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Feedback in the non-asymptotic regime

Yury Polyanskiy, H. Vincent Poor, and Sergio Verdú

Abstract

Without feedback, the backoff from capacity due to non-asymptotic blocklength can be quite

substantial for blocklengths and error probabilities of interest in many practical applications. In this

paper, novel achievability bounds are used to demonstrate that in the non-asymptotic regime, the maximal

achievable rate improves dramatically thanks to variable-length coding and feedback. For example, for

the binary symmetric channel with capacity1/2 the blocklength required to achieve90% of the capacity

is smaller than200, compared to at least3100 for the best fixed-blocklength code (even with noiseless

feedback).

Virtually all the advantages of noiseless feedback are shown to be achievable even if the feedback

link is used only to send a single signal informing the encoder to terminate the transmission (stop-

feedback). It is demonstrated that the non-asymptotic behavior of the fundamental limit depends crucially

on the particular model chosen for the “end-of-packet” control signal. Fixed-blocklength codes and

related questions concerning communicating with a guaranteed delay are discussed, in which situation

the feedback is demonstrated to be almost useless even non-asymptotically.

Index Terms

Shannon theory, channel capacity, feedback, stop-feedback, non-asymptotic analysis, memoryless

channels, achievability bounds, converse bounds.
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I. INTRODUCTION

In the context of fixed blocklength communication, Shannon [1] showed that noiseless feed-

back does not increase the capacity of memoryless channels but can increase the zero-error capac-

ity. For a class of symmetric discrete memoryless channels (DMCs), Dobrushin [2] demonstrated

that the sphere-packing bound holds even in the presence of noiseless feedback.

Nevertheless, it is known that feedback can be very useful provided that variable-length codes

are allowed. In his ground-breaking contribution, Burnashev [3] demonstrated that the error

exponent improves in this setting and admits a particularlysimple expression:

E(R) =
C1

C
(C − R) , (1)

for all rates0 < R < C, whereC is the capacity of the channel andC1 is the maximal relative

entropy between the conditional output distributions. Moreover, zero-error capacity may improve

from zero to the Shannon capacity (as in the case of the binaryerasure channel (BEC)) if variable

length is allowed. Furthermore, since existing communication systems with feedback (such as

ARQ) have variable length, in the analysis of fundamental limits for channels with feedback, it

is much more relevant and interesting to allow codes whose length is allowed to depend on the

channel behavior.

We mention a few extensions of Burnashev’s work [3], [4] relevant to this paper. Yamamoto

and Itoh proposed a simple and conceptually important two-phase coding scheme, attaining the

optimal error exponent [5]. Using the notion of Goppa’s empirical mutual information (EMI)

several authors have constructed universal coding schemesattaining rates arbitrarily close to

capacity with small probability of error [6], [7], exponentially decaying probability of error [8]

and even attaining the optimal Burnashev exponent [9], [10]simultaneously for a collection of

channels. An extension to arbitrary varying channels with full state information available at the

decoder has been recently proposed as well [11].

In contrast to the error exponent analysis of variable-length coding with feedback, which

focuses on the regime of asymptotically long average blocklength at fixed rate, in this paper,

following [12] we focus on the regime of fixed probability of error and finite average blocklength.

Another aspect that was not previously addressed in the literature is the following. In practice,

control information (such as initiation and termination) is not under the purview of the physical

layer. However, the information theory literature typically assumes that all the feed-forward
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control information is carried through the same noisy channel as the information payload. This

is most notably illustrated by Burnashev’s model in which the error exponent is, in fact, dictated

by the reliability with which the termination information is conveyed to the receiver through

the DMC while at the same time assuming that the feedback linkhas infinite reliability to

carry not just a termination symbol but the whole sequence ofchannel outputs. To separate

physical-channel issues from upper-layer issues, and avoid mismodelling of control signaling, it

is important to realize that initiation/termination symbols are in fact carried through layers and

protocols whose reliabilities need not be similar to those experienced by the payload. To capture

this, we propose a simple modification of the (forward) channel model through the introduction

of a “use-once” termination symbol whose transmission disables further communication.

The organization of this paper is as follows. Section II presents a formal statement of the

problem and examines the relationships between different definitions of variable-length coding.

Section III analyzes the maximal achievable rate with and without a termination symbol. Sec-

tion IV focuses on zero-error communication. Section V discusses fixed-blocklength coding with

feedback and problems related to transmitting with guaranteed delay, arising in communication

systems with real-time data.

II. STATEMENT OF THE PROBLEM

In this paper we consider the following channel coding scenario. A non-anticipatory channel

consists of a pair of input and output alphabetsA andB together with a sequence of conditional

probability kernels{PYi|Xi
1
Y i−1

1

}∞i=1. Such channel is called (stationary) memoryless if

PYi|Xi
1
Y i−1

1

= PYi|Xi
= PY1|X1

, ∀i ≥ 1 (2)

and if A andB are finite, it is known as a DMC.

Definition 1: An (ℓ,M, ǫ) variable-length feedback (VLF) code, whereℓ is a positive real,M

is a positive integer and0 ≤ ǫ ≤ 1, is defined by:

1) A spaceU with1 |U| ≤ 3 and a probability distributionPU on it, defining a random variable

U which is revealed to both transmitter and receiver before the start of transmission; i.e.

U acts as common randomness used to initialize the encoder andthe decoder before the

start of transmission.

1The bound on the cardinality ofU is justified by Theorem 19 in the appendix.
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2) A sequence of encodersfn : U ×{1, . . . ,M}×Bn−1 → A, n ≥ 1, defining channel inputs

Xn = fn(U,W, Y n−1) , (3)

whereW ∈ {1, . . . ,M} is the equiprobable message.

3) A sequence of decodersgn : U × Bn → {1, . . . ,M} providing the best estimate ofW at

time n.

4) A non-negative integer-valued random variableτ , a stopping time of the filtrationGn =

σ{U, Y1, . . . , Yn}, which satisfies

E [τ ] ≤ ℓ . (4)

The final decisionŴ is computed at the time instantτ :

Ŵ = gτ (U, Y
τ ) , (5)

and must satisfy

P[Ŵ 6= W ] ≤ ǫ . (6)

The fundamental limit of channel coding with feedback is given by the following quantity:

M∗
f (ℓ, ǫ) = max{M : ∃(ℓ,M, ǫ)-VLF code} . (7)

Those codes that do not require the availability ofU , i.e. the ones with|U| = 1, are called

deterministiccodes. Although from a practical viewpoint there is hardly any motivation to allow

for non-deterministic codes, they simplify the analysis and expressions, just like randomized

tests do in hypothesis testing. Also similar to the latter, the difference in performance between

the deterministic and non-deterministic codes is negligible for any practically interestingM and

ℓ, since a few initial channel outputs can be used to supply anyrequired common randomness.

In a VLF code the decision about stopping transmission is taken solely upon observation of

channel outputs in a causal manner. This is the setup investigated by Burnashev [3]. Note that

sinceτ is computed at the decoder, it is not necessary to specify thevalues ofgn(Y n) for n 6= τ .

In this way the decoder is a mapg : B∞ → {1, . . . ,M} measurable with respect toGτ .

Definition 2: An (ℓ,M, ǫ) variable-length feedback code with termination (VLFT), where ℓ

is a positive real,M is a positive integer and0 ≤ ǫ ≤ 1, is defined similarly to VLF codes with

an exception that condition 4) in the Definition 1 is replacedby
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4’) A non-negative integer-valued random variableτ , a stopping time of the filtrationGn =

σ{W,U, Y1, . . . , Yn}, which satisfies

E [τ ] ≤ ℓ . (8)

The fundamental limit of channel coding with feedback and termination is given by the following

quantity:

M∗
t
(ℓ, ǫ) = max{M : ∃(ℓ,M, ǫ)-VLFT code} . (9)

In a VLFT code, “termination” is used to indicate the fact that the practical realization of

such a coding scheme requires a method of sending a reliable end-of-packet signal by means

other than using theA → B channel (e.g., by cutting off a carrier). As we discussed in the

introduction, timing (including termination) is usually handled by a different layer in the protocol.

Note that equivalently, a VLFT code may be understood as a VLFcode used over a modified

channel, having an additional special use-once input symbol, transmission of which disables

further communication (see the proof of Theorem 4 below for aconcrete application of this

idea). We prefer, however, to understand the channel as a fixed stochastic model, while the

structural constraints (such as how precisely the transmission terminates, or whether the feedback

is available) are left to the definition of the code.

The following are examples of VLFT codes:

1) VLF codes are a special case in which the stopping timeτ is determined autonomously

by the decoder; due to availability of the feedback,τ is also known to the encoder so that

transmission can be cut off atτ .

2) stop-feedback codesare a special case of VLF codes where the encoder functions{fn}∞n=1

satisfy:

fn(U,W, Y n−1) = fn(U,W ) . (10)

Such codes require very limited communication over feedback: only a single signal to stop

the transmission once the decoder is ready to decode.

3) variable-length codes (without feedback), orVL codes, defined in [20, Problem 2.1.25]

and [19], are VLFT codes required to satisfy two additional requirements:τ is a function

of (W,U) and the encoder is not allowed to use feedback, i.e. (10) holds. The fundamental
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limit and theǫ-capacity of variable-length codes are given by

M∗
v (ℓ, ǫ) = max{M : ∃(ℓ,M, ǫ)-VL code} , (11)

[[Cǫ]] = lim
ℓ→∞

1

ℓ
logM∗

v (ℓ, ǫ) . (12)

4) fixed-to-variable codes, orFV codes, defined in [19] are also required to satisfy (10), while

the stopping time is2

τ = inf{n ≥ 1 : gn(U, Y
n) = W} , (13)

and therefore, such codes are zero-error VLFT codes. Of course, not all zero-error VLFT

codes are FV codes, since in general condition (10) does not necessarily hold.

5) automatic repeat request (ARQ) codes analyzed in [12, Section IV.E] are yet a more

restricted class of deterministic FV codes, where a single fixed-blocklength, non-feedback

code is used repeatedly until the decoder produces a correctestimate.

The main goal of this paper is to analyze the behavior oflogM∗
f (ℓ, ǫ) and logM∗

t
(ℓ, ǫ)

and compare them with the behavior of the fundamental limit without feedback,logM∗(n, ǫ).

Regarding the behavior oflogM∗
f (ℓ, ǫ) Burnashev’s result (1) can be restated as

logM∗
f (ℓ, exp{−Eℓ}) = ℓC

(

1− E

C1

)

+ o(ℓ) , (14)

for any 0 < E < C1. Although (14) does not imply any statement about the expansion of

logM∗
f (ℓ, ǫ) for a fixed ǫ, it still demonstrates that in the regime of very small probability of

error, the parameterC1 emerges as an important quantity.

III. FUNDAMENTAL LIMITS FOR ǫ > 0.

A. Main results

The first result shows that, under variable-length coding, allowing a non-vanishing error

probability ǫ boosts theǫ-capacity by a factor of 1
1−ǫ

even in the absence of feedback.

Theorem 1:For any non-anticipatory channel with capacityC that satisfies the strong converse

for fixed-blocklength codes (without feedback), theǫ-capacity under variable-length coding

without feedback, cf. (12), is

[[Cǫ]] =
C

1− ǫ
, ǫ ∈ (0, 1) . (15)

2As explained in [19], this model encompasses fountain codesin which the decoder can get a highly reliable estimate ofτ

autonomously without the need for a termination symbol.
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The proof is given in the appendix. In general, it is known [19, Theorem 16] that the VL capacity,

[[C]] = limǫ→0 [[Cǫ]], is equal to the conventional fixed-blocklength capacity without feedback,C,

for any non-anticipatory channel (not necessarily satisfying the strong converse). On the other

hand, the capacity of FV codes for state-dependent non-ergodic channels can be larger than

C [19].

