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Abstract

It is shown that for a fiow over an airfoil
with laminar separation, a feedback cycle may exist
whereby a Kelvin-Helmholtz instability wave emanat-
ing from the separation point on the airfoil sur-
face grows along the shear layer and is diffracted
as it interacts with the sharp trailing edge of the
airfoil causing acoustic radiation which in turn
propagates upstream and regenerates the initial in-
stability wave. The analysis is réstricted to the
high frequency limit. Solutions to the boundary-
value problem are obtained using the slowly varying
approximation and the method of matched asymptotic
expansions. It is shown that resonant solutions
exist for certain discrete values of the Reynolds
and Strouhal numbers. The results are discussed
and compared with available data.

I. Introduction

Recent experiments by Paterson et al.l in
which NACA 0012 and 0018 airfoils_were placed in
fiows at Reynolds numbers of 4x10° to 2.8x10° re-
vealed the existence of well defined discrete tones
in the noise spectra. The measured variation of
the tone frequency versus the flow velocity indi-
cated a frequency dependence on the velocity to
the 0.8 power with an occasional jump in frequency
leading to a ladder structure behavior. At
Reynolds numbers and angles of attack for which the
viscous boundary-layer was turbulent on both sur-
faces of the airfoil, the discrete tones were un-
detectable above turbulent boundary-layer noise.
Paterson et al. attributed the, generation of the
tones to vortex shedding. Tam® arguing that these
tones are unrelated to vortex shedding, proposed a
qualitative acoustic feedback mechanisg between the
near wake and the trailing edge. Fink> argued that
the noise radiated was a direct result of hydrody-
namic instabilities in the laminar boundary-layer.
He recovered the boardband frequency dependence on
velocity to the 1.5 power. However, his analysis
cannot explain the existence of the discrete tones,
their ladder structure and their 0.8 power depend-
ence on velocity. Finally, more recent measyre-
ments were carried out by Arbey and Bataille
NACA 0012 airfoils at zero angle of attack.
results are in accord with those of Paterson,
et al. Arbey and Bataille used a combination of
Tam's and Fink's suggestions to correlate their
data. They essentially assumed that Tollmien-
Schlichting instability waves propagating down-
stream in the laminar boundary-layer are diffracted
by the trailing edge and thus produce acoustic
waves which are "received" at the minimum pressure
point of the airfoil and regenerate the initial
instability waves.

Their
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The mechanism proposed by Arbey and Bataille
is, however, incompatible with the following two
observations. First, the generation of Tollmien-
Schlichting waves in flows over not too thin bodies
by external acoustic forcing is either strongly
related to the magnitude of the local mean pregsure
gradient of the airfoil as shown by Goldstein,” or
to the gradient of the unsteady forcing in the case
of a 1ocaéized source as shown by Nishioka and
Morkovin.® Second, although the condition of the
boundary-layer is not discussed in Refs. 1 and 4,
the flow characteristics of a NACA 0012 airfoi
have been extensively investigated. McCroskey
carried out experimental and analytical investiga-
tions of sucg airfoils for a Reynolds number range
of 105 to 10° and gave the position of the laminar
separation point for ang]es of attack a ranging
from 0° to 8°. At a = 0°, the separation point
was located at 0.70 chord length from the leading
edge. Thus the boundary-layer is separated in
both Paterson's, et al. and Arbey and Bataille's
experiments.

Separated flows over airfoils at low and mod-
erate Reynolds numbers are known to exhibit large
scale coherent motions which are associated with
fluctuating 1ift and broad band acoustic radiation.
The experiments in Refs. 1 and 4 then show that
under certain conditions the sound spectrum of such
flows also exhibits well-defined discrete tones.
These tones are almost certainly the result of a
self-sustainable oscillatory flow phenomenon. We
therefore conjecture that a feedback cycle may
exist in such separated flows whereby a spatially
growing Kelvin-Heimholtz instability wave emanating
from the separation point on the airfoil surface
propagates downstream and is diffracted as it in-
teracts with the sharp trailing edge of the airfoil
causing acoustic radiation which in turn propagates
upstream and regenerates the initial instability
wave.

