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Feedback control of laser intensity noise

Ben C. Buchler, Elanor H. Huntington, Charles C. Harb, and Timothy C. Ralph
Department of Physics, Faculty of Science, The Australian National University, Canberra, Australian Capital Territory 0200, Australia

~Received 13 March 1997!

A fully quantum-mechanical model of feedback to the pump source of a four-level laser is developed with

a view to predicting the achievable intensity noise reduction. For solid-state lasers, the model shows that

quantum noise sources due to laser dynamics have a significant impact on the optimization of the feedback

loop. Experimental results obtained with a diode pumped neodymium:yttrium aluminum garnet ~Nd:YAG!

laser are found to be in good agreement with the theoretical model. The ultimate limit to the noise suppression

comes from the quantum noise due to the measurement processes in the feedback loop. A scheme to overcome

this limit using a squeezed vacuum is theoretically demonstrated to be a highly efficient method of generating

bright intensity squeezed light, particularly in the kHz regime where bright squeezing is otherwise difficult to

obtain. @S1050-2947~97!08111-0#

PACS number~s!: 42.60.Mi, 42.50.Lc, 42.50.Dv

I. INTRODUCTION

Numerous applications, for example ultrahigh sensitivity

metrology and gravitational wave interferometers, require la-

sers with low-intensity noise to maximize the signal-to-noise

ratio. The standard limit to laser intensity noise is the quan-
tum noise limit ~QNL! which corresponds to stochastic fluc-
tuations in the photon flux. The search for lasers which will
run at this limit is now underway.

Solid state lasers show good potential for low noise op-
eration. Using nonplanar ring oscillator ~NPRO! designs,
solid-state lasers can exhibit near-ideal single-mode output
@1,2#. However the intensity noise spectrum is commonly
dominated by the resonant relaxation oscillation @3#. One
method of controlling such intensity noise is through the use
of an electronic feedback loop as shown in Fig. 1. In this
scheme, some of the laser output is detected and the signal
fed back out of phase to the pump source of the laser,
thereby canceling some of the intensity fluctuations of the
laser output. Experimentally, such systems have been dem-
onstrated to be highly effective @4–6#.

The classical theory of this control loop is well under-
stood. Classically, the only noise input to the laser is due to
the pump field. The laser behaves as a damped driven har-
monic oscillator with respect to pump noise @7#, and feed-
back to such systems is described at length in many control
theory texts ~see, e.g., Ref. @8#!. Unfortunately this model is
incomplete because it does not include quantum noise
sources such as spontaneous emission, dipole fluctuations,
and loss of the lasing mode. Quantum-mechanical models of
electronic feedback have previously been restricted to diode
lasers @9#, empty cavities @10–12#, intensity modulators @13#
and second-harmonic generators @14#.

In this work we present a quantum-mechanical model of
electronic feedback to the pump source of a four-level laser.
We show that the quantum-mechanical model makes signifi-
cantly different predictions to the classical model. We
present experimental results obtained using a Nd:YAG ~yt-
trium aluminum garnet! NPRO, and find excellent agreement
with the quantum-mechanical theory. In contrast, we find
clear disagreement between the experimental results and the

classical theory. We find that nonclassical behavior cannot
be produced by the feedback loop, in agreement with previ-
ous work @10–13#. This is due to the amplification of anti-
correlated vacuum noise by the feedback loop. This vacuum
noise is introduced by the beamsplitter which directs some of
the output light to the in-loop detector. By injecting a
squeezed vacuum at the empty port of this beamsplitter, we
show theoretically that bright squeezed light can be pro-
duced. This method of producing bright squeezing is shown
to be more efficient than the passive combination of coherent
light and squeezed vacuum with a beamsplitter. This scheme
may be particularly suited to the production of bright squeez-
ing at low frequencies.

The plan of the paper is as follows. In Sec. II we intro-
duce a linearized model of the laser which includes all the
quantum noise sources. An extra term to describe the feed-
back is introduced in Sec. III, and the equations are solved
for the intensity noise spectrum. Predictions of the model for
a NPRO Nd:YAG laser are presented in Sec. IV, and these
results are compared to the experimental data in Sec. V. Fi-
nally, in Sec. VI we investigate the behavior of the feedback

FIG. 1. The experimental setup which is modeled by the theory.

The current from the in-loop detector is fed back to the pump

source via a filter-amplifier circuit. The out-of-loop field is moni-

tored on a spectrum analyzer.
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loop with a squeezed vacuum at the empty port of the beam
splitter.