Our main result is the following:

Theorem 2:For an arbitrary DMC with capacityC we have for any0 < ǫ < 1

logM∗
f (ℓ, ǫ) =

ℓC

1− ǫ
+O(log ℓ) , (16)

logM∗
t
(ℓ, ǫ) =

ℓC

1− ǫ
+O(log ℓ) . (17)

More precisely, we have

ℓC

1− ǫ
− log ℓ+O(1) ≤ logM∗

f (ℓ, ǫ) ≤
ℓC

1− ǫ
+O(1) , (18)

logM∗
f (ℓ, ǫ) ≤ logM∗

t
(ℓ, ǫ) ≤ ℓC + log ℓ

1− ǫ
+O(1) . (19)

A consequence of Theorem 2 is that for DMCs, feedback (even inthe setup of VLFT codes)

does not increase theǫ-capacity, namely,

lim
ℓ→∞

1

ℓ
logM∗

t (ℓ, ǫ) = [[Cǫ]] , (20)

where[[Cǫ]] is defined in (12) and given by Theorem 1.

However, a much more important implication of Theorem 2 is the following. If we denote

by M∗(n, ǫ) the fundamental limit of coding with fixed blocklength and nofeedback (which is

equal to the maximal cardinality of the code with blocklength n and probability of errorǫ), then

for several channels, including DMCs, the additive white Gaussian noise (AWGN) channel and

some channels with memory the behavior of this function at fixed ǫ and moderaten is tightly

characterized by the expansion [12], [18]

logM∗(n, ǫ) = nC −
√
nV Q−1(ǫ) +O(logn) , (21)

whereC is the channel capacity,V is the channel dispersion andQ−1 is the inverse of the

standardQ-function:

Q(x) =

∫ ∞

x

e−y2

√
2π

dy . (22)
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Thus in the absence of feedback the backoff fromǫ-capacity (equal to capacity for DMCs) is

governed by the 1√
n

term (21). The key advantage of variable-length coding withfeedback lies

in completely eliminating that penalty, thereby opening the possibility of attaining the capacity

at a much smaller (average) blocklength.

Furthermore, the achievability (lower) bound in (18) is obtained via stop-feedback codes that

use feedback only to let the encoder know that the decoder hasmade its final decision; namely,

the encoder mapsfn satisfy (10). As (18) demonstrates, such a sparing use of feedback does not

lead to any significant loss in rate even non-asymptotically. Naturally, such a strategy is eminently

practical in many applications, unlike those strategies that require full, noiseless, instantaneous

feedback. In the particular case of the BSC, a lower bound (18) with a weakerlog ℓ term and

with ℓC
1−ǫ

replaced byℓC has been claimed in [8].

B. Achievability bound

The proof of Theorem 2 relies on a general achievability bound:

Theorem 3:Fix a real numberγ > 0, a channel{PYi|Xi
1
Y i−1

1

}∞i=1 and an arbitrary process

X = (X1, X2, . . . , Xn, . . .) taking values inA. Define a probability space with finite-dimensional

distributions given by

PXnY nX̄n(an, bn, cn) = PXn(an)PX̄n(cn)
n∏

j=1

P
Yj |Xj

1
Y

j−1

1

(bj |aj , bj−1) , (23)

i.e. X and X̄ are independent copies of the same process andY is the output of the channel

when X is its input. For the joint distribution (23) define a sequence of information density

functionsAn × Bn → R̄

ı(an; bn) = log
dPY n|Xn(bn|an)

dPY n(bn)
, (24)

and a pair of hitting times:

τ = inf{n ≥ 0 : ı(Xn; Y n) ≥ γ} , (25)

τ̄ = inf{n ≥ 0 : ı(X̄n; Y n) ≥ γ} . (26)

Then for anyM there exists an(ℓ,M, ǫ) VLF code with

ℓ ≤ E [τ ] (27)

ǫ ≤ (M−1)P[τ̄ ≤ τ ] . (28)
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Furthermore, for anyM there exists a deterministic(ℓ′,M, ǫ) VLF code with ǫ satisfying (28)

and

ℓ′ ≤ esssupE [τ |X ] . (29)

Remarks:

1) It is instructive to think ofX, Y and X̄ as the sent codeword, the output of the channel

in response toX and a codeword distributed asX but independent of(X, Y ).

2) Worsening the bound to (29) is advantageous, since for symmetric channels we have

E [τ |X ] = E [τ ] and thus the second part of Theorem 3 guarantees the existence of a

deterministic code without any sacrifice in performance.

3) Theorem 3 is a natural extension of the DT bound [12, Theorem 17], since (28) corresponds

to the second term in [12, (70)], whereas the first term in [12,(70)] is missing because

the information density corresponding to the true message eventually crosses any levelγ

with probability one.

4) Interestingly, pairing a fixed stopping rule with a random-coding argument has been

already discovered from a different perspective: in the context of universal variable-length

codes [6]–[10], stopping rules based on a sequentially computed EMI were shown to be

optimal in several different asymptotic senses. Although invaluable for universal coding,

EMI-based decoders are hard to evaluate non-asymptotically and their analysis relies on

inherently asymptotic methods, such as type-counting, cf.[10].

Proof: To define a code we need to specify(U, fn, gn, τ). First we define a random variable

U as follows:

U △
= A∞ × · · · × A∞

︸ ︷︷ ︸

M times

(30)

PU
△
= PX∞ × · · · × PX∞

︸ ︷︷ ︸

M times

, (31)

wherePX∞ is the distribution of the processX. Note that even for|A| = 2, U will have the

cardinality of the real lineR. However, in view of Theorem 19,|U| can always be reduced to3.

The realization ofU definesM infinite dimensional vectorsCj ∈ A∞, j = 1, . . . ,M . Our

encoder and decoder will depend onU implicitly through {Cj}. The coding scheme consists

of a sequence of encodersfn that map a messagej to an infinite sequence of inputsCj ∈ A∞

April 18, 2011 DRAFT
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without any regard to feedback:

fn(w) = (Cw)n , (32)

where(Cj)n is then-th coordinate of the vectorCj . Obviously, such encoder satisfies (10).

At time instantn the decoder computesM information densities:

Sj,n
△
= ı(Cj(n); Y

n) , j = 1, . . . ,M, (33)

whereCj(n) is the restriction ofCj to the firstn symbols. The decoder also definesM stopping

times:

τj
△
= inf{n ≥ 0 : Sj,n ≥ γ)} . (34)

The final decision is made by the decoder at the stopping timeτ ∗:

τ ∗
△
= min

j=1,...M
τj . (35)

This means thatτ ∗ is the moment of the firstγ-upcrossing among allSj. The output of the

encoder is

g(Y τ∗) = max{j : τj = τ ∗} . (36)

We are left with the problem of choosingCj , j = 1, . . .M .

This will be done by generatingCj randomly, independently of each other and distributed

according toPX∞ on A∞.

We give an interpretation for our decoding scheme in the special case of a memoryless

channel withPX∞ = P∞
X , i.e. Xk are independent and identically distributed with a single-

letter distributionPX . In this case, the decoder observesM random walksSj one of which has

a positive driftI(X ; Y ) (the true message) and(M − 1) have negative drifts−D(PXPY ||PXY ),

a quantity known as lautum informationL(X ; Y ), see [22]. The goal of the decoder, of course,

is to detect the one with positive drift.

The average length of transmission satisfies:

E [τ ∗] ≤ 1

M

M∑

j=1

E [τj |W = j] (37)

= E [τ1|W = 1] (38)

= E [τ ] , (39)
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where (38) is by symmetry and (39) follows by the definition ofτ in (25). Analogously, the

average probability of error satisfies

P[g(Y τ∗) 6= W ] ≤ P[g(Y τ∗) 6= 1|W = 1] (40)

≤ P[τ1 ≥ τ ∗|W = 1] (41)

≤ P

[
M⋃

j=2

{τj ≤ τ1}
∣
∣
∣
∣
∣
W = 1

]

(42)

≤ (M−1)P[τ2 ≤ τ1|W = 1] , (43)

where (40) is by (36), (42) is by the definition (35), and (43) is by a union bound and symmetry.

Finally, notice that conditioned onW = 1 the joint distribution of(S1,n, S2,n, τ1, τ2) is exactly the

same as that of(ı(Xn; Y n), ı(X̄n; Y n), τ, τ̄) defined in the formulation of the theorem and (25),

thus we have proved (27) and (28).

To prove (29) simply notice that similarly to (39) we have almost surely:

E [τ ∗|U ] ≤ esssupE [τ |X ] , (44)

and thus the bound (29) is automatically satisfied for every realizationU . On the other hand,

because of (43) there must exist a realizationu0 of U such that

P[g(Y τ∗) 6= W |U = u0] ≤ (M−1)P[τ̄ ≤ τ ] , (45)

which therefore defines a deterministic code with the sought-after performance (28) and (29).

C. Converse bounds

The converse parts of Theorem 2 follow from the following result:

Theorem 4:Consider an arbitrary DMC with capacityC. Then any(ℓ,M, ǫ) VLF code with

0 ≤ ǫ ≤ 1− 1
M

satisfies

logM ≤ Cℓ+ h(ǫ)

1− ǫ
, (46)

whereas each(ℓ,M, ǫ) VLFT code with0 ≤ ǫ ≤ 1− 1
M

satisfies

logM ≤
Cℓ+ h(ǫ) + (ℓ+ 1)h

(
1

ℓ+1

)

1− ǫ
(47)

≤ Cℓ+ log(ℓ+ 1) + h(ǫ) + log e

1− ǫ
, (48)

whereh(x) = −x log x− (1− x) log(1− x) is the binary entropy function.
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Proof: The inequality (46) is contained essentially in Lemmas 1 and2 of [3]. Thus we

focus on (47) only briefly mentioning how to obtain (46). First we give an informal argument.

According to the Fano inequality

(1− ǫ) logM ≤ I(W ; Y τ , τ) + h(ǫ) (49)

= I(W ; Y τ ) + I(W ; τ |Y τ ) + h(ǫ) (50)

≤ I(W ; Y τ ) +H(τ) + h(ǫ) (51)

≤ I(W ; Y τ ) + (ℓ+ 1)h

(
1

ℓ+ 1

)

+ h(ǫ) (52)

≤ Cℓ+ (ℓ+ 1)h

(
1

ℓ+ 1

)

+ h(ǫ) , (53)

where in (52) we have upper-boundedH(τ) by solving a simple optimization problem3 for an

integer-valued non-negative random variableτ :

max
τ :E [τ ]≤ℓ

H(τ) = (ℓ + 1)h

(
1

ℓ+ 1

)

, (54)

and in (53) we used the result of Burnashev [3]:

I(W ; Y τ ) ≤ C E [τ ] ≤ Cℓ . (55)

Clearly (53) is equivalent to (47). The case of VLF codes is even simpler sinceτ is a function

of Y τ and thusI(W ; Y τ , τ) = I(W ; Y τ ).

Unfortunately, the random variables(Y τ , τ) andY τ are not well-defined and thus a different

proof is required. Nevertheless, the main idea still pivotson the fact that because of the restriction

on expectation,τ cannot convey more thanO(log ℓ) bits of information about the message.

Initially, we will assume that the code is deterministic and|U | = 1. Consider a triplet(fn, gn, τ)

defining a given code. For a VLFT code,τ is a stopping moment of the filtrationσ{W,Y k}∞k=0.

To get rid of dependence ofτ on W we introduce an extended channel(Â, B̂, PŶ |X̂) as follows:

Â = A ∪ {T} , (56)

B̂ = B ∪ {T} , (57)

PŶ |X̂(ŷ|x̂) =







PY |X(ŷ|x̂) , x̂ 6= T ,

1{ŷ = T} , x̂ = T .
(58)

3The solution is given by a geometric distribution.
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Fig. 1. Illustration of the channel extension in the proof ofTheorem 4.

In other words, the channelPŶ |X̂ has an additional inputT conveyed noiselessly to the output.

If PY |X is a BSC with crossover probabilityδ then the extended channel has transition diagram

as represented on Fig. 1.4 We also assume that the original and extended channels are defined

on the same probability space where they are coupled in such away that whenever̂X = X we

haveŶ = Y .

