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Abstract— The limited ability to dorsiflex the foot, known as
drop foot, can be treated by functional electrical stimulation.
Therein, undesired foot eversion/inversion is a common problem
which is usually corrected by tedious manual repositioning of
the electrodes. We address this issue by presenting a feedback-
control solution featuring three major contributions: (1) an al-
gorithm for inertial sensor-based foot-to-ground angle measure-
ment with periodic drift correction; (2) a three-electrode setup
that allows distribution of an overall stimulation intensity to the
tibialis anterior muscle and to the superficial peroneal nerve
that innervates the fibularis longus muscle, thus decoupling
dorsiflexion and eversion control; (3) a run-to-run controller
and an iterative learning controller, both of which use step-by-
step learning to achieve desired eversion foot-to-ground angles.
Experiments with a chronic drop foot patient demonstrate
compensation of undesired eversion/inversion within at most
two steps, while dorsiflexion angle trajectories are not affected.

I. INTRODUCTION
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Fig. 1. Drop foot treatment by functional electrical stimulation of the nerve
and the muscles that are involved in foot dorsiflexion. Unbalanced activation
of the two muscles results in undesired eversion or inversion. An inertial
sensor at the foot allows feedback control of the foot-to-ground angle.

*This work was conducted within the research project APeroStim, which
is supported by the German Federal Ministry of Research and Education
(FKZ 01EZ1204B).

1Thomas Seel, Daniel Laidig, Markus Valtin, and Thomas Schauer are
with Control Systems Group at Technische Universität Berlin, Einsteinufer
17 EN11, 10587 Berlin, Germany seel@control.tu-berlin.de

2Cordula Werner is with Department of Neurological Rehabilitation at
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Drop foot syndrome appears in stroke patients and pa-

tients with neurological disorders. It is characterized by

the limited ability to lift (more precisely to dorsiflex) the

foot by voluntary muscle activation. Drop foot stimulators,

also known as peroneal stimulators, are neuroprostheses [1]

that represent a less passive alternative to the conventional

ankle-foot orthosis treatment [2]. The stimulator supports the

dorsiflexion during the swing phase of gait, i.e. between the

toe-off and the initial contact of the foot, through functional

electrical stimulation (FES) of the involved muscles and/or

nerves. Figure 1 depicts the two muscles that pull on the

inner and outer edge of the foot as well as the nerve that

innervates both muscles. In this contribution we focus on

FES applied via self-adhesive skin electrodes, which are most

commonly used in drop foot stimulators and are also depicted

in Figure 1. Via such electrodes, rectangular biphasic pulses

with amplitudes of 5−50mA and pulse-widths of 50−500µs

are typically applied at a frequency of 20− 100Hz.

Most commercially available devices use heel switches

to detect two gait phases: one when the heel is on the

ground and the other when it is not [1], [3]. A more

detailed gait phase detection can be achieved using an inertial

sensor; see e.g. [4]. Furthermore, available devices only

employ feed-forward control, i.e. they apply a predefined

stimulation intensity profile in each step as soon as the

heel is lifted. FES-activated muscles fatigue rapidly [5] and

residual voluntary muscle activity as well as the muscle

tone may vary. The stimulation intensity must therefore

either be adapted repeatedly by the user or it must be

set to a higher value from the very start, which leads to

increased fatigue. Accordingly, recent research has focused

on feedback approaches wherein the effect of the stimulation,

i.e. the foot motion, is measured and closed-loop control

is applied to adjust the stimulation intensity. This approach

was demonstrated to yield improved performance, e.g. by

using fuzzy control methods [6], run-to-run control [7], and

predictive control [8]. Besides the sufficient foot clearance

that these methods yield, the additional goal of natural

and symmetric foot motion can be achieved by employing

Iterative Learning Control (ILC). This method allows control

of, for example, the entire dorsiflexion angle trajectory to a

given reference trajectory. The effectiveness of this approach

has been demonstrated in [9] by simplified experiments with

a healthy subject and in [10] by experiments with stroke

patients.

Generating sufficient foot clearance and physiological foot

motion is an important achievement of recent research work.

