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ABSTRACT

Extracting high performance from Chip Multiprocessors requires
that the application be parallelized. A common software technique
to parallelize loops is pipeline parallelism in which the program-
mer/compiler splits each loop iteration into stages and each stage
runs on a certain number of cores. It is important to choose the
number of cores for each stage carefully because the core-to-stage
allocation determines performance and power consumption. Find-
ing the best core-to-stage allocation for an application is challeng-
ing because the number of possible allocations is large, and the best
allocation depends on the input set and machine configuration.

This paper proposes Feedback-Directed Pipelining (FDP), a
software framework that chooses the core-to-stage allocation at
run-time. FDP first maximizes the performance of the workload
and then saves power by reducing the number of active cores, with-
out impacting performance. Our evaluation on a real SMP system
with two Core2Quad processors (8 cores) shows that FDP provides
an average speedup of 4.2x which is significantly higher than the
2.3x speedup obtained with a practical profile-based allocation. We
also show that FDP is robust to changes in machine configuration
and input set.

Categories and Subject Descriptors: C.0 [General]: System ar-
chitectures;

General Terms: Design, Performance.

Keywords: Pipelining, CMP.

1. INTRODUCTION
Modern processors tile multiple cores on a single chip to im-

prove concurrency. As processor frequency has slowed down, and
the per-core performance is improving at a much slower pace than
before, applications will focus on exploiting parallelism for per-
formance growth. Improving performance of a single application
using such a multiprocessor system requires that the application be
divided into threads. Threads concurrently execute different por-
tions of the same problem, thereby improving performance. As
applications tend to spend most of their time in executing loops
(or recursive kernels, which can often be converted into loops), we
focus primarily on extracting parallelism within loops.
Pipeline parallelism is a popular software approach to split

the work in a loop among threads. In pipeline parallelism, the
programmer/compiler splits each iteration of a loop into multi-
ple work-quanta where each work-quantum executes in a differ-
ent pipeline stage. Recent research has shown that pipeline par-
allelism is applicable to many different types of workloads, e.g.,
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streaming [8], recognition-mining-synthesis workloads [2], com-
pression/decompression [11], etc. In pipeline parallel workloads,
each stage is allocated one or more worker threads and an in-queue
which stores the work quanta to be processed by the stage.1 A
worker thread pops a work quanta from the in-queue of the stage
it is allocated to, processes the work, and pushes the work on the
in-queue of the next stage.

Figure 1(a) shows a loop which has N iterations. Each iteration
is split into 3 stages: A, B, and C. Figure 1(b) shows a flow chart
of the loop. The three stages of the ith iteration are labeled Ai, Bi,
and Ci. Figure 1(c) shows how this loop gets executed sequentially
on a single processor. The time t0 is the start of iteration 0 of the
loop. The time t3 is the end of iteration 0, and the start of iteration
1, and so on. Figure 1(d) shows how this program gets executed
using pipeline parallelism on three processors. Each core works on
a separate part of the iteration (P0 executes stage A, P1 executes
stage B, and P2 executes stage C), and the iteration gets completed
as it traverses from left to right, and top to bottom. Note that we
show for simplicity that each stage has one core but it is possible
to allocate multiple cores per stage or share a core among stages.
When multiple cores are assigned to a stage, they all feed from the
in-queue assigned to the stage and execute different work-quanta
concurrently. In fact, a key design decision in developing code
using pipeline parallelism is to determine the total number of stages
and the number of threads (cores) which are allocated to each stage.
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Figure 1: (a) The code of a loop, (b) Each iteration is split into 3

pipeline stages: A, B, and C. Iteration i comprises Ai, Bi, Ci. (c)

Sequential execution of 4 iterations. (d) Parallel execution of 6

iterations using pipeline parallelism on a three-core machine.

Each stage executes on one core.

Pipeline parallelism can be implemented using a Symmetric
Pipeline, in which each stage has an equal number of cores. The
key problem with a symmetric pipeline is that if each stage takes
different time to execute its work quanta, then all stages other than
the slowest one remain under-utilized. This problem can be solved
by using an Asymmetric Pipeline that allocates a different number

1We always run one thread per core and therefore use core and thread interchangeably.



of cores to each stage. However, determining the core allocation
per stage for optimal performance is a non-trivial task, as the la-
tency per stage is a function of input set and machine configuration
and may change between different phases of a given program. Fur-
thermore, given that not all stages benefit equally from each extra
core, the core allocation must be based not only on latency but also
on how well a stage utilizes execution resources. Allocating more
cores to a stage than required to saturate its performance wastes
power and sometimes reduces performance.

The core-to-stage allocation can be done statically using profile
information. However, profiling information is typically dependent
on input set and is applicable only for a particular machine. When
the input set or the machine changes, the decisions based on pro-
file information may not be meaningful. Furthermore, searching
through all the combinations of core-to-stage allocations may be
impractical given that the number of possible allocations increases
combinatorially with the number of cores.

To overcome these limitations of pipeline parallelism, this paper
proposes Feedback-Directed Pipelining (FDP), a framework that
can execute pipeline parallel workloads in a high performance and
power-efficient manner. For dynamic core-to-stage allocation, FDP
leverages the key insight that the performance of a pipeline is lim-
ited by the execution rate of the slowest stage. Thus, highest per-
formance can be achieved only when maximum possible resources
are allocated for the acceleration of the slowest stage. FDP sam-
ples the execution to measure latencies of each stage and uses a
hill-climbing algorithm to determine core-to-stage allocation.

Once the slowest stage has been accelerated to the maximum,
FDP can slow down the other stages to save resources. For exam-
ple, allocating the same core to two different stages which are uti-
lizing their cores less then 50%. Combining stages frees up cores
which are either used to improve performance of other stages or
yielded to the operating system. The operating system can either
assign these cores to other programs or turn them off to save power.