II. LINEARIZED LASER EQUATIONS OF MOTION

Starting from the quantum Langevin equations for the
four-level laser, it is possible to derive a set of linearized
operator equations for the fluctuations of the atomic popula-
tions and lasing mode amplitude about their semiclassical
values. Details of this derivation can be found in Refs. @15#
and @16#. The equations for the linearized fluctuations, to-
gether with the steady-state semiclassical equations of mo-
tion, can be used to derive the intensity noise spectrum.

The linearized fluctuation equations are obtained by ex-
panding the operators about their semiclassical values. For

example, the operator for the laser output field Â may be
written as

Â5~ Ā1dÂ !ef~ t !,

where Ā is the absolute value of the semiclassical amplitude

of the lasing mode, and dÂ is a zero-mean fluctuation opera-
tor. The semiclassical phase of the field is f(t). The phase is
a function of time due to the phase diffusion of the laser. The
photon number operator can be written

n̂5Â†Â>Ā2
1ĀdX̂A ,

where the amplitude quadrature fluctuation operator dX̂A is
defined by

dX̂A5dÂ1dÂ†.

Only terms linear in the fluctuation operators have been re-
tained. From this discussion we can see that the variance in
the photon number ~i.e., the intensity noise! will be propor-

tional to the variance of the amplitude quadrature fluctuation.
In addition, the intensity noise is phase insensitive, so we can
set f50 for all time without loss of generality.

In addition to linearization, further simplification of the
model is achieved by adiabatically eliminating the equation
for the upper pump level. This leads to a unidirectional
pumping of the electrons from the ground state directly to
the upper lasing level. The result is a set of equations which
describes a three-level laser with noise inputs as shown in
Fig. 2 The electrons are pumped from the ground state to the

upper lasing level at a rate G by the pump field P̂ . The
fluctuations in the amplitude of the pump field, represented

by dX̂P , introduce a source of noise into the pumping pro-
cess. As not all of the pump field is absorbed, a source of

quantum ~or vacuum! noise, dX̂ab , is also introduced. The
lasing transition between levels 2 and 3 brings with it two

sources of quantum noise: first, dX̂Ct due to spontaneous
emission between the lasing levels which occurs at a rate g t ;

and, second, dX̂dp , due to dephasing of the lasing levels
caused by phonon collisions. Electrons decaying out of the
lower lasing level at a rate g also give rise to a source of

spontaneous emission noise, dX̂C . Other noise sources in-

cluded in the model are the vacuum fluctuations dX̂m enter-

ing the cavity through the output mirror, and dX̂ l , due to
other losses within the cavity. The output of the laser is the

field Â shown on the right of Fig. 2.
To solve for the laser spectrum we require the semiclas-

sical equations of motion for the atomic populations and las-
ing mode amplitude,

ȧ5

G

2
~J32J2!a2ka ,

J̇25G~J32J2!a2
1g tJ32gJ2 ,

~1!

J̇352G~J32J2!a2
2g tJ31GJ1 ,

J11J21J351,

where Jn is the population of level n scaled by the number of
atoms N , and a is the amplitude of the lasing mode per root

N . The phase of a is real since Ā was earlier assumed to be
real. The total damping rate of the laser cavity is k, which is
the sum of the loss rate through the output mirror, km , and
other losses, k l . The rate G is the simulated emission rate
per photon in the lasing mode, and is given by

G5ssrc ,

where ss is the stimulated emission cross section, r is the
density of active atoms and c is the speed of light in the
lasing medium. These semiclassical equations are solved
with the rate of change of the variables set to zero to find the
stable steady-state operating point of the laser.

The linearized operator equations for the fluctuations of
the laser parameters about their semiclassical values are @16#

FIG. 2. A diagram of the features included in the linearized

quantum model of the laser. G is the pump rate; g and g t are

spontaneous emission rates; G is the stimulated emission rate per

photon; dX̂C and dX̂Ct are vacuum noise inputs due to spontaneous

emission; dX̂dp is quantum noise due to dephasing between the

lasing levels; dX̂ l is quantum noise due to internal loss; dX̂m is

quantum noise due to loss through the output mirror; dX̂P is noise

due to the pump source; and dX̂ab is due to inefficient pump ab-

sorption.
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dX̂
˙

a5G~dŝ32dŝ2!a1A2kmdX̂m1Ak ldX̂ l

1ıAG~J31J2!dX̂dp ,

d ṡ̂152GA12qdŝ11gdŝ22AGJ1qdX̂P2AgJ2dX̂C

1AGJ1~12q !dX̂ab ,
~2!