But it still ignores the fact that the ankle joint has two

rotational degrees of freedom, i.e. dorsiflexion/plantarflexion
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and eversion/inversion, see Figure 1. Therefore, unbalanced

activation of m. tibialis anterior and m. fibularis longus leads

to undesired eversion/inversion of the foot and increases the

risk of falling and ankle injuries. In [11], an automatic tuning

approach has been proposed for an implanted stimulator.

When using surface electrodes, however, this problem is

typically addressed by repeatedly repositioning the stim-

ulation electrodes until a position is found which yields

a balanced activation. This process can be tedious, and a

position that yields balanced activation may only do so for a

short time, e.g. until the muscles fatigue or move underneath

the skin. Recent research has therefore focused on the use

of array electrodes which allow for quick manipulations of

the stimulation site without the need for repositioning the

array. In particular, it was demonstrated recently that both the

dorsiflexion angle trajectory and the eversion angle trajectory

of a healthy seated subject can be controlled by FES via array

electrodes using ILC methods [12].

In the present contribution, we address the issue of

undesired eversion/inversion in the particular setup of the

Adaptive Peroneal Stimulator [10]. Therein, ILC is used to

control the dorsiflexion foot-to-ground angle trajectory (foot

pitch) by adjusting a stimulation intensity profile. As an

extension of the existing system, we propose a setup with

three single electrodes as well as two control methods for

controlling the eversion foot-to-ground angle (foot roll). The

remainder of the paper is organized as follows. In Section II

we introduce the hardware setup, before we briefly explain

how the angles are derived from the measurement data of an

inertial sensor in Section III. The controllers are designed

in Section IV, and experimental results are presented in

Section V.

II. HARDWARE SETUP

We use the hardware setup of the Adaptive Peroneal

Stimulator [10]. Three self-adhesive surface electrodes are

attached to the lower leg of a drop foot patient, see Figure 1.

One active electrode is placed above the superficial peroneal

nerve and one above the tibialis anterior muscle: the former

can be used to induce dorsiflexion with eversion of the foot

and the latter to induce dorsiflexion with inversion. Each of

these electrodes is connected to a separate output channel

of a functional electrical stimulator that applies biphasic

stimulation pulses [5] at a frequency of fFES = 50Hz.

The common counter electrode for the counter pulses of

both channels is attached about 2 cm lateral of the tibialis

anterior electrode. At this position it was found to either

have no contributing effect on foot motion or, depending

on the individual subject, to slightly support eversion.

The stimulator is connected to a laptop that is used to set

stimulation intensities for both channels in real time. The

same laptop receives measurement signals from an inertial

measurement unit that is attached to the patient’s paretic-

side shoe and delivers three-dimensional accelerometer and

gyroscope readings at fIMU = 100Hz.

III. ASSESSING FOOT EVERSION/INVERSION

WITH INERTIAL SENSORS

The measured angular rates and accelerations of the

paretic foot are used to detect the gait events toe-off and

initial contact, which mark the beginning and the end of the

swing phase, as well as full contact and heel-rise, which

mark the beginning and the end of the foot-flat phase. In the

following, tto, tic, tfc and thr will denote the according time

instants of the considered step, respectively. As depicted in

Figure 2, the period of time between heel-rise and toe-off

is referred to as pre-swing, and the phase between initial

contact and full contact is called loading response. This is

in accordance with standard literature, see e.g. [13]. The

employed gait phase detection algorithm is described in [4]

and, for the sake of brevity, is not further discussed here.

Instead, we assume that we have real-time information of the

current gait phase and consider the task of foot-to-ground

angle measurement in the following section.
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Fig. 2. Employed model (phases and transitions) of the gait cycle of one
side. During foot-flat phase, the foot rests on the ground, while it has no
ground contact during swing phase.
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Fig. 3. Geometrical definition of the foot-to-ground angle α in eversion-
direction (roll) on a left foot. The angle that the foot’s mediolateral axis
yfoot and the horizontal ground confine during swing phase is a proper
measure of foot eversion/inversion. Dotted lines indicate projection into
horizontal plane.