The present conjecture is essentially based
on the fo]lowigg two observations, First, it is
now well known® that when a shear layer interacts
with a sharp edge, it produces a pressure wave that
propagates_upstream., Second, as recently shown by
Goldstein,” an external forcing will generate a
spatially growing Kelvin-Helmholtz instability wave
at the separation point of a flow that separates
from a smooth surface.

To simplify the analysis we only consider the
case of a symmetric airfoil at zero angle of attack
(Fig. 1). The general case is treated in Ref. 10,
We assume small-amplitude time-dependent harmonic
disturbances about the steady separated flow. At
high Reynolds numbers, the steady flow is given to
leading order in Reynolds TuTBer by the Kirchhoff
free streamline solution. Moreover, because
of the inhibiting effect of the nearby airfoil sur-
face, the most rapidly growing instability waves
have wave iengths that are small compared to the
airfoil chord. The analysis is therefore restric-
ted to the high frequency limit.
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In Section IT we develop the general scaling
of the problem and derive the governing equations
and boundary conditions for the boundary value
problem. To construct the general solution we use
the siowly varying approximation (i.e., the method
of multiple scales) and the method of matched as-
ymptotic expansions. The flow domain is divided
in two regions. First, a region surroundéng the
separation point where we use Goldstein's® eigen-
solution representing a spatially growing Kelvin-
Helmholtz instability wave emanating from the sepa-
ration point. The second region surrounds the
trailing edge. In Section III, we construct the
solution in the trailing edge region by the Wiener-
Hopf method. In Section IV, the two solutions are
matched in an overlap region and furthermore the
trailing edge solution provides the hydrodynamic
forcing for the eigensolution emanating from the
separation point,

Finally, in Section V the results are dis-
cussed and compared with those obtained from
experiments.

II. Formulation

We consider an airfoil of infinite span and
sharp trailing edge 0 placed in a uniform incom-
pressible flow with upstream velocity U,. The
airfoil chord length is ¢. The flow Reynolds num-
ber Re = clU./v, where v 1is the kinematic viscos-
ity, is assumed to be large. We further suppose
the flow to be separated on the airfoil surface.
The flow is then given to leading order in Reynolds
number by the Kirchhoff free streamline solution.
Figure 2 shows the configuration of the separated
flow around the airfoil. For convenience the flow
is divided in four regions. The airfoil thickness
6 1is assumed to be small. Then, according to air-
foil theory, the equations for the airfoil surface
and the free streamline are respectively

y* =+ sH (x*), (1)

and

y* = = 6H (x¥), (2)

where (x*,y*) represent the coordinates nondimen-
sfonalized with respect to c. Hp and Hg are
then 0(1).

We now assume the flow to have a harmonic
motion whose amplitude is characterized by a small
parameter a5 and whose frequency is w. The
velocity of the harmonic motion is assumed to be
small compared to U,. Futhermore we assume the
reciprocal of the Strouhal number S

1 U
:EE'E(.T<<1' (3)

and we
nondimensionalize the time t by w , the veloci-

ties by U_, the pressure by pU2 and the lengths
by U_/w. “Thus the coordinates 8f a point

X = {X,y} will be related to (x*,y*} by x* = ex
and y* = ey,

Since the vorticity is confined only to layers
along the separation lines, the fluid motion is

In what follows we assume ¢ = O(e)

irrotational,
expanded as

The velocity potential can then be

o5 (%,t) = o§°)(§) + aoo§l)(§)e"it
j = 1|2!304 (4)

where ogo)(i) is the velocity potential in region
J (Fig. 2) corresponding to the Kirchhoff solution,
and ogl)(i)e'1t is the velocity potential of the
harmonic motion in region j.

