,
the position vector of the particles is randomly generated.
In each iteration, (4) is used to update the velocity vector
of particles. A
er determining the velocity of the particles,
the particle position vector is updated by (5). �e position
vector of the particles will be constantly changed until the
termination condition is satis�ed.

3.3.2. Gravitational Search Algorithm (GSA). In 2009,
Rashedi et al. put forward a gravitational search algorithm
(GSA), which is a heuristic optimization algorithm [19].
It uses the physics law to �nd the optimal solution in
the searching space. Inspiration of the GSA comes from
Newton’s universal gravitation law. Gravity is a force of
attraction that exists between any two masses, any two
bodies, or any two particles. �e size of the gravitational
force is proportional to their product of the quality and
inversely proportional to the distance between them. In this
algorithm, each individual represents a potential solution,
each of the potential solutions corresponds to a �tness value,
and the �tness value is represented by the quality of the
individual. Everything with massive particle in the universe
attracts all other massive particles; a large mass of individuals
is subject to greater gravitation. So a large mass of individuals
is near to the global best value. �e 	owchart of gravitation
search algorithm is described as in Figure 4.

Suppose, in an �-dimensional searching space, � sub-
stances constitute a population. Each individual’s position
(potential solution) is de�ned as follows:

�� = (�1� , . . . , ��� , . . . , ��� ) , � = 1, 2, . . . , �, (6)

where ��� is the position of substance � in 7-dimension of the
space.

In the searching space, all individuals are randomly
placed in the 3th generation. So the gravity of substance �
attracting substance � in 7-dimensional space is de�ned as

8��� (3) = 9 (3) ��� (3) × ��� (3)
�� (3) + : (��� (3) − ��� (3)) , (7)
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where ��� represents the active gravitational mass of indi-
vidual �, ��� represents the passive gravitational mass of
individual �, 9(3) represents the gravitational constant in 3th
generation, : is a small constant, and 
��(3) represents the
Euclidean distance between substance � and substance �.

�e gravitational constant 9 and the Euclidean distance
between substance � and substance � are calculated as follows:

9 (3) = 90 × exp (−<× iter

maxiter
) ,


�� = ?????�� (3) , �� (3)?????2 , (8)

where < is the decreasing coecient (constant),90 represents
the initial gravitational constant, iter represents the number
of current iterations, and maxiter represents the number of
maximum iterations.

In the 7-dimensional searching space, all gravity which
acts on the material � is calculated as follows:

8�� (3) = 
∑
�=1,� ̸=�

rand�8��� (3) , (9)

where rand� is a random number between 0 and 1.
According to Newton’s motion law, the acceleration of

the material � is proportional to force in 7 dimension
and inversely proportional to the inverse of the mass. �e
acceleration of substance is calculated as follows:

@�� (3) = 8�� (3)��� (3)� , (10)

where 3 represents the number of current iterations and ��
represents the mass of substance �. Speed and position of
substance � are updated by the following equations:

V
�
� (3 + 1) = rand� × V�� (3) + @�� (3) , (11)

��� (3 + 1) = ��� (3) + V�� (3 + 1) , (12)

where rand� is a random number between 0 and 1.

It can be seen, from the above two equations, that the
current speed of a substance is de�ned as the part of the �nal
speed (0 ≤ rand� ≤ 1) and its acceleration. �e current
position of substance is equal to its �nal velocity and the
current position. �e �tness represents the quality of the
material, which means that the greater the quality of the
material, the higher the eciency. According to the above
formula, the heavier the material, the greater the gravity and
the slower the movement.�e quality of materials is updated
by using the following equation:

�� (3) = �t� (3) − worst (3)
best (3) − worst (3) , (13)

where �t�(3) represents the �tness value of substance � in3th generation, best(3) represents the best individual �tness
value in 3th generation, and worst(3) represents the worst
individual �tness value. With regard to the minimization
problem, best(3) and worst(3) are calculated as follows:

best (3) = min
�∈{1,...,
}

�t� (3) ,
worst (3) = max

�∈{1,...,
}
�t� (3) . (14)

�e standardization of quality is de�ned by the following
formula:

�� (3) = �� (3)∑
�=1�� (3) . (15)