A. Measuring Foot-to-Ground Angles

Figure 3 illustrates that the foot-to-ground eversion angle

is defined as the angle between the horizontal plane and

the mediolateral axis yfoot of the foot, i.e. the axis pointing

from medial to lateral. The local coordinates of yfoot are

known if we attach the sensor such that one local coordinate

axis coincides with yfoot. However, as discussed in our

previous work on inertial sensor-based gait analysis [14],

even surfaces and right angles are rarely found on the human

body. We therefore present an alternative approach in which
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we assume that the mounting orientation and position of the

sensor are both unrestricted and unknown. More precisely,

the sensor may be attached to the shoe or foot (excluding

the toes) in an arbitrary position and orientation. During

every foot-flat phase, the accelerometer readings a(t) are

integrated over time and the resulting vector is normalized

to unit length:

ẑff :=
∑

t∈ foot-flat

a(t), zff := ẑff/||ẑff ||2, (1)

where || · ||2 denotes the Euclidean norm. Since gravitational

acceleration dominates when the foot is (almost) at rest,

zff is (almost) vertical. At each heel-rise thr, a strap-down

integration [15] of the angular rates is started that yields

the rotation matrix Rff(t). This matrix transforms the local

measurement vectors a(t) and g(t) of any time instant t
between two foot-flat phases to the local coordinate system

of the preceding foot-flat phase, which we will refer to as the

reference coordinate system of that step. During the first step

of the patient, the horizontal foot velocity vxy(τ), τ > thr,
is estimated in reference coordinates by applying

aff(t) := Rff(t)a(t), (2)

vxy(τ) := f−1
IMU

τ
∑

t=thr

(aTff (t)− zffa
T
ff (t)zff), (3)

We exploit the fact that the foot is resting at t = tfc to

remove integration drift and calculate the local coordinates

of the mediolateral axis yfoot of the foot

ŷfoot := zff ×

tic
∑

τ=tto

(vxy(τ)−
τ − thr
tfc − thr

vxy(tfc)), (4)

yfoot := +ŷfoot/||ŷfoot||2 for a left foot,

and yfoot := −ŷfoot/||ŷfoot||2 for a right foot. (5)

Here, it is assumed that the foot travels mainly along the

posterior-anterior axis during swing phase, which is a valid

assumption, even in paretic gait. Furthermore, please note

that the mediolateral axis yfoot of the foot in local coordinates

does not change with time, since the sensor moves along with

the foot. See Figure 3 for illustration. By transforming yfoot
to the reference coordinate system in which the vertical axis

zff is known, we calculate the time-dependent foot-to-ground

angle α in eversion/inversion direction (roll):

α(t) :=
π

2
− ∢(zff , Rff(t)yfoot) (6)

=arcsin(zTffRff(t)yfoot) (7)

Due to the side-dependent axis definition (5), this angle is

positive when the foot is everted and negative when the foot

is inverted with respect to the horizontal plane. However, it

is important to note that orientation strap-down integration is

always subject to drift, since, even with proper calibration,

the gyroscopes have non-zero bias. Therefore, α(t) also

drifts1 between each two foot-flat phases. At every full

1For example, with the proposed algorithm and the employed sensor
hardware, we found that α(tfc) is typically in the range of 2◦.

contact tfc, however, we can remove the drift by assuming

constant bias and level ground:

α̃(t) :=α(t)−
t− thr
tfc − thr

(α(tfc)− α(thr)), t ∈ [thr, tfc] (8)

Figure 4 presents example trajectories of this eversion

angle from experiments with healthy subjects and with

stroke patients who received conventional FES-support

of dorsiflexion. The common procedure of minimizing

eversion/inversion by repositioning the stimulation electrodes

was omitted. As demonstrated by the data, this can result

in strong eversion or inversion, compared to the limited

amount that is present in the gait of healthy subjects.

This demonstrates that methods for automatic eversion

control are required in order to avoid tedious electrode

repositioning. In the following, α̃ is used to define a scalar

eversion indicator, and in Section IV-B it is used for the

iterative learning control of the foot eversion/inversion.

Fig. 4. Eversion angle trajectories (average lines + standard deviation
bands) of healthy subjects (left) and of stroke patients who received
conventional FES-support of dorsiflexion (right). Electrode positions were
carefully chosen prior to stimulating but not repositioned thereafter. Eversion
or inversion occurs during pre-swing (ps), swing, and loading response (lr).

