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Feedback Learning: Automating the Process of

Correcting and Completing the Extracted

Information

Abstract—In recent years, with the increasing usage of digital
media and advancements in deep learning architectures, most
of the paper-based documents have been revolutionized into
digital versions. These advancements have helped the state-of-the-
art Optical Character Recognition (OCR) and digital mailroom
technologies become progressively efficient. Commercially, there
already exists end to end systems which use OCR and digital
mailroom technologies for extracting relevant information from
financial documents such as invoices. However, there is plenty of
room for improvement in terms of automating and correcting
post information extracted errors. This paper describes the
user-involved, self-correction concept based on the sequence to
sequence Neural Machine Translation (NMT) as applied to rectify
the incorrectness in the results of the information extraction.
Even though many efficient Post-OCR error rectification methods
have been introduced in the recent past to improve the quality
of digitized documents, they are still imperfect and demand
improvement in the area of context-based error correction
specifically for the documents involving sensitive information.
This paper further illustrates the capability of sequence learning
with the help of feedback provided during each cycle of training,
yields relatively better results and have outsmarted the state-of-
the-art OCR error correction methods.

Index Terms—Document Understanding, Post IE Error Correc-
tion and Completeness, Sequence to Sequence Neural Machine
Translation

I. INTRODUCTION

From the very beginning of computers to the current digital era,

computers have been remarkably transformed and upgraded.

Among many applications, the main purpose of computer is to

process the information. In this age of automation, where the

primary aim is to digitize every thing, one of the essential task

is to capture and process all kinds of documents. While the

documents containing texts are rather interpretable but working

on the scanned images of the documents is certainly not an

effortless operation.

Digital Mailroom System is defined as the system which

receives the mails and processes them automatically. The

processing part in the mailroom system includes various

functionalities like digitizing the mail, it’s classification, dis-

tribution among the related personnel and so on. Optical

Character Recognition (OCR) [7] is the process that allows us to

convert documents such as scanned paper images, photographs

or invoices into machine readable and editable information

by applying various image processing methodologies [18],

[5]. These OCR systems have been used mainly to extract

handwritten or typed information in the digital mailroom

systems. The problem arises when these information extraction

systems cannot extract the exact information due to many

reasons like the source graphical document itself is not readable,

scanner has a poor result, characters in the document are too

close to each other resulting in problems like reading “Ouery”

instead of “Query”, “8” instead of ”3”, to name a few. It

is even more challenging to correct errors in proper nouns

like names, addresses and also in numerical values such as

telephone number, insurance number and so on. An example

of a sample invoice can be seen in Figure 1. Let’s suppose we

need to extract first name, last name, date of birth, insurance

number and hospital name from this invoice image, then some

of the possible errors in the extracted information along with

the respective ground truth is shown in Figure 2.

Fig. 1: Synthetic sample invoice image containing information

of the patient.

Fig. 2: Extracted information from the synthetic sample invoice

(as shown in Figure 1) and it’s corresponding ground truth.

Some of the errors in the extracted information can be observed

here.

Hence these erroneous words can simply affect the processing

of data specifically when the data is important such as personal

information of clients for a company. Hence, these problems

lead to manual labor where a person has to read all the extracted

information, distinguish the errors and correct the mistakes

every time. Our approach stands to overcome this human labor
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part which shall reduce the human effort involved in correcting

and completing the errors and missing information from the

extracted data.

A considerable amount of research has been conducted in

the area of post-Information Extraction (IE) corrections with

various techniques. Few of those techniques involve machine

learning algorithms to rectify the textual errors obtained from

OCR [11],[12],[10] while in another approach, they propose

the method to select most suitable correction among all of the

available options [13]. It has also been clearly illustrated that

the errors generated from the IE systems are more diverse than

the handwriting errors [6] and [9]. In one of the previous works

[14], NMT is already used in correcting post-OCR errors in

the historical documents.

