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Combustion instabilities arise due to a two-way
coupling between acoustic waves and unsteady
heat release. Oscillation amplitudes successively
grow, until nonlinear effects cause saturation into
limit cycle oscillations. Feedback control, in which
an actuator modifies some combustor input in
response to a sensor measurement, can suppress
combustion instabilities. Linear feedback controllers
are typically designed using linear combustor models.
However, when activated from within limit cycle,
the linear model is invalid and such controllers are
not guaranteed to stabilise. This work develops a
feedback control strategy guaranteed to stabilise from
within limit cycle oscillations. A low order model of
a simple combustor, exhibiting the essential features
of more complex systems, is presented. Linear plane
acoustic wave modelling is combined with a weakly
nonlinear describing function for the flame. The latter
is determined numerically using a level set approach.
Its implication is that the open loop transfer function
(OLTF) needed for controller design varies with
oscillation level. The difference between the mean and
the rest of OLTFs is characterised using the ν-gap
metric, providing the minimum required “robustness
margin” for an H∞ loop-shaping controller. Such
controllers are designed and achieve stability both
for linear fluctuations and from within limit cycle
oscillations.

1. Introduction
It is desirable to operate modern industrial gas turbines
and aero-engines under lean premixed combustion
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conditions in order to reduce NOx emissions. However, lean premixed systems are highly
susceptible to combustion instabilities arising from the coupling between the heat release
rate perturbations and the acoustic disturbances within the combustion chamber [1]. These
instabilities are nearly always undesirable as they lead to large oscillation amplitudes and
damaging structural vibrations of the combustion chamber [2].

The stability of a combustion chamber is determined by the balance between the energy gained
from the flame/acoustic interactions and various dissipation processes [1,3,4]. Active feedback
control can be used to interrupt the coupling between the acoustic waves and unsteady heat
release and prevent or suppress instability. The design of most types of controller requires prior
knowledge of how the combustor responds to actuation — the “open loop transfer function”
(OLTF) between monitored thermodynamic properties within the combustion chamber (typically
one or more pressure measurements) and the actuator signal(s) [4].

Although linear models may be accurate at low perturbation levels, the dynamics of real
unstable combustors become dominated by nonlinear mechanisms once amplitudes grow
sufficiently. In many combustors, including gas turbine and aero-engine combustors, it is notable
that even during large amplitude oscillations, the behaviour of the acoustic waves remains linear,
with nonlinearity arising almost entirely from the way in which the flame’s unsteady heat release
responds to oncoming flow disturbances [5–7]. (Acoustic waves in rocket engines are, however,
typically nonlinear [8].) This flame nonlinearity is “weak” such that a “describing function”
provides a good model of the nonlinear flame response. This assumes that the flow forcing
amplitude level is a quasi-steady parameter, and that the dominant frequency of the unsteady
heat release rate response matches the incoming flow forcing frequency, but with a gain and
phase shift that depend on the forcing level as well as the frequency. This gives rise to a “family” of
frequency responses which depend on forcing level. It has been shown that this weak nonlinearity
can cause saturation into limit cycle either via saturation of the heat release rate amplitude or via
a change in phase between the heat release rate and acoustic pressure as the modulation level
increases [6,9]. This may cause the dominant unstable frequency to change, which in turn alters
the OLTF and complicates controller design. Although some recent work has identified nonlinear
states other than limit cycle oscillations as resulting from combustion instability [10–12], the focus
of the current work will be limit cycle oscillations, which are by far the most common reported
nonlinear state.

The design of linear feedback controllers is typically based on the OLTF corresponding to
small, linear disturbances. Such feedback controllers are then activated from within nonlinear
limit cycle oscillations, during which the linear OLTF will not be valid. It is typically observed
that such controllers successfully stabilise oscillations despite this paradox [13–15]. However,
their effectiveness is not guaranteed, and if they fail there has until now been no framework
for systematically improving their design.

In this work, the concept of a flame describing function (FDF) is combined with the ν-gap
metric [16] in order to design controllers which are guaranteed to achieve stabilisation across all
oscillation levels, from small linear fluctuations to large limit cycle oscillations. In modern robust
control systems theory, the concept of a ν-gap between open loop plants represents the most
useful measure of distance between systems when one is concerned specifically with applying
feedback to those systems. The ν-gap metric fits very naturally into H∞ loop-shaping controller
design, providing a bound on the minimum required “robustness stability margin” for an H∞
loop-shaping controller [16,17]. Modern linear robust control, of which H∞ loop-shaping is
one methodology, has been successfully used in diverse fields, such as control of combustion
instabilities [18–20], control of developing flow [21], voltage converter design [22] and vehicle
oscillation damper optimisation [23], to achieve control even in nonlinear systems with limit
cycles. H∞ loop-shaping combines classical loop-shaping, which can obtain tradeoffs between
good performance and robust stability, with modern H∞ optimisation in order to guarantee
closed-loop stability and a level of robust stability at all frequencies [16,17]. It can be applied
to plants with high dimensions and is computationally inexpensive [19], at least for plants of low
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Figure 1. Schematic view of the Rijke tube and the feedback control configuration.

and moderate order. The resulting controllers generally have orders comparable to those of the
plants.

It is typical to approximate the OLTF as a high order rational transfer function (RTF) for the
purposes of controller design, meaning that high order controllers will be generated. These are
less reliable to implement than low order controllers. As a final step, this work proposes a low
order controller design method, which combines H∞ loop-shaping, the ν-gap metric and a low
order fitting procedure.