B. Scalar Eversion Indicator

In order to design a run-to-run controller for foot eversion,

we need a scalar indicator that quantifies the amount of

eversion/inversion of an entire step. To this end, inertial

data is collected from a number of treadmill experiments

with stroke patients in which synchronized videos from

posterior and lateral are also recorded. These videos are

shown to highly experienced physicians who rate the amount

of eversion/inversion in the patient’s gait. Based on these

examinations, it is found that eversion/inversion is most

undesirable in the second half of swing phase, i.e. when the

foot is closer to the ground and eversion/inversion increases

the risk of touching the ground early. Therefore, we define

the scalar eversion indicator as the following third-root-

mean-cubed angle

e := 3

√

√

√

√

√

2fIMU

tic − tto

tic
∑

t=
tto+tic

2

α̃(t)3, (9)

where power 3 is chosen because it gives more weight to

large angles while maintaining the sign information. This

allows for cancellation of positive against negative values.

But from careful analysis of a large data base, we find that
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(even in paretic gaits) it is highly uncommon that both large

eversion and large inversion occur during the short amount

of time of half a swing phase2. The scalar eversion indicator

is found to correlate well with the video-based eversion

ratings of experienced clinicians, as demonstrated in Figure

5. We therefore conclude that it is a proper scalar measure

of the clinically relevant eversion that is present in a step.

Fig. 5. Correlation of proposed scalar eversion indicator with video-based
eversion ratings of experienced physicians for eleven walking sequences of
stroke patients (10-20 steps each; horizontal bars show standard deviations).

IV. DESIGN OF LEARNING CONTROLLERS

We assume that the foot-to-ground angles in dorsiflexion-

direction (pitch) and in eversion-direction (roll) are measured

in real time using the methods from Section III. Furthermore,

please recall that the hardware setup of the Adaptive Peroneal

Stimulator allows us to manipulate the stimulation intensi-

ties of two distinct stimulation channels, i.e. the intensity

qn.peron. ∈ [0, 1] of the nerve channel that causes dorsiflexion

with eversion and the intensity qtib.ant. ∈ [0, 1] of the muscle

channel that causes dorsiflexion with inversion. Both stimu-

lation intensities are normalized by the individual maximum

tolerated values that are determined during the setup of every

experiment. Controlling both angles by manipulating these

stimulation intensities represents a multi-input multi-output

control problem with strong couplings. In order to decouple

eversion control from dorsiflexion control, we employ the

following strategy: the overall stimulation intensity udf :=
qn.peron. + qtib.ant. will be used as the manipulated variable for

dorsiflexion control, while the eversion controller decides in

what ratio this sum is distributed to both channels. More

precisely, we assign the two stimulation channel intensities

as follows:

qn.peron. = udf (u+ 1)/2 (10)

qtib.ant. = udf (1− u)/2, (11)

where udf ∈ [0, 1] is the manipulated variable of the

dorsiflexion controller and u ∈ [−1, 1] is the manipulated

variable of the eversion controller, which we will refer to

as the intensity distribution. To enhance readability, we will

denote the upper bound u = 1 with “N” as in nerve and the

lower bound u = −1 with “M” as in muscle.

2In such a case, iterative learning control of the entire eversion angle
profile should be applied rather than run-to-run control of the scalar eversion
indicator; see Section IV-B.

The general control task is to (first) achieve physiological

dorsiflexion while (second) maintaining naturally small

eversion/inversion during (at least the second half of) swing

phase. We addressed the first problem in previous works

[16], [17], [10] by designing an iterative learning controller,

which finds the stimulation intensity trajectory that yields

a desired dorsiflexion angle trajectory. For the sake of

simplicity, we do not employ this approach here. Instead,

we use a fixed trapezoidal stimulation intensity trajectory,

the rise time and width of which are set manually to ensure

sufficient dorsiflexion. This allows us to focus on the control

of eversion/inversion. As pointed out in previous work,

see e.g. [16], [10], the FES and muscle dynamics are too

slow to apply feedback control during the short duration of

a swing phase. Instead, we will follow two learning-type

control approaches in the following subsections: (1) a

run-to-run control that applies a constant input uj in every

step j and (2) an iterative learning control that applies

a time-dependent input trajectory uj(t) in every step j.