d ṡ̂25G~dŝ32dŝ2!a2
1G~J32J2!adX̂a1g tdŝ32gdŝ2

1AgJ2dX̂C2Ag tJ3dX̂Ct1ıAG~J31J2!dX̂dp,

d ṡ̂352G~dŝ32dŝ2!a2
2G~J32J2!adX̂a2g tdŝ3

1GA12qdŝ11AGJ1qdX̂P1Ag tJ3dX̂Ct

2ıAG~J31J2!dX̂dp2AGJ1~12q !dX̂ab

where dX̂a is the operator for the fluctuations of the lasing
mode amplitude quadrature, dŝn is the operator for the fluc-
tuations of the atomic population about Jn , and the effi-

ciency of pump absorption is given by q and ı5A21.

III. INCLUSION OF FEEDBACK

IN THE LASER EQUATIONS

Equations ~1! and ~2! describe only the free-running laser.
A term for feedback to the pump source must be included to
model the experiment shown in Fig. 1. This is done by writ-

ing the pump field P̂ as

P̂5B̂1dR̂ , ~3!

where B̂ is the pump field without feedback, and dR̂ is the
additional field introduced by the action of the feedback. The

field dR̂ does not change the dc operating point of the laser,

which is governed solely by B̂ . The amplitude fluctuations of

the pump field may be found by linearizing B̂ about its semi-

classical value B̄ , so that

P̂5B̄1dB̂1dR̂

⇒d P̂5dB̂1dR̂

⇒dX̂P5dX̂B1dX̂R .

~4!

The field dR̂ may be expressed as a convolution of the time
response of the feedback electronics, k(t), and the ac com-
ponent of the in-loop photocurrent, d ı̂1(t) @8#. For a diode
pumped laser, such as the one considered in the experimental
work presented in Sec. V, it can be assumed that the conver-

sion of the feedback current into the field dR̂ is independent
of frequency. This is reasonable due to the large linewidth of
the diode laser pump source. We will also assume that there
is an optical loss b in the diode laser @17#, which attenuates
the feedback signal. This introduces additional vacuum

noise, d n̂ f , so that the form of the dR̂ is

dR̂52AbE
2`

`

k~v !d ı̂1~ t2v !dv2ıA12bdn f , ~5!

where the minus sign is included to agree with conventional

notation. The amplitude quadrature fluctuation dX̂R is then
given by

dX̂R~ t !52AbE
2`

`

k~v !dX̂ i1
~ t2v !dv2ıA12bdX̂n f

.

~6!

The photocurrent ı̂1 may be expressed in terms of the laser

output Â , the beamsplitter ratio e, and the detector efficiency
h1 as

ı̂15@Aeh1Â1ıAh1~12e !d n̂s1ıA12h1d n̂1!†~Aeh1Â

1ıAh1~12e !d n̂s1ıA12h1d n̂1# , ~7!

where the vacuum fluctuations d n̂s and d n̂1 are due to the
beamsplitter and in-loop photodetector, respectively ~see Fig.
1!. The fluctuations in the current are found by linearizing

Eq. ~7!. The field Â is expanded about the semiclassical

value Ā as Â5Ā1dÂ . Retaining only first-order fluctuation
terms, we find that the fluctuations of the in-loop photocur-
rent are given by

d ı̂15A2kma@Aeh1dX̂A1ıAh1~12e !dX̂ns

1ıA12h1dX̂n1
# , ~8!

where we used Ā5A2kma .
Equations ~8!, ~6!, and ~4! can be substituted into Eqs. ~2!.

Together with the boundary condition @18#

dX̂A5A2kmdX̂a2dX̂Am , ~9!

these equations may be solved in Fourier space for the am-
plitude quadrature fluctuations in the laser output:

dXA5H F~ ıv !FdXB1ıS 12b

q
D 1/2

dXn f
G1F~ ıv !H~ ıv !

3F ıS ~12e !

e D 1/2

dXns1ıS 12h1

eh1
D 1/2

dXnD1
G

1W1~ ıv !dXm1W2~ ıv !dXC1W3~ ıv !dXCt

1W4~ ıv !dXdp1W5~ ıv !dX l

1W6~ ıv !dXabJ Y @11F~ ıv !H~ ıv !# , ~10!

where the form of the functions Wn(ıv), H(ıv), and F(ıv)
are given in the Appendix. The absence of the hats over the
operators in Eq. ~10! indicate the Fourier transforms of the
operators.