The remainder of the paper is organised as follows. Section 2 presents the ducted laminar flame
combustor model used as a test-case in the paper, including the coupling of linear modelling for
the acoustic waves with the nonlinear flame response. Section 3 demonstrates the determination
of the nonlinear flame describing function from simulations using a level set approach, ensuring
that our flame model is grounded in flow physics. Section 4 analyses the resulting nonlinear
thermoacoustic instabilities for different flame positions. Section 5 presents the design of linear
controllers which are guaranteed to be stabilising from within limit cycle oscillations, using H∞
loop-shaping and the ν-gap metric. This includes the design of standard high order controllers
and a method for obtaining low order controllers. The visco-thermal damping of acoustic waves
in ducts are presented in the Appendix, and conclusions are drawn in the final section.

2. Combustor model
A geometrically simple model combustor is considered for the present study. The geometrical
simplicity permits us to embed advanced modelling features which capture the important
phenomena at play in real combustors. This includes linear acoustic wave behaviour with realistic
boundary and visco-thermal losses, and complex nonlinear flame kinematics for sufficiently high
amplitude perturbations.

The model considered is a ducted laminar flame combustor, often known as a Rijke tube. It
is shown schematically in Fig. 1, comprising a cylindrical Rijke tube with both ends open to the
atmosphere. Denoting the distance along the duct axis by the vector x, the tube inlet and outlet
are at x= x0 = 0 and x= x2 = l respectively. The inner diameter of the tube is D and a laminar
premixed methane-air conical flame is located at x= x1 = xf . The Bunsen type burner has an
axisymmetric geometry with outlet diameter d. A loudspeaker is located at the bottom of the tube
as an actuator for control, with a pressure sensor located a distance x= xr downstream of the
combustion zone. The modelling analysis makes the following assumptions: (1) The combustion
zone is considered “compact” compared to the acoustic wavelength and we limit attention to
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low frequencies where we only need to account for longitudinal waves [24]. (2) The fluids before
and after the flame are assumed to be perfect gases [24]. (3) There is no noise produced by the
entropy waves formed during the unstable combustion process — these waves are assumed to
leave the tube without interaction with the flow at the end of tube [25]. (4) The flame remains
stabilised at the burner outlet. Flame intrinsic instabilities [26] and irregular response to strong
disturbances [27] are not accounted for.

The flow can be taken to be composed of a steady uniform mean flow (denoted ¯ )
and small perturbations (denoted ′). Harmonic time variations are considered for which all
fluctuating variables have the form a′ = âeiωt, where ω is complex angular frequency. The regions
upstream and downstream of the flame are indicated by the subscripts 1 and 2 respectively.
Then, the pressure, p, and longitudinal velocity, u, in the two regions can be expressed in
terms of the amplitudes A+

n and A−n of the upward and downward propagating acoustic
waves respectively, their wavenumbers, k± = k̄± +∆k±, where k̄± = ω/(c̄± ū) and ∆k± are
wavenumber corrections for the visco-thermal damping effects (see Appendix), and the speed of
sound, c, and density, ρ [28]. The pressure, p, and longitudinal velocity, u, in the two regions are
expressed as:

pn(x, t) = p̄n + p̂n(x)eiωt = p̄n +
(
A+
n e

ik+n (x−xn−1) +A−n e
−ik−n (x−xn−1)

)
eiωt (n= 1, 2)

un(x, t) = ūn + ûn(x)eiωt = ūn +
1

ρ̄nc̄n

(
A+
n e

ik+n (x−xn−1) −A−n e−ik
−
n (x−xn−1)

)
eiωt.

(2.1)

The acoustic wave strengths, A+
n and A−n , are related by pressure reflection coefficients1 at the

tube boundaries – the inlet and outlet pressure reflection coefficients are characterized by R1 and
R2 respectively.

For an open duct, radiation of sound from the duct ends can be accounted for using frequency
dependent reflection coefficients which act as low-pass filters [29]. The tube also appears
acoustically longer than its physical length and this end correction can be accounted for. The
reflection coefficient for an unflanged pipe end can be approximately expressed in the Laplace
domain as [29,30]:

R=−
(
1 + 2τ2

d s
2)e−0.61τds for 2πfτd� 1. (2.2)

where τd =D/c̄. It was confirmed in [31] that the gain of this reflection coefficient decreases with
both duct diameter and frequency. The reflection coefficients at the inlet and outlet of the Rijke
tube are denoted by R1 and R2 respectively.

In order to relate the acoustic wave strengths across the flame, the linearised mass, momentum
and energy conservation equations across the flame zone (x= xf ) are combined with the perfect
gas equation. Denoting the jump across the flame as [·]21, the amplitude of the flame’s heat release

rate perturbation as ̂̇Q and the cross-sectional area of the duct as S, this yields two equations
which are independent of the downstream density, ρ2, which contains an entropy component [32]:

S2

S1

[
p̂(xf )

]2
1

+ ρ̄1ū1

[
û(xf )

]2
1

+ [ū]21

(
ρ̄1û1(xf ) +

p̂1(xf )

c̄21
ū1

)
= 0 (2.3)

γ

γ − 1

[
S
(
p̄û(xf ) + p̂(xf )ū

)]2
1

+ ρ̄1ū1S1

[
ūû(xf )

]2
1

= ̂̇Q. (2.4)

Note that upstream of the flame, S1 = π(D2 − d2)/4. γ is the ratio of specific heats of the
gases, considered constant throughout the duct due to the small temperature jump across the
flame. Substituting the linearised pressure and velocity expressions from Eq. (2.1) together with
the boundary conditions into the above two conservation equations, the governing equations
linking the acoustic wave strengths before and after the flame are obtained in terms of s, the
Laplace transform variable [33] (where sn = s+ Λn

√
s, n= 1, 2, the second term accounting for

1The pressure reflection coefficient is defined as the ratio of reflected to incident acoustic waves at the boundary [24].
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visco-thermal damping with the coefficient Λn defined in Eq. (A 2)), time delays τ±n = (xn −
xn−1)/(c̄n ± ūn) and Ξ = (S1/S2)(ρ̄2c̄2)/(ρ̄1c̄1). The governing equation is expressed as:

1 −R1 0 0

M1e
−τ+

1 s1 M2e
τ−
1 s1 −M3 −M4

M5e
−τ+

1 s1 −M6e
τ−
1 s1 − 1

ΞM7
1
ΞM8

0 0 −R2e
−τ+

2 s2 eτ
−
2 s2


︸ ︷︷ ︸

M0


A+

1

A−1
A+

2

A−2


︸ ︷︷ ︸
A

=


0

0

− γ−1
c̄1S1

̂̇Q
0

 . (2.5)

The matrix coefficientsMn are given in the Appendix. In order to close the above equation which

contains five unknowns (A±n and ̂̇Q), a flame model relating ̂̇Q to the acoustic fluctuations is
needed. In the present work we use a flame describing function (FDF), whose form is derived
numerically in the following Section.