Previous researchers have also proposed mechanisms to choose
the number of threads per stage statically [17, 16, 14, 7] or dy-
namically [10]. The static mechanisms have the shortcoming that
they cannot take the input set, machine configuration, or scalability
of stages into account. The previously proposed dynamic mecha-
nisms make simplistic assumptions about scalability of stages and
are limited to workloads where stages are relatively balanced and
have similar characteristics. Unlike these previously proposed tech-
niques, FDP is a general mechanism which makes no assumption
about the stages’ execution time or their scalability. FDP is a dy-
namic mechanism which measures the run-time and infers the scal-
ability of each stage via hill-climbing. Thus, FDP can adapt to
changes in input set and machine configuration and is applicable to
all pipeline workloads, even where stages are heavily imbalanced.

We evaluate FDP on a real 8-core Core2Quad SMP using 9
workloads (experimental methodology is shown in Section 4). FDP
provides an average speedup of 4.2x which is significantly higher
than the 2.3x speedup obtained with a practical profile-based allo-
cation. FDP also reduces the average number of active cores by
12.5%. We also evaluate FDP on a 16-core Barcelona system and
show that FDP continues to provide significant performance, while
reducing the number of active cores. Furthermore, we show that
FDP is also applicable to workloads parallelized using Work Shar-
ing, an alternative programming paradigm.

FDP is a software technique and does not require any hardware
changes. We implement FDP in a software library which measures
the execution time using existing processor cycle counters, deter-
mines the core-to-stage allocation, and enforces the allocations.

The library abstracts the details and provides a simple interface to
the programmers.

2. MOTIVATION
As CMPs become common, programmers will resort to multi-

threading as means to improve performance. Improving perfor-
mance using multi-threading requires distributing the work among
threads. An effective approach to distributing work is pipeline par-
allelism. Pipeline parallelism has been shown to increase paral-
lelism, improve cache locality, and increase power efficiency [8].

2.1 Pipeline Programming Model
Pipeline parallel workloads extract parallelism at two different

levels: within the same iteration of a loop and between different
iterations of a loop. To execute the loop as a pipeline, the program-
mer/compiler divides an iteration of a loop into distinct stages of
work. All stages are scheduled such that they can run concurrently.
An iteration enters the pipeline and “flows” through the pipeline
stages as different stages operate on it. The iteration is complete
once it leaves the last stage in the pipeline.

In a pipeline program, each stage is assigned a work-queue,
which we call its in-queue and one or more worker threads. The
in-queue stores the iterations to be processed by the stage. Each
worker thread dequeues an iteration from the in-queue, processes
the iteration, and enqueues the iteration in the in-queue of the next
stage. For example, let a worker thread w be assigned to stage s.
Now suppose that when w dequeues a request from the in-queue of
stage s, it finds iteration i. w will then run stage s of iteration i and
then add i to the in-queue of stage s + 1.

1: while (!DONE)
// GetNextStage(): Pick a stage to execute
// A stage is chosen in round-robin fashion from
// the set of stages which satisfy two criteria:
// -Stage must be assigned to the worker thread
// -Stage must have a non-empty in-queue
// The thread waits if all such stages have empty in-queues

2: stage = GetNextStage()
3: Pop an iteration i from stage’s in-queue
4: Run stage for iteration
5: Push the iteration to the in-queue of its next stage

Figure 2: The worker loop.

Figure 2 shows the source code of a generic worker thread often
used in a pipeline. The worker thread runs in a loop until the pro-
gram is complete, i.e., all iterations have been processed. In each
iteration of the worker thread loop, the thread picks the stage to
run: stages are chosen in round-robin fashion from the set of stages
who are assigned to the worker thread and whose in-queue is non-
empty. If all the stages mapped to a worker thread have an empty
in-queue, the worker thread polls on these in-queues until one of
them is non-empty. Once the worker thread has found a stage with
a non-empty in-queue, it dequeues an iteration from the queue, ex-
ecutes the stage for the iteration, and then enqueues the iteration in
the in-queue of the iteration’s next stage. We now explain pipeline
parallelism with an example application.

Consider a kernel from the workload compress. This kernel
compresses the data in an input file and writes it to an output file.
Each iteration of this kernel reads a block from the input file, com-
presses the block, and writes the compressed block to the output
file. Figure 3 shows the pipeline of this kernel. Stage S1 allo-
cates the space to save the uncompressed and the compressed block.
S2 reads the input and S3 compresses the block. When multiple
threads/cores are allocated to each stage, iterations in a pipeline
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Figure 3: Pipeline implementation of File compression

can get out of order. Since blocks must be written to the file in-
order, S4 re-orders the quanta and writes them to the output file.
S5 deallocates the buffers allocated by S1. This kernel can execute
on a 5-core CMP such that each stage executes on one core. At
any point in time, cores will be busy executing different portions of
five different iterations, thereby increasing performance. In reality,
when the pipeline executes, cores executing different stages of a
pipeline often wait on other cores and remain idle. This limits con-
currency and reduces performance. There are two common sources
of this inefficiency.

2.2 Variation in Throughput
We define throughput of a pipeline stage as the number of itera-

tions processed in a given amount of time. Thus, the throughput τi

of a pipeline stage i can be defined as:

τi =
Num Iterations Processed

T ime
(1)

The overall throughput, τ , of the whole pipeline is limited by the
throughput of the slowest stage of the pipeline. Therefore:

τ = MIN(τ0, τ1, τ2, ...) = τmin (2)

Thus, for example, if the slowest stage of the pipeline for com-
pression shown in Figure 3 is S3 (compress), then performance will
be solely determined by the throughput of S3. The variation in
throughout among stages also dictates the power efficiency of the
pipeline. Let LIMITER be the stage with the lowest throughput.
Then stages other than the LIMITER will wait on the LIMITER
stage and their cores will be under-utilized. Therefore, the more
the variation in the execution latencies of the pipeline stages, the
more is the under utilization of cores, which leads to wasted on-
chip power.