Equation ~10! may be compared to the standard equation
for a closed feedback loop @8#. The function H(ıv) may then
be identified as the transfer function of the feedback system,
i.e., the combined effect of the beam splitter, control elec-
tronics, and laser diode efficiency. With the sign convention
chosen here, the feedback is defined as ‘‘negative’’ when
Re@H(ıv)# is positive. Negative feedback is required to
achieve noise suppression. The function F(ıv) is seen to be
the transfer function of the free-running laser with respect to

1288 57BUCHLER, HUNTINGTON, HARB, AND RALPH



pump noise. This is the same transfer function which may be
derived from the semiclassical laser equations @7#. The func-
tions Wn(ıv) are the free-running laser transfer functions for
the quantum noise terms.

To calculate the noise spectrum of in- and out-of-loop
fields, A1 and A2 respectively, we must evaluate

VAn
5^udXAn

u2& . ~11!

The spectrum VAn
is normalized by the photon flux in the

field An , so that the QNL is given by VAn
51. The quadra-

tures XAn
are given in terms of XA by

dXA2
5ıA~12e !dXA1AedXns

, ~12!

dX̂A1
5AedX̂A1ıA12edX̂ns

.

Combining Eqs. ~11!, ~12!, and ~10!, the in- and out-of-loop
field spectra are found to be

VA1
5

eFVQ1UF~ ıv !U2S VB1

12b

q
D G1uF~ ıv !H~ ıv !u2S 12h1

h1
D1~12e !Vns

u11F~ ıv !H~ ıv !u2 ~13!

and

VA2
5

~12e !FVQ1UF~ ıv !U2S VB1

12b

q
D1UF~ ıv !H~ ıv !U2S 12h1

h1e D G1

Vns

e
ue2F~ ıv !H~ ıv !u2

u11F~ ıv !H~ ıv !u2 , ~14!

where VQ5(uWn(ıv)u2 is the noise power due to quantum-
mechanical sources within the laser, i.e. spontaneous emis-
sion, dephasing, internal loss, and loss through the output
coupler; VB is the noise of the pump source of the laser; and
Vns

is the noise due to the vacuum at the beam splitter, the

generality of which is maintained for work in Sec. VI.
Of most interest is the out-of-loop field, since this is the

only observable output of the control loop. In the limit of no
feedback @e ,H(ıv)→0# , we find that the spectrum VA2

cor-

rectly reduces to the free-running laser spectrum @15#. In the
limit of large negative feedback, the out-of-loop noise is
found to be

lim
H~ ıv !→`

~VA2!5

~12e !~12h1!

h1e
1

Vns

e
. ~15!

For a Poissonian vacuum at the beam splitter (Vns
51) the

high gain limit of the out-of-loop noise is always greater than
1, i.e., it is always super-Poissonian. This is in agreement
with other quantum feedback models @10–13#. The cause of
this behavior lies with the vacuum fluctuations introduced by
the beam splitter. The noise due to the beam splitter in the
out-of-loop field is out of phase with the noise introduced to
the in-loop field. Negative feedback therefore amplifies the
beam-splitter vacuum noise in the out-of-loop field, prevent-
ing sub-Poissonian intensity statistics.

The high gain limit of the in-loop field is found to be

lim
H~ ıv !→`

~VA1!5

12h1

h1

. ~16!

The noise of the in-loop field can therefore become sub-
Poissonian depending on the value h1 . This is also in agree-
ment with other quantum feedback models @10,11,13#. This

field is not squeezed because it is not a free-field and does
not obey the free field commutators.

Comparison of Eq. ~14! to the semiclassical spectrum,
where the only noise input is the pump noise VB , shows that
this model brings with it extra noise terms due to the lasing
dynamics and the action of the beam splitter and photodetec-
tor in the feedback loop. The effect of all these extra noise
inputs on the feedback control problem will now be investi-
gated for the Nd:YAG NPRO laser.

IV. OPTIMIZATION FOR THE ND:YAG LASER

The Nd:YAG NPRO laser runs in a regime where g is
much larger than the stimulated emission rate Ga2, the
pump rate G, and the rate of spontaneous emission between
the lasing levels, g t . ~For values of the Nd:YAG NPRO
fixed parameters, see Table I.! These assumptions permit the
simplification of the pump noise transfer function to

F~ ıv !5

A2kmAGJ1qGa

ıvgL1~vr
2
2v2!

, ~17!

where

TABLE I. Parameters of the Nd:YAG laser.