Although the combustor configuration only contains two acoustic modules (the two regions
upstream and downstream of the flame), the system is complex due to the frequency
dependent pressure reflection coefficients, visco-thermal damping terms and the presence of
flame nonlinearity. A numerical solver is used to solve the nonlinear eigenproblem [34]. The
solver is part of OSCILOS, an open source combustion instability low-order network simulation
tool. It represents complicated combustor geometries as a network of simple connected modules,
modelling the acoustic wave behaviour analytically using linear wave-based methods, and able
to incorporate a wide range of linear and nonlinear flame models. It can predict thermoacoustic
modal frequencies, growth rates, mode shapes and the time evolution of disturbances, and has
been validated against experiments [35].

In this work, a relatively low cost numerical method, compared to large eddy simulations [35,
36], is used to determine the FDF of the laminar conical premixed flame. This numerical method
is described in the next section.

3. Determining the flame describing function
In the model combustor, a laminar conical premixed flame within the duct generates a mean and
fluctuating heat release rate. The heat release rate is taken to be directly proportional to the flame’s
surface area, which means that an accurate flame model for insertion into Eq. (2.5) can be found
by capturing the kinematic response of the flame to oncoming acoustic disturbances.

The instantaneous location of a moving flame front subjected to oncoming flow perturbations
can be captured using the level set approach (LSA) proposed by Markstein [37]. This kinematic
model is also known as the G-equation model, and treats the flame as an extremely thin interface
(corresponding to the iscontour G= 0), separating fresh reacting flow (denoted by G< 0) from
the burned gases (G> 0). The flame front is assumed to propagate normal to itself with the
velocity U · n− sL where U is the fresh reacting flow velocity vector and in this work is two-
dimensional, U = (ux, ur), due to the axisymmetric configuration. sL is the flame burning speed
and n =∇G/|∇G| is the normal vector. The transport equation for G is [38]:

∂G

∂t
+ U · ∇G= sL |∇G| (3.1)

The mutual interactions of the flame front kinematics and the hydrodynamic flow field are not
accounted for [39], meaning the fresh mixture flow field above the burner outlet and inside the
flame can be treated using a simple model which is independent of the flame evolution. It has
been shown that when the G-equation model is combined with a simple incompressible velocity
perturbation model in the fresh mixture, complex flame front evolution phenomena, including
the “pinch-off” that occurs for strong flow perturbations, can be captured [40,41]. This model was
recently validated using direct numerical simulations [42], and is expressed as:

ux = u1 + u′1 = u1 + û1 cos(kx− ωt), ur = u′r = k
r

2
û1 sin(kx− ωt). (3.2)
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Figure 2. Comparison between locations of the flame front deduced using LSA (left side) and Schlieren techniques [44,45]

(right side) of a laminar conical premixed flame when the flame is modulated at fp = 100 Hz for a perturbation level

û1/ū1 = 0.1. t/T = 1/20, where T = 1/fp. In the Schlieren image, the yellow part represents the flame front and the

red part indicates the hot plume surrounding the flame.
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Figure 3. (a) Flame front at four instants in a forcing cycle. t/T = 1/4, 1/2, 3/4 and 1. fp = 50 Hz. û1/ū1 = 0.15. (b)

Spectra of u′1/ū1 (represented by the dashed line and corresponding to the left vertical axis) and Q̇′/Q̇ (represented by

the continuous line and corresponding to the right vertical axis).

The composition of the fresh reacting flow is considered constant, and the dependence of the
flame burning speed on the flame front curvature is taken to be sL = sL0 (1− Lκ), where sL0 is
the burning speed of a laminar planar flame,L is the Markstein length, which depends on mixture
equivalence ratio φ and thermal conditions [43] (and hence is constant in the present work), while
κ=∇ · n is the local flame curvature [37,43].

The G-equation (Eq. (3.1)) combined with the incompressible flow velocity model (Eq. (3.2)
and the flame curvature effect is solved numerically using a 5th order Weighted Essentially
Non-Oscillatory (WENO) scheme [46] for spatial discretisation and a 3rd order Total
Variation Diminishing (TVD) Runge-Kutta scheme for time integration [47]. The spatial and
temporal resolutions are fixed in all calculations: ∆x=∆r= 5× 10−3d and ∆t= 5× 10−4d/ū1,
respectively, where d is the diameter of the burner outlet. To significantly reduce the
computational cost, a local LSA is employed, only accounting for the grids around the flame front
[48]. The boundary condition for the centreline of the flame is symmetry – flame axisymmetry is
exploited to only simulate half of the flame. The flame base is considered always attached to the
burner lip, with G at the flame base reinitialised to 0 at every simulation time step. No boundary
condition is needed for other boundaries because the local LSA is implemented.
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Figure 4. FDF of a laminar conical premixed methane-air flame deduced from the LSA (a) and experiments [50] (b). Top

graph: Gain. Bottom graph: phase. Mean flow velocity ū1 = 2.12 m/s and equivalence ratio φ= 1.08. Burner diameter

d= 22 mm.