2.3 Limited Scalability
A common method used to increase the throughput of the LIM-

ITER stage is to increase the number of cores allocated to it. How-
ever, more cores help if and only if the LIMITER stage scales with
the number of cores (increasing the number of allocated cores in-
creases its throughput). Unfortunately, throughput of a stage does
not always increase with the number of cores due to contention for
shared data (i.e. data-synchronization, cache-coherence) and con-
tention for shared resources (e.g. caches and off-chip bandwidth).
When a stage does not scale, allocating more cores to the stage
either does not improve its throughput or can in some scenarios
reduce its throughput [22]. Thus, once a stage becomes limited,
the additional cores dissipate on-chip power without contributing
to performance.

2.4 Need for Runtime Learning
The core-to-stage allocation can be done statically using profile

information. However, profiling information is typically dependent
on the input set and is applicable only for a particular machine.
When the input set or the machine configuration changes, the de-
cisions based on profile information may no longer be meaning-

ful. Furthermore, searching through all the combinations of core-
to-stage allocation may be impractical given that the number of
possible allocations increase combinatorially with cores. For a sys-
tem with C cores, a pipeline with S stages would have number of
possible allocations given by(S ≥ 2 and C ≥ S):

Num. Possible Allocations =

S−1
Y

i=1

(C − i)

S−1
Y

i=1

i

(3)

For the above equation, we assume that each stage gets at least
one core, all cores are allocated, and a core is not shared between
multiple stages2. Table 1 shows the total number of combinations
when the number of stages in a pipeline is varied from 2 to 8 for an
8-core, 16-core, and 32-core system.

Table 1: Num. allocations for an S stage pipeline.
Stages 2 3 4 5 6 7 8

8-Core 7 21 35 35 21 7 1

16-Core 15 105 455 1365 3003 5005 6435

32-Core 31 465 4495 31K 170K 736K 2.6M

Thus, the brute-force method of searching through the entire
search space becomes impractical, especially as the number of
cores continues to increase for future systems. An intelligent
scheme that can learn the core-to-stage allocation at runtime can
obtain close to (or better than) static profile-based allocation and
will be robust to input set and machine configuration. In the next
section, we propose such a dynamic scheme.

3. FEEDBACK-DIRECTED PIPELINING
The performance and power-efficiency of pipeline parallelism

can be improved by making two key observations. First, the overall
performance is dictated only by the LIMITER stage, hence more
resources must be invested to improve the throughput of the LIM-
ITER stage. Second, since the overall performance is not limited
by the stages other than the LIMITER stage, withdrawing excess
resources from these stages can improve power efficiency without
impacting overall performance. We use these insights to propose
Feedback-Directed Pipelining (FDP), a parallelization framework
that can achieve both high performance and low power.

3.1 Overview
FDP uses runtime information to choose core-to-stage allocation

for best overall performance and power-efficiency. Figure 4 shows
an overview of the FDP framework.

FDP operates in two modes: one that optimizes perfor-
mance (Optimize-Perf) and other that optimizes power
(Optimize-Power). Initially, each stage in the pipeline is allo-
cated one core. FDP first tries to achieve the highest performance,
and then it tries to optimize power. FDP is an iterative technique
that contains three phases: training, re-allocation of cores to stages,
and enforcement of the new allocation. The training phase gathers
runtime information for each stage of the pipeline, and is helpful
in determining the throughput and core utilization of each stage.
Based on this information, the performance-optimization mode
identifies the LIMITER stage and tries to increase its throughput
by allocating more cores to it. When it can no longer improve per-
formance (as there may be no spare cores or adding cores does not

2Note that there are far more combinations possible if the above mentioned constraints
are relaxed.
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Figure 4: Overview of FDP.

help improve performance) FDP switches to power-optimization
mode. In this mode, FDP tries to assign the stages with lowest uti-
lization to one core, as long as the combined stage does not become
the LIMITER stage. The core thus saved can be used to improve
performance or turned off to save power. Every time FDP chooses
a new core-to-stage allocation, it enforces the new allocation on
the pipeline at the end of the iteration. We now explain each part of
FDP in detail (the pseudo-code of the FDP library is shown in [21]).

3.2 Train
The goal of the training phase is to gather runtime statistics about

each stage. To measure execution time of each stage, the proces-
sor’s cycle count register is read at the beginning and end of each
stage. Instructions to read the cycle count register already exist in
current ISAs, e.g., the rdtsc instruction in the x86 ISA. The dif-
ference between the two readings at the start and end of the stage is
the execution time of the stage. This timing information is stored in
a two-dimensional table similar to the one shown in Figure 5. The
rows in the table represent stages (S0-S2) and columns represent
cores (P0-P2). Each entry in this table is a 2-tuple: the sum and the
number of time measurements taken for the corresponding core-
stage pair. For each measurement taken, Train adds the measured
time to the sum of measured times of the core-stage pair and incre-
ments the corresponding number of measurements. For example, if
Train measures that executing S0 on P0 took 4K cycles, then it will
modify the entry corresponding to S0 and P0 in Figure 5 to (7K,4)
i.e. (3K+4K, 3+1). Note that if a stage is not assigned to a core,
the entry corresponding to the core-stage pair remains (0,0). For
example, since S1 is only assigned to P1 and not to P0 and P2, its
entries for P0 and P2 are 0. We limit the overhead of measuring the
timing information via sampling: we measure it once every 128th
work-quanta processed by the stage.

Stages: P0 P1 P2 Avg. Execution Time Throughput

S0 : (3K,3) 1K 1/1K

S1 : (12K, 3) 4K 1/4K

S2 : (9K, 1) (21K,2) 10K 1/5K

Figure 5: Sample output from Train for a pipeline with three

stages (S0, S1, S2) running on 3 cores. Each entry represents

a core-stage pair and contains a 2-tuple (the sum of time mea-

surements, the number of time measurements). Blank entries

contain (0,0).