Next, we convert the given code(fn, gn, τ) to the code(f̂n, ĝn, τ̂) for the extended channel

as follows:

f̂n(W, Ŷ n−1) =







fn(W, Ŷ n−1) , τ ≥ n ,

T , τ < n ,
(59)

τ̂ = τ + 1 = inf{n : Ŷn = T} , (60)

ĝn(Ŷ
n) =







gn(Ŷ
n) , τ̂ > n ,

gn(Ŷ
τ̂−1) τ̂ ≤ n ,

. (61)

Note that by definitionτ ≥ n can be decided by knowingW andY n−1 only and hencêfn is

indeed a function of(W, Ŷ n−1); also notice that̂Y n−1 ∈ An−1 wheneverτ ≥ n, and therefore

the expressionfn(W, Ŷ n−1) is meaningful.

Since τ̂ is a stopping time of the filtration

Fn
△
= σ{Ŷ j}nj=1 (62)

the triplet (f̂n, ĝn, τ̂ ) forms an (ℓ + 1,M, ǫ) VLF code for the extended channel (58). This

code satisfies an additional constraint: input symbolT is used only once and it terminates

the transmission. Now we prove that any such code must satisfy a certain upper bound on its

4The extended BSC was the first DMC to be analyzed in information theory [13].

April 18, 2011 DRAFT



14

cardinalityM . To do so, consider the space{1, . . . ,M} × Â∞ and two measures on it:PWŶ ∞

andPW × PŶ ∞, wherePWŶ ∞ is the joint distribution of random variablesW and Ŷ ∞ induced

by the code(f̂n, ĝn, τ̂ ). Consider a measurable function

φ : {1, . . . ,M} × Â∞ → {0, 1} (63)

defined as

φ = 1{ĝτ̂ (Y τ̂ ) = W} . (64)

Notice that under measurePWŶ ∞ we have:

PWŶ ∞ [φ = 1] ≥ 1− ǫ , (65)

due to the requirement (6). On the other hand, since underPW ×PŶ ∞ ĝτ̂ is independent ofW ,

we have

(PW × PŶ ∞)[φ = 1] =
1

M
. (66)

By assumption1− ǫ ≥ 1
M

and therefore by the data-processing inequality we must have

D(PWŶ ∞||PWPŶ ∞) ≥ d(1− ǫ|| 1
M
) , (67)

whered(x||y) = x log x
y
+ (1 − x) log 1−x

1−y
is the binary relative entropy. After straightforward

manipulations in (67) we obtain

(1− ǫ) logM ≤ I(W ; Ŷ ∞) + h(ǫ) . (68)

Although, (68) is just the Fano inequality, inclusion of thecomplete derivation illustrates the

similarity with the meta-converse approach in Theorem 26 and Section III.G in [12]. Another

important observation is that for smallℓ, the bound can be tightened by replacing the step of

data-processing (67) with an exact non-asymptotic solution of the Wald’s sequential hypothesis

testing problem.

We proceed to upper boundI(W ; Ŷ∞).5 To do so we define a sequence of random variables:

Zk = log
PŶk|WŶ k−1(Ŷk|W, Ŷ k−1)

PŶk|Ŷ k−1(Ŷk|Ŷ k−1)
, (69)

5Notice thatŶ ∞ formalizes the idea of viewing(Y τ , τ ) as a random variable.
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which are relevant toI(W ; Ŷ∞) because by simple telescoping we have

I(W ; Ŷ∞) = I(W ; Ŷ1) + I(W ; Ŷ ∞
2 |Ŷ1) (70)

=
∞∑

k=1

I(W ; Ŷk+1|Y k) (71)

=
∞∑

k=1

E [Zk] . (72)

For Zk we have the following property:

E [Zk|Fk−1] = IFk−1
(W ; Ŷk) , (73)

whereIF (·; ·) denotes mutual information, conditioned onF . Specifically, for discrete random

variablesA,B andC we define the followingF -measurable random variable:

IF (A;B|C) =
∑

a,b,c

P[A = a, B = b, C = c |F ] log
P[A = a, B = b, C = c |F ]P[C = c|F ]

P[A = a, C = c |F ]P[B = b, C = c |F ]
,

(74)

where the summation is over the alphabets ofA,B andC. We also define

HF (A)
△
= IF (A;A) , (75)

and other information measures similarly.

We define yet another process adapted to filtrationFn, cf. (62),

Vn
△
= 1{τ̂ ≤ n} . (76)

With this notation we have:

IFk−1
(W ; Ŷk) = IFk−1

(W ; ŶkVk) (77)

= IFk−1
(W ;Vk) + IFk−1

(W ; Ŷk|Vk) (78)

≤ HFk−1
(Vk) + IFk−1

(W ; Ŷk|Vk) (79)

≤ HFk−1
(Vk) + IFk−1

(X̂k; Ŷk|Vk) , (80)

where (77) follows becauseVk is a function of Ŷk, (78) is the usual chain rule and (80) is

obtained by applying the data-processing lemma to the Markov relation W − X̂k − Ŷk − Vk,

which holds almost surely when conditioned onFk−1. We now upper-bound the second term

in (80) as follows

IFk−1
(X̂k; Ŷk|Vk) ≤ 0 · P[Vk = 1|Fk−1] + P[Vk = 0|Fk−1]C , (81)
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because whenVk = 1 we must haveX̂k = Ŷk = T and the mutual information is zero, while

whenVk = 0 we are computing the mutual information acquired on thePŶ |X̂ channel over a

distributionPX̂k|Vk 6=0 which has a zero mass on the symbolT , and thus

sup
P
X̂
:P

X̂
(T )=0

I(X̂ ; Ŷ ) = C . (82)

Overall, from (73), (80) and (81) it follows:

E [Zk|Fk−1] ≤ HFk−1
(Vk) + P[Vk = 0|Fk−1]C . (83)

Finally, we obtain

I(W ; Ŷ ∞) =

∞∑

k=1

E [E [Zk|Fk−1]] (84)

≤
∞∑

k=1

H(Vk|Ŷ k−1) + P[Vk = 0]C (85)

=

∞∑

k=1

H(Vk|Ŷ k−1) + C E [τ ] (86)

≤
∞∑

k=1

H(Vk|V k−1) + C E [τ ] (87)

= H(V1, V2, . . .) + C E [τ ] (88)

= H(τ̂) + C E [τ ] (89)

= H(τ) + C E [τ ] (90)

where (84) follows from (72), (85) results from (83), (86) follows by taking an expectation of

the obvious identity
∞∑

k=1

1{Vk = 0} =
∞∑

k=1

1{τ̂ > k} = τ̂ − 1 , (91)

and recalling that̂τ − 1 = τ , (87) follows becauseV k−1 is a function ofŶ k−1, (88) is obtained

by the entropy chain rule, (90) follows since(V1, V2, . . . , Vn, . . .) is an invertible function of̂τ ,

and finally (90) follows sincêτ = τ + 1.

Together (68), (90) and (54) prove (47) in the case of a deterministic code with|U | = 1. For

the case of|U | > 1 the above argument has shown that we have

(1− P[W 6= Ŵ |U ]) logM ≤ C E [τ |U ] +Hσ{U}(τ) + h(P[W 6= Ŵ |U ]) a.s., (92)
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whereŴ = gτ(Y
τ ) is the output message estimate of the decoder. By taking the expectation of

both sides of (92) and applying the Jensen’s inequality to the binary entropy terms we obtain

(1− P[W 6= Ŵ ]) logM ≤ C E [τ ] +H(τ |U) + h(ǫ) , (93)

and then (47) follows since by (54) we have

H(τ |U) ≤ H(τ) ≤ (ℓ+ 1)h

(
1

ℓ+ 1

)

. (94)

Notice that in the case of VLF codes, the first term in (86) disappears becauseVk is a function

of Ŷ k−1 thus leading to the tighter bound (46).

An alternative to the converse in (46) for channels withC1 < ∞ was discovered by Burna-

shev [3, Theorem 1] in order to show optimality of the exponent (1). A stronger version of that

result with a streamlined proof was given in [14]:

Theorem 5 ([14]): Consider a DMC with0 < C ≤ C1 < ∞. Then any(ℓ,M, ǫ) VLF code

satisfies

ℓ ≥ sup
0<ξ≤ 1

2

[(

1− ξ − ǫ

ξ

)
logM

C
+

1

C1
log

λξ

4ǫ
− h(ξ)

C

]

, (95)

where

C1 = max
a1,a2∈A

D(PY |X=a1 ||PY |X=a2) (96)

λ
△
= min

x,y
PY |X(y|x) > 0 . (97)

The proofs of both [3, Theorem 1] and Theorem 5 rely on seminalideas of [15] and [3], who

proposed to split the analysis of a given code in two phases using an auxiliary stopping time

τ1 ≤ τ . Burnashev usedτ1 defined as the first time when the conditional entropyH(W |Y n) falls

below a thresholdA > 0. Instead, [15] proposedτ1 to be the first time whenmaxw PW |Y n(w|Y n)

reaches a threshold1−ξ. As demonstrated in [14], such a choice results in a much moreelegant

proof. Note that unlike [14], the original result in [15] wasasymptotic, and restricted to the

case of the AWGN channel. Moreover the reasoning in [15] contained a flaw, as pointed out by

Burnashev [3].

One drawback of the bound (95) is that it is not always stronger than (46). For example,

for a capacity-1
2

BSC andǫ = 10−3, (95) is worse than (46) for all delays. To rectify this

situation we give a new bound which is provably tighter than both (46) and Theorem 5. The

proof, included in the appendix, employs the two-phase approach choosing the sameτ1 as in [14],
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[15]. Furthermore, it follows the meta-converse frameworkof [12, Section III.E] and [16, Section

2.7].

Theorem 6:Consider a DMC with0 < C ≤ C1 < ∞. Then any(ℓ,M, ǫ) VLF code with

0 < ǫ ≤ 1− 1
M

satisfies

ℓ ≥ sup
0<ξ≤1− 1

M

[

1

C

(

logM − FM (ξ)−min

{

FM(ǫ),
ǫ

ξ
logM

})

+

∣
∣
∣
∣

1− ǫ

C1

log
λ1ξ

ǫ(1 − ξ)
− h(ǫ)

C1

∣
∣
∣
∣

+
]

,

(98)

where

FM(x)
△
= x log(M − 1) + h(x) , 0 ≤ x ≤ 1 (99)

λ1
△
= min

y,x1,x2

PY |X(y|x1)

PY |X(y|x2)
∈ (0, 1) . (100)

Numerical experimentation suggests that weakening (98) byreplacing the minimum byFM(ǫ)

has negligible effect.

D. Asymptotic expansions

Proof of Theorem 2:The upper bounds in (16) and (17) follow from Theorem 4. For the

lower bound (16), suppose that for eachℓ′ there exists an
(
ℓ′,M, 1

ℓ′

)
-VLF code with

logM = Cℓ′ − log ℓ′ − a0 , (101)

where a0 is some constant. To see that (101) implies the lower bound in(16) consider the

code which terminates without any channel uses, i.e.τ = 0, with probability ℓ′ǫ−1
ℓ′−1

and uses

the
(
ℓ′,M, 1

ℓ′

)
-VLF code otherwise6. Such a code has probability of errorǫ and average length

ℓ = ℓ′2(1−ǫ)
ℓ′−1

and, therefore, using (101) we have

logM∗(ℓ, ǫ) ≥ Cℓ′ − log ℓ′ − a0 (102)

=
ℓC

1− ǫ
− log ℓ+O(1) , (103)

as required.

6Note that due to availability of the stop feedback such a randomization can be realized on the decoder side only, i.e. without

requiring any common randomness,U . Thus if
(

ℓ′,M, 1

ℓ′

)

-VLF code exists with|U | = 1 then the overall coding scheme

constructed to achieve (16) also has|U | = 1.
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To prove (101), we apply Theorem 3 with the process{Xn}∞n=1 chosen to be independent and

identically distributed (i.i.d.) with a marginal distribution PX – a capacity achieving distribution.

