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Abstract 
Solutions to nonlinear optimal control problems are usually computed in open-loop form, 
especially if the problem is subjected to state constraints. Open-loop controls, howev­
er, are not very useful from a control perspective due to their lack of robustness. We 
discuss a couple of useful techniques which reduce a state-constrained problem into an 
unconstrained problem, and subsequently apply a technique to synthesize an optimal state 
feedback controller for the reduced problem. The controller is able to recover the open­
loop optimal state and control for arbitrary initial conditions arising from a nontrivial 
subset of the state space, while ensuring that the state constraint is satisfied at all time. 
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1 INTRODUCTION 

The linear-quadratic regulator is one of the most popular design methodologies in modern 
control theory. It is also one of the rare optimal control problems where the optimal control 
is furnished in the form of a feedback controller which is independent of the system's initial 
condition. For most nonlinear optimal control problems, one is usually concerned with the 
computation of an open-loop optimal control which is dependent on the system's· initial 
condition. In general, optimal feedback control law for nonlinear optimal control problems 
with general cost functionals are extremely difficult to compute. For some simple problems 
such as the linear quadratic regulator, the optimal feedback controller can be obtained 
by solving the corresponding Hamilton-Jacobi-Bellman (HJB) dynamic programming e­
quation. In practice, the curse of dimensionality associated with dynamic programming 
incurs serious computational difficulties for other problems. Sometimes local perturbation 
methods can be used for constructing the feedback controller around a nominally optimal 
trajectory, see for example Bryson and Ho (1975). However, these perturbation methods 
are unlikely to be effective in the event of a large shift in initial conditions. 

In Edwards and Goh (1995), a direct training method is proposed for the synthesis of 

J. Doležal et al. (eds.), System Modelling and Optimization
© Springer Science+Business Media Dordrecht 1996



Feedback control of state constrained optimal control problems 443 

an optimal feedback controller in the form of a feedforward neural network for continuous­
time nonlinear dynamical systems. The controller is independent of the system's initial 
condition provided that it arises from some bounded domain of the state space, and is 
not constricted by any fixed model structure for the dynamical system. The underlying 
idea is motivated by a paper of Nguyen and Widrow (1990) where a trailer-truck is 
trained to back up to a loading dock from arbitrary initial conditions. Although it was 
not explicitly mentioned in Nguyen and Widrow (1990), the problem addressed therein 
was really a discrete-time optimal control problem. The controller in this case is also a 
neural network, but it is possible that other versatile function emulators such as radial 
basis functions can also be used for the controller. 

It is the goal of this paper to extend the result in Edwards and Goh (1995) to nonlinear 
feedback optimal control problems subjected to further continuous state constraints. It is 
well-known that, even for computing open-loop optimal solutions, the state constrained 
optimal control problem is notoriously difficult. While there is no shortage of theoretical 
results in the form of necessary conditions for the constrained problem, practical methods 
for constructing the constrained solutions have been few. In this paper, we discuss two 
methods to transform a state-constrained problem into an unconstrained problem, and 
subsequently apply the method in Edwards and Goh (1995) to synthesize the optimal 
feedback controller for the resulting unconstrained problem. 

2 FEEDBACK CONTROL OF UNCONSTRAINED OPTIMAL 
CONTROL PROBLEMS 

We introduce the underlying notion of a feedback controller by formulating the uncon­
strained problem first. Consider the continuous-time dynamical system defined in the 
finite interval [0, T]: 

x = f(x, u, t), (1) 
x(O) = e, (2) 

where x E lRn is the state; u E lRm is the control; and f = (It, 12, ... , In) T : lRn X lRm X 

[0, T] -+ lRn is assumed known, smooth and Lipschitz. The initial state e is distributed 
randomly in some bounded subset r of the state space according to some density distri­
bution p(e) where p vanishes identically outside r. The control is subjected to the simple 
bound constraint: 

(Xi S Ui(t) S !3i, Vi = 1,···, m, and Vt E [0, T]. (3) 
A control u is said to be 'admissible' if it is a measurable function which satisfies the 
bound (3). Let U be the class of all such admissible controls. The (open-loop) optimal 
control problem can be stated as: 
Problem PI: Given a fixed initial condition x(O) = e, find a u(·; e) from U such that 
the cost functional: 

J1(u(·);e) = <I>(x(T)) + iT L(x(t), u(t),t)dt (4) 

i.s minimized, where L : lRn 
X lRm x [0, T] -+ lR and <I> : lRn -+ lR are known smooth 

functions. Note that the (open-loop) optimal control u' which solves PI is dependent on 
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the initial condition e. Assuming that full state measurement is possible, the feedback 
problem is defined by: 
Problem P2: Construct a state feedback controller u = g(x, i), such that for any giv­
en initial condition in f, the feedback control will give rise to the same minimum cost 
functional, optimal control and optimal state trajectory as that of the open-loop optimal 
solution to problem PI. 