For premixed flames, the heat release rate can be calculated using

Q̇(t) = 2πρ̄1sL0ω̇T

∫∫
A

(1− Lκ) |∇G| δ(G)drdx (3.3)

where ρ̄1 denotes the mean density of the fresh reacting flow, ω̇T indicates the heat release rate
per volume from combustion and A indicates the whole space of the LSA simulation. δ(G) is the
delta function, representing integration over the flame front, which is performed using a high
order scheme [49].

The weakly nonlinear flame model to be extracted from these simulations is in the form of a
“flame describing function” (FDF), expressed as:

F(û1/u1, s) =
̂̇Q1(û1/u1, s)/Q̇

û1(s)/u1
(3.4)

where ̂̇Q1(û1/u1, s) is the Laplace transform of the fundamental term of heat release rate
perturbations. Note that this can be thought of as an “input amplitude dependent” transfer
function or frequency response.

To validate the level set approach, a flame for which experimental data is available is firstly
simulated. A laminar conical methane-air premixed flame with burner outlet diameter d= 20

mm, equivalence ratio φ= 1.0, mean velocity u1 = 1.5 m/s, laminar flame speed sL0 = 0.368

m/s and Markstein length L= 1 mm [43] is considered. Figure 2 compares the simulated flame
front location from the LSA with a four color Schlieren image from experiments, when the
perturbation frequency and level are fp = 100 Hz and û1/ū1 = 0.1 respectively. The flame front
is seen to respond strongly even for a relatively weak perturbation level. The prediction matches
the experimental result with the flame cusps accurately captured. The evolution of the flame front
throughout an entire forcing cycle for modulation at fp = 50 Hz and û1/ū1 = 0.15 is shown in
Fig. 3(a). At t/T = 1/2, where T = 1/fp, pinch-off occurs and a flame pocket is produced. The
frequency spectrum of the heat release rate perturbations is shown for 50 Hz forcing in Fig. 3(b).
Although the nonlinear flame response causes harmonics at high frequencies, the fact that the
dominant flame response frequency exactly matches the forcing frequency validates the “weakly”
nonlinear assumption of flame describing function.

The flame describing function F calculated using the LSA is compared to experimental results
for a similar laminar conical premixed flame [50], with almost the same burner outlet diameter.
The simulation and experimentally measured FDFs are shown in Fig. 4. The FDF has the shape of
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û1/ū1f [Hz]

|
F

|

(a)

0
100

200
300

400
500 0

0.1
0.2

0.3
0.4

−6

−4

−2

0
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Figure 5. The gain (left figure) and phase (right figure) of the FDF determined by the LSA for a laminar conical premixed

methane-air flame. ū1 = 1.5 m/s. d= 6 mm. φ= 1.0.

low-pass filter at constant û1/ū1, with nonlinearity evident at higher frequencies – the gain of FDF
decreases with increasing û1/ū1, but with the response linear at low frequencies even for a large
û1/ū1 = 0.214. The phase dependence on forcing amplitude begins at a higher frequency than the
gain dependence. The gain and phase lag of the FDF both generally decrease with modulation
level, which is consistent with the experimental results. It can clearly be concluded that the LSA
captures both the flame front motion and the main features of the FDF of laminar conical premixed
flames.

Simulation is then performed for the combustor test-case flame. For a laminar conical
premixed flame, the cut-off frequency of the FDF is inversely proportional to the diameter of
the burner outlet [6,51,52]. To guarantee that a sufficiently large heat release feeds the unstable
thermoacoustic mode, the diameter of the burner outlet is reduced to d= 6 mm (meaning that
the cut-off frequency is approximately three times that of the FDF shown in Fig. 4), with the other
flow parameters unchanged. Simulations are performed for modulation frequencies ranging from
10 Hz to 500 Hz in intervals of 10 Hz, and with normalised velocity perturbation levels ranging
from 0.025 to 0.4 in intervals of 0.025. The FDF is shown in Fig. 5. The shape remains similar,
with the response generally falling off with both frequency and modulation level. Although |F|
does not strictly decrease with increasing û1/ū1 above 300 Hz, the accuracy of the flow velocity
perturbation model (Eq. (3.2)) breaks down at high frequencies. With the dominant unstable
frequency in the Rijke tube being 210 Hz, the FDF results can be considered accurate below 300
Hz. The FDF provided by the LSA simulations (denoted FLSA) is discrete in both frequency and
forcing amplitude and is limited to the frequency range [10, 500] Hz. The FDF can be considered
a set of flame transfer functions (FTFs)2 for different û1/ū1, each of which depends only on s.
A fitting procedure is performed on each FTF using the Matlab command fitfrd3. The resulting
state-space models for different û1/ū1, each of order 14, are combined to give a “fitted FDF”,
denoted F . The maximum error for each fitting procedure is smaller than 0.005, for f ∈ [10, 500]

Hz and û1/ū1 ∈ [0.025, 0.4].

4. Simulation and analysis of the unstable combustor
By inserting the fitted flame describing function F into the acoustic wave equation Eq. (2.5), the
thermoacoustic stability of the combustor is characterised by a matrix equation involving the
acoustic matrix, M0, from Eq. (2.5), a matrix, M1, containing the FDF and the acoustic wave

2For small enough flow disturbances, the flame’s unsteady heat release rate generally responses linearly and can be described

by a flame transfer function F(s) = ̂̇Q/Q̇/(û1/ū1) [40].
3fitfrd returns a rational transfer function of the best fit of a set of frequency-response data.
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strength vector, A, from Eq. (2.5):

(M0 + M1)A= 0 where M1 =QF (û1/ū1, s)


0 0 0 0

0 0 0 0

e−τ
+
1 s1 −eτ

−
1 s1 0 0

0 0 0 0

 (4.1)

whereQ= T 2/T 1 − 1 and T denotes the mean flow temperature. The thermoacoustic modes are
given by the values of s= iω= σ + jωj at constant û1/ū1 for which det(M0 + M1) = 0, where
det denotes the matrix determinant, ωj = 2πf is real angular frequency and σ the growth rate. The
stability of the mode is defined by the sign of the growth rate, with a positive value corresponding
to an unstable mode. This calculation is performed within OSCILOS. The combustor parameters
considered for the analysis are listed in Table 1.