To analyze (28) it is convenient to define a pair of random walks

Sn
△
= ı(Xn; Y n) , (104)

S̄n
△
= ı(X̄n; Y n) . (105)

First notice that since the sequenceSn − nI(X ; Y ) = Sn − nC is a martingale we obtain from

Doob’s optional stopping theorem [17, Theorem 10.10]

C E [τ ] = E [Sτ ] (106)

≤ γ + a0 , (107)

wherea0 is an upper-bound onS1. The equality

D(P ||Q)E [τ ] = E

[

log
dP

dQ

∣
∣
∣
∣
Fτ

]

(108)

is traditionally called Wald’s identity in the sequential hypothesis testing literature. In particular,

we obtain from (107)

P[τ < ∞] = 1 (109)

Next notice that for any (measurable) functionf we have

E [f(X̄n, Y n)] = E [f(Xn, Y n) exp{−Sn}] , (110)

becauseSn = log dPXnY n

dPX̄nY n
. Therefore, we have

P[τ̄ ≤ τ ] ≤ P[τ̄ < ∞] (111)

= lim
n→∞

P[τ̄ < n] (112)

= lim
n→∞

E [exp{−Sn}1{τ < n}] (113)

= lim
n→∞

E [exp{−Sn}1{τn < n}] (114)

= lim
n→∞

E [exp{−Sτn}1{τn < n}] (115)

= E [ lim
n→∞

(exp{−Sτn}1{τn < n})] (116)

= E [exp{−Sτ}1{τ < ∞}] (117)

≤ exp{−γ} , (118)
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where (111) is from (109), (112) is by monotonicity, (113) isfrom (110), in (114) we have

defined

τn
△
= min{τ, n} , (119)

from which (114) follows, (115) is by the optional stopping theorem [17, Theorem 10.10] applied

to the martingaleexp{−Sn} and stopping timeτn, and finally (116) and (118) both follow from

exp{−Sτn}1{τn < n} = exp{−Sτ}1{τn < n} ≤ exp{−γ} , (120)

which in turn follows from the definition ofτ in (25).

The existence of an
(
ℓ′,M, 1

ℓ′

)
-VLF code with M satisfying (101) now follows by taking

γ = Cℓ′ − a0 and using (107) and (118) in (27) and (28), respectively.

We note in passing that while the codes with encoders utilizing full noiseless feedback can

achieve the Burnashev exponent (1), it was noted in [8], [10]that the lower error exponent

E1(R) = C − R (121)

is achievable at all ratesR < C with stop-feedback codes (10). Indeed, this property easily

follows from (118) and (107).

A numerical comparison of the upper and lower bounds for the BSC with crossover probability

δ = 0.11 and ǫ = 10−3 is given in Fig. 2, where the upper bound is (98) and the lower bound

is Theorem 3 evaluated for variousM and the lowest possibleγ for which the right-hand side

of (28) is still smaller than10−3. Note that forBSC(δ) the ı(Xn; Y n) becomes a random walk

taking stepslog 2δ and log(2− 2δ) with probabilitiesδ and1− δ, i.e.,

ı(Xn; Y n) = n log(2− 2δ) + log
δ

1− δ

n∑

k=1

Zk , (122)

whereZk are independent BernoulliP[Zk = 1] = 1− P[Zk = 0] = δ. The evaluation of (28) is

simplified by using (110) to get rid of the processı(X̄n; Y n), which in this case is independent

of (Xn, Y n):

ǫ ≤ (M−1)E [f(τ)] , (123)

where

f(n)
△
= E [1{τ ≤ n} exp{−ı(Xτ ; Y τ )}] . (124)

The dashed line in Fig. 2 is the approximate fundamental limit for fixed blocklength codes without

feedback given by the equation (21) withO(logn) substituted by1
2
log n; see [12, Theorem 53].
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Fig. 2. Comparison of upper and lower bounds on the maximal achievable rate of variable-length feedback coding for the

BSC(0.11); probability of errorǫ = 10−3.

Theorem 7:For aBEC(δ) and ǫ ∈ [0, 1) we have

log2M
∗
f (ℓ, ǫ) =

ℓC

1− ǫ
+O(1) , (125)

whereC = 1− δ bit. More precisely,
⌊

ℓC

1− ǫ

⌋

≤ log2M
∗
f (ℓ, ǫ) ≤

ℓC

1− ǫ
+

h(ǫ)

1− ǫ
. (126)

Proof: The upper bound in Theorem 2 holds even forǫ = 0, so we need only to prove

a lower bound. First, we assumeǫ = 0 and take arbitraryk. Consider the strategy that simply

retransmits each ofk bits until it gets through the channel unerased. More formally, we define

a stopping time as

τ0 = inf{n ≥ 1 : there arek unerased symbols inY1, . . . Yn} . (127)
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It is easy to see that

E [τ0] =
k

1− δ
. (128)

Hence for anyℓ we have shown

log2M
∗
f (ℓ, 0) ≥ ⌊ℓC⌋ . (129)

For ǫ > 0 we make use of the randomization to construct a transmissionscheme that stops at

time 0 with probabilityǫ and otherwise proceeds as above. We define a stopping time

τǫ = τ01{U ≥ ǫ} , (130)

whereU is uniform on [0, 1] and measurable with respect toG0. It is clear that using such a

strategy we obtain a probability of error upper-bounded byǫ and

E [τǫ] =
k

1− δ
(1− ǫ) . (131)

Hence we are able to achieve

log2M
∗
f (ℓ, ǫ) ≥

⌊
ℓC

1− ǫ

⌋

. (132)

The result of Theorem 7 suggests that to improve the expansion (16) to the orderO(1),

it is likely that we need to go beyond encoders satisfying (10). In the problem of achieving

the optimal error exponent, similar reasons necessitate going beyond stop feedback and lead to

introducing a second communication phase as in [3] and [5].

IV. ZERO-ERROR COMMUNICATION

The general achievability bound, Theorem 3, applies only toǫ > 0. What can be said about

ǫ = 0?

A. No termination symbol (VLF codes)

Burnashev [3] showed that ifC1 = ∞, then asℓ → ∞ we have for somea > 0

logM∗
f (ℓ, 0) ≥ ℓC − a

√

ℓ log ℓ+O(log ℓ) . (133)

For this reason, for such channels zero-error VLF capacity is equal to the conventional capac-

ity. However, the bound
√
ℓ log ℓ on the penalty term is rather loose, as the following result

demonstrates.
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Theorem 8:For aBEC(δ) with capacityC = 1− δ bit we have

log2M
∗
f (ℓ, 0) = ℓC +O(1) . (134)

Proof: Theorem 7 applied withǫ = 0.

Regarding any channel withC1 < ∞ (e.g. the BSC), the following negative result holds:

Theorem 9:For any DMC withC1 < ∞ we have

logM∗
f (ℓ, 0) = 0 (135)

for all ℓ ≥ 0.

Proof: We show that whenC1 < ∞ no (ℓ, 2, 0) VLF code exists. Indeed, assume that

(U, fn, gn, τ) is such a code. For zero-error codes, randomization cannot help7 and hence, without

loss of generality we assume|U| = 1. The result can now be derived from [3, Theorem 1],

from (95) (both applicable to|U| = 1) or from (98) by noticing that any(ℓ,M, 0) VLF code

is also an(ℓ,M, ǫ) code for anyǫ > 0 and takingǫ → 0. However, it is instructive to give an

independent direct proof, which generalizes to infinite alphabets and channels with memory.

Conditioning onW = 1 andW = 2 gives two measuresP1 andP2 on B, which are mutually

singular when considered on theσ-algebraGτ , whereGn = σ{Y1, . . . , Yn} is a filtration onB,

with respect to whichτ is a stopping time. Define a process, adapted to the same filtration:

Rn = log
dP1

dP2

∣
∣
∣
∣
Gn

, (136)

where dP1

dP2

∣
∣
∣
Gn

denotes the Radon-Nikodym derivative betweenP1 andP2 considered as measures

on the spaceB with σ-algebraGn. Then, by memorylessness we have

Rn − Rn−1 = log
PY |X(Yn|fn(1, Y n−1))

PY |X(Yn|fn(2, Y n−1))
. (137)

From (137) andC1 < ∞ it follows that there exists a constanta1 > 0 such that

Rn −Rn−1 ≥ −a1 , (138)

and, consequently,

Rn ≥ −na1 . (139)

7Indeed, for eachu0 we must haveP[W 6= Ŵ |U = u0] = 0 and thus we can take the valueu0 which minimizesE [τ |U = u0].
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On the other hand, taking the conditional expectation of (137) with respect toP1 we obtain from

the definition ofC1 in (96):

E [Rn|Gn−1] ≤ Rn−1 + C1 < ∞ , (140)

where here and in the remainder of this proof the expectationE is taken with respect to measure

P1. Thus (140) implies that underP1 the processRn−nC1 is a supermartingale. For any integer

k ≥ 0 the random variablemin{τ, k} is a bounded stopping time. Therefore, by Doob’s stopping

time theorem [17, Theorem 10.10] we have

E [Rmin{τ,k}] ≤ C1E [min{τ, k}] ≤ C1E [τ ] < ∞ . (141)

At the same time, from (139) we have

Rmin{τ,k} ≥ −a1 min{τ, k} ≥ −a1τ , (142)

and sinceE [τ ] < ∞ we can apply Fatou’s lemma to (141) to obtain

E [Rτ ] = E [lim inf
k→∞

Rmin{τ,k}] ≤ C1E [τ ] < ∞ . (143)

On the other hand,

DGτ
(P1||P2) = E [Rτ ] < ∞ , (144)

thus implying thatP1 andP2 cannot be mutually singular onGτ – a contradiction.

B. Communication with a termination symbol (VLFT codes)

The shortcoming of VLF coding found in Theorem 9 is overcome in the paradigm of VLFT

coding. Our main tool is the following achievability bound.

Theorem 10:Fix an arbitrary channel{PYi|Xi
1
Y i−1

1

}∞i=1 and a processX = (X1, X2, . . . , Xn, . . .)

with values inA. Then for every positive integerM there exists an(ℓ,M, 0) VLFT code with

ℓ ≤
∞∑

n=0

E [min
{
1, (M−1)P[ı(Xn; Y n) ≤ ı(X̄n; Y n)|XnY n]

}
] , (145)

whereXn, X̄n, Y n and ı(·; ·) are defined in (23) and (24). Moreover, this is an FV code which

is deterministic and uses feedback only to compute the stopping time, i.e. (10) holds.
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Proof: To construct a deterministic code we need to define a triplet(fn, gn, τ). Consider

a collection ofM infinite A-strings{C1, . . . ,CM}. The sequence of the encoder functions is

defined as

fn(w) = (Cw)n , (146)

where(Cj)n is then-th coordinate of the vectorCj . Recall that in the paradigm of VLFT codes

it is allowable for the stopping ruleτ to depend on the true messageW , so we may define

τ = inf{n ≥ 0 : ı(CW (n); Y n) > max
v 6=W

ı(Cv(n); Y
n)} , (147)

where as beforeCj(n) ∈ An is a restriction ofCj to the firstn coordinates. Definition (147)

means that if the true message isj then the transmitter stops at the first time instantn when

ı(Cj(n); Y
n) is strictly larger than any otherı(Cv(n); Y

n), v 6= j). Finally, the sequence of

decoder functions is defined as

gn(y
n) =







k, if ∀j 6= k : ı(Ck(n); y
n) > ı(Cj(n); y

n)

1, otherwise.
(148)

Upon receiving a stop signal, the decoder outputs the index of the unique message corresponding

to the maximal information density, thus we have

gτ (Y
τ ) = W , (149)

and the constructed code is indeed a zero-error VLFT code forany selection ofM strings

Cj, j = 1, . . . ,M . We need to only provide an estimate of the expected length ofcommunication

E [τ ].