. > . + e ~it
ity Uj(x) + aouj(x)e

i =¢/-1. The veloc-
can then be written as

Uj =9 0}0)’ (5)
and
‘ﬁJ =V Ogl). (6)

In the separated region (j = 2,3) 0, = 0, and along
the free streamline |Uj| =1. J

The unsteady flow is solenoidal and irrota-
tional and therefore the governing equations are

v o1 o, (7)
J

The boundary conditions along the free stream-
lines are identical to those derived by Goldstein9
(Eqgs. 2.16 to 2.18). We further note that Egs. (1)
and (2) depend solely on x*. Therefore, in order
to account for the effects of a diverging mean
flow we use the method of multiple scales. We now
introduce

A=%ws-%L (8)

Then da/dx = 0(s), and d(Uj . Uj)/dx = 0(s¢)
along a free streamline. This suggests that, except

in the neighborhood of the separation point, o(l)
has an expansion of the form J

ogl) = vgo)(x,Y;_x*) +s vgl)(X,Y: X*¥)+ e (9)

The equations and boundary conditions for @(0)
are then readily obtained J

Pl o j.1,23, (10)

(14159 o2 = ofg)

8
at y = = E'Hs(x*)

| (1+i2 ) o {(0) a (0)

X’ 3y %kl = 3y %

(11)



0
%7 ”é V-0
3 at y =% E-Hb(x*). (12)
2 (0)
?Wk:1=°)

In Eqs. (11) and (12) + must be taken for k =1

and - for k = 4.

In order to construct the general solution to
this boundary-value problem, we use the method of
matched asymptotic expansions. First we consider
the regions surrounding the separation points S
and S'. Here we use Goldstein's eigensolutions
which represent spatially growing Kelvin-Helmholtz
instability waves emanating from S and S°'.
Second, we consider a trailing edge region whose
length is such that 1x1 >> 1 but 1x*1 << 1. The
trailing edge solution must match onto the Kelvin-
Helmholtz eigensolutions in some overlap domain and
moreover it must provide the hydrodynamic forcing
for the eigensolutions.

I111. Solution in the Trailing Edge Region

We consider a region surrounding the trailing
edge 0 whose length is such that xi1 >> 1 but
Ix*1 << 1. To leading order in the (x,y) coordi-
nates this region is reduced to a semi-infinite
plane extending to the left and two vortex sheets
located at a distance &, from the semi-infinite
plane (Fig. 3). The solution to the boundary-value
problem (Eqs. (10) to (12)) will be obtained by the
Wiener-Hopf technique. However, we first give the
downstream asymptotic form of the solution.

Far downstream we have two vortex sheets at a

distance 2ag from each other. Under these condi-
tions we have

(0) + —°+(y—Ao) ia’

cpl’w At e e'lu X (13)
(0) (0)
92,0 = 93,2 = A" {(1 - a") cosh a’(y-s,)
+ i *
- T sinha (y-a))} e o X (14)
1l -a
o)
. + +
. . sinh 2a 8 | a (y*a )f .,
= A c05h20A0+——+2—e e
l-a )
(15)
where
9’\(]'037 = Q’EIO) as x + =, j=1,2,3,4 (16)

+

A* is a constant and’ «* s solution to the char-

acteristic equation

(a ~ l)zsinh as, * cosh as) = 0, (17)

and then is denoted of since it represents the
wave number of a symmetric or varicose mode, or it
is solution to

(a - 1)2 cosh ad, + sinh ady = 0, (18)

and then is denoted af since it corresponds to
an antisymmetric or sinuous mode. In both cases
q* should correspond to a spatially growing wave,
i.e.,

+
Im {a } <O0. (19)
Equations (13) to (15) show that the solution
to Egs. (10) to (12) will be unbounded for growing
instability waves. We therefore introduce

(0) _ (0)

95 = 9; 9,0 (20)

@: will be bounded everywhere except maybe at the
tﬂai]ing edge.