It is found that only the mode with the eigenfrequency f ≈ 210 Hz has the potential for
instability (this corresponds to the cold flow fundamental frequency of 173 Hz for perfect acoustic
reflections from the boundaries). This is consistent with both the FDF gain fall-off and the acoustic
losses increasing with frequency, having a stabilising effect on higher order modes. A growth
rate map for this unstable mode as a function of both flame position within the duct and flame
velocity perturbation level is shown in Fig. 6, with only positive (unstable) growth rates shown.
The most dangerous unstable position is a quarter of the way along the duct, which is generally
the situation in a Rijke tube [53]. For each flame location, limit cycle oscillations will be established
at the velocity fluctuation level corresponding to the uppermost contour, as this is where the
growth rate has dropped to zero. The flame location xf = 0.2 m is chosen for feedback controller
design, corresponding to the limit cycle being established at a relatively large û1/ū1. Figure 7
shows the trajectories of the growth rate and eigenfrequency with increasing û1/ū1 for this flame

Table 1. Parameters used in the analysis. They are fixed unless otherwise stated.

l [m] D [mm] d [mm] xr [m] γ [-] p̄1 [Pa] ρ̄1 [kg/m3] ū1 [m/s]
1 30 6 0.5 1.4 101325 1.18 1.5

T 1 [K] T 2 [K] c̄1 [m/s] c̄2 [m/s] φ sL0 [m/s] L [mm]
300 600 347 491 1.0 0.368 1
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Figure 8. The sketch of the negative feedback control system.

location. For weak perturbations the growth rate is strongly positive, implying a rapidly growing
exponential envelope e.g. for û1/ū1 = 0.025, the growth rate is 46 s−1, implying exponentially
growth with an envelope of exp (46t). This growth rate decreases with û1/ū1, becoming zero
when û1/ū1 = 0.18, hence this is the velocity fluctuation amplitude at which we expect limit cycle
oscillations to occur.

5. Feedback control from within limit cycle oscillations

(a) Open loop transfer function (OLTF)
Actuators for feedback control of combustion instabilities generally fall within two categories.
The first seeks to modify the fuel-air composition, normally via a fuel valve, while the second uses
acoustic actuators to modify the pressure waves inside the combustor directly [1,18]. This work
assumes the latter – these are generally better suited to light duty combustors. A loudspeaker at
the bottom end of the duct is assumed, injecting a pressure signal pL. A microphone mounted
xr = 0.5 m downstream of the flame measures the pressure at that location. To simplify the
analysis, we do not account for the instrument transfer functions of the loudspeaker and
microphone [13,54]: we consider that the electrical driving signal to the loudspeaker Iin equals
pL, and the microphone electrical output signal Iout equals the measured pressure signal pr .
Furthermore, we assume that the fuel-air ratio is unaffected by the acoustic waves, maintaining
the applicability of the FDF calculated in Section 3. For model-based feedback controller design
(e.g. see Fig. 8), it is necessary to have a model for the open loop transfer function from pL to pr :

P(s) =
pr(s)

pL(s)
=B

(
M0 + M1

)−1C (5.1)

where
B=

[
0, 0, e−τ

+
r s2 , eτ

−
r s2

]
and C = [1, 0, 0, 0]T (5.2)

and the time delays corresponding to the microphone position are τ±r = (xr − xf )/(c̄2 ± ū2).
Due to the flame nonlinearity, P(s) is nonlinear and depends on û1/ū1. Following weakly

nonlinear theory, it can be cast into a set of linear OLTFs, P (s)∈P(s), with a different P (s) for
each value of û1/ū1. The OLFTs for different û1/ū1 when xf = 0.2 m are shown in Fig. 9.

Each modal peak is associated with a phase change of π, implying a second-order transfer
function contribution. The direction of the phase change provides stability information – a phase
increase of π corresponds to an unstable conjugate pair of poles while a phase decrease of π
indicates a stable conjugate pair. From Fig. 9, normalised velocity perturbation amplitudes, û1/ū1,
of 0 to 0.15 correspond to unstable OLTFs while amplitudes of 0.2 and 0.25 correspond to stable
OLTFs. This is consistent with the previous finding that limit cycle oscillations occur at û1/ū1 =

0.18.
It is thus clear that a controller design based on just one of these linear OLTFs cannot guarantee

the entire set of plants. In order to guarantee stability from within limit cycle oscillations, a robust
controller must

• Reduce the size of perturbations when the system is in limit cycle, with the effect of
reducing û1/ū1. The set of plants in this regime appear open loop stable.
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û1/ū1 = 0.1

−30

−20

−10

0

10

20

30
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Figure 9. Evolutions of the gain (left figure) and phase (right figure) of the OLTF P with f for different û1/ū1.

• Result in closed loop stability for all plants. This requires a sufficiently large stability
margin.