During each foot-flat phase, both controllers will use the

eversion angle information of the previous step to adjust

their control inputs in order to achieve a predefined desired

level of eversion/inversion in the following step.

A. Run-to-Run Controller Design

At each full contact, the scalar eversion indicator ej of

the last step j is calculated from the drift-corrected eversion

angle trajectory α̃(t). It is then compared to a given reference

value r, and the deviation is used to update the intensity

distribution uj+1 that is applied during the next step:

uj+1 = sat+1
−1(uj + λR2R(r − ej) ), (12)

where λR2R ∈ R>0 is a positive learning gain and sat+1
−1(·)

saturates uj+1 to its meaningful range. This control law is

implemented as a C-coded function in the real-time software

setting described in Section II.

In order to find suitable values for the controller

parameter λR2R, we evaluate the (maximum) sensitivity

of the controlled variable with respect to the manipulated

variable in experiments with subjects seated on a table,

i.e. their shanks and feet were hanging down and they

were asked to remain passive. It is found that, while

results vary from subject to subject, a change of 0.2 in the

intensity distribution u may lead to a change of at most

0.5 rad in the eversion indicator e. Therefore, we choose

λR2R = 0.5 as a starting value for further experimental

tuning in Section V. While increasing the learning gain

will accelerate convergence, overly high values will lead to

overshoot effects, i.e. learning steps that overcompensate

the setpoint deviation of the last step and lead to even larger

deviations (with opposite sign) in the next step.

B. Iterative Learning Controller Design

As mentioned above, an iterative learning controller ap-

plies an internally stored input trajectory in each trial and
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updates this feedforward input only between the trials based

on measurement information from the previous trial. There-

fore, in order to carry out the ILC design, we first define

the lifted signal vectors3 yj and uj of the drift-corrected

eversion angle and the intensity distribution, respectively:

yj :=











α̃j(t = Ts)
α̃j(t = 2Ts)

...

α̃j(t = nTs)











, uj :=











uj(t = Ts − δTs)
uj(t = 2Ts − δTs)

...

uj(t = nTs − δTs)











,

where j is the step index, t = 0 refers to the toe-off, Ts =
0.02 is the sample time4, nTs is the maximum time duration

of a swing phase, and δ is a phase-lead parameter that can

be used to account for delays in the plant dynamics. At each

full contact and after drift-correction, the lifted vector yj is

determined, compared to a given reference trajectory r ∈ R
n,

and used to update the input trajectory as follows:

uj+1 = sat+1
−1(Q(uj + λILCIn×n(r− yj))), (13)

where λILC ∈ R>0 is a positive learning gain and Q

is a symmetric Toeplitz lifted matrix containing the

Markov parameters of a second-order Butterworth low

pass filter, i.e. multiplying a lifted vector by Q low-pass

filters the trajectory without introducing any time delay [18].

The above input update law is known from standard ILC

literature, see e.g. [19]. However, it assumes that every trial

has the same time duration (pass length) and that, for each

update, a full-length measured output trajectory is available.

But in FES-assisted drop foot treatment, the pass lengths are

determined by the swing phase durations, which are known

to vary even in healthy subjects walking at constant speed.

We addressed this issue in previous publications [16], [17],

in which we suggested the following strategy: set the pass

length n to the maximum possible swing phase duration

(in samples) and let nj be the actual pass length of the jth

trial. Then, before each input update, fill the first nj entries

of the lifted output vector yj with the measured values and

complete yj by setting its last n − nj values to zero. This

approach has successfully been used for the dorsiflexion

control task which faces the same problem of variable pass

length. Therefore, we implement the strategy as well as

the above input update law as a C-coded function in the

real-time software setting described in Section II.

The learning law (13) including the outlined extension

for variable pass length has previously been used for

the dorsiflexion control [17], [10]. From this, we know

that choosing a Q-filter cutoff frequency of 5 Hz limits

the learning to a reasonable frequency range and that a

phase-lead of δ = 0.2 s compensates most of the slow

3Lifted signals capture finite-length trajectories of discrete-time signals,
see e.g. [19].