We now introduce the Fourier transforms of %5

Qj(u.y) =\/T_1 / cpj(X.y)emdx (21)
;; {a,y) =\[—2—1-'/ vj(x,)')ei“xdx (22)
"0
0 -
W (e =ﬁf¢j(x,y)e‘“*dx (23)

The governing equation is then transformed
into

%5,

J
-a ¢.=0.
d_y2 J

(24)

Noting that regions 1 and 4 extend to infinity,

the solutions to Eq. (24) must then be of the

form exp {Filaiy}. However, since we will con-
struct a solution by the Wiener-Hopf technique, we
need to extend the definition of these solutions to
a common strip in the compiex a-plane where they
are both analytic. This is done by taking solutions

of the form

- Yy -vy

9; = Aj e’ + Bj e (25)
where

1/2
v = (a2 + e%) (26)

and e is a small positive quantity. The branch
cuts for y are shown in Fig. 4. Substituting

Eq. (25) into the boundary conditions derived from
Eqs. (11) and (12), we obtain after considerable
reduction



~ ) ~_ ~_ o~ ! +
9 = K(a)(33 - 53) * 9 o e D /o \M2K(6T) flasa, - y)
' 9 (oY) = = ——— (—
shere 2\ . *a <—a K (o] f(a,Ao)
(35)
f(a,Ao)
K(q) = . (28) P . ~!
glu,AOS and a similar expression for v3(n,y).
_ 2 Taking ‘'the inverse Fourier transform of
f{a,8) = (1 + a)” sinh ya + cosh vya, (29) Eq. (35), we get
g(a,a) = (1 + a)2 cosh ya + sinh ya, (30) + +o _ Sax
, -D K, (-a ) Jo fla,a, ¥ y)e '®
and 95 = S AN 2 +— dx
VB (N2 K@) fang) (o v )
9 o = 5 (31) -
. (36)
. . (o) . where ¥ corresponds to j =2 and j = 3
is the Fourier transform of L7308 with respectively. ’
iA+u+ . ) We now examine the expression for D
D = fl-a ,4). (32)  (Eq. (32)). If o corresponds to a symmetric
o + +
Vﬁz;(l _ a+) mode, i.e., a = ag, then, D{ac) = 0. Thus as
expected instability waves with downstream symmet-

ric modes propagate through the trailing edge reg-
ion without any modification and consequently they
do not produce any scattered hydrodynamic field.

K(a) is regular and nonzero in the strip
-€] < 1< €], =®» < 0 < =, and 5&0) +1 as o+t
in the strip, then we can write

Hence,
K_(a) + + + +
K(a) = o~ (33) v A, Sinhay da.x
K,(a) °§?3 ._5s S o S j=2,3. (37)

u: - 1 sinh a;A
where Ki(a) and K_(a) are regular, bounded and o

nonzero in 1 > - e; and «t < ey, respectively, + )
Substituting Eq. (35) into Eq. (57), rearranging We now examine Eq. (36) for L& gorresponding
the terms and introducing the functions G+(a) an- to0 an antisymmetric mode, 1.., o = aa. It can
alytic for t > -¢; and G_(a) analytic for be shown that f(a,s,) has an infinite number of
T < €1 and whose jump along the o-axis is zeros and that the zero, say, -ag whgse imaginary
part has the smallest absolute value is such that
DK, (a) Re(ag) > 0 and Im(ag) < 0. Thus ag corresponds

to a growing instability wave propagating down-
stream. The other zeros of f(a,a,) are of the
form

(a +a )(a *+ eli)llz

we finally obtain & .
o, =* (on + 11n) (38)
~4?
7 K+(e) here both d it
J(a) e Vi G,(a) where both op and <, are positive.
(a + eli)

In order to evaluate Eq. (36) for x < 0, we
. close the contour in the upper half of the compliex
w; - ;E) -G (a). (34) a-plane. Then using Cauchy's formula and theorem
- to evaluate the contour integral and substituting
the result and Eq. (14) into Eq. (20) we obtain

\1/2
= K_(u)(a - c11) / (
If we further impose the condition ¢'(o) ~ x']'/2
at the edge x = 0, we can show using“Liouville's

theorem that J(a) must identically be zero. We
finally arrive at the following expression

+ + + , +
(0), - AaGaK+(—Ga) -

a
s
) e
J,a + \ + + + . +
(1 - n;) ‘/-u; cosh a;AO Kil-ag)f (~ag85)(ay - ag) sinh %58
+

_h+ .t
sinh asy  dacx

o1 Kalag)f (apa8o)(arran) sinh ara (1e)(ic + a)[(ix + 1) sin® xa) + cos? <]

- . + .+ P
V/“n sinh ay  ~iax 3 JT e X(ir + 1)2 sin 1y
+ e + d
* K+ )
0

(39)




where # correspbnds to j=2 and i=3,
respectively.