(b) H∞ loop-shaping and the ν-gap metric
H∞ loop-shaping is used to design a robust stabilising controller. H∞ loop-shaping combines
classical loop-shaping design with guaranteed robustness at all frequencies. It involves designing
a pre- or post- compensator to “shape” the singular values (i.e. the gain for single-input single-
output (SISO) systems) of the open-loop system, so that they have a high gain where disturbance
rejection is important, and a low gain where robustness to multiplicative plant uncertainty is
required (Refer to [17,55] for an explanation of different types of uncertainty from a control
systems perspective). A stabilising controller is then synthesised using Matlab (e.g. using the
ncfsyn command), which minimises the H∞ norm of the closed loop transfer function matrix (see
Eq. (5.5)) – this norm also provides a measure of the system robustness. If it is suitably small,
then a robust stabilising controller has been found. The gain of the shaped transfer function will
then not be significantly affected by the controller, but the phase will be altered so as to achieve
stability [17]. If the norm is not suitably small then another iteration on the choice of the pre- or
post- compensator must be performed. The underpinning mathematics can be found in [17].

The shape of the open-loop plant P is first modified using pre- and post-compensators W1

and W2 (see Fig. 8). For a SISO system, modifying either one of these has the same effect. The
H∞ controller K∞ is then synthesised in Matlab, with the final feedback controller K, being
K =W1K∞W2.

The ν-gap metric provides a useful measure of the distance in the state space between two
open-loop plants with respect to how they behave when connected in a unity feedback control
loop [16]. For SISO systems, it can be computed from the frequency response: the ν-gap, δν ,
between plants P1 and P2 is given by:

δν(P1, P2) = sup
ω
ψ (P1(iω), P2(iω)) , provided the winding number condition is satisfied4.

(5.3)
where

ψ(P1(iω), P2(iω)) =

∣∣P1(iω)− P2(iω)
∣∣(

1 + |P1(iω)|2
)1/2(

1 + |P2(iω)|2
)1/2 (5.4)

The ν-gap metric fits very naturally into H∞ loop-shaping control design, which returns
both a feedback controller design, and the corresponding “stability margin”, b∞, for that
controller/plant pairing. The stability margin b∞ for a shaped plant PW =W1P1W2 and the

4The winding number condition is: wno
(
1 + P̃2(iω)P1(iω)

)
+ η
(
P1(iω)

)
− η
(
P2(iω)

)
= 0, where wno is the winding

number, P̃ is the complex conjugate transpose ofP and η(P ) represents the number of open right-hand-plane poles ofP [16].
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Figure 10. Flowchart of the H∞ loop-shaping controller design. Note that the post-compensator W2 = I .

resulted controller K∞ is represented as [17]:

b∞ =

∥∥∥∥∥
[

I

PW

]
(I −K∞PW )−1

[
I K∞

]∥∥∥∥∥
−1

∞
(5.5)

where ‖·‖∞ is the infinity norm. If the controller is applied to a different plant (e.g. P2), separated
from the initial by ν-gap δν , then as long as b∞ > δν , the H∞ loop-shaping controller is also
guaranteed to stabilise this second system.

(c) H∞ loop-shaping controller design
H∞ loop-shaping controller design will need to be designed based on a nominal linear plant. The
differences between this nominal plant and all of the possible OLTFs will then be characterised
using the ν-gap metric. The controller design can be schematically explained by the flowchart
shown in Fig. 10. For combustion instabilities, nonlinearities are introduced by the FDF, which
can be treated as a discrete set of FTFs for different velocity perturbation levels û1/ū1. From Fig. 6,
limit cycle oscillations are generally established for û1/ū1 ≤ 0.2. We thus calculate the mean FTF,
F0, by averaging over the FTFs for velocity perturbation levels û1/ū1 ≤ 0.25. The mean FTF is
fitted to a state space form in order to construct the mean OLTF (indicated by P0) for feedback
controller design.

The presence of time delays in the wave-based models, (e.g. see Eqs. (4.1) and (5.2)) means
the system is infinite dimensional. In order to implement H∞ synthesis, the mean OLTF needs
to be approximated by a rational transfer function (RTF) which will be finite dimensional. The
exponential terms could be replaced by Padé approximants [56], but the presence of complicated
damping mechanisms means that this is not straightforward. In this work, a frequency-domain
fitting procedure using the Matlab command fitfrd is applied to obtain a RTF approximation to
the mean OLTF. As the FDF is only valid over the [10, 500] Hz frequency range, we fit the OLTF
over a restricted frequency range [0, 1000] Hz, and also add a weighted low-pass filter to the RTF
to reduce its gain at high frequencies. The resulting RTF, represented by P0F , typically has an
order of 16. A comparison of the original infinite-dimensional and RTF-fitted plants is shown in
Fig. 11(a).
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Figure 11. Comparisons between the original plant and fitted plant. Left figure: high order fitting of P0. Right figure: low

order fitting of P0W = P0W1. W1 =W 2
L (see Eq. (5.7)).
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û1/ū1

0.04

0.08

0.12

0.16

0.2

(b)

Figure 12. Plot of ψ with f for different û1/ū1. Left figure: high order fitting. ψ(P0F (iω), P (iω)). Right figure: low order

fitting. ψ(P0WF (iω), PW (iω)). The blue dashed line represents the stability margin of the controller: b∞.

As P0F is SISO, we let the post-compensator W2 = I and design the pre-compensator W1. A
first-order low-pass filter with a cut-off frequency 300 Hz is chosen as W1, to drop the gain at
high frequencies to provide robustness to multiplicative plant uncertainty. The ν-gaps between
the plant P0F and the plants P for different û1/ū1 can be identified from the frequency variations
of ψ (see Eq. (5.4)), shown in Fig. 12(a). Large bumps occur at each mode, with the deviation
reaching a maximum at the unstable frequency — 210 Hz. The maximum value of the ν-gap
across all different û1/ū1 levels is max(δν) = 0.18.

A H∞ loop-shaping synthesis is then performed using the Matlab command ncfsyn in the
Robust control toolbox. The designed controller has an order of 16, and its stability margin is b∞ =

0.41, which is significantly larger than max(δν) above. This suggests that the controller should
guarantee closed loop stability of all possible plants.