The result is proved by applying a random coding argument with eachCj generated indepen-

dently with probability distributionPX∞, corresponding to the fixed input processX. Averaging

over all realizations of{Cj , j = 1, . . . ,M} we obtain the following estimate:

P[τ > n] = P[τ > n|W = 1] (150)

≤ P

[
M⋃

j=2

{ı(C1(n); Y
n) ≤ ı(Cj(n); Y

n)}
∣
∣
∣
∣
∣
W = 1

]

, (151)

where (150) follows from symmetry and (151) simply states that if τ > n andW = 1 then at least

one information density should not be smaller thanı(C1(n); Y
n). We can proceed from (151)

as in the random-coding union (RCU) bound [12, Theorem 17]:

P[τ > n] ≤ E [min
{
1, (M−1)P[ı(Xn; Y n) ≤ ı(X̄n; Y n)|XnY n]

}
] , (152)
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where we have additionally noted that conditioned onW = 1 the joint distribution of(C1(n),Cj(n), Y
n)

coincides with that of(Xn, X̄n, Y n) for every j 6= 1. Summing (152) over alln from 0 to ∞
we obtain

E [τ ] =
∞∑

n=0

P[τ > n] ≤
∞∑

n=0

E [min
{
1, (M−1)P[ı(Xn; Y n) ≤ ı(X̄n; Y n)|XnY n]

}
] . (153)

Thus, there must exist a realization of{Cj, j = 1, . . . ,M} achieving (145).

Theorem 11:For an arbitrary DMC we have

logM∗
t
(ℓ, 0) = ℓC +O(log ℓ) . (154)

More specifically we have

logM∗
t
(ℓ, 0) ≤ ℓC + log ℓ +O(1) , (155)

logM∗
t
(ℓ, 0) ≥ ℓC +O(1) . (156)

Furthermore, the encoder achieving (156) uses feedback to calculate the stopping time only, i.e.

it is an FV code.

Proof: The upper bound (155) follows from (48). To prove a lower bound, we will apply

Theorem 10 with the processX selected as i.i.d. with a capacity-achieving marginal distribution.

We first weaken the bound (145) to a form that is easier to analyze:

E [min
{
1, (M−1)P[ı(Xn; Y n) ≤ ı(X̄n; Y n)|XnY n]

}
] (157)

≤ E [min
{
1,MP[ı(Xn; Y n) ≤ ı(X̄n; Y n)|XnY n]

}
] (158)

= E [min
{
1,MP[ı(Xn; Y n) ≤ ı(X̄n; Y n)|XnY n]

}
1{ı(Xn; Y n) ≤ logM}]

+ E [min
{
1,MP[ı(Xn; Y n) ≤ ı(X̄n; Y n)|XnY n]

}
1{ı(Xn; Y n) > logM}] (159)

≤ P[ı(Xn; Y n) ≤ logM ] +MP[ı(X̄n; Y n) > logM ] (160)

= E
[
exp

{
−[ı(Xn; Y n)− logM ]+

}]
, (161)

where (160) is obtained from (159) by upper-boundingmin by 1 in the first term and by

MP[ı(X̄n; Y n) > logM ] in the second term, and (161) is an application of (110).

In view of (161), Theorem 10 guarantees the existence of an(ℓ,M, 0) VLFT code with8

ℓ ≤ E

[ ∞∑

n=0

exp
{
−[ı(Xn; Y n)− logM ]+

}

]

. (162)

8ı(X0;Y 0) = 0 by convention.
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We now define the filtrationF as

Fn = σ{Xn, X̄n, Y n}, n = 0, 1, . . . (163)

Notice thatı(Xn; Y n) is a random walk adapted toF with bounded jumps and positive drift

equal to the capacityC:

E [ı(Xn; Y n)] = nC , (164)

whereas the processı(X̄n; Y n) is also a random walk with bounded jumps, but with a negative

drift equal to the lautum information [22]:

E [ı(X̄n; Y n)] = −nD(PXPY ||PXY ) = −nL(X ; Y ) . (165)

Define a stopping time of the filtrationF as follows:

τ = inf{n ≥ 0 : ı(Xn; Y n) ≥ logM} . (166)

With this definition we have

E

[ ∞∑

n=0

exp
{
−[ı(Xn; Y n)− logM ]+

}

]

= E

[

τ +
∞∑

k=0

exp
{
−[ı(Xk+τ ; Y k+τ )− logM ]+

}

]

.

(167)

Becauseı(Xτ ; Y τ ) ≥ logM we have

[ı(Xk+τ ; Y k+τ )− logM ]+ = [ı(Xk+τ ; Y k+τ )− ı(Xτ ; Y τ ) + ı(Xτ ; Y τ )− logM ]+ (168)

≥ [ı(Xk+τ ; Y k+τ )− ı(Xτ ; Y τ )]+ . (169)

Application of (169) gives

E

[ ∞∑

k=0

exp
{
−[ı(Xk+τ ; Y k+τ )− logM ]+

}

]

≤ E

[ ∞∑

k=0

exp
{
−[ı(Xk+τ ; Y k+τ)− ı(Xτ ; Y τ )]+

}

]

.

(170)

By the strong Markov property of the random walk, conditioned on Fτ the distribution of the

processı(Xk+τ ; Y k+τ ) − ı(Xτ ; Y τ ) is the same as that of the processı(Xk; Y k). Thus, (167)

and (170) imply

E

[ ∞∑

n=0

exp
{
−[ı(Xn; Y n)− logM ]+

}

]

≤ E [τ ] + E

[ ∞∑

k=0

exp
{
−[ı(Xk; Y k)]+

}

]

. (171)
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To estimate the second term, notice that for some constantsa1, a2 > 0 we have

E
[
exp

{
−[ı(Xk; Y k)]+

}]
(172)

= P[ı(Xk; Y k) ≤ 0] + E
[
exp

{
−ı(Xk; Y k)

}
1{ı(Xk; Y k > 0}

]
(173)

= P[ı(Xk; Y k) ≤ 0] + P[ı(X̄k; Y k) > 0] (174)

≤ a2 exp{−a1k} , (175)

where (174) is an application of (110), and (175) follows from Chernoff bound since both

ı(Xk; Y k) and ı(X̄k; Y k) are sums ofk i.i.d. random variables with positive expectationC and

negative expectationL(X ; Y ), respectively. Summing (175) over all non-negative integers k we

obtain that for some constanta3 > 0 we have

E

[ ∞∑

k=0

exp
{
−[ı(Xk; Y k)]+

}

]

≤ a3 . (176)

Finally, by the boundedness of jumps ofı(Xn; Y n) there is a constanta4 > 0 such that

ı(Xτ ; Y τ )− logM ≤ a4 . (177)

Sinceı(Xn; Y n)− nC is a martingale with bounded increments we have from Doob’s stopping

time theorem [17, Theorem 10.10]:

E [ı(Xτ ; Y τ )] = C E [τ ] , (178)

but, on the other hand, from (177) we have

E [ı(Xτ ; Y τ )] ≤ logM + a4 (179)

and thus,

E [τ ] ≤ logM

C
+ a4 . (180)

Together (180), (176) imply via (171) and (162) the requiredlower bound (156).

Theorem 11 suggests that VLFT codes may achieve capacity even at very short blocklengths.

To illustrate this numerically we first notice that Theorem 10 particularized to the BSC with

i.i.d. input processX and an equiprobable marginal distribution yields the following result9.

9This expression is to be compared with the (almost) optimal non-feedback achievability bound for the BSC, [12, Theorem

34].
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Corollary 12: For the BSC with crossover probabilityδ and for every positive integerM

there exists an(ℓ,M, 0) VLFT code satisfying

ℓ ≤
∞∑

n=0

n∑

t=0

(
n

t

)

δt(1− δ)n−tmin

{

1, M
t∑

k=0

(
n

k

)

2−n

}

. (181)

A comparison of (181) and the upper bound (48) is given in Fig.3. We see that despite

the requirement of zero probability of error, VLFT codes areable to attain the capacity of the

BSC at blocklengths as short as 30. As in Theorem 7 the convergence to capacity is very fast.

Additionally, we have depicted the (approximate) performance of the best non-feedback code

paired with the simple ARQ strategy, see [12, Section IV.E].Note that the ARQ strategy indeed

gives a valid zero-error VLFT code. The comparison on Fig. 3 suggests that even having access

to the best possible block codes the ARQ is considerably suboptimal. It is interesting to note

in this regard, that a Yamamoto-Itoh [5] strategy also pairsthe best block code with a noisy

version of ARQ (therefore, it is a VLF achievability bound).Consequently, we expect a similar

gap in performance.

Another property of VLFT codes is that the maximal achievable rate for very small block-

lengths may be noticeably above capacity. This can be seen asan artifact of the model which

provides for an error-free termination symbol. Ordinarily, the overhead required in a higher

layer to provide much higher reliability than the individual physical-layer symbols would not

make short blocklengths attractive. This point is best demonstrated by computing the following

specialized achievability bound for the BEC, which improves the general Theorem 10 in this

particular case.

Theorem 13:For the BEC with erasure probabilityδ and any positive integerM there exists

an (µ(M),M, 0) VLFT code, where the functionµ : Z+ → R+ is the solution to

µ(M) =
M − 1

M
+ δ · 1

M
(M − 1)µ(M − 1)

+ (1− δ) · 1

M

[⌈
M − 1

2

⌉

µ

(⌈
M − 1

2

⌉)

+

⌊
M − 1

2

⌋

µ

(⌊
M − 1

2

⌋)]

,(182)

initialized by µ(1) = 0.

Proof: If we need to transmit only one message,M = 1, then we can simply setτ = 0.

Therefore, we have

µ(1) = 0 . (183)
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Fig. 3. Rate1

ℓ
logM∗

t (ℓ, 0) as a function ofℓ for zero-error transmission over the BSC(0.11) with a termination symbol. The

lower bound is (181); the upper-bound is (48).

If we need to transmit an arbitraryM > 1 number of messages than we do the following. First,

all M messages are split into three groups. This splitting is static and known to both the encoder

and the decoder. The first group consists of a single message (“a special message” below) and

the remainingM − 1 messages are split almost evenly in two (“non-special”) groups, according

to

M − 1 =

⌈
M − 1

2

⌉

+

⌊
M − 1

2

⌋

. (184)

Second, ifW is equal to the special message, then the encoder terminatesthe communication

by settingτ = 0. If W belongs to one of
⌈
M−1
2

⌉
messages then the encoder setsf1 = 0,

and tof1 = 1 if W belongs to the remaining group of
⌊
M−1
2

⌋
. Third, upon passing through

the channel one of three possibilities can happen: transmission terminated withT (if W was a
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special message), the digit was delivered correctly, or thedigit was erased:

1) In the first case, the decoder knows thatW must have been equal to the pre-selected

special message, which it outputs asŴ (error-free, of course).

2) In the second case the decoder has gained the knowledge to which of the two non-special

groupsW belonged. Therefore, we can reiterate the algorithm with a reduced size of the

message set, settingM ′ =
⌈
M−1
2

⌉
or M ′ =

⌊
M−1
2

⌋
, depending on the group to whichW

belonged.

3) Finally, if the digit was erased then the only knowledge the decoder has gained is thatW

was a non-special message. Therefore, we reiterate the algorithm with M ′ = M − 1 since

the special message was ruled out.

We now analyze the average number of channel uses required for such a recursive procedure to

terminate. The first case happens with probability1
M

and the total number of channel uses is0.

The second case happens with probabilityM−1
M

· (1 − δ) and the (average) number of channel

uses is1+µ
(⌈

M−1
2

⌉)
or 1+µ

(⌊
M−1
2

⌋)
depending on the group to whichW belonged. Finally,

the third case happens with probabilityM−1
M

· δ and the number of channel uses is1+µ(M −1).

In total we obtain (182).

The first few values of theµ-function are

µ(1) = 0 , (185)

µ(2) = 1/2 , (186)

µ(3) =
1

3
(2 + δ) , (187)

µ(4) = 1 +
1

4
(δ + δ2) . (188)

Since it is not possible to computeµ(2500) directly, the following idea was used for large values

of M . Fix somekmax and computeµ(2k) for all k ≤ kmax via (182). Fork > kmax we can use

a strategy of simply retransmitting each of the firstk − kmax bits until it is delivered unerased,

and then use the described recursive strategy to transmit the remainingkmax bits. This gives the

bound

µ(2k) ≤ k − kmax

1− δ
+ µ

(
2kmax

)
. (189)

As kmax increases, the upper bound improves. Experimentation shows that there is no visible

improvement oncekmax & 10.
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Fig. 4. Rate1

ℓ
logM∗

t (ℓ, 0) as a function ofℓ for zero-error transmission over the BEC(0.5) with a termination symbol. The

lower bound is Theorem 13; the upper-bound is (48).