The first term in Eq. (39) represents a grow-
ing instability wave propagating downstream. The
second term represents an infinite number of
trapped acoustic modes propagating upstream and
decaying. Finally the third term which results
from the branch cut integral represents the scat-
tered hydrodynamic field. It is important to note

that ¢£Ol' and (0)*

?3,a
points #y in regions 3 and 4, respectively.

are in phase at symmetric

IV. Matching with the Instability Waves
Emanating From the Separation Points

We now turn out attention to the solution of
the boundary-value problem (Egs. (10) to (12)) in
a region 0(1) surrounding the separatign point,
Such a solution was given by Goldstein”’ (Eq. 45).
For ix1 >>1 but ix*I << 1, this solution can
be written as

(0)
%

i=2,3 (40)
where C; are the coupling coefficients with the
external“forcing, ag 1is solution to Eq. (17) with
89 replaced by 4, agy = ag{0) and the subscript
0 denotes a quantity evaluated at the trailing
edge. The expressions for Cj which are propor-
tional to some inverse power of the Reynolds number
and depend on the airfoil geometry and the Strouhal
number, were derived in Refs. 9 and 14.

In the present problem the external forcing is
the scattered hydrodynamic field which can be cal-
culated from the branch cut integral in Eq. (39).
Thus, for large ix1, the pressure gradient at the
separation point is

(0)
ot [Pia
J X

S

+ +
I 3 AaK"'(_ua)

QJ «i (1 - a;) —o; K,(0) cosh G;Ao

1
X ==+ ... (41)
,IXI ‘
where P§O; denotes the pressure corresponding to
9
(0) and the subscript s denotes a quantity

Ps
J,a
evaluated at the separation point. Note that Pé

and P§ have a phase difference equal to =.
t ]
Since Cj is proportional to P&, ¢2(0) and ¢3(0)

defined by Eq. (40), have no phase difference at
symmetric points into regions 2 and 3. On the other

(0)'

hand, wj S
ference equal to =«
1
2 and 3. Therefore ¢(O)
(0)* and A+ i
¢j S

represents waves with a phase dif-

at symmetric points in regions
cannot match with the
must vaﬂish. Thus

wg?g' - 0. (42)

Matching the upstream expansion of Eq. (39) with
Eq. (40) gives

Q
i if us(x*)dx +

+
S

3 \ + ¥ 3 F
a f (-uS,Ao)(ua - us) cosh a8,

Q
—

X —
sinh a A,

(43)

where 4, 1is the value of & at the origin.

We now examine Eq. (43) and note that for
4 = 0(1), ag = 0(1) and that Cj is also propor-
tional to Ag. Moreover, Bj is proportional to
some inverse power of Re. »14 By matching the
leading order terms in Eq. (43) we find

S = % ~ 1n Re . (44)

Four important results for the remainder of
our analysis can be drawn from Eq. (44). First, it
Justifies our modeling of the free-shear layer by a
vortex sheet., Second, it insures the validity of
Goldstein's solutions (Eq. 40) for the instability
waves emanating from the separation points. Third,
it implies that the flow in the "triple deck" reg-
ions suigounding the separation points is quasi-
steady. And fourth, it determines the partigular
expressions for the coupling coefficients Cj.
Therefore, from Ref. 14, Eq. 4.8

¢, - —RLT0) 182 12, pe g5
316 V6 £ (0) J
where
c, = (Re)™}/8 (46)
and c* is a coefficient in the expansion of the

free streamline equation (Eq. (2)) in terms of the

(x*,y*) coordinates (Fig. 2) for x* = 0+
y* = axxx312 4 brxx2 + cxxr/2 4 O(x*3) (47)
where
a* = 1"‘(0)50(79{8 . (48)

he function f is defined in Ref. 9 (Eq. 8 2).
(0) = 2/3 (0.44), was calculated by Smith, 11

f'(0) is the derivative of for a quasi-steady
“triple deck" flow with a nonzero wall boundary



condition. Finally o 1is the scaled skin fric-
tion just ahead of the separation point. For a
thin airfoil, o can be approximated by Blasjus
expression for the flat plate, o = 0.332/y xo,
where xo is the distance of the separation point
from the leading edge.