Parameter Value

km 7.53 107 s21

k l 4.73 107 s21

g t 4.33 103 s21

g 3.33 107 s21

G 6.631011 s21

q 0.9
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vr5GaAJ32J2 and gL5GA12q1g t1Ga2.

Under these conditions, F(ıv) is seen to be a second-order
transfer function, the same as could be found for a damped,
driven pendulum. If the damping rate gL is less than vr ,
then the transfer function exhibits a resonant relaxation os-
cillation ~RRO! @7#. A plot of the phase and amplitude of the
transfer function for typical Nd:YAG parameters is shown in
Fig. 3. The stabilization of a feedback loop which includes
such a second order resonance is discussed at length in Ref.
@8#. The goal is to ensure that the magnitude of the open-loop
gain @F(ıv)H(ıv)# is less than 1 when the phase of the
open-loop gain reaches 2180°. If this is not achieved, the
feedback loop will be unstable, leading to an enhancement of
the spectral noise. Note also that a stable feedback loop may
amplify noise if the open-loop gain approaches 21, since the
denominator of Eq. 14 approaches 0.

The Bode diagram of F(ıv), Fig. 3, therefore shows that
we require a phase advance filter to enhance the performance
of the control loop. We will consider a filter of the form

Ho~ ıv !5l
p1ıvs2

p1ıv
, ~18!

where the parameters s and p are chosen to refine the feed-
back loop. This is a simple first-order phase advance filter
with dc gain l @8#. It has a maximum phase advance of fm at
frequency vm , where

tan fm5

s2
21

2s
and vm5

p

s
. ~19!

The amplitude response of Ho(ıv) is that of a high pass
filter, where the attenuation ratio between low and high fre-
quencies is s2.

To optimize the feedback loop, the frequency vm is cho-
sen to coincide with the point at which the open-loop transfer
function F(ıv)H(ıv) has a magnitude of 1 @8# by solving

uF~ ıvm!Ho~ ıvm!u51,
~20!

vm5

p

s

for the parameter p . In this model we are free to choose the
amount of phase advance fm , which is determined by the
free parameter s .

Figure 4 shows the predicted effect of feedback on a typi-
cal Nd:YAG laser spectrum. Curve i is the free running laser
spectrum, i.e., H(ıv)50. Curve ii is a spectrum with feed-
back but no phase advance filter, i.e., H(ıv)5l , where l is
a real positive number. The spectrum with the optimized
phase advance filter iii shows a considerable improvement,
although the spectrum still exhibits a noise peak. The origin
of this peak is made clear by Fig. 5 which shows the noise
spectrum split into it’s various sources. Note that the noise
power in this graph is on a linear scale with the QNL at 1. It
demonstrates that the pump noise ~curve iii! is well con-
trolled by the feedback loop, as we would expect since the
phase advance filter was designed using the pump noise
transfer function. It is the sources of quantum noise arising in
the laser dynamics ~curves ii , iv , v , and vii! which are not
well controlled by this filter. These noise sources, repre-
sented by VQ , have a frequency dependence due to the laser

FIG. 3. A plot of the ~curve i! amplitude and ~curve ii! the

phase of the pump noise transfer function F(ıv) as a function of

frequency. Parameters used are those in Table I with G56.

FIG. 4. The effect of feedback on the Nd:YAG spectrum: ~curve

i! the free-running laser spectrum, H(ıv)50; ~curve ii! the spec-

trum with feedback and no phase advance filter, H(ıv)5l; and

~curve iii! the spectrum with feedback and an optimized phase

advance filter, H(ıv)5Ho(ıv). Parameters used were G56,

VP5500 000, e50.5, and h150.9. The phase advance in ~curve

iii! is 65°, i.e., s54.51.

FIG. 5. The components of the spectrum with feedback. ~curve

i! sum of all noise terms; ~curve ii! noise due to dephasing; ~curve

iii! pump noise; ~curve iv! noise due to the output mirror; ~curve v!

noise due to internal loss; ~curve vi! noise due to the beam splitter

and in-loop detector, and ~curve vii! noise due to spontaneous

emission. Parameters used were G56, VP5500 000, e50.5,

h150.9, and H(ıv)5Ho(ıv). The phase advance is 65°, i.e.,

s54.51
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dynamics, which is distinct from the pump noise transfer
function.

The control of these noise sources can be improved em-
pirically by reducing the frequency of the maximum phase
advance, vm . This increases the size of Ho(ıv) near the
resonance, thereby increasing the gain of the feedback loop
at this point. The result is an improvement on the classically
optimized noise suppression as shown in Fig. 6.