The performance of the negative feedback controller can be assessed by calculating the poles of
the closed-loop transfer functionP(s)/(1 +K(s)P(s)), whereP(s) is the original OLTF (Eq. (5.1))
Fig. 13(a) shows the poles locations for different û1/ū1 in the presence of the feedback controller.
The growth rates of all modes are now stable, confirming closed loop stability for all û1/ū1.

Of course, for sufficiently large values of û1/ū1, the combustor exhibits limit cycle oscillations
and the linear OLTF appears stable even without feedback control. For these conditions, the
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Figure 13. Trajectories of eigenvalues with increasing û1/ū1 for the feedback control system. Left figure: high order

controller deign. Right figure: low order controller design.
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Figure 14. Evolution of |S| with frequency for different û1/ū1. Left figure: high order controller design. Right figure: low

order controller design.

sensitivity transfer function provides an essential measure of the controller performance.

S(s) =
1

1 +K(s)P(s)
(5.6)

When |S(i2πf)|< 1, the feedback system attenuates disturbances compared to the open loop
system, which corresponds to the amplitude of limit cycle oscillations and hence û1/ū1 being
reduced. Thus, assuming that the limit cycle frequency matches or is close to the frequency of
the unstable mode, f?, the requirement now becomes |S(i2πf?)|< 15. Fig. 14(a) shows the plots
of |S| versus frequency for different û1/ū1. The unstable frequency is from 205 Hz to 215 Hz in
the amplitude range 0≤ û1/ū1 ≤ 0.2. The fact that |S(i2πf?)|< 1 at these frequencies means that
the current controller will reduce the limit cycle oscillation amplitude. For sufficient attenuation,
the plant will appear unstable (see the yellow and orange color lines in Fig. 9) and the feedback
controller will then stabilise the system.

5It should be noted that the condition |S(i2πf?)|< 1 is the sensitivity at the specific frequency, f?, that is relevant to
reducing amplitude. It cannot be used to determine whether the plant over all frequencies is stabilised by the controller.
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(d) Low order H∞ loop-shaping controller design
It has been shown that H∞ loop-shaping combined with the ν-gap metric can be used to design a
robust controller that guarantees stabilisation from within the limit cycle. The designed controller
typically has an order comparable to that of the shaped plant [55]. High order controllers are
difficult to implement and exhibit lower reliability than low order controllers. Although controller
order reduction methods, such as balanced truncation methods [57], can be used on the plant or
the controller, this work proposes an alternative approach to directly reduce the order of plant,
provided that the maximum ν-gap (max(δν)) is smaller than the stability margin b∞.

The low order method swaps the order of the shaping and fitting procedures. The plant P0 is
firstly shaped with W1 using an “aggressive” low-pass filter, which does not significantly alter
the gain at low frequencies near the unstable mode, but reduces the gain at frequencies above
the unstable mode, to provide robustness to fitting errors at these frequencies. A low-order fitting
procedure is then implemented on the shaped plant P0W , with the fit over low frequencies near
the unstable mode prioritised. A fourth order low-pass filter is chosen as the pre-compensatorW1

to shape the original plant, given by W1 =W 2
L, where

WL(s) =
ω2
L

s2 + 2ξLωLs+ ω2
L

(5.7)

where ωL = 2π × 200 s−1 and ξL =
√

2/2. W1 has a gain of 0.5 at 200 Hz, and so does not
significantly alter the gain at the unstable frequency. The gain rapidly falls off to 0.025 at 500
Hz.

The controller designed by H∞ loop-shaping synthesis generally has a dimension comparable
to that of the shaped plant, and so a fitted plant with low dimension is desirable. The shaped
system contains only one unstable mode and exhibits fast gain fall-off at higher frequencies. The
fitting procedure is performed on the shaped plant P0W = P0W1 — this allows the dimension of
the fitted RTF to be significantly reduced and yields a RTF is of order of 4. Fig. 11(b) compares the
original, P0W , and fitted, P0WF , plants. The fitted RTF captures the shape of original plant at low
frequencies and has the shape of low-pass filter at high frequencies. Fig. 12(b) shows the evolution
of ψ(P0WF (iω), PW (iω)) with frequency. Compared to the previous approach (Fig. 12(a)), there
are larger deviations at high frequencies (f ≥ 250 Hz) where the low order fitting is less accurate.
However, due to the shape ofW1, relatively small values ofψ(P0WF (iω), PW (iω)) are guaranteed
for all frequencies and the maximum of ν-gap for all û1/ū1 is max(δν) = 0.34.

A controller with an order of 3 is then obtained from the H∞ loop-shaping synthesis. The final
controller K =W1K∞ has an order of 7 in the denominator and 3 in the numerator of its rational
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transfer function, which is straightforward to implement. The stability margin is b∞ = 0.52, which
is larger than max (δν).

The locations of the closed-loop poles for different û1/ū1 are shown in Fig. 13(b). The unstable
mode is stabilised for all û1/ū1 and the modes at high frequencies are not disturbed. However,
the growth rate reduction for the unstable mode is less than for the high order controller (see
Fig. 13(a)). This is due to the larger ν-gap caused by the low order fitting. The gain of the
sensitivity function S(s) with frequency is shown in Figure 14(b) and is seen to be smaller
than unity near the unstable mode frequency. This, combined with the fact that b∞ >max (δν),
means that the low order controller is also guaranteed to be stabilising from within limit cycle
oscillations.

The robustness of the low order controller design to changes in operating condition is
investigated by moving the flame position along the combustor. Fig. 15 shows that the growth
rate of the dominant mode becomes negative for all unstable configurations. Thus the controller
designed stabilises all possible flame locations within this combustor.