With the expression of C; given by Eq. (45),
it is now possible to examine %he order of certain
terms in Eq. (43). The location ?I the separation
point can be inferred from Sychev

eo1/2)

x; = (x;)BP +0( (49)

*
where (xo)

point. Fong slender profile Cheng and Smithl6 used

Brodetsky's17 free streamline solution for approxi-
mately elliptic profiles to show that

denotes the position of the Brillouin

* = 0(e
(), = 0(e)

(50)

We also note that even though Egs. (39) and
40) are the zero-order terms in the expansion
Eq. (9)), they both contain a phase correction to

0(e). Our analysis will then be consistent if we
keep in Eq. (43) all terms up to O0(1). Substitut-
ing Eq. (41) into Eq. (45) and then eliminating Cj
from Eqs. (43) and (45) we obtain by equating the
amplitudes and phases of both sides of the result-
ing equation

L a 158 oxp (a. ity (51)
< i
z*&r i
— =y *2m (52)
where &  and a,; represent the average values of

the real and imag‘nary parts of ag(x*) over the
path of integration extending from the separation
point to the trailing edge, 2* = cixg1 is the dis-
tance from the separation point to the trailing
edge, n is an integer and A and ¢ are the
amplitude and phase of the quantity

2

Ae"w - - 5 1 c*
32 J2ui 1*3/2?.(0)b(1)/8

1/2
+ + . hot d“g X + £ + )
(ua - as) S1hn a 95 o +(—us) -oS,Ao

sto\dz
X
172
+, +
a lag)  Ki(o0)
(53)

where
by=(1-12*)/e = O0(1). BothA and ¢ are

0(1).

Note that when matching asymptotic expan-
sions, it is customary to first consider the lead-
ing terms. This would lead to Eq. (44). However

more accurate results may be obtained if the expo-
nential terms, the power terms and even terms of
0(1) were consistently included in the expansion.
ATl such terms were included in Egs. (51) and (52).

V. Discussion of the Results

The preceding analysis is a systematic per-
turbation about the steady state of the equations
governing the motion of a fluid around an airfoil
with smooth separation at high Reynolds numbers.

We have shown that the unsteady equations have
eigensolutions for certain discrete values of the
Reynolds and Strouhal numbers which can be calcu-
lated from Eqs. (51) and (52). We term these
discrete values "resonant conditions". Thus at
resonant conditions self-sustainable oscillations
of the flow take place. These oscillations are
self-sustained by a feedback mechanism whereby a
Kelvin-Helmholtz instability wave emanating from
the separation point on the airfoil surface propa-
gates downstream and is then diffracted as it in-
teracts with the sharp trailing edge of the airfoil
causing acoustic radiation (hydrodynamic pressure
field) that propagates upstream and regenerates the
initial instability wave.

Crighton and Leppington18 have shown that the
interaction between an acoustic source and an un-
stable shear layer in the presence of a solid sur-
face with a sharp edge produces a spatially growing
Kelvin-Helmholtz instability wave that propagates
along the shear layer. The coupling between the
acoustic wave and the instability wave takes place
at the surface edge where a Kutta condition is
applied. This led to the development of analyti-
cal modfgs for shear layer feedbg&k cycles by
Mohring®” and Crighton and Innes¢V for geometries
with at least two sharp edges. In the present
problem we have used Goldstein's coupling coeffi-
cient (Eq. (45)) which accounts for viscous ef-
fects. This coupling coefficient is small since
it is proportional to eqo. This feature makes it
possible in the high frequency 1imit to match the
amplitude of the instability wave with that of the
scattered hydrodynamic field when the distance
t*/e between the two ends of the feedback cycle is
much larger than the width 4, of the separated
region at the sharp trailing edge.