3.3 Performance-Optimization
The goal of the performance-optimization mode is to change the

core-to-stage allocation in order to improve overall performance.
When the mode of operation is performance-optimization, one of
the threads invokes this phase once every 2K iterations or 100K
processor cycles, whichever is earlier3. The phase takes as its input
the information collected during training, a table similar to Fig-
ure 5. The phase first computes the average execution time of all
stages. The average execution time of a stage is the sum of all tim-
ing measurements recorded in the table for that stage divided by
the total number of measurements for that stage. For example, for
the table shown in Figure 5, the average execution time of stage S2
is 10K cycles computed as (9K+21K)/(1+2). The phase next com-
putes the throughput of each stage as the number of cores assigned
to the stage divided by the stage’s average execution time (e.g.,
throughput of S2, which runs on two cores, is 2/10K, i.e., 1/5K).
The stage with the lowest throughput is identified as the LIMITER
(S2 is the LIMITER stage in our example). If there are free cores in
the system, FDP allocates one of them to the LIMITER. The cores
assigned to the LIMITER stage execute in parallel and feed from
the in-queue assigned to the LIMITER stage.

To converge to the best decision, it is important that the core-to-
stage allocations, that have already been tried, are not re-tried. FDP
filters the allocations by maintaining the set of all allocations which
have been tried. A new allocation is only enforced if it has not
been tried before except when FDP is reverting back to a previous
allocation that is known to perform similar to (or better than) the
current allocation, while using fewer cores.

FDP increases the number of cores of the LIMITER stage with
an implicit assumption that more cores lead to higher throughput.
Unfortunately, this assumption is not always true; performance of
a stage can saturate at a certain number of cores and further in-
creasing cores wastes power without improving performance. To
avoid allocating cores that do not improve performance, FDP al-
ways measures and stores the performance of the previous alloca-
tion. Every time FDP assigns a new core to the LIMITER stage,
it compares the new performance with the performance of the pre-
vious allocation. If the new performance is higher than the per-
formance with the previous allocation, FDP allocates another core
to the LIMITER stage. However, if the new performance is lower
than the performance with the previous allocation, FDP reverts to
the previous allocation and switches to power-mode.

3.4 Power-Optimization
The goal of this mode is to reduce the number of active cores,

while maintaining similar performance. When the mode of op-
eration is power-optimization, this phase is invoked once every
2K iterations or 100K processor cycles whichever is earlier. This
phase uses the information collected during training to compute the
throughput of each stage. To improve power-efficiency, the stages
with the highest throughput allocated to the two cores can be com-
bined to execute on a single core, as long as the resulting through-
put is not less than the throughput of the LIMITER stage. This
optimization frees up one core which can be used by another stage
for performance improvement or turned off for saving power. This
process is repeated until no more cores can be set free. At this
point, FDP reverts to performance mode.

3.5 Enforcement of Allocation
FDP changes the allocation of cores to stages dynamically. To

facilitate dynamic allocation we add a data structure which stores

3We choose these values empirically.



for each core the list of stages allocated to it. The core processes
the stages allocated to it in a round-robin fashion. FDP can modify
the allocation in three ways. First, when a free core is allocated
to the LIMITER stage, the LIMITER stage is added to the list of
the free core. Second, when a stage is removed from a core, it is
deleted from the core’s list. Third, when stages on two different
cores are combined on to a single core, the list of one of the cores
is merged with the list of other core and emptied.

3.6 Programming Interface for FDP
The FDP library itself handles the code for measuring and

recording the execution time of each stage. It also maintains sam-
pling counters for each allocation to limit instrumentation over-
head. It automatically invokes performance-optimization or power-
optimization phases at appropriate times without programmer inter-
vention. To interface with this library, the programmer must insert
in the code the four library calls shown in Figure 6.

void FDP_Init (num_stages)
void FDP_BeginStage (stage_id)
void FDP_EndStage (stage_id)
int FDP_GetNextStage ()

Figure 6: FDP library interface.

The FDP_Init routine initializes storage for FDP and sets the
mode to optimize performance. The training phase of FDP reads
the processor’s cycle count register at the start and end of every
stage. To facilitate this, a call to FDP_BeginStage is inserted
after the work-quanta is read from the respective queue and before
it is processed. Also, a call to FDP_EndStage is inserted after
the processing of the quanta is complete but before it is pushed
to the next stage. The arguments of both function calls is the
stage id. Once a core completes a work-quanta, it needs to know
which stage it should process next. This is done by calling the
FDP_GetNextStage function. FDP obtains the id of the core
executing an FDP function by invoking a system call.

FDP only requires modifications to the code of the worker thread
in a pipeline program, not the code which does the actual compu-
tation for the stage. Thus, FDP can be implemented in the infras-
tructures commonly used as foundation for implementing pipeline
programs, e.g., Intel Threading Building Blocks [11].

1: FDP_Init ()
2: while (!DONE)
3: stage_id = FDP_GetNextStage ()
4: Pop an iteration i from the stage’s in-queue
5: FDP_BeginStage (stage_id)
6: Run the stage of that iteration
7: FDP_EndStage (stage_id)
8: Push the iteration to the in-queue of its next stage

Figure 7: Modified worker loop (additions/modifications are

shown in bold)

Figure 7 shows how the code of the worker loop is modified to in-
terface with the FDP library. The four function calls are inserted as
follows. FDP_Init is called before the worker loop begins. Inside
the loop the thread calls FDP_GetNextStage to get the ID of the
next stage to process. The worker thread then pops an entry from

the in-queue of the chosen stage. Before executing the computation
in stage, it calls the instrumentation routine FDP_BeginStage.
It then runs the computation and after the computation it calls the
instrumentation function FDP_EndStage. It then pushes the iter-
ation to the in-queue of the next stage.

3.7 Overheads
FDP is a pure software mechanism and does not require any

changes to the hardware. FDP only incurs minor latency and soft-
ware storage overhead. The latency overhead is incurred due to
instrumentation and execution of the optimization phases. These
overheads are significantly reduced because we only instrument
0.7% (1/128) iterations. The software storage overhead comprises
the storage required for the current core-to-stage allocation, the list
of previously tried core-to-stage allocations, the table to store ex-
ecution latencies of each stage, and counters to support sampling.
The total storage overhead is less than 4KB in a system with 16
cores and 16 stages. Note that this storage is allocated in the global
memory and does not require separate hardware support.