Numerical comparison of the achievability bound of Theorem13 against the converse bound (48)

is given on Fig. 4 for the case ofδ = 0.5. We notice that indeed for smallℓ (and, equivalently,

M) the availability of the termination symbol allows the rateto exceed the capacity slightly.

Also, the horizontal capacity line coincides with the “traditional” achievability bound for the

BEC, as given by Theorem 7 withǫ = 0, which does not take advantage of the additional degree

of freedom enabled in the VLFT paradigm (i.e., a terminationsymbol).

V. EXCESS DELAY CONSTRAINTS

Quantifying the notion of delay for variable-length codingwith feedback has proven to be

notoriously hard, see, for example, [23] for a related discussion. While for fixed-blocklength

codes, delay is naturally identified with blocklength, in the variable-length setup, however,
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the usage of average blocklengthE [τ ] as a proxy for delay may not be sensible in real-time

applications with hard delay constraints. Nevertheless, the definition of rate aslogM
E [τ ]

is very

natural, since by the law of large numbers, the ratio of bits to channel uses will approachlogM
E [τ ]

for a repeated use of the same code.

An advantage of feedback is the ability to terminate transmission early on favorable noise

realizations thereby reducing average blocklength. However, it remains to be seen whether under

a constraint on the probability of excess delay, variable-length coding offers any advantage.

Depending on whether VLF or VLFT codes are used, we consider two different formulations of

the delay constraint. While the delay is not allowed to exceed a certain threshold in either case,

for the VLFT codes we additionally require the decoded message to be correct with probability

one.

A. VLF codes

Consider an arbitrary VLF code and define the error event differently from (6). Namely, fix

a delayd and define the probability of error as

ǫ = P[{Ŵ 6= W} ∪ {τ > d}] . (190)

The question is then: what is the maximumM compatible with a chosend and ǫ? The answer

is obvious: since in such formulation the encoder has no incentive to terminate before the delay

d, we might as well fix blocklength to bed and force the decoder to take the decision at time

d. This, however, is no different from fixed-blocklength coding with feedback.

Definition 3: An (n,M, ǫ) fixed-blocklength feedback code is an(n,M, ǫ) VLF code with

τ = n. The fundamental limit of fixed-blocklength feedback codesis given by

M∗
b (n, ǫ) = max{M : ∃(n,M, ǫ) fixed-length feedback code} . (191)

In the case of the BEC, the tight converse bound for fixed-blocklength codes shown in [12,

Theorem 38] applies even when feedback is available. Therefore, the proof of [12, Theorem 53]

automatically applies to the feedback case and we have:

Theorem 14:For the BEC,

logM∗
b (n, ǫ) = nC −

√
nV Q−1(ǫ) +O(1) , (192)

whereC andV are the capacity and the dispersion of the BEC.

April 18, 2011 DRAFT



34

Therefore, we see that if we treat the excess delay as error, see (190), then feedback is unable

to improve the
√
n penalty term. In fact, much more is true. The numerical computation of the

upper (converse) bound for the BEC was shown in [12, Section III.I] to be extremely tight. In

particular, it was shown that non-feedback codes exist thatachieve values oflog2M within 2-3

bits of the converse bound for all blocklengthsn & 10. Consequently, under an excess delay

probability constraint, the potential benefit of feedback is limited to enlarginglog2M by those

2-3 bits at most.

Similar conclusions regarding the expansion and the boundshold for a wide class of symmetric

channels (including the BSC), as is shown below. Namely, we demonstrate that for such channels,

the expansion (21) does not change in the presence of feedback when attention is restricted to the

fixed-blocklength codes defined in Definition 3. Moreover, wedemonstrate that non-asymptotic

(converse) upper bounds, used for numerical computations in [12, Sections III.H, III.I] and shown

there to be extremely tight, hold verbatim in the presence offeedback. The main idea in our

analysis is due to Dobrushin [2] and thus, the subsequent results may be viewed as both a

strengthening of his result to the non-asymptotic setting of [12], and as a generalization to a

wider class of channels defined as follows.

Definition 4: A DMC (A,B, PY |X) is called weakly input-symmetric if there exists anx0 ∈ A
and a random transformationTx : B → B for eachx ∈ A such thatTx ◦PY |X=x0

= PY |X=x and

Tx ◦ PY ∗ = PY ∗ , wherePY ∗ is the (unique) capacity achieving output distribution.

Note that the compositionTx ◦ PY with a distributionPY on B is given by

(Tx ◦ PY )(y) =
∑

y′∈B
Tx(y|y′)PY (y

′) . (193)

Thus, in other words,Tx is a stochastic matrix which upon multiplication by the columnPY |X=x0

yields the columnPY |X=x. Weak input-symmetry is a (strict) generalization of Dobrushin [2] and

Gallager [24, p. 94] symmetries. This more general property, however, is sufficient to compute

the logn term in (21); see [16, Section 3.4.5].

The performance of an optimal binary hypothesis test is defined as follows (see [12, Section

III.D2] for more details). Consider aW-valued random variableW that can take probability

measuresP or Q. A randomized test between those two distributions is defined by a random

transformationPZ|W : W 7→ {0, 1} where0 indicates that the test choosesQ. The best perfor-
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mance achievable among those randomized tests is given by

βα(P,Q) = min
∑

w∈W

Q(w)PZ|W (1|w) , (194)

where the minimum is over all probability distributionsPZ|W satisfying

∑

w∈W

P (w)PZ|W (1|w) ≥ α . (195)

The minimum in (194) is guaranteed to be achieved by the Neyman-Pearson lemma. Thus,

βα(P,Q) gives the minimum probability of error under hypothesisQ if the probability of error

under hypothesisP is not larger than1− α.

The generalization of Theorem 14 is the following:

Theorem 15:Consider a weakly input-symmetric DMC with capacityC and dispersionV .

ThenM∗
b (n, ǫ) satisfies a “sphere-packing bound”:

M∗
b (n, ǫ) ≤

1

βn
1−ǫ

, (196)

whereβn
α is defined for0 ≤ α ≤ 1 as follows:

βn
α

△
= βα(P

n
Y |X=x0

, P n
Y ∗) , (197)

with x0 ∈ A andPY ∗ being as defined in Definition 4. In particular, ifV > 0 then asn → ∞
we have

logM∗
b (n, ǫ) ≤ nC −

√
nV Q−1(ǫ) +

1

2
logn +O(1) , (198)

whereas ifV = 0 then

logM∗
b (n, ǫ) ≤ nC − log(1− ǫ) . (199)

For example, for the BSC it was shown in [12, Section III.H] that (196) is tight to within a

factor of 10 for a wide range ofn. Therefore, for the BSC and suchn, the value oflogM∗
b (n, ǫ)

can improve thelogM∗(n, ǫ) (achieved without feedback) by at most 3-4 bits.

Some properties of weakly input-symmetric channels (for notation see [12, Section IV.A]) are

summarized in the next result.

Theorem 16:For any weakly input-symmetric DMCW all of the following hold:

1) The capacityC satisfies

C = D(PY |X=x0
||PY ∗) . (200)
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2) The ǫ-dispersionVǫ, see [12, Definition 2], equals the dispersionV and satisfies

V = V (PY |X=x0
||PY ∗) (201)

= V (PY |X=x||PY ∗) (∀x : D(PY |X=x||PY ∗) = C) . (202)

3) If V > 0 then asn → ∞ we have

− log βn
1−ǫ = nC −

√
nV Q−1(ǫ) +

1

2
log n+O(1) . (203)

If V = 0 then we have

− log βn
1−ǫ = nC − log(1− ǫ) . (204)

Proof: To show (200) notice that a transformationTx maps the pair of distributions(PY |X=x0
, PY ∗)

to (PY |X=x, PY ∗) and therefore by the data processing for divergence we get

D(PY |X=x||PY ∗) ≤ D(PY |X=x0
||PY ∗) , (205)

from which (200) follows via

C = max
x∈A

D(PY |X=x||PY ∗) . (206)

For eachxn define a random transformationTxn : Bn → Bn as follows:

Txn(zn|yn) =
n∏

k=1

Txk
(zk|yk) . (207)

Then Txn maps the pair of distributions(P n
Y |X=x0

, P n
Y ∗) to (PY n|Xn=xn, P n

Y ∗ and thus by the

data-processing property forβα (i.e., application of a random transformation cannot improve the

value ofβα) we obtain

βα(PY n|Xn=xn, P n
Y ∗) ≥ βα((P

n
Y |X=x0

), P n
Y ∗) . (208)

To show (201) notice that by [12, Lemma 58] we have for anyx ∈ A,

log βα(P
n
Y |X=x, P

n
Y ∗) = −nD(PY |X=x||PY ∗)−

√

nV (PY |X=x||PY ∗)Q−1(α) + o(
√
n) . (209)

But by (208) we must have

log βα(P
n
Y |X=x, P

n
Y ∗) ≥ log βα(P

n
Y |X=x0

, P n
Y ∗) . (210)

Now assuming thatx ∈ A is such thatD(PY |X=x||PY ∗) = C and applying (209) to both sides

of (210) forα > 1/2 we obtain

V (PY |X=x||PY ∗) ≥ V (PY |X=x0
||PY ∗) , (211)
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whereas takingα < 1/2 we show

V (PY |X=x||PY ∗) ≤ V (PY |X=x0
||PY ∗) , (212)

and consequently (201) follows.

Finally, by (200), (201) and [12, Lemma 58] (see also [16, (2.89)-(2.90)]) we obtain (203)

and (204).

Proof of Theorem 15:Fix an (n,M, ǫ) fixed-blocklength feedback code. Its encoder defines

a transition probability kernelPY n|W from the input space

DM
△
= {1, . . . ,M} (213)

to the output spaceBn. We can view then the triplet(DM , PY n|W ,Bn) as a channel on which

we have a usual(M, ǫ) code. For such a code [12, Theorem 27] shows

M ≤ 1

β1−ǫ(PWY n, PWQY n)
, (214)

wherePW is the equiprobable distribution onDM andQY n is the following product distribution

on Bn:

QY n(yj) =

n∏

j=1

PY ∗(yj) . (215)

Therefore, the proof of (196) will be complete if we can show

βα(PWY n , PWQY n) ≥ βn
α . (216)

Lemma 17 (at the end of this section) shows that (216) followsif we prove that for any

j ∈ {1, . . . ,M}
βα(PY n|W=j, QY n) ≥ βn

α . (217)

Fix arbitraryj ∈ {1, . . . ,M} andx0 ∈ A. The sequence of encoder functionsfk, k = 1, . . . , n

defines the measurePY n|W=j as follows:

PY n|W=j(y
n) =

n∏

k=1

PY |X(yk|fk(j, yk−1)) . (218)

Since the channel is weakly input-symmetric, to eachx ∈ A there exists a transformation

Tx : B → B such that

PY |X=x = Tx ◦ PY |X=x0
, (219)
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where the composition is understood as in (193). We will now define a transformationTj : Bn →
Bn as follows:

Tj(z
n|yn) =

n∏

k=1

Tfk(j,yk−1)(zk|yk) . (220)

Then according to this construction and (218), on the one hand we have

Tj ◦ P n
Y |X=x0

= PY n|W=j , (221)

whereas on the other hand, since eachTx preservesPY ∗, we also have

Tj ◦QY n = QY n . (222)

Then it follows that

βα(PY n|W=j, QY n) = βα(Tj ◦ P n
Y |X=x0

, Tj ◦QY n) (223)

≥ βα(P
n
Y |X=x0

, QY n) , (224)

where (223) follows by (221) and (222), and (224) follows by data-processing property forβα

(i.e., simultaneous application ofTj to both measures cannot improve the value ofβα). This

completes the proof of (196). Finally, (198) and (199) follow by (214) and (203) or (204),

respectively.