3.3.3. PSO-GSA Algorithm. Although GSA has better opti-
mization capability, the material appeared to have low con-
vergence in the process of moving to the optimal value and
to be easy to fall into local optimum phenomenon. So PSO
algorithm is used to update the position and velocity of the
individual in order to make up this shortcoming of GSA.
�e basic idea of PSO-GSA is described as follows. Firstly,
generate the initial position vector � = (�1, �2, . . . , ��)
and velocity vector V� = (V�1, V�2, . . . , V��)� of � individuals
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randomly. According to the initial positions of all individuals,
calculate the �tness value corresponding to each individual
and record the best �tness value best(3) and the worst �tness
value worst(3) and the corresponding position vector of the
individuals. �e quality of individuals is calculated by (13)–
(15). �en calculate the gravitational constant 9 and the
Euclidean distance between two individuals and the individ-
ual’s gravitation 8 and acceleration @. At this time, according
to (11)-(12), the global search ability of PSO algorithm is used
to update velocity and position of the individual, and then
the �tness value and the corresponding optimal value are
calculated. �e best individual is obtained until the number
of iterations is reached. Consider

V� (3 + 1) = �× V� (3) + 6�1 × rand× @6� (3) + 6�2 × rand× (4-/03 − �� (3)) , (16)

where V�(3) represents the velocity of the material � in 3th
generation, 6�� is an acceleration coecient, � is the inertia

weight, rand represents a random number between 0 and
1, @6�(3) indicates the acceleration of substance � in 3th
generation, and 4-/03 represents the optimal solution so far.

A
er updating the velocity vector, the location vector of
substance is updated based on the following equation:

�� (3 + 1) = �� (3) + V� (3 + 1) . (17)

3.3.4. Procedure of PSO-GSA Algorithm Optimizing FNN.
In this paper, the PSO-GSA hybrid algorithm is applied
to optimize the parameters of the FNN so
-sensor model,
whose aim is to improve the convergence speed and predic-
tive accuracy. PSO-GSA algorithm is di�erent from GSA. It
adopts PSO algorithm to update its velocity and position,
until it reaches the number of iterations or accuracy. Because
the prediction accuracy of FNN so
-sensor model is related
to the initial connection weights and thresholds, if the
parameters are improper, it will lead to decline of prediction
accuracy. �erefore, the hybrid PSO-GSA algorithm is used
to optimize FNN so
-sensor model. �e 	owchart of PSO-
GSA algorithm optimizing FNN is shown in Figure 5.

�e algorithm procedure is described as follows in detail.

Step 1 (initialize parameters). Determine the topology of
FNN. Initialize the weights � and the threshold value - of
FNNandpredispose the training samples of 	otation process.
Initialize the population size� and the number of iterations3.
Step 2 (generate the population randomly). Set the ini-
tial position � = (�1, �2, . . . , ��) and initial velocity

V� = (V�1, V�2, . . . , V��)�, the learning factors 61 and 62, and the
inertia weight �. Initialize the global best value 4-/03 and
individual best value +-/03, the decreasing coecient <, and
the gravitational constant 90.
Step 3. �eposition of each individual corresponds to a set of
weights and thresholds of FNN so
-sensormodel. Train FNN
and calculate the �tness value �t(3), of each individual. Find

the optimal �tness value best(3) and the worst �tness value
worst(3) and record the best position 4-/03.
Step 4. According to (13)–(15), calculate the mass of the
individual, the gravitational constant 9, and the Euclidean
distance between two individuals. �en calculate the grav-
itation 8 and the acceleration @ of the individual. At this
time, according to (11)-(12), the global search ability of PSO
algorithm is adopted to update the velocity and position
of the individuals. �en calculate the corresponding �tness

value �t(3) and the optimal value 4-/03� of the individual.

�e optimal value 4-/03� is compared with the optimal value4-/03 in Step 3; the optimal individual a
er comparison is

recorded as 4-/03��.
Step 5. Determine whether the termination condition is
reached or not (the objective function reaches a certain value
or the number of iterations reaches the maximum). If the
termination condition is not met, the procedure returns to
Step 3.

Step 6 (model validation). �e corresponding parameters of
the best individual 4-/03 are set as the weights and thresholds
of FNN so
-sensor model and verify the established FNN
so
-sensor model with the testing data.