4Please recall from Section II that, although measurement values are
available at fIMU = 100Hz, the stimulation intensities are only updated
at fFES = 50Hz

FES and muscle dynamics. To find suitable values for the

learning gain λILC, we recall the maximum sensitivity result

of Section IV-A. Therefore, we choose λILC = 0.5 as a

starting value for further experimental tuning in Section V.

As before, raising the learning gain will lead to faster

convergence but will eventually result in overshoot effects.

V. EXPERIMENTAL RESULTS

In a series of experiments with a chronic drop foot

patient, we evaluate the two eversion controllers designed

in Section IV. Informed consent of the patient was obtained

and the trials have been approved by the ethics committee

of Charité Universitätsmedizin Berlin. The patient walks

on a treadmill at self-selected speed and with the hardware

setup described in II. In each swing phase, the paretic

foot is lifted (dorsiflexed) by applying a trapezoidal overall

stimulation intensity trajectory udf(t), which is not adapted

from step to step. The ratio u(t) in which this overall

stimulation intensity is distributed to the nerve and muscle

channel is manipulated by either of both eversion controllers.

First, the performance of the run-to-run controller is as-

sessed by reference step tests, the results of which are given

in Figure 6. Small adaptations of the intensity distribution are

sufficient for large changes in foot eversion/inversion. The

output follows the reference with a delay of one step, which

is the fastest possible reaction for trial-to-trial feedback.

The depicted eversion angle trajectories reveal that α̃ was

successfully raised, at least in the second half of swing phase.

During pre-swing and early swing phase, however, the angle

is alternating between eversion and inversion.

Fig. 6. Reference tracking of the run-to-run eversion controller in a chronic
drop foot patient. The inversion (negative e) is compensated quickly by
proper adaption of the stimulation distribution (λR2R = 0.5). Small boxes
sketch eversion angle trajectories of individual steps.

In a next step, we try to eliminate eversion and inversion

during the entire swing phase by employing the designed

iterative learning controller. Therefore, we set the reference

trajectory r to constant zero and start with a constant

intensity distribution of 50% nerve and 50% muscle, i.e.

u0 = 0n×1. Results are presented in Figure 7. Within

few learning steps, the root-mean-square error between

1486



reference r and output y is reduced to less than a third

of its original value. As the data show, this individual

patient needs more muscle stimulation during toe-off and

more nerve stimulation during mid-swing in order to avoid

eversion and inversion.

Finally, it is important to note that, while the intensity

distribution was manipulated by the R2R controller and by

the ILC controller, observed variations in the dorsiflexion

angle trajectories were only marginal; see Figure 7. This

means that the controllers acted on the eversion/inversion

without affecting the dorsiflexion significantly.

tto

ILC on

ILC off

eversion/inversion (ILC) dorsiflex. (const. input)

ILC on

ILC off

ILC error reductionaverage and std.dev.

t

ttto

Fig. 7. Iterative Learning Control of eversion in a chronic drop foot patient.
By adaption of the stimulation distribution trajectory, the ILC (λICL = 0.5)
achieves constantly small eversion/inversion within few learning steps. Due
to the decoupling input transformation, dorsiflexion is hardly affected.

VI. CONCLUSIONS

We presented a feedback-based approach to avoiding

undesired foot eversion/inversion in drop foot stimulation.

The proposed inertial sensor-based algorithm was found

to provide reliable real-time measurements of the foot-to-

ground angle. The three-electrode setup was found to be

suitable for influencing both the eversion angle and the intro-

duced eversion indicator. Experimental results demonstrated

that the intensity distribution strategy decouples dorsiflexion

and eversion control and that the two proposed learning

controllers achieve desired eversion/inversion levels in one or

two steps. Therefore, we conclude that both might be used

in combination with the dorsiflexion ILC of the Adaptive

Peroneal Stimulator. This is subject of further research as

well as the integration of recent results with array electrodes

[12]. Moreover, we will investigate the effect of input satu-

ration on the controller performance and consider the case

of variable gait velocity.
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