The following result is a straightforward modification of [12, Lemma 29]; see [16, Lemma

32]:

Lemma 17:Suppose that there is an non-decreasing convex functionf : [0, 1] → [0, 1] such

that for all x ∈ F

βα(PY |X=x, QY |X=x) ≥ f(α) . (225)

Then, for anyPX supported onF we have

βα(PXPY |X , PXQY |X) ≥ f(α) . (226)

B. VLFT codes

It has been shown above that one of the key advantages of VLFT codes is in their ability

to achieve zero probability of error without any penalty in rate. In this section we study the

question of excess delay for such codes. For a zero-error VLFT code we define anǫ-delay as

Dǫ = min{n : P[τ > n] ≤ ǫ} , ǫ ∈ [0, 1]. (227)
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Thus a zero-error VLFT code withDǫ ≤ d is a code which is guaranteed to deliver the data error-

free, and does so in less thand channel uses in all exceptǫ-portion of the cases. The question

arises: for a fixedǫ, what is the maximumM compatible with a givenǫ-delay requirementd:

M∗
z (d, ǫ) = max{M : ∃ zero-error VLFT code withDǫ ≤ d} ? (228)

The obvious achievability bound is to simply pair a fixed-blocklength non-feedback(n,M, ǫ)

with n = d code with an ARQ retransmission strategy to achieve zero error. We have thus

M∗
z (d, ǫ) ≥ M∗(d, ǫ) = dC −

√
dV Q−1(ǫ) +O(log d) , (229)

whereM∗(d, ǫ) denotes the performance of the best non-feedback, fixed-blocklength code and

is thus given by (21).

Can we improve the crucial
√
d-penalty term in (229)? The answer is negative, at least for

the BEC:

Theorem 18:For the BEC,

logM∗
z (d, ǫ) ≤ dC −

√
dV Q−1(ǫ) + log d+O(1) , (230)

whereC andV are the capacity and the dispersion of the BEC.

Proof: LetEj be the i.i.d. process corresponding to erasures:P[Ej = 0] = 1−P[Ej = 1] = δ,

whereδ is the erasure probability of the BEC. Then the total number of unerased symbols by

time n is given by

Nn =

n∑

j=1

Ej . (231)

Following the steps of the proof of [12, Theorem 38], we can see that by timen the total

number of messages distinguishable at the receiver is upper-bounded by
∑n

j=0 2
Nj (summation

corresponds to the fact that a VLFT code has the freedom of sending a termination symbol at

any time). Therefore, since the code achieves zero-error wehave

P[τ ≤ n] ≤ 1

M
E

[

min

{
n∑

j=0

2Nj ,M

}]

. (232)

SinceNt is a monotonically non-decreasing it follows that
n∑

j=0

2Nj ≤
Nn∑

t=0

2t + (n−Nn)2
Nn (233)

≤ 2Nn(n + 2−Nn) (234)

≤ (n+ 2)2Nn . (235)
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Although the bound (234) is useful for numerical evaluation, the bound (235) is more convenient

for the analysis. Indeed, we have from (232) and (235):

P[τ ≤ n] ≤ 1

M
E
[
min

{
(n+ 2)2Nn ,M

}]
(236)

=
n+ 2

M
E

[

min

{

2Nn ,
M

n+ 2

}]

. (237)

Recall now that for the non-feedback case [12, Theorem 38] can be restated as

1− ǫ ≤ 1

M
E
[
min

{
2Nn ,M

}]
. (238)

The analysis of the bound (238) in the proof of [12, Theorem 53], has shown that (238) implies

logM ≤ nC −
√
nV Q−1(ǫ) +O(1) , (239)

asn → ∞, whereC andV are the capacity and the dispersion of the BEC. Comparing (238)

and (237) we see thatM is replaced by M
n+2

. Therefore, the same argument as the one leading

from (238) to (239) when applied to (237) must give

logM ≤ nC −
√
nV Q−1(ǫ) + log(n+ 2) +O(1) , (240)

which implies (230).

VI. D ISCUSSION

We have demonstrated that by allowing variable length, evena modicum of feedback is enough

to considerably speed up convergence to capacity. For illustration purposes we can see in Fig. 2

that we have constructed a stop-feedback code, that achieves, for example,90% of the capacity

of the BSC with crossover probabilityδ = 0.11 and probability of errorǫ = 10−3 at blocklength

200; see Fig. 2. In contrast, to obtain the same performance withfixed-blocklength codes requires

a blocklength of at least3100 even if full noiseless feedback is available at the transmitter. This

practical benefit of feedback opens the possibility of utilizing the full capacity of the link without

the complexity required to implement coding of very long data packets.

A major ingredient of the achievability bounds in this paperis the idea of terminating early

on favorable noise realizations. Although, we have appliedthis idea to the codes with codewords

with unbounded durations, it is clear that without any significant effect on probability of error we

could also assume that the transmission forcibly terminates after a time which is a few times the
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average blocklengthℓ. Consequently, it can be shown that any point on the achievability curve

of Fig. 2 can be realized by pairing some linear block code with the stopping rule (35). In other

words, even traditional fixed-blocklength linear codes canbe decoded with significantly less

(average) delay if used in the variable-length setting. It is important, thus, to investigate whether

traditionally good codes (such as low-density parity-check (LDPC) codes) are also competitive

in this setting.

Theoretically, the benefit of feedback is manifested by the absence of the
√
ℓ term in the

expansions (16) and (17), whereas this term is crucial to determine the non-asymptotic perfor-

mance without feedback. Equivalently, we have demonstrated that for variable-length codes with

feedback the channel dispersion is zero. To intuitively explain this phenomenon, we note that

without feedback the main effect governing the
√
n behavior was the stochastic variation of

information density around its mean, which is tightly characterized by the central limit theorem.

In the variable-length setup with feedback, the main idea isthat of Wald-like stopping once the

information density of some message is large enough. Therefore, there is virtually no stochastic

variation (besides a negligible overshoot) and this explains the absence of any references to the

central limit theorem.

We have also analyzed a modification of the coding problem by introducing a termination

symbol (VLFT codes), which is motivated in many practical situations in which control signals

are sent over a highly reliable upper layer. We have shown that in this setup, in addition to the

absence of
√
ℓ term, the principal new effect is that the zero-error capacity increases to the full

Shannon capacity of the channel. Although availability of a“use-once” termination symbol is

immaterial asymptotically, the transient behavior is significantly improved. Analytically, this

effect is predicted by the absence of not only the
√
ℓ term but also of thelog ℓ term in

the achievability bound (156). Furthermore, our codes withtermination have a particularly

convenient structure: the encoder uses the feedback link only to choose the time when to stop the

transmission (by sending the termination symbol), and otherwise simply sends a fixed message-

dependent codeword. The codes with such structure have beencalled fixed-to-variable (FV), or

fountain, codes in [19]. Thus, in short, we have demonstrated that fountain codes can achieve

90% of the capacity of the BSC with crossover probabilityδ = 0.11 at average blocklength< 20

and with zero probability of error. Practically, of course,“zero-error” should be understood as

the reliability being essentially the probability with which the termination symbol is correctly
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detected.

Finally, we have discussed some questions regarding communication of real-time data. We

have demonstrated that constraints on the excess delay nullify the advantage of feedback (and

variable length), i.e. the improvement in performance of the best feedback code can be marginal

at best compared to non-feedback, fixed-blocklength codes.This is in sharp contrast with the

results of the previous sections.

APPENDIX

The next result shows that restriction on the cardinality ofU in the Definitions 1 and 2 does

not entail loss of generality.

Theorem 19:For any(ℓ,M, ǫ) VLFT code there exists an(ℓ,M, ǫ) VLFT code with|U| ≤ 3.

Proof: Denote byGk the following subsets ofR2:

Gk
△
= {(ℓ′, ǫ′) : ∃(ℓ′,M, ǫ′)-code with|U| ≤ k} , k = 1, 2, . . . , (241)

and

G∞
△
= {(ℓ′, ǫ′) : ∃(ℓ′,M, ǫ′)-code} . (242)

Notice thatG∞ is a convex hull ofG1 since by taking a general code and conditioning onU

we obtain a deterministic code. By Caratheodory’s theorem we then know thatG3 = G∞. Since

by assumption(ℓ, ǫ) ∈ G∞ then (ℓ, ǫ) ∈ G3.

Proof of Theorem 1: Fix ǫ′ < ǫ and a largen. Then there exists a fixed-blocklength

code without feedback with blocklengthn, probability of errorǫ′ and number of messagesM

satisfying:

logM ≥ nC + o(n) . (243)

Consider the following variable-length code (without feedback): with probability 1−ǫ
1−ǫ′

encoder

sends a codeword of lengthn, otherwise it sends nothing. It is easy to see that the probability

of decoding error is upper-bounded byǫ whereas the average transmission time is equal to

ℓ = 1−ǫ
1−ǫ′

n, and therefore the average transmission rate is

R
△
=

logM

ℓ
≥ C

1− ǫ′

1− ǫ
+ o(1) . (244)

By taking the limitn → ∞ we obtain

[[Cǫ]] ≥ C
1− ǫ′

1− ǫ
. (245)

DRAFT April 18, 2011



43

Sinceǫ′ is arbitrary we can achieve any rate close toC
1−ǫ

.

For the converse recall that a channel is said to satisfy strong converse if its fixed-blocklength

no feedback fundamental limitlogM∗(n, ǫ) satisfies

logM∗(n, ǫ) = nC + o(n) , n → ∞ , ∀ǫ ∈ (0, 1) . (246)

Now, consider an(ℓ,M, ǫ) variable-length code. Define the following quantities for eachn ≥ 0

andu ∈ U :

ǫ(n, u) = P[Ŵ 6= W |τ = n, U = u] , (247)

which satisfy, of course,

E [ǫ(τ, U)] ≤ ǫ . (248)

Fix u and notice that conditioned onU = u, τ is a function ofW , and thereforeMP[τ =

n|U = u] is an integer. Then the conditionτ = n defines an(n,MP[τ = n|U = u], ǫ(n, u))

fixed blocklength subcode. Therefore, we have for eachn ≥ 0:

P[τ = n|U = u]M ≤ M∗(n, ǫ(n, u)) . (249)

We now fix arbitraryN ≥ 0 and ǫ′ > 0 and sum (249) for alln ≤ N such thatǫ(n, u) ≤ ǫ′:

MP[τ ≤ N, ǫ(τ, u) ≤ ǫ′|U = u] ≤
N∑

n=0

M∗(n, ǫ(n, u))1{ǫ(n, u) ≤ ǫ′} , (250)

≤
N∑

n=0

M∗(n, ǫ′) , (251)

≤ NM∗(N, ǫ′) , (252)

where (251) follows since by definitionM∗(n, ǫ) is a non-decreasing function ofǫ, and (252)

follows because for a non-anticipatory channelM∗(n, ǫ) is also a non-decreasing function ofn.

By taking the expectation of (252) with respect toU we obtain

MP[τ ≤ N, ǫ(τ, U) ≤ ǫ′] ≤ NM∗(N, ǫ′) . (253)

On the other hand, by the Chebyshev inequality we have

P[τ ≤ N, ǫ(τ, U) ≤ ǫ′] ≥ 1− E [τ ]

N
− E [ǫ(τ, U)]

ǫ′
(254)

≥ 1− ℓ

N
− ǫ

ǫ′
. (255)
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Finally, we chooseǫ′ > ǫ and take

N =
ℓ + 1

1− ǫ/ǫ′
. (256)

Now from (253), (255) and (256) we obtain

logM ≤ logM∗
(

ℓ+ 1

1− ǫ/ǫ′
, ǫ′
)

+ 2 log
ℓ + 1

1− ǫ/ǫ′
(257)

= C
ℓ+ 1

1− ǫ/ǫ′
+ o(ℓ) , (258)

where (258) follows from strong converse (246). Dividing both sides of (258) byℓ we have

proven that the rate of any(ℓ,M, ǫ) variable-length code must satisfy:

logM

ℓ
≤ C

1− ǫ/ǫ′
+ o(1) , (259)

or in other words, for anyǫ′ > ǫ we have

[[Cǫ]] ≤
C

1− ǫ/ǫ′
. (260)

Taking ǫ′ → 1 completes the proof.