The controller implementation in time domain simulations for the design condition of xf =

0.2 m is shown in Fig. 16 (more information on the time domain simulation method is found
in [31,34,58]). The normalised velocity perturbations before the flame, u′1/ū1, and the actuation
signal from the loudspeaker pL are shown both before feedback control is activated and after it
has been switched on. Prior to control, small disturbances are seen to grow rapidly, with a limit
cycle established approximately beyond t= 0.4 s. When the controller is switched on at t= 0.5 s,
the velocity perturbations decrease rapidly to the weak background white noise. The loudspeaker
signal, pL, is initially large in order to attain control and decreases to a much smaller value in order
to maintain control.

6. Conclusions
This article has presented a method of designing linear feedback controllers that are guaranteed
to stabilise combustion instability, whenever they are activated. The guarantees are subject to
some very reasonable assumptions on the nature of the flame nonlinearity that would be satisfied
very widely in practice. A single feedback controller design then can guarantee stability whether
control is activated within the regime of small linear disturbances and exponential growth or
within the regime of limit cycle oscillations in which the amplitude has saturated.

The method combines the flame describing function approach for weakly nonlinear flame
responses with H∞ loop-shaping for controller design and the ν-gap metric for characterising
nonlinearity as deviations from the “average” linear model. The flame describing function gives
rise to a “family” of linear open loop plant transfer functions corresponding to different flame
perturbation levels. The maximum ν-gap between these and the average or nominal plant transfer
function sets the minimum robustness stability margin required of the controller. An H∞ loop-
shaping controller is then designed which has a stability margin exceeding this, and which also
attenuates fluctuations within limit cycle.
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The control strategy has been demonstrated on a representative model of a nonlinear
combustion system comprising an unsteady laminar flame inside a Rijke tube. Linear plane
waves within the duct are assumed to suffer damping due to end radiation and visco-thermal
wall damping mechanisms. The nonlinear kinematic response of the flame to flow disturbances
is modelled using a level set approach, which combines the G-equation kinematic flame model
with a two-dimensional flow velocity perturbation model and a flame front curvature dependent
burning speed. Simulations implementing this level set approach have been validated by
comparison with experimental data, and used to determine the flame describing function (FDF)
of the laminar conical premixed flame.

The calculated FDF of the target flame has been successfully incorporated into a recently
developed code, OSCILOS, to calculate the eigenvalue evolutions of the nonlinear system with
increasing flame velocity perturbation levels. The corresponding “family” of open loop transfer
functions (OLTF) between the monitored pressure perturbations downstream of the flame and
the external pressure perturbations from an actuator at the entrance of the Rijke tube, has been
established for the purpose of control.

A linear mean OLTF has been selected as the target plant for the controller design by averaging
the FDF over a large range of velocity perturbation levels. The ν-gap metric has been applied to
quantify the differences between the set of OLTFs for different perturbation levels and the selected
plant. This metric fits naturally into the H∞ loop-shaping framework to provide the minimum
required stability margin of the designed robust controller. An initial H∞ loop-shaping controller
has been designed and shown to give effective robust control performance. Subsequently, a low
order H∞ loop-shaping controller based on an aggressively low-pass filtered weighted plant
has been designed. Both controllers are guaranteed to stabilise the combustor for all possible
nonlinear flame responses, as long as the ν-gap is smaller than the controller stability margin of
the controller designed by H∞ loop-shaping synthesis. The resulting controller has been applied
to simulations of the unsteady combustion system in the time domain and has been indeed found
to suppress the combustion instability from within the limit cycle.
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Appendix

(a) Visco-thermal damping of acoustic waves in a duct
The propagation of sound waves in a duct has been found to be dissipated due to visco-thermal
losses at the duct walls [30,59] The forward and backward wavenumbers, k̄± =−is/c̄(1±M),
are modified to k± = k̄± +∆k±, where the correction approximately equals:

∆k± =
−is1/2

c
(
1±M

)Λ (A 1)

with the coefficient Λ expressed as:

Λ=
2ν1/2

D

(
1 +

γ − 1

P
1/2
r

)
(A 2)

where ν and Pr are the kinematic viscosity and Prandtl number of gases, respectively. D is the
diameter of the duct. γ is the ratio of specific heats. In the calculation, Pr = 0.71 is considered
constant, both for air and combustion products of hydro-carbon flames. ν can be calculated by
ν = µ/ρ̄, with the dynamic viscosity µair of air calculated by the Sutherland’s Law [60], with
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further corrections expressed as:

µair =

 µref

(
T

Tref

)3/2 Tref + CS
T + CS

for T ∈ [100, 1000] K

a1T + a0 for T ∈ [1000, 3000] K

where µref = 1.716× 10−5 kg m−1s−1, Tref = 273.15 K, CS = 110.4 K, a1 = 2.653× 10−8 and
a0 = 1.573× 10−5. It was found that the dynamic viscosity of the hydrocarbon-air combustion
products µprod differed little from that of air, with a minor correction depending on the
equivalence ratio φ [61], and is written as:

µprod = µair/(1 + 0.027φ), for T ∈ [500, 4000] K, φ∈ [0, 4] (A 3)

The exponential component in propagating waves can be changed to:

exp(±ik±∆x) = exp
(
∓ τ±(s+ Λs1/2)

)
(A 4)

where τ± =∆x/(c̄± ū) and ∆x is the path length of the travelling acoustic wave.

(b) The expressions of Mn

M1 = 1 +
S1

S2

(
M1
(
2 +M1

)
− c̄2
c̄1
M2
(
1 +M1

))
M3 = 1 +M2

M2 = 1− S1

S2

(
M1
(
2−M1

)
− c̄2
c̄1
M2
(
1−M1

))
M4 = 1−M2

M5 = 1 + γM1 + (γ − 1)M
2
1 M7 = 1 + γM2 + (γ − 1)M

2
2

M6 = 1− γM1 + (γ − 1)M
2
1 M8 = 1− γM2 + (γ − 1)M

2
2

where M = u/c̄ is the Mach number.
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