Such a feedback controller is then independent of any shift in initial condition (provided 
that it remains in f), and is almost surely more robust than the open-loop controller in 
the presence of noise and parameter variation. An exact analytical solution for g(x, i) is 
only possible in trivial cases such as the linear quadratic regulator. We shall return in 
section 4 to discuss how we can synthesize an approximate optimal feedback controller. 

3 TWO TECHNIQUES FOR REDUCING CONSTRAINED TO 
UNCONSTRAINED PROBLEMS 

In some practical situations such as obstacle avoidance in robot control, the system is 
subjected to one or more of the following state constraint: 

S(x(i), i) ::; ° (5) 

where S : IRn X [0, T] -> IR is assumed to be smooth. We say that the constraint (5) is 
of order [{ if dS Idi, d2 S Idi2 , . . " dK - 1 S IdiK - 1 do not contain u explicitly, and dK S IdiK 

is the first term that contains u explicitly. We shall discuss two techniques to transform 
a state constrained problems into an unconstrained problem, and subsequently the direct 
training method of Edwards and Goh (1995) will be used in section 4 to construct an 
optimal feedback controller which, due to the prior transformation, will ensure that these 
state constraints are satisfied. 

3.1 The penalty function approach 

The first technique is based on the commonly used concept of exact penalty function. 
In particular, we use a special constraint transcription technique as presented in Teo et. 
a!. (1992) which, apart from satisfying the usual constraint qualification, has several nice 
properties. While the penalty function method is entirely general, and may account for 
vector control with multiple state constraints, it is often slow in convergence, especially 
w.hen one tries to train the feedback controller for the transformed problem. Furthermore, 
it is almost impossible to achieve perfect constraint satisfaction. We summarize the tech­
nique as follows and refer the readers to Teo et. a!. (1992) for further details. As with all 
penalty function techniques, we append the constraint into the cost functional as follows: 

J(u(-)) = 

where L.(x(t), i) 

T 

<T>(x(T), T)+ J (L(x(i), u(i), i) + flL.(x(i), i)) di, 

{ 

0, 
(S(x(t),t)+.)2 

4. 
S(x(i), i), 

o 
if S(x(t), t) < -c:, 
if - c: < S(x(i), i) < c:, 
if S(x(i), i) > c:, 

(6) 

(7) 
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and fl is some large penalty weight. To determine the solution to the constrained problem, 
f: is initially set to some moderately small positive value of, say 10-2

, and fl is set to some 
moderately large value, say 102• Note that if c > 0 and if the penalty term is identically 
zero, then the constraint will be satisfied more than is necessary. In fact Set) ::; -c < O. 
The optimal control problem is then solved and the feasibility of the constraint checked. 
If there is any constraint violation, increase fl, otherwise decrease c, and the problem is 
solved again, until c is less than a certain prescribed threshold. The rate of increasing fl 
and decreasing c is based on some heuristic which comes about as the result of much trial 
and error. Multiple state constraints can be treated similarly by appending one penalty 
term for each constraint to the cost functional. 

3.2 The Valentine transformation 

The second technique is based on a result due to Valentine (1937) from the early calculus 
of variation literature. This result has subsequently been applied to compute the open-loop 
solution for state constrained optimal control problems in Jacobson and Lele (1969) and 
Miele et. al. (1979). We further extend the open-loop result to the synthesis of an optimal 
feedback controller. Unlike the penalty function approach, the Valentine transformation 
increases the order of the state space (by up uo the order of the constraint) using a 
new control. For some problems, this method works extremely well and the constraint 
is always satisfied exactly. The feedback controller can be trained in a fraction of the 
time taken by the penalty function approach. Nevertheless for the past two decades, very 
little attention has been paid to this seemingly elegant technique, but no reasons have 
been given to the best of our knowledge. We shall discuss in detail, the application of 
the Valentine transformation to the synthesis of feedback controllers, and point out the 
limitation which prevents this technique from becoming popular. 