Proof of Theorem 6: As in the proof of Theorem 4 it is sufficient to consider the case

of codes with|U| = 1. This follows because of convexity of the right-hand side of(98) in ǫ

as explained in (92). Next, by replacing a stopping timeτ with min{τ, N}, N = 1, . . . and

including {τ > N} in the error event, we obtain a sequence of codes with probability of error

ǫN ց ǫ asN → ∞. Since for each fixedξ the argument of the supremum in (98) is continuous

in ǫ, it is sufficient to prove (98) for codes with a boundedτ ≤ N for someN ≥ 1.

We consider a measurable spaceΩ = {1, . . . ,M}×B∞, understood as(W,Y ∞) with filtration

Gn as in Definition 1. Fixing a code we notice that encoder{fn, n = 1, . . .} induces a distribution

P = PWY ∞ on Ω. Considering a stopping timeτ1 (to be specified later), we define an auxiliary

measureQ on Ω as follows:

Q[W = j] =
1

M
, (261)

Q[Yn = yn|Y n−1 = yn−1,W = j] = P ∗
Y (yn)1{n ≤ τ1} (262)

+ P[Yn = yn|Y n−1 = yn−1,W 6= j]1{n > τ1} .(263)

whereP ∗
Y is the unique capacity achieving output distribution corresponding to a DMCPY |X .

For convenience we denoteP j[·] = P[·|W = j] andQj [·] = Q[·|W = j] for j = 1, . . . ,M . Then
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we have for any eventB

Qj [B|Gτ1 ] =
P[B,W 6= j|Gτ1]

P[W 6= j|Gτ1 ]
. (264)

Notice that sinceτ ≤ N we may replaceB∞ with BN thereby reducing to the case of a finite

spaceΩ. Moreover, becauseC1 < ∞ measuresP, P j, Q, (P ∗
Y )

N and the counting measure are

all mutually absolutely continuous. This enables us to avoid adding specifiers “almost surely”

and dealing with non-uniqueness of conditional expectations in (264) and below.

We define the following processes

Sn = log
PY n|W (Y n|W )

QY n|W (Y n|W )
, (265)

Rn = Sn −min(n, τ1)C − |n− τ1|+C1 , (266)

ηn = P[Ŵ 6= W |Gn] , (267)

πn(w) = P[W = w|Gn] , (268)

πmax
n = max

w
πn(w) , (269)

Ŵn = argmax
w

πn(w) , (270)

Without loss of generality we can assume that our code satisfies

Ŵ
△
= g(Y τ ) = Ŵτ , (271)

πmax
τ = 1− ητ , (272)

πmax
n ≤ 1− ηn , ∀ 0 ≤ n ≤ τ , (273)

since otherwise we can truncateτ to the first time instant when inequality (273) is violated. Such

truncation can only reduceE [τ ] andP[Ŵ 6= W ]. It is easy to see thatRn is aP j-supermartingale

(for any j) according to (96) and the classical characterization of capacity

C = max
x

D(PY |X=x||P ∗
Y ) . (274)

Consider regular branches̃P j[·] andQ̃j [·] of conditional probabilitiesP j[·|Gτ1] andQj [·|Gτ1].

Then, one easily shows that the relative entropy betweenP̃ j and Q̃j on Gτ satisfies

DGτ
(P̃ j||Q̃j) = E j [Sτ − Sτ1 |Gτ1] , (275)
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where here and belowE j[·] denotes the expectation with respect toP j. SinceRn is a super-

martingale we have further

DGτ
(P̃ j||Q̃j) ≤ C1E

j[τ − τ1|Gτ1 ] . (276)

Consider now the following chain:

d

(

1− ητ1

∣
∣
∣
∣

∣
∣
∣
∣
ητ1

πmax
τ1

1− πmax
τ1

)

≤ d

(

1− ητ1

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

M∑

j=1

πτ1(j)Q
j[Ŵ = j|Gτ1 ]

)

(277)

≤
M∑

j=1

πτ1(j)d(P
j[Ŵ = j|Gτ1 ] ||Qj[Ŵ = j|Gτ1 ]) (278)

≤
M∑

j=1

πτ1(j)DGτ
(P̃ j||Q̃j) (279)

≤ C1

M∑

j=1

πτ1(j)E
j[τ − τ1|Gτ1 ] (280)

= C1E [τ − τ1|Gτ1] , (281)

where (277) is by (264) applied withB = {Ŵ = j}, inequality

M∑

j=1

πτ1(j)
P[Ŵ = j,W 6= j|Gτ1]

P[W 6= j|Gτ1]
≤ πmax

τ1

1− πmax
τ1

M∑

j=1

P[Ŵ = j,W 6= j|Gτ1] (282)

=
πmax
τ1

1− πmax
τ1

ητ1 , (283)

and the fact that the second argument ofd(·||·) in the left-hand side of (277) is not larger than

the first (according to (273)); (278) is by Jensen’s inequality applied tod(·||·) and by an obvious

identity

1− ητ1 =
M∑

j=1

πτ1(j)P
j[Ŵ = j|Gτ1] , (284)

(279) is the data-processing for relative entropy, (280) isby (276) and (281) follows since

M∑

j=1

πτ1(j)E
j[·|Gτ1 ] = E [·|Gτ1] . (285)

By an elementary lower bound ond(·||·) applied to the left-hand side of (277) we obtain

from (281)

(1− ητ1) log
1− πmax

τ1

ητ1π
max
τ1

− h(ητ1) ≤ C1E [τ − τ1|Gτ1 ] . (286)
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To estimate the expectation ofτ1 consider another chain

E [logM − FM(1− πmax
τ1

)] = E [logM − FM(P[Ŵτ1 6= W |Gτ1])] (287)

= E [d(P[Ŵτ1 = W |Gτ1]|| 1
M
) (288)

= E [d(P[Ŵτ1 = W |Gτ1]||Q[Ŵτ1 = W |Gτ1]) (289)

≤ DGτ1
∨σ{W}(P||Q) (290)

= E [Sτ1 ] (291)

≤ CE [τ1] , (292)

where (289) is because underQ W is equiprobable and independent ofGτ1 , (290) is a data-

processing inequality applied to measuresP andQ on theσ-algebraGτ1 ∨ σ{W}, and (292) is

becauseRn is a supermartingale.

We now choose

τ1 = min{τ, inf{n ≥ 0 : πmax
n ≥ 1− ξ}} . (293)

Similar to [14, Proposition 2] one shows that for alln andj we have

λ1
πn(j)

1− πn(j)
≤ πn+1(j)

1− πn+1(j)
≤ 1

λ1

πn(j)

1− πn(j)
. (294)

Sinceλ1 < 1 we can see that regardless of whetherπmax
n hits level 1 − ξ beforeτ or not, we

have
1− πmax

τ1

πmax
τ1

≥ λ1
ξ

1− ξ
. (295)

On one hand, we have the following estimate

C1E [τ − τ1] ≥
∣
∣
∣
∣
E

[

(1− ητ1) log
1− πmax

τ1

ητ1π
max
τ1

− h(ητ1)

]∣
∣
∣
∣

+

(296)

≥
∣
∣
∣
∣
E

[

(1− ητ1) log
λ1ξ

ητ1(1− ξ)
− h(ητ1)

]∣
∣
∣
∣

+

(297)

≥
∣
∣
∣
∣
(1− ǫ) log

λ1ξ

ǫ(1 − ξ)
− h(ǫ)

∣
∣
∣
∣

+

, (298)

(299)

where (296) is by (286), (297) is by (295), and (298) is by Jensen’s inequality, convexity of

(1 − x) log 1
x

and the trivial identityP[Ŵ 6= W ] = E [ητ ]. On the other hand, if we denote an

event

A = {∃ 0 ≤ n ≤ τ : πmax
n ≥ 1− ξ} , (300)
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then

CE [τ1] ≥ logM − E [FM(1− πmax
τ1

] (301)

≥ logM − P[A]FM(ξ)− P[Ac]FM(P[Ŵ 6= W |Ac]) (302)

≥ logM − FM(ξ)−min

{

FM(ǫ),
ǫ

ξ
logM

}

, (303)

where (301) is by (292); (302) is by concavity ofFM(x) and since onA: πmax
τ1

≥ 1− ξ, while

on Ac: πmax
τ1

= ητ1 ; and (303) is by the bound

P[Ac]FM(P[Ŵ 6= W |Ac]) ≤ FM(P[Ŵ 6= W ]) , (304)

which follows from concavity ofFM(·) and

P[Ac]FM(P[Ŵ 6= W |Ac]) ≤ P[1− πmax
τ > ξ] logM (305)

≤ ǫ

ξ
logM , (306)

which follows by Chebyshev’s inequality and (272). Summing(298) and (303) we obtain (98).
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[22] D. P. Palomar and S. Verdú, “Lautum information,”IEEE Trans. Inform. Theory, vol. 54, no. 3, pp. 964-975, Mar. 2008.

[23] A. Sahai, “Why do block length and delay behave differently if feedback is present?”IEEE Trans. Inform. Theory, vol. 54,

no. 5, pp. 1860 - 1886, May 2008.

[24] R. G. Gallager,Information Theory and Reliable Communication. New York: Wiley, 1968.

Yury Polyanskiy (S’08-M’10) received the M.S. degree (with honors) in applied mathematics and physics from the Moscow

Institute of Physics and Technology, Moscow, Russia in 2005and a Ph.D. degree in electrical engineering from Princeton

University, Princeton, NJ in 2010.

In 2000-2005, he was with the Department of Surface Oilfield Equipment, Borets Company LLC, where he rose to the

position of Chief Software Designer. His research interests include information theory, coding theory and the theory of random

processes.

Dr. Polyanskiy won a silver medal at the 30th International Physics Olympiad (IPhO), held in Padova, Italy. He was a

recipient of the Best Student Paper Awards at the 2008 and 2010 IEEE International Symposiums on Information Theory (ISIT).

April 18, 2011 DRAFT



50

H. Vincent Poor (S’72-M’77-SM’82-F’87) received the Ph.D. degree in electrical engineering and computer science from

Princeton University in 1977. From 1977 until 1990, he was onthe faculty of the University of Illinois at Urbana-Champaign.

Since 1990 he has been on the faculty at Princeton, where he isthe Dean of Engineering and Applied Science, and the Michael

Henry Strater University Professor of Electrical Engineering. Dr. Poor’s research interests are in the areas of stochastic analysis,

statistical signal processing and information theory, andtheir applications in wireless networks and related fields.Among his

publications in these areas areQuickest Detection(Cambridge University Press, 2009), co-authored with Olympia Hadjiliadis,

and Information Theoretic Security(Now Publishers, 2009), co-authored with Yingbin Liang andShlomo Shamai.

Dr. Poor is a member of the National Academy of Engineering, aFellow of the American Academy of Arts and Sciences,

and an International Fellow of the Royal Academy of Engineering (U.K.). He is also a Fellow of the Institute of Mathematical

Statistics, the Optical Society of America, and other organizations. In 1990, he served as President of the IEEE Information

Theory Society, in 2004-07 as the Editor-in-Chief of theseTransactions, and in 2009 as General Co-chair of the IEEE International

Symposium on Information Theory, held in Seoul, South Korea. He received a Guggenheim Fellowship in 2002 and the IEEE

Education Medal in 2005. Recent recognition of his work includes, the 2009 Edwin Howard Armstrong Achievement Award

of the IEEE Communications Society, the 2010 IET Ambrose Fleming Medal for Achievement in Communications, the 2011

IEEE Eric E. Sumner Award, and an honorary D. Sc. from the University of Edinburgh, awarded in 2011.
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