4. EXPERIMENTAL METHODOLOGY

4.1 Configuration
We conduct our experiments on two real machines. Our base-

line system is a Core2Quad SMP that contains 2 Xeon Chips of
four cores each. To show scalability of our technique, we also con-
duct experiments with an AMD Barcelona SMP machine with four
Quad-core chips (results for this machine will be reported in Sec-
tion 6.4). Configuration details for both machines are shown in
Table 2. Each system has sufficient memory to accommodate the
working set of each of the workloads used in our study.

Table 2: System Configuration

Name Core2Quad (Baseline) Barcelona

System 8-cores, 2 Intel Xeon
Core2Quad packages

16-cores, 4 AMD Barcelona
packages

Frequency 2 GHz 2.2 GHz

L1 cache 32 KB Private 32 KB Private

L2 cache Shared; 6MB/2-cores Private; 512KB/core

L3 cache None Shared; 8MB/4-cores

DRAM 8 GB 16 GB

OS Linux CentOS 5 Linux CentOS 5

4.2 Workloads
We use 9 workloads from various domains in our evaluation

(including 2 from PARSEC benchmark suite [2]4). Table 3 de-
scribes each workload and its input set. MCarlo, BScholes,
mtwister, and pagemine were modified from original code to
execute in pipeline fashion.

4.3 Measurements
We run all benchmarks to completion and measure the overall

execution time of each workload using the GNU time utility. To
measure the fine-grained timings, such as, spent inside a particular
section of a program, we use the read timestamp-counter instruc-
tion (rdtsc). We compute the average number of active cores by
counting the number of cores that are active at a given time and
averaging this value over the entire execution time. We run each
experiment multiple times and use the average to reduce the effect
of OS interference.

4The remaining PARSEC workloads are data-parallel (not pipelined). Thus, they are
not the primary target of FDP.



Table 3: Workload characteristics.

Workload Description (No. of pipeline stages) Input

MCarlo MonteCarlo simulation of stock options [18] (6) N=400K

compress File compression using bzip2 algorithm [11] (5) 4MB text file

BScholes BlackScholes Financial Kernel [18] (6) 1M opts

pagemine Derived from rsearchk[15] and computes a his-
togram (7)

1M pages

image Coverts an RGB image to gray-scale (5) 100M pixels

mtwister Mersenne-Twister PRNG [18] (5) path=200M

rank Rank strings based on their similarity to an input
string (3)

800K strings

ferret Content based similarity search from PARSEC
suite[2] (8)

simlarge

dedup Data stream compression using deduplication algo-
rithm from PARSEC suite[2] (7)

simlarge

5. CASE STUDIES
FDP optimizes performance as well as power for pipelined work-

loads at runtime. We now show the working of FDP on both scal-
able and non-scalable workloads with the help of in-depth case
studies that provide insights on how FDP optimizes execution. De-
tailed results and analysis for all workloads will be provided in Sec-
tion 6.

5.1 Scalable Workload: Compress
The workload compress implements a parallel pipelined bzip2

compression algorithm. It takes a file as input, compresses it, and
writes the output to a file. To increase concurrency, it divides the in-
put file into equal size blocks and compresses them independently.
It allocates the storage for the compressed and uncompressed data,
reads a block from the file, compresses the block, re-order any work
quanta which may have become out of order, writes the compressed
block to the output file, and deallocates the buffers. Figure 3 shows
the pipeline of compress. Each iteration in compress has 5
stages(S1-S5). Each stage can execute concurrently on separate
cores, thereby improving performance.

Table 4 shows the throughput of each stage when each stage is
allocated one core (the allocation 1-1-1-1-1). The throughput of
stage S3, which compresses the block, is significantly lower than
the other stages. Thus, the overall performance is dominated by S3
(the LIMITER stage). Table 4 also shows the throughput when one
of the stage receives four cores and all other receive one core. For
example, with the 4-1-1-1-1 allocation S1 receives four cores and
all other stages get one core. Threads in S1 allocate buffers in the
shared heap and contend for the memory allocator, thereby loos-
ing concurrency, hence throughput of S1 improves by only 2.4x
with 4x the cores. Whereas, when 4 cores are given to Stage S3,
its throughput improves almost linearly by 3.9x because S3 com-
presses independent blocks without requiring any thread commu-
nication.

Table 4: Throughput of different stages as core allocation is

varied. Throughput is measured as iterations/1M cycles.

Core Alloc. S1 S2 S3 S4 S5 Exec. Time

1-1-1-1-1 284 49 0.4 34 8K 55 sec.

4-1-1-1-1 698 44 0.4 33 6K 55 sec.

1-4-1-1-1 294 172 0.4 35 7K 55 sec.

1-1-4-1-1 304 52 1.5 37 7K 14 sec.

1-1-1-4-1 279 49 0.4 135 8K 55 sec.

1-1-1-1-4 282 51 0.4 33 31K 55 sec.

Table 4 also shows the overall execution time with different core
allocations. As S3 is the LIMITER stage, increasing the number

of cores for other stages does not help reduce the overall execu-
tion time. However, when S3 receives more cores, the throughput
of S3 increases by 3.9x and overall execution time reduces form
55 seconds to 14 seconds (a speedup of 3.9x). Therefore, to im-
prove performance more execution resources must be invested in
the LIMITER stage.

We modify the source code of compress to include library
calls to FDP. FDP measures the throughput of each stage at run-
time and regulates the core-to-stage allocation to maximize perfor-
mance and power-efficiency. Figure 8 shows the overall throughput
as FDP adjusts the core-to-stage allocation.