The present theory proposis to explain the
experiment3 of Paterson et al.* and Arbey and
Bataille's® by a new mechanism based on the genera-
tion of spatially growing Kelvin-Helmholtz insta-
bility waves emanating from the separation point on
the airfoil surface. Our phase condition (Eq. (52))
has essentially tEe same form as the empirical
formula proposed.* For comparison of our resonant
conditions with data, we note that both experiments
were carried out on NACA 0012 airfoils and that the
lowest value for S in the data was about 20.

This implies that for these data & > ¢ and there-
fore ag = 0(1) or larger. This leads to a sim-
p1ificagion where many of the terms in Eq. (53) can
be replaced by their asymptotic values for large

A. Thus, we obtain the following approximate ex-
pressions for Eqs. (51) and (52), respectively

—a.i* -
1 5 c*? e( =it - 8)S

o 32V 2n 1*3/%01’8 if*(0) 1 s2

(54)



T (g*+ )5 ~~T+2em for £'(0) >0 (55)
r 0 T

ap(ex + A;)S ~ - §-+ (2n - 1)r for f'(0) <O
(56)

where a5 = eag. Note that t*,a5 and c*

depend only on the airfoil geometry. To the degree

- of our approximation (Eqs. (44), (49), and (502) it
is permissible however to evaluate these quantities

at the separation point.

The assumption of a separated flow is central
to our model. The steady flow characteristics
around a NACA 0012 airfoil have been extensively
studied. The maximum velocity occurs at 0.14 ¢
from the leading edge with a practically flat
variation beEYeen 0.10 and 0.15 ¢ (Abbott and
von Doenhoff<+, p. 321). Theoretical and experi-
mental investigation of boundary-layer separation
on NACA 0012 airfoils were carried out bx McCroske
for a Reynolds number range between 5x10™ and 2x10°.
At zero angle of attack, the location of the theo-
retical laminar separation point was 0.70 ¢ from
the leading edge.

Our present analysis is based on an asymptotic
theory for high Reynoids number. To leading order
in Re the steady-state so1uti?T is the §régle
deck Kirchhoff model of Sychev. smithl¢s2¢ stud-
ied this model and showed that such a steady-state
solution exists for a bluff body. Cheng and Smithl6
extended the solution to a slender profile and
studied the effects of scaling the profile thick-
ness § with inverse power of the Reynolds numbeE3
Their solution was recently complemented by Cheng
who considered the closure of the wake 392 showed
that the Brown and Sngarton descriptionc® involv-
ing a Goldstein wake<” can be approached by Sychev's
model as the downstream end of the closed wake
moved forward to the trailing edge. We therefore
use this model as the asymptotic steady-state solu-
tion for lar ? Re. We note that Eq. (44) implies
that & >> ei 2, The airfoil then appears as a
bluff body vis-a-vis the flow and th Eeparation
point will be within a distance 0(e4/2) of the
Brillouin point, However, for a practical Reynolds
number range, es is not very small and the ac-
curacy of the results could be enhanced by deter-
min'?a the position of the separation point to
O(ei ).

If &P is the pressure, then using the thin
airfoi] theory approximation one can show that
P+ is an analytic function of the complex
variable z* = x* + jy*, Followin? an analysis
similar to that of Cheng and Smith 6 we can derive
the following expressions for the pressure and free
streamline shape - .
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p ~ -% (x5 = x*)7'C F(x2) as x* +x# (57)
y: (t)
H (t
| 1/2 b
H, == (x* = x*) dt x* > x*
s x 0 ‘/xg-t(x*-t) °
0
(s8)

-Goldstein's singularit

where
*
’ Hy(t) = HO(x2)  2H (x*)
- X X
F(xg):/ b* §,2° dt - —20 (59)
(x¥ - t) v X3
The condition for a smooth separation leads to
F(x*BP) =0 . (60)

Equation (60) gives the location of the Brillouin
point.