We consider firstly the case involving a single control and a single constraint. General­
ization of the method to problems involving multiple constraints and multiple controls is 
slightly more tricky but not difficult. Firstly the inequality constraint is converted to an 
equality constraint using a slack variable: 

1 
S(x(t), t) + 2"(a(t))2 = O. (8) 

Repeated differentiation of equation (8) leads to the following set of equations, where S(k) 

and a(k) are the kth derivative of S and a with respect to t, respectively: 
S(ll(x(t), t) + a(t)a(1)(t) = 0, 

S{2l(x(t), t) + (a(I)(t))2 + a(t)a(2)(t) = 0, 
S(3)(x(t), t) + 3a{!)(t)a(2)(t) + aa(3)(t) = 0, (9) 

S(K)(x(t), u(t), t) + {terms involving a(1)(t), ... , a(K-l)(t)} + a(t)a(Kl(t) = O. 

If the constraint (9) is of order I<, then 8S(Kl/8u -1= O. The implicit function theorem 
asserts that the control u can be expressed as a function of the other variables: 
u = ¢>(x,a,a(l), ... ,a(K-l),a(K),t). (10) 

If this cannot be done analytically then an approximate implicit function can be emulat­
ed using a function emulator, typically either a neural network or a radial basis function. 
Treating a, a(I), ... , a(K-l) as additional state variables and v = a(K) as the new control 
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variable, and using (10), the following unconstrained problem is obtained. 
T 

min J(v(·)) cI>(x(T),T) + J L(x(t),</>(x,a,a(1), ... ,a(K-1),v(t),t),t)dt (11 ) 
o 

x J(x(t), </>(x, a, a(1), ... , a(K -1), v(t), t), t) 
a a(l) 

v(t) (12) 

with the initial conditions x(O) ~,a(O), a(l)(O), ... , a(K-1)(0); where a(O), a(1)(O), ... , 
a(K-1)(0) are obtained directly from equation (8) and the first ]{ - 1 equations from (9): 

a(O) = V -2S(x(0), 0) 
(1)(0) _ s(1)(x(O).O) 

a - ,,(0) 
(2) (0) _ (,,{1)(0j)2+S(2)(X(0),0) 

a - ,,(0) 
(13) 

Despite the guarantee of feasibility, this transformation technique does have a major 
drawback which severely limits the problems for which is appropriate. To be specific, for 
a certain class of problem this transformation results in a control which is unbounded 
at various points in the state space. As this singularity problem has not been reported 
elsewhere to the best of our knowledge, we shall illustrate it using a simple example, which 
is modified from a problem discussed in Bryson and Ho (1975). 

Consider the following modified Zermelo problem. The problem represents the control 
of a ship traveling in a region of variable current strength. Instead of fixing the speed 
and controling the orientation of the ship as in the original Zermelo's problem, we fix the 
orientation (0) and control the speed instead. The state constraint in this case is given by 
a parabolic boundary which the ship is to stay clear of. 

t 

Min J(u(·)) J u2
dt 

o 
u cos 0 + (3X2 
u sin 0 

subject to the terminal constraints Xl (1) = 0, x2(1) = 0; and the first order constraint: 

X2 ~ a(x1 - b)2 + c. (14) 
Addition of an appropriate slack variable a leads to 

1 2 2 x2+ 2(a(t)) =a(xt-b) +c. (15) 

Differentiating the above once and introducing the new control v(t) = a(1)(t) to obtain: 

usinO+av=2a(xl-b)(ucosO+(3x2), (16) 
and solving for u(t) we get 

2a(3x2(xI - b) - av 
u = sinO _ 2a(xI- b)cosO' (17) 
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Note that u becomes unbounded whenever the denominator vanishes, i.e., when 
tan IJ 

Xl = 2a + b. (18) 

For realistic values of the parameters a, band IJ this often causes problems. For example if 
we have a = 5, b = -0.5 and IJ = ~ then the control u becomes unbounded whenever Xl 

approaches -0.4. Thus the method will fail if we wish to find the optimal trajectory from 
an initial condition with Xl(O) less than -0.4. In general, if Xl(O) is less than tan(IJ)/2a + 
b, this singularity problem will surely arise. This difficulty was first observed when we 
attempt to control the movement of an inverted pendulum which results in consistent 
numerical singularity. The above example was then constructed to illustrate this singular 
effect. Despite this limitation, the Valentine transformation technique has been found to 
be generally effective for other nonsingular problems. 