Optimized Execution
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Figure 8: Overall throughput of compress as FDP adjusts

core-to-stage allocation

FDP initially allocates one core to each stage. As execution con-
tinues, FDP trains and identifies S3 to be the LIMITER stage. To
improve performance FDP increases the number of cores allocated
to S3, until it runs out of cores. For our 8-core system, this hap-
pens when S3 is allocated 4 cores, and the remaining 4 cores are
allocated one each to S1, S2, S4, and S5. After it runs out of cores,
FDP begins to operate in power-optimization mode. In the first in-
vocation of this mode, the stages with the highest throughput, S1
and S5, are combined to execute on a single core, thereby freeing
one core. In the next invocation, FDP combines S1 and S5 with
S2 which frees up another core. FDP continues this until all four
stages S1, S2, S4, and S5 get combined to execute on a single core.
With no opportunity left to reduce power, FDP switches back to
performance optimization mode. FDP again identifies S3 as the
LIMITER and allocates the 3 free cores to S3. Thus, 7 out of the
8 cores are allocated to S3, and a single core is shared among all
other stages. FDP converges in 10 invocations and executes the
workload in 9.7 seconds, which is much lower than with the static-
best integer allocation (1-1-4-1-1) that requires 14 seconds.

5.2 Non-Scalable Workload: Rank
The rank program ranks a list of strings based on their similar-

ity to an input string. It returns the top N closest matches (N is 128
in our experiments). Figure 9 shows the pipelined implementation
for rank. Each iteration is divided into 3 stages. The first stage
(S1) reads the next string to be processed. The second stage (S2)
performs the string comparison, and the final stage (S3) inserts the
similarity metric in a sorted heap, and removes the smallest element
from the heap (except when heap size is less than N). At the end of
the execution, the sorted heap contains the top N closest matches.

Table 5 shows the throughput of system when each stage is al-
located one core (1-1-1). The throughput of S2, which performs
the string comparison, is significantly lower than the other stages
in the pipeline. As S2 is the LIMITER, allocating more cores to S2
is likely to improve overall performance. The next three rows in the
table show the throughput when one of the stage receives 4 cores
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Figure 9: Pipeline for Rank

and the other stages get one core. With the increased core count, S1
and S3 show a speedup of 2.5x and 1.3x, respectively. However, as
these stages are not the LIMITER, the overall execution time does
not decrease.

Table 5: Throughput of different stages as core allocation is

varied (measured as iterations/1M cycles).
Core Alloc. S1 S2 S3 Exec. Time

1-1-1 1116 142 236 17 sec

4-1-1 2523 118 258 19 sec

1-4-1 1005 558 278 13.2 sec

1-1-4 900 117 290 19.2 sec

1-4-2 930 368 285 14.6 sec

1-2-1 1028 274 268 13 sec

When S2 is allocated 4 cores, it shows the speedup of approx-
imately 4x. This is because all cores in S2 work independently
without requiring communication. Unfortunately, the overall exe-
cution time reduces only by 27%. This is because as S2 scales, its
throughput surpasses the throughput of S3. Thus, S3 becomes the
LIMITER. Once S3 becomes the LIMITER, the overall execution
time is dominated by S3, making the improvements of S2 ineffec-
tive on the overall speedup.

As S3 is the LIMITER, we expect to improve overall perfor-
mance by increasing cores allocated to S3. The table also shows
the throughput when additional cores are allocated to S3 (1-4-2).
The access to the shared linked data-structure in S3 is protected by
a critical section, hence this stage is not scalable and overall per-
formance reduces as the number of cores is increased due to con-
tention for shared data. Thus, increasing core counts for S3 does
not help improve performance while consuming increased power.

We modify the source code of rank to include library calls
to FDP. Figure 10 shows the overall throughput and active cores
as FDP adjusts the core-to-stage allocation. With the informa-
tion obtained during training, FDP identifies S2 as the LIMITER
stage, and allocates it one extra core (1-2-1). In the next invo-
cation, it identifies S3 as the LIMITER stage, and increases the
core count allocated to S3 (1-2-2). However, as S3 does not scale,
FDP withdraws the extra core given to S3, and switches to power-
optimization mode. In power-optimization mode, FDP saves power
by executing S1 on one of the cores allocated to S2. Thus, the final
allocation is S1+S2 on one core, S2 on another core, and S3 on the
third core. After this, there are no opportunities left in the pipeline
to save power or improve performance, and execution continues on
3 cores completing in 13 seconds (similar to best-static allocation
1-2-1, but with fewer cores).

6. RESULTS
We evaluate FDP in terms of performance, power consumption,

and robustness. We compare FDP with three core-to-stage alloca-
tion schemes. First, the One Core Per Stage (1CorePS) scheme
which allocates one core to each stage. Second, the Proportional
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Core Allocation (Prop) scheme which allocates cores to stages
based on their relative execution rates. Prop runs the application
once with 1CorePS and calculates the throughput of each stage.
The cores are then allocated in inverse proportion to the through-
put of each stage, thus giving more cores to slower stages and vice
versa. Third, the Profile-Based scheme which allocates cores us-
ing static profiling. The Profile-Based scheme runs the program for
all possible allocations which assign an integer number of cores to
each stage and chooses the allocation which minimizes execution
time. Note that while the absolute best profile algorithm can try
even non-integer allocations by allowing stages to share cores, the
number of combinations with such an approach quickly approaches
into millions, which makes it impractical for us to quantitatively
evaluate such a scheme for this paper.
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Figure 11: Performance of different allocation schemes.

6.1 Performance
Figure 11 shows the speed-up when the workloads are executed

with the core-to-stage allocation using 1CorePS, Prop, FDP, and
Profile-Based. The speedup is relative to execution time with a
single core system 5. The bar labeled Gmean is the geometric
mean over all workloads. The 1CorePS scheme provides only a
marginal improvement, providing minor speedup increase on four
out of seven workloads. On the contrary, a Profile-Based allocation
significantly improves performance for all workloads, providing an
average speedup of 2.86x. However, Profile-Based requires im-
practical searching through all possible integer allocations. Prop
avoids this brute force searching and gets an improvement similar
to Profile-Based by providing an average speedup of 2.7x. FDP
outperforms or is similar to the comparative schemes on all work-
loads. MCarlo gets near optimal speedup of 7x with FDP because
it contains a scalable LIMITER stage and FDP combines all other
stages. The workload rank has a stage that is not scalable, hence
the limited performance improvement with all schemes. FDP pro-
vides an average speedup of 4.3x. Note, that this significant im-
provement in performance comes without any reliance on profile
information which is required for both Prop and Profile-Based.