4. Simulation Results

In this paper, 600 pieces of input data are selected as input
and the concentrate grade and recovery rate are output of
FNN so
-sensor model for the 	otation process, where 550
samples are training data and the remaining 50 samples are
testing data. Finally, the weights and thresholds of FNN are
optimized by PSO-GSA algorithm. �is paper selects the
following �ve performance indexes to verify the prediction
accuracy of di�erent so
-sensor models, whose calculation
equations are described as follows:

NRMSE = √ 1E ????��????2
�∑
=1
(� (3) − �� (3))2,

MSE = 1E �∑=1 (� (3) − �� (3))2 ,
MAPE = 100E �∑=1

FFFF� (3) − �� (3)FFFF�� (3) ,
RMSE = [ 1E �∑=1 (�� (3) − � (3))2]

1/2 ,
SSE = �∑

=1
(�� (3) − � (3))2 ,

(18)

where E is the number of the prediction samples, �(3) is the
predicted value, and ��(3) is the actual value.

�e input dimension of FNN is 5, the number of neurons
is 20 in the hidden layer, and the output dimension is 2.
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�e activation function of FNN is tanh and the output uses
the linear activation function. �e initialization parameters
of PSO-GSA algorithm are described as follows: � = 30,61 = 62 = 2, 90 = 1, inertia weight � = 2, and the number
of maximum iterations is 3 = 300. Firstly, three so
-sensor
models based on FNN, FNN optimized by PSO algorithm,
and FNN optimized by GSA are established to realize the
prediction of concentrate grade and recovery rate in the
	otation process. Figure 6 is a comparison of the predicted

output and the actual output under three models. Figure 7
is a comparison of the output prediction error curves under
threemodels. It can be seen, from the predicted output curves
and the prediction error curves, in these three models, that
FNN so
-sensor models optimized by PSO algorithm and
GSA have better predictive accuracy than the standard FNN
so
-sensor model. �erefore, in order to verify the validity
of PSO-GSA hybrid algorithm, the proposed PSO-GSA FNN
so
-sensor model is compared with PSO-FNN model and
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Figure 7: Predicted errors of so
-sensor models.
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Figure 8: Predicted results of so
-sensor models.

GSA-FNN model. Figure 8 is a comparison of the predicted
output and the actual output under threemodels. Figure 9 is a
comparison of the output prediction error curves under three
models.

In order to compare the predictive ability and precision
of these so
-sensor models based on the above-de�ned
performance index, the performances are calculated and
the results are shown in Table 2. Seen from Section 4, the

prediction error of FNN so
-sensor model based on PSO-
GSA is minimum.

5. Conclusion

�e �ve variables (feed grade, feed concentration, feed 	ow,
agents 	ow, and feed granularity) are selected as the input
variables of the discussed so
-sensor model. �e 	otation
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Figure 9: �e predicted error of so
-sensor model.

Table 2: Predictive performance comparison of so
-sensor models.

Predictive object Predictive method MSE RMSE NRMSE SSE MAPE

Concentrate grade (%)

FNN 0.2416 0.4915 0.0223 12.081 0.5564

PSO-FNN 0.1528 0.3909 0.0008 7.6402 0.4471

GSA-FNN 0.0764 0.2764 0.0006 3.8209 0.2649

PSOGSA-FNN 0.0300 0.1733 0.0004 1.5009 0.1890

Flotation recovery rate (%)

FNN 0.1751 0.4184 0.0163 8.7535 0.3089

PSO-FNN 0.0627 0.2505 0.0004 3.1372 0.1751

GSA-FNN 0.0447 0.2114 0.0003 2.2341 0.1422

PSOGSA-FNN 0.0194 0.1393 0.0002 0.9707 0.1054

concentrate grade and recovery rate are output variables.
�e hybrid algorithm combining PSO algorithm and GSA is
used to optimize the parameters of FNN so
-sensor model
in order to improve the predictive accuracy. It can be seen,
from the prediction results and comparison results, that the
FNN so
-sensor model based on the proposed PSO-GSA
algorithmhas the highest prediction accuracy comparedwith
the other so
-sensor models, which canmeet the online so
-
sensor requirements of the real-time control in the 	otation
process.
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