4 SYNTHESIS OF OPTIMAL FEEDBACK CONTROLLER 

Once the appropriate transformation has been applied to reduce the constrained problem 
into an unconstrained problem, the technique of Edwards and Goh (1995) can be applied 
to construct a feedback controller that solves problem P2. The basic idea is to approximate 
the optimal controller by some parameterized model u(t) = g(x(t), t; W), where W is the 
set of parameters for the controller, which is determined optimally by solving the following 
optimal parameter selection problem: 

Problem P3: Find the optimal set of parameters W such that the cost functional 

(19) 

is minimized with respect to W, where 

J~(W;e) = 4>(x(T)) + iT L(x,g(x,t;W),t)dt, (20) 

and x(·) is uniquely determined by solving the (homogeneous) state differential equation: 

x(O) 
f(x, g(x(t), t; W), t), 

e· 
(21) 
(22) 

There are several possibilities for choosing the parameterized controller, the key require­
ment is that it must be flexible enough to emulate the true optimal controller. Theoretical­
ly, any function approximation schemes can be used, although in practice, our experience 
suggests that only radial basis functions or feedforward neural networks have any chance 
of success. In particular, when the controller has a large input dimension (greater than 
5 say), as is usually the case after the application of Valentine transformation, neural 
networks appear to be the only feasible model without requiring an unwieldily large num­
ber of parameters. Furthermore, a neural network with a bounded sigmoidal output has 
the natural advantage of modeling the bounded control output as given by (3). It is also 
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versatile enough to emulate discontinuous control as is often encountered in bang-bang 
type control. In what follows, we shall assume that a neural network will be used for the 
controller, although the idea can also be used for any other parameterized model. 

Problem P3 is a nonlinear programming problem in disguise, although the determina­
tion of the optimal set of weight parameters have to be computed in a somewhat round­
about way. The direct training algorithm for the feedback controller in the form of a neural 
network is based on the gradient formulae for optimal parameter selection problems (see 
Teo et. al. (1992)), in conjunction with a steepest descent algorithm using instantaneous 
gradient similar to, although not quite the same, as the backpropagation training of neu­
ral networks. We shall summarize the important steps required in the training algorithm, 
and refer the readers to Edwards and Goh (1995) for details. 

Modified Backpropagation Algorithm. 
Initialization: generate a set of initial conditions ~ = {{;, i = 1"" ,N} from the distri­
bution p which fills the set r in a sufficiently dense manner. Select an appropriate neural 
network and randomize all the weights w E W to small values. While the average perfor-

mance index can be reduced further, (more specifically, if the average performance index 
in subsequent iteration reduces by more than some pre-assigned threshold) do: 

i. For each {i solve the differential equation (21) and (22) forward in time from t = 0 to 
t = T. 

ii. Solve the corresponding costate differential equation 

~T _ aL _ aL ag _ ~ T (ar + ar ag) 
ax au ax ax au ax (23) 

a<l> 
ax(T)' (24) 

backward in time from t = T to t = 0, where ag/ax is the Jacobian of the controller to be 
computed by some special formulae derived in much the same way as the backpropagation 
formulae (see equations (13)-(15) of Edwards and Goh (1995)). 

iii. Compute, for each weight parameter w E W 

(25) 

where a{!,/aw is computed by the usual backpropagation formulae. 

iv. Update the weight w, Vw E W, by w ...... w - TJaJ~/aw ,where TJ is some small learning 
rate. 

The algorithm described above is only conceptual. For successful implementation of 
the algorithm, there are a number of fine details that warrant critical attention. Firstly, 
the choice of network's structure and parameterization (number of layers and nodes) for 
implementing the modified backpropagation algorithm is problem dependent. At this stage 
of research, there are no clever ways of choosing the network apart from systematic trial 
and error. Unfortunately, this has remained a major criticism of the application of neural 
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networks, despite the fact that they have been used successfully to solve many difficult 
problems. Secondly, when the system is inherently unstable, difficulty will arise during 
the integration of the state and costate equations in the initial training stage before the 
weights are appropriately initialized. An ad hoc way to overcome this is to start integrating 
with a small terminal time T, so that the system does not have sufficient time to escape 
to infinity, and gradually increase T until the desired T is reached. Nevertheless this has 
not been an entirely satisfactory way for highly unstable systems. Other issues such as 
the choice of training rate and the sequence in which the training initial conditions are 
used are also yet to be completely resolved. 

5 CONCLUDING REMARKS 

The proposed method has been tested on several non-trivial test problems, using both 
the penalty function method and the Valentine's transformation, with varying degree of 
success. In a test problem considered by Jacobson and Lele (1969), the trained feedback 
controller is able to achieve within 1 % of the performance of the open-loop controller for all 
initial conditions arising from a fairly large subset. Furthermore, the feedback controller 
is also capable of generating the optimal solution for initial conditions not included in 
the training set, and even sometime for initial conditions outside the training set. Due to 
space constraint, these simulation results are not included but are readily available from 
the second author upon request. 
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