5We run the sequential version without any overheads of multi-threading.



6.2 Number of Active Cores
FDP tries to increase performance by taking core resources from

faster stages and reallocating it to slower stages. When the slowest
stage no longer scales with additional cores, the spare cores can
be turned off or used for other applications. Figure 12 shows the
average number of active cores during the execution of the program
for 1CorePS, FDP, and Prop/Profile-Based. Both Prop and Profile-
Based allocates all the cores in the system, therefore they are shown
with the same bar. The bar labeled Amean denotes the arithmetic
mean over all the workloads.
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Figure 12: Average number of active cores for different core

allocation schemes.

The number of active cores with the 1CorePS is equal to the
number of pipeline stages, which has an average of 5.2 cores. The
Prop and Profile-Based schemes use 8 cores. For Pagemine and
mtwister, the performance saturates at 7 cores, so FDP does not
use one of the cores in the system. For the workload rank, the non-
scalable stage means that five out of the eight cores can be turned
off. Thus, FDP is not only a performance enhancing technique but
also helps with reducing the power consumed by cores when it is
not possible to improve performance with more cores. On average,
FDP consumes only 7 cores even though it has one and a half times
the speedup of the Profile-Based scheme. This means for the same
number of active cores, FDP consumes two-thirds the energy as
the Profile-Based scheme and has a much reduced energy-delay
product.

6.3 Robustness to Input Set
The best core-to-stage allocation can vary with the input set.

Therefore, the decisions based on profile information of one input
set may not provide improvements on other input set. To explain
this phenomenon, we conduct experiments for the compress

workload with two additional input sets that are hard to com-
press. We call these workloads compress-2 and compress-3.
The LIMITER stage S3 for compress-2 (80K cycles) and for
compress-3 (140K cycles) is much smaller than the one used
in our studies (2.2M cycles). The non-scalable stage that writes to
the output file remains close to 80K cycles in all cases. Thus, the
compress workload has limited scalability for the newly added
input sets.

Figure 13 shows the speedup for the two workloads with
1CorePS, Prop, FDP and Profile-Based. Both Prop and Profile-
Based use the decisions made in our original compressworkload.
These decisions in fact result in worse performance than 1CorePS
for compress-2, because they allocate more cores to the non-
scalable stage which results in increased contention. FDP, on the
other hand, does not rely on any profile information and allocates
only one-core to the non-scalable stage. It allocates two cores to S3
for compress-2 and 3 cores to S3 for compress-3. The run-
time adaptation allows FDP to outperform all comparative schemes
on all the input sets.
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Figure 13: Robustness to variations in input set.

6.4 Scalability to Larger Systems
We use an 8-core machine as our baseline for evaluations. In this

section, we analyze the robustness and scalability of FDP to larger
systems, using a 16-core AMD Barcelona machine. We do not
show results for 1CorePS as they are similar to the 8-core system
(all workloads have fewer than 8 stages). Furthermore, a 16-core
machine can be allocated to a 6-7 stage pipeline in several thousand
ways, which makes evaluating Profile-Based impractical.
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Figure 14: FDP’s performance on 16-core Barcelona.

Figure 14 shows the speedup of Prop and FDP compared to a
single core on the Barcelona machine. FDP improves performance
of all workloads compared to Prop. Most notably, in image, FDP
obtains almost twice the improvement of Prop. The scalable part of
image, which transforms blocks of the image from colored to gray
scale, continues to scale until 16 cores. The other parts, reading
and writing from the file, do not scale. Prop allocates cores to each
stage proportionally assuming equal scaling. However, the cores
allocated to non-scalable parts do not contribute to performance.
FDP avoids such futile allocations. On average, FDP provides a
speedup of 6.13x compared to 4.3x with Prop.

As the number of cores increases, the performance of some of
the workloads starts to saturate. Under such scenarios, there is no
room to improve performance but there is a lot of potential to save
power. Figure 15 shows the average number of active cores during
the workload execution with FDP and Prop. Since Prop allocates
all cores, the average for Prop is 16. When cores do not contribute
to performance FDP can deallocate them, thereby saving power.
For example, pagemine contains four stages in the pipeline that
do not scale because of critical sections. FDP allocates 7 cores
to the scalable stage, 1 core each to the non-scalable stages, and
1 more core to the input stage. The remaining four cores remain
unallocated. On average, FDP has 11.5 cores active, which means
a core power reduction of more than 25%. Thus FDP not only
improves overall performance significantly but can also save power.

If all cores were active, then the energy consumed by FDP would
be 30% less compared to Prop (measured by relative execution
time). Given that FDP uses 25% fewer cores than Prop, FDP con-
sumes less than half the energy consumed by Prop. Thus, FDP is
an energy-efficient high-performance framework for implementing
pipelined programs.
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Figure 15: FDP’s power on 16-core Barcelona.

7. FDP IN WORKLOADS WITH WORK

SHARING
Some parallel applications are implemented using the Work

Sharing model instead of the pipeline model. Unlike the pipeline
model, which sub-divides the work into stages, work sharing treats
each iteration of the work as a single unit of execution. In fact,
work sharing can thus be viewed as a special case of pipelining,
consisting of only one pipeline stage where all worker threads are
assigned to that stage to execute identical pieces of execution. FDP
can also be used to improve the performance of workloads imple-
mented with the work sharing model. In such workloads, FDP
treats the execution as consisting of a single stage, and chooses
the number of threads which leads to maximum performance with
the minimum number of cores.
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Figure 16: Comparison of FDP with work sharing.

A pipelined workload can be converted to a work sharing work-
load by forcing all stages of each iteration to run on the same core.
Using this methodology, we converted the benchmarks used in our
study to use work sharing and analyze the effectiveness of FDP for
workloads implemented in work sharing.