V. COMPARISON OF EXPERIMENT TO THEORY WITH

A ND:YAG LASER

An experiment to test the theoretical predictions was set
up as shown in Fig. 1. The laser used was a Nd:YAG NPRO
pumped by two diode laser arrays operating at 808 nm. The
maximum output power of the laser was 700 mW at 1064
nm.

The optical signals were detected using Epitax 500
InGaAs photodiodes, then amplified by a Comlinear
CLC420 transimpedance amplifier. These detectors have a
dynamic range .80 dB and a bandwidth from 0 to 20 MHz.
The power spectrum of the signal was recorded using a
Hewlett Packard HP-8568B spectrum analyzer. The detected
power on each of the two detectors was 1.00(60.05) mW.
The spectra were calibrated to the QNL by detecting 1 mW
of white light illumination.

The invariant parameters of the laser, such as decay con-
stants, are well determined, and can be found in Ref. @3#.
Internal loss rates and output coupling rates are properties of
the individual crystal, and have been determined by the
manufacturers, Laser Zentrum Hannover. The pump absorp-
tion q can be estimated from the ratio of the pump field
photon flux to the laser output photon flux. All these values
are presented in Table I. The two remaining laser parameters,
the pump noise spectrum VP , and the pump rate G, are found
from the free running laser spectrum. The pump rate G is
fitted by matching the RRO frequencies of the experimental
and theoretical curves. The value of G also determines the
values of the atomic populations Jn and the photon number
a2 through the semiclassical equations of motion @Eqs. ~1!#.
The pump noise VP is assumed to be frequency independent,
and is fitted by matching the height of the curves at frequen-
cies below the RRO.

A comparison of theory and experiment for the free run-
ning laser spectrum is shown by curve i in Fig. 7. The agree-
ment is good, except for the peak at 4 MHz, which is due to
a resonance in the current source of the laser diodes and is
therefore not accounted for by the theory.

The circuit used in the feedback loop consisted of a series
of active filters to provide phase advance and gain. The
maximum phase advance was 36° at 800 kHz, and the maxi-
mum electronic gain in the feedback loop was 50 dB at 10
MHz. The feedback signal was ac coupled to the diode laser
current source to prevent any change in the output power of
the diode laser.

To fit the noise spectra with feedback requires some ad-
ditional parameters. The transfer function for the feedback
system is taken to be

H~ ıv !5rK~ ıv !e2ıvt, ~21!

where K(ıv) is the transfer function of the electronics in the
feedback loop. This transfer function was measured using a
Hewlett-Packard 3536A network analyzer. The parameter t
is a time delay due to the laser diodes and beam path which
is not included in K(ıv). Time delays are important, as they
introduce a phase lag which counteracts the required phase
advance. This extra time delay was also measured using the
network analyzer. The parameter r expresses the change in
gain due to the detected quantities of light and the unknown
efficiency of the laser diodes. The value of r was fitted to the
noise spectrum showing the most suppression, i.e., largest
feedback gain. The gain was then controlled electronically
within the feedback loop using variable attenuators. The
value of r could therefore be scaled, rather than fitted to each
new spectrum. This served as a test of the consistency of this
fitted parameter.

An example of the effect of the feedback loop is shown
by curves ii and iii in Fig. 7. These results show good agree-
ment between theory and experiment. The noise peak at 4
MHz is not suppressed by the feedback because it is outside
the bandwidth of the system. The best noise suppression
achieved with this system is shown by curve iii .

Theoretical investigation of the feedback system in Sec.
IV showed that quantum-mechanical noise sources make an

FIG. 6. The spectrum with feedback optimized using the pump

noise transfer function and the improvement which can be achieved

by reducing the frequency of maximum phase advance by a factor

of 0.6. G56, VP5500 000, e50.5, and h150.9. The phase ad-

vance is 65°, i.e., s54.51.

FIG. 7. Noise spectra with varying amounts of feedback: ~curve

i! free running—no feedback; ~curve ii! feedback operational, with

20 dB of electronic attenuation in the feedback loop; ~curve iii!

feedback with no attenuation in loop, i.e., best performance of loop.