In this paper, the data on which we worked on consists of

customer and company profiles based on the type of invoice

processed. For example, in a health care invoice the data might

have all the personal information such as First name, Last

name, Date of birth, Hospital Address, Type of Medicine and

so on. We have 2 cases for this data, one we generate ourselves

and call it as Synthetic data use case whereas another one is a

Private data use case from a health care insurance company.

One of the biggest problem in these use cases is that we cannot

take much help from any language model because most of

the values in the data are the proper nouns. To overcome this

problem we have introduced a new technique called Feedback

Learning over sequence to sequence learning technique.

The rest of the paper is organized as follows. Section II

explains the working of NMT whereas Section III describes

the Feedback Learning process and Section IV defines the

methodology used in detail. Section V illustrates the design

and experiments. Section VI discusses the evaluation of the

obtained results while Section VII concludes the paper.

II. SEQUENCE TO SEQUENCE NEURAL MACHINE

TRANSLATION

Neural Machine Translation (NMT) is a machine translation

method that uses deep neural networks. Back in the old days,

the usual method for the sentence-based translation system is

executed by dividing the source sentences into multiple pieces

and then translated them sentence-by-sentence, but this leads

to severe problems in the translation outputs because of the

many reasons like less fluency in the language, no or very less

context awareness, order of the translated sentence is totally

inaccurate according to the grammatical rules of the objective

language and so on. Lately, the sequence-to-sequence models

[17] [1] have done wonders not only in such kind of problems

but also in speech recognition and text summarization.

NMT is based on these sequence-to-sequence models which

basically mimics how human interprets any sentence. We

humans read the entire sentence, interpret the meaning, and

then map those words into respective translation. Same is the

case regarding working of NMT [14].

Fig. 3: A simple representation of an encoder-decoder archi-

tecture [14] which translates the English sentence "I am here"

into the German language.

The Figure [3] explains the workflow of NMT. First, the encoder

converts a source sentence into a "meaning" vector (array

of values) which is basically the latent representation of the

features. These features will be passed through a decoder and

the decoder network tries to learn them accurately, having the

vocabulary and grammar of the target language, it produces a

translation.

The implementation of these decoders and encoders have been

executed using different deep learning architectures but since

we are dealing with sequential data (one line per profile), The

Recurrent Neural Network (RNN) is the most suited to work

with encoder and decoder. The encoder in our model is uni-

directional LSTM whereas the decoder is AttentionalRNN. We

selected LSTM because of its outstanding performance in the

fields of speech recognition, language modeling, translation,

and image captioning.

III. FEEDBACK LEARNING

In this paper, we define the feedback learning as a learning

cycle in which the network is being trained by continuously

receiving an input from the user and it will learn those

patterns of correction and after some point in time, when the

network is properly trained it will start resolving those errors

automatically without the external help from the user. To make

it simpler, in the first feedback cycle, network after completing

the first training will translate the results, and those results

will be incorporated along with the training data in the second

feedback cycle. This approach benefits profoundly in the health-

care sector as most of the information in a patient’s billing

invoice is important and any missing or inaccurate report can

cause complication. With the objective of decreasing human

involvement, we focus on achieving a system that auto-corrects

the errors after the feedback cycle. So whenever the network

encounters similar faults or misplaced information in the data, it

predicts the appropriate output by keeping track of the context.

To implement this concept, we have used Neural Machine

Translation (NMT) that has been applied earlier in the past as

well for post-OCR correction [14].

IV. METHODOLOGY

In this section, we present the use of an open source library

called OpenNMT [8] which uses the neural sequence modeling
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to help improving the output of information extraction. We

compare our network model performance with the baseline

method of using the basic Hunspell [15] German dictionary

look-up to prove our point that the feedback Learning is not a

normal spell correction method.

A. Word Based Sequence-to-Sequence model

In this model, we use encoder-decoder architecture by treating

post-IE data as neural sequence translation problem. The model

is based on a word level tokenization, the encoder considers

each of the sentence as a sequence of words. The configuration

of our network is explained as below:

1) Layers : 2 (uni-directional RNN LSTM encoder and

Attentional RNN LSTM decoder)

2) Size of Layers : 512

3) Word Embedding Size : 512

4) Dropout Percentage : 30

5) Optimizer : Adam Optimizer

6) Learning Rate : 0.001

7) Beam Width : 4

8) Batch Size : 32

Here, we divide our problem into three sub-tasks Preprocessing,

Training and Inference.