Figure 16 shows the speedup with Work Sharing (with 8 threads),
Work Sharing with FDP, and Work Sharing (Best). Work Shar-
ing (Best) is an optimal scheme which tries all possible number of
threads from 1-8 and picks the best performing configuration for
each workload. In non-scalable workloads, where increasing the
number of threads does not increase performance, Work Sharing
(Best) has significantly higher (13-50%) performance than Work
Sharing (8). For example, the workload pagemine has a long crit-
ical section. Performance of pagemine saturates at fours threads.
Assigning it more than four threads increases critical section con-
tention, which reduces performance and wastes power. Work Shar-
ing (Best) chooses four threads for pagemine which leads to
higher performance. Note that Work Sharing (FDP) performs the
same as Work Sharing (Best). In fact, Work Sharing (FDP) is
within 1% of Work Sharing (Best) in all workloads. Thus, FDP
can effectively choose the best number of threads for work sharing

workloads. FDP provides a speedup of 3.04x which is significantly
higher than the 2.72x speedup of work sharing without FDP.

8. RELATED WORK
With CMPs becoming the de-facto general purpose architecture,

the emphasis on writing efficient and robust parallel programs has
increased significantly. Several studies [9, 6, 2] have discussed the
importance of using pipelined parallelism on CMP platforms. FDP
provides automatic runtime tuning of core-to-stage allocation for
this important paradigm and obtains improved performance and
power-efficiency.

Recently Hormati et al. proposed the Flextream compilation
framework [10] which can dynamically recompile pipelined appli-
cations to adapt to the changes in the execution environment, e.g.,
changes in the number of cores assigned to an application. While
FDP can also adapt to changes in the execution environment, its
main goal is to maximize the performance of a single application.
Flextream and FDP fundamentally differ for three reasons. First,
unlike FDP, Flextream assumes that all stages are scalable and thus
allocates cores based on the relative demands of each stage. This
can reduce performance and waste power when a stage does not
scale (see Section 5.2). Second, Flextream requires dynamic re-
compilation which restricts it to languages which support that fea-
ture, e.g., JAVA and C-sharp. In contrast, FDP is a library which
can be used with any language. Third, Flextream cannot be used
to choose the number of threads in work sharing programs because
it will assume that the workload scales and allocate it all available
cores. FDP, on the other hand, chooses the best number of threads
taking scalability into account (see Section 7).

Other proposals in the operating system and web server domains
have implemented feedback directed cores-to-work allocation [23,
20]. However, they make several domain-specific assumptions
which makes their scheme applicable only to those domains, and
less general than FDP.

The core-to-stage allocation can also be done statically using
profile information. The brute force search for finding the best
mapping can be avoided by using analytical models. Previous stud-
ies [17, 16, 14, 7] have proposed analytic models for understand-
ing and optimizing parallel pipelines. While such models can help
programmers design a pipeline, they are static and do not adapt to
changes in input set and machine configuration. In contrast, FDP
relieves the programmer from obtaining representative profile in-
formation for each input set and machine configuration and does
automatic tuning using runtime information.

Languages and languages extensions [8, 4, 11, 12] can help
with simplifying the development of pipelined programs. Raman
et al. [19] propose to automatically identify pipeline parallelism in
a program using intelligent compiler and programming techniques.
Our work is orthogonal to their work in that our proposal optimizes
at run-time an already written pipelined program.

Pipeline parallelism is also used in network processing [5] and
databases [1] to improve locality. However, these proposals use
static core-to-stage allocation. They can benefit from FDP by
choosing the best core-to-stage allocation at runtime.

Although FDP primarily targets programs written in pipelined
model, it can also improve performance and power of non-
pipelined programs such as those amenable to work-sharing. Sev-
eral schemes [3, 22, 13] tune thread-to-core mapping of data-
parallel workloads implemented using work-sharing paradigm.
However, these proposals are not applicable to pipelined pro-
grams. To the best of our knowledge, FDP is the only comprehen-
sive framework that improves performance and power-efficiency of
both pipelined workloads as well as data parallel workloads.



9. CONCLUSION
Pipeline parallelism is a common technique to improve perfor-

mance of a single application using multiple cores. The potential
of pipelining is not fully utilized unless all the stages are balanced
in terms of execution rate, which can be controlled by adjusting
the core-to-stage allocation. Unfortunately, it is challenging for
the programmer to decide the core-to-stage allocation because the
best allocation depends on the input set and machine configura-
tion. Furthermore, a brute-force search for the best configuration is
impractical and can require up to a million runs. A dynamic mech-
anism that can learn the best core-to-stage allocation using runtime
information can overcome these limitations. This paper proposes
Feedback-Directed Pipelining (FDP), a framework to choose the
best core-to-stage allocation at runtime and makes the following
contributions:

1. It proposes a practical framework to monitor execution time
of each stage at runtime in a cost-effective manner. This in-
formation can be used to identify the slowest stage and the
fastest stage in the pipeline.

2. The proposed FDP framework uses the runtime informa-
tion to learn the best core-to-stage allocation, using a hill-
climbing algorithm. The slowest stage is given resources un-
til either there are no more spare cores or the performance of
the stage saturates.

3. When performance saturates, FDP tries to free cores by com-
bining the faster stages to run on one core. The core thus
freed can be used to improve performance or save power.

We evaluate FDP on an 8-core Core2Quad SMP, using 9 multi-
threaded workloads. FDP provides an average speedup of 4.3x
(compared to 2.8x with profile based allocation) while at the same
time reducing the number of active cores by 12.5%. We also eval-
uate FDP on a 16-core Barcelona system and show that FDP con-
tinues to provide significant performance and power benefits. FDP
has a simple interface with only four function calls, and requires
minimal programmer intervention.

We envision FDP to have a major role in future systems: FDP
can also be used in systems with heterogeneous cores. In systems
where cores differ in performance or functionality, FDP can choose
for each stage the core best suited to run it. FDP can also be ex-
tended to other execution paradigms such as using FDP for task-
scheduling in task-parallel workloads. Evaluating such extensions
of FDP is a part of our future work.
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