The laser output power was 100 mW, of which 1 mW was detected

both in and out of loop. Other parameters were e50.5, G55.7,

Vp540 000, r50.096, and t522 ns.
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important contribution to the noise spectrum. This is shown
experimentally in Fig. 8. Curve i shows the experimental
noise spectra and quantum-mechanical theory curve. The
lower curve ii is the noise spectrum arising from only the
pump noise, although a 1 has been added to the spectrum to
account for the QNL. This is the semiclassical spectrum
which may be found from the semiclassical laser equations.
Figure 8 clearly shows that the semiclassical model, even
allowing for the QNL, does not provide a complete descrip-
tion of the observed noise spectrum.

VI. NONCLASSICAL APPLICATIONS

OF THE FEEDBACK LOOP

The fully quantum-mechanical nature of this model al-
lows the investigation of feedback in regimes where lasers
are predicted to produce nonclassical light. It has been
shown @19# that a laser pumped by an amplitude-squeezed
source can itself produce amplitude squeezed light. The
Nd:YAG laser is predicted to generate amplitude squeezing
at low frequencies when pumped by a broadband squeezed
diode laser @15#. At higher frequencies the squeezing is
swamped by the RRO. The question then arises as to whether
feedback may be employed to damp the RRO and preserve
low-frequency amplitude squeezing. Unfortunately, sup-
pressing the RRO requires large amounts of negative feed-
back. The vacuum noise due to the beamsplitter is therefore
amplified by the feedback loop, hence destroying squeezing
at low frequencies.

Lasers are also predicted to generate amplitude squeezed
light at the rate-matched condition @20,22#. If this condition
occurs too close to threshold, however, the squeezing is de-
stroyed by excess spontaneous emission noise. As before,
feedback cannot be used to damp this noise and recover am-
plitude squeezing due to vacuum noise introduced by the
beam splitter.

Generating bright squeezed light

It has been suggested by many authors @9–11,13# that
quantum nondemolition ~QND! measurements may be used
to extract an amplitude squeezed beam from the in-loop
field. Previous suggestions for a QND measurement of the
in-loop field have involved the use of nonlinear optical ma-
terials such as Kerr media @9,10#. One promising QND

scheme, which was demonstrated experimentally by Bruck-
meier et al. @21#, is the use of a squeezed vacuum state inci-
dent on a beam splitter. A squeezed vacuum incident on the
beam splitter in the feedback loop can be included in our
model by altering Vns

. Equations ~16! and ~15! show that for

a 50/50 beam splitter (e50.5) reducing Vns
will make VA1

and VA2 identical. A squeezed vacuum can therefore be used
to make a QND measurement of the in-loop field.

This scheme can be used as an efficient means of convert-
ing a squeezed vacuum into a bright squeezed field. Figure 9
shows the high gain limit of the out-of-loop field @given by
Eq. ~15!# with a 10-dB squeezed vacuum injected on the
beamsplitter. The dashed line shows the bright squeezing
obtained by beating a 10-dB squeezed vacuum with a coher-
ent field at a beam splitter. The graph clearly shows the
increased transfer of squeezing to the out-of-loop field with
feedback compared to that achieved by simply beating the
vacuum with a coherent source. It also shows the critical
dependence of the achievable squeezing on the efficiency of
the in-loop photodetector. Any form of in-loop attenuation
will have a similar effect on the performance of this system.

The spectrum of the out-of-loop field with a 10-dB
squeezed vacuum incident on the beam splitter (e50.5) is
shown in Fig. 10. As the gain is increased in the feedback
loop, the amount of bright squeezing on the output is in-
creased to a maximum of 6 dB below the QNL. Signifi-
cantly, the maximum bright squeezing is achieved at low
frequencies. This is in contrast to most bright squeezed
sources ~such as second-harmonic generators! in which the
bright squeezing at low frequencies is obscured by excess
laser noise. In this system the feedback loop is running in the
regime of large negative feedback, so that all laser noise is
damped.

The dashed line at 2.6 dB below the QNL shows the
bright squeezing obtained by beating a coherent source with
a 10-dB squeezed vacuum at a 50/50 beam splitter. An ex-
perimental realization of this result requires a laser which is
shot-noise limited at low frequencies. Even if such a laser
were available, the output squeezing is still less than that

FIG. 8. The effect of quantum noise on the laser spectrum.