On the other hand, the triple deck criterion
for separation is

&P ~ - (0.44) 09/8 cé/Z (xg - x*)“2 as  x* xg
' (61)

Equating Eqs. (57) and (61) and using Blasius ex-
pression for the scaled skin fri }Qon o, gives an
equation for xgo in terms of :§ L and ¢,
Figure 5 gives the variation of x, versus Re
for a NACA 0012 profile. The Brillguin point is
located at xgp = 0.11 c. For 8x10% < Re < 2x106
which covers gﬁe range of the availabTe experimen-
tal data, we find

0.35 < x* < 0.50 . (62)

We first note that the location of the sepa-
ration point depends weakly on the Reynolds number,
Classical calculations of laminar separation are
independent of the Reynolds number. Second, the
discrepancy between Eq. (62) and McCroskey's calcu-
lations can be attributed to the following. (a)
The calculation of the position of the laminar sep-
aration point always involves a certain degree of
uncertainty, particularly in cases where the point
of separation is located comparatively far behind
the point of minimum pressure (as is the case for a
NACA 0012-girfo11) as shown by the fyperiments of
Schubaue on elliptical cylinders¢’ (p. 203).

{b) The methods used to predict the location of
the separation point o;%gn give the location of

which is always located
downstream of the separation point.

Since we do not know the magnitude and sign
of f!(o), we give in Tables I and II the values
for = S/2x, the Strouhal number most commonly
used in experiments, and 1f'(0)1 calculated from
Eqs. (54) tp (56) versys n for assumed values
of Re = 1og and 5x10”, respectively. We observe
that for f'(o) = 0(1), as suggested by the.theory,
S would have a_value between 3 and 5. These are
the values of corresponding to the lowest ob-
served frequencies in Arbey and Bataille's data.

As we examine the resonant conditions we ngt
that th r? is an infinite set of eigenvalues S\"
and Rel™ corresponding to ail values of the
integer n. However, as Tables 1 and II show for
the present example only n = 2 to 4 corresponds
to a realistic value of the Reynolds number. For
smaller n, the Reynolds number will be below the
cut-off value for which the eddy disappears and no
separation occurs on the airfoil surface. On the
other hand, for larger n, the Reynolds number will



be orders of magnitude larger than values where the
boundary layer can be laminar.

The experimental data, however, show that for
the same Reynolds number there are many discrete
tones emitted from the airfoil and that the Strouhal
numbers corresponding to these tones satisfy a
relationship of the same form as Eq. (52). This
suggests that the self-sustainable osciliatory flow
phenomenon still exists for larger values of n,
This would imply changing the equality (Eq. (51))

into
- gk
1'—0-i Aels/lB exp {-ui :—}. (63)

That is the magnitude of the coupling coefficient
is larger than what is needed to regenerate the
instability wave,

In order to understand the implication of
Eq. (63) we consider the present problem as an
initial value problem (though we realize we are
essentially using the steady state solution) with
an external forcing pulse concentrated around a
frequency w for which we satisfy the phase match-
ing relationship (Eq. (52)). This external forc-
ing will trigger an instability wave at the airfoil
surface separation point, which will grow as it
propagates downstream. As it impinges on the sharp
trailing edge, the instability wave will be dif-
fracted and will cause a pressure wave which will
propagate upstream and will be larger than the
initial external forcing. As this larger pressure
wave acts on the separation point, it will gener-
ate still a larger amplitude instability wave which
will be further amplified as the feedback mecha-
nism continues. The flow is therefore linearly un-
stable. But as the amplitude of the unsteady
motion grows, nonlinear effects become significant
and eventually modify the basic flow. However the
persistence of the discrete tones at higher Strouhal
number indicates weakly nonlinear but globaly stable
phenomens9 In this case as recently suggested by
Crighton? the phase relationship obtained from
Tinear analysis may remain valid. Matching the
phase will therefore prevent any cancellation due
to phase difference and will result in a “super
resonant” condition for the flow. The spectral
evolution and the energy exchange between modes
cannot, of course, be predicted by linear analysis.
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