Curve i shows the experimental results and theoretical model while

curve ii shows the semiclassical model. Parameters used were

e50.5, G55.7, Vp540 000, r50.096, and t522 ns. FIG. 9. A plot of bright squeezing achievable with feedback as

a function of the beamsplitter ratio, e. The bright squeezing in the

out-of-loop field using a feedback loop running in the high gain

limit with a 10-dB squeezed vacuum incident on the beam splitter is

shown by the solid curves for different values of the in-loop detec-

tion efficiency. The dashed line is the bright squeezing obtained by

beating a coherent source with a 10-dB squeezed vacuum.
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achievable with a feedback system.
The best currently achievable vacuum squeezing is 7.8 dB

below the QNL @23# using an optical parametric oscillator
~OPO!. These devices require substantial amounts of pump
power at twice the frequency of the output squeezed vacuum.
Furthermore, a well-defined phase relationship is required
between the bright light in the feedback loop and the vacuum
squeezing. A possible experimental setup to extract bright
squeezing using feedback is shown in Fig. 11. Here, the mas-
ter laser of an injection locking system provides the power
for the SHG-OPO system and locks the phase of the slave
which is incorporated in the feedback loop. Injection locking
alters the dynamics of the slave laser, so that the above
theory is not directly applicable to an injection-locked laser.
More detailed calculations show, however, that the maxi-
mum bright squeezing predicted by Eq. ~14!, and the fre-
quency regime in which it occurs, remain unchanged by in-
jection locking.

VII. CONCLUSION

The behavior of a four-level laser with electronic feed-
back to the pump source has been investigated both theoreti-
cally and experimentally. The theoretical model was derived
using a linearized system of quantum Langevin equations
which included a pump field modified by the feedback.

It was shown for the Nd:YAG laser that quantum noise

due to the lasing dynamics is important when optimizing the
feedback loop. A classical optimization which considers only
the pump noise transfer function ignores quantum noise
sources which have a unique frequency dependence. The ex-
perimental results obtained with a Nd:YAG laser show good
agreement with theory. In particular, the importance of quan-
tum noise in the laser spectrum has been clearly demon-
strated.

When running in a negative feedback configuration, as
required to damp classical noise, this type of system was
shown to destroy sub-Poissonian intensity statistics. This
arises from vacuum noise due to the beam splitter, which
introduces anticorrelated noise in and out of the loop.

A scheme in which the feedback loop can act as an effi-
cient means of converting vacuum squeezing into bright
squeezed light was also discussed. By using the squeezed
vacuum to make a QND measurement of the in-loop field,
the out-of-loop field can become highly squeezed. This
method has the advantage that the resulting bright beam is
sub-Poissonian at low frequencies, where bright squeezing is
often destroyed by excess laser noise. Implementation of this
idea may involve an injection locking system to provide suf-
ficient power to run a squeezed vacuum generator.
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APPENDIX

Definition of the functions appearing in Eq. ~10!.

F~ ıv !5

GaA2kmAJ1Gq~ ıv1g2g t!

ıvz~ ıv !1G2a2~J32J2!~2GA12q12ıv1g !
, ~A1!

H~ ıv !52Abh1eaA2kmK~ ıv !, ~A2!

W1~ ıv !5

2kmz~ ıv !

ıvz~ ıv !1G2a2~J32J2!~2GA12q12ıv1g !
21, ~A3!

FIG. 11. An experimental setup which could be used to generate

bright squeezed light with a feedback loop.

FIG. 10. Plots of the out-of-loop field spectrum showing the

effect of a 10-dB squeezed vacuum incident on the beam splitter

with e50.5. The efficiency of the in-loop detection system is taken

to be 0.95. The dashed line shows the squeezing obtained by beat-

ing a coherent field with a 10-dB squeezed vacuum at a 50/50 beam

splitter. Other parameters were G56, VP5500 000, and

H(ıv)5Ho(ıv), with s54.51.
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W2~ ıv !52

GaA2kmgJ2~g t2GA12q1ıv !

ıvz~ ıv !1G2a2~J32J2!~2GA12q12ıv1g !
, ~A4!

W3~ ıv !5

GaA2kmgJ3~2GA12q12ıv1g !

ıvz~ ıv !1G2a2~J32J2!~2GA12q12ıv1g !
, ~A5!

W4~ ıv !52

ıA2kmG~J31J2!Ga2~2GA12q12ıv1g !2z~ ıv !

ıvz~ ıv !1G2a2~J32J2!~2GA12q12ıv1g !
, ~A6!

W5~ ıv !5

2Akmk lz~ ıv !

ıvz~ ıv !1G2a2~J32J2!~2GA12q12ıv1g !
, ~A7!

W6~ ıv !5S 12q

q
D 1/2

F~ ıv !, ~A8!

z~ ıv !5~ ıv12Ga2
1g1g t!~GA12q1ıv !1~Ga2

1g t!g . ~A9!
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