1) Preprocessing

We consider the dataset generated using Faker [3] as described

in Section V-A1 and the very first step is to build source and

target vocabularies by specifying the size of vocabulary. The

data consists of parallel source (src) and target (trg) data with

one sentence per line and each of the fields are separated by

spaces. Each line in the source file corresponds to the equivalent

line in the target file. The source file consists of erroneous data

from the information extraction and the target file consists of

correct data which acts as ground truth. It indicates that the

error data (src) has to be translated into correct data.

2) Training

From the dataset, we prepared the configuration described

above is saved in the config file to train and evaluate in parallel

on our dataset. Validation in parallel helps in evaluating our

model convergence during the training. The training is done on

a CUDA [2] enabled NVIDIA GPU and the log information

of training is written to Tensorboard [19], which helps us to

visualize and monitor training and evaluation loss and few

other characteristics of our model like learning rate and data

distribution.

3) Inference

Once the training is completed, we have our saved model to

evaluate the performance of the model architecture against other

baseline methods. This saved model is now used to predict and

correct the mistakes from our test dataset. The predictions are

done by using beam [19] search where multiple hypothetical

target predictions are considered for each sequence during the

individual step and most relevant prediction is taken.

B. Dictionary look-up using Hunspell

In this method, we tokenize the test dataset and pass each

of the words to our custom dictionary using Hunspell[15] to

correct the mistakes and select the best prediction. Here we

use our own dictionary because the dataset in our experiment

contains proper nouns and using a generic German dictionary

would produce a bad result by default. Since our dataset has

numerical values such as insurance number and date of birth,

we correct this information using regular expression because

any dictionary would not be able to predict the numerical

mistakes.

V. EXPERIMENTAL DESIGN

In this section, we present the different kinds of datasets used

for training and testing our network model. We discuss how

each of the datasets is generated and give details of the test cases

involved in the translation of the output. After the prediction,

we evaluate the resulting output from our different test cases

and analyze the performance of the model later.

A. Datasets

1) Synthetic Use Case

This dataset is generated from an open source Python library

named Faker [3]. We considered private dataset as a base and

tried to replicate a similar format of data by generating data

from the library. For this experiment, we created synthetic

data having 150,000 user profiles with the corresponding

fields (FirstName, LastName, Address, Hospital Name, Hospital

Address, Sex, Date of Birth, Phone Number, Insurance Number).

In this data, there are 25,000 unique user profiles and the

rest 125,000 are the replication from the unique profiles with

different combinations of data fields mentioned above.

Now that we have ground truth, the challenge was to simulate

erroneous data almost identical to OCR output. For this purpose,

we used a document analysis tool OCRopus [16] to identify

the statistics of common information extraction errors in

a real-world scenario. From the character distribution stats

through OCRopus, we generated error data by replacing certain

characters from the ground truth with the identified errors.

For example (’a’ : ’o’, ’e’:’C’). We created artificial noise

by corrupting 95% of the data generated using Faker with

character replacements. We have assigned percentages to each

of the particular characters which need to be replaced. By the

end of this process, there will be two datasets, one with ground

truth and the other with an error data. For a real world scenario,

the erroneous data represents the extracted information coming

out from a digital mailroom system, and the ground truth

data represents the manually corrected information with the

help of human verification. The sample information sequence,
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ground truth and the respective error profile are mentioned

below. It is important to note that the delimiter between the two

consecutive information is space, however, it is also possible

that space could occur within the information element, for

example, the address might have multiple information such as

street name, postcode, city, and country (Leonid-Renner-Platz

71165 Wurzen Hamburg Germany) in the sample.

Information sequence in our dataset follow this order <Address,

Birthdate, Blood Group, First Name, Insurance Number,

Hospital Address, Hospital ID, Hospital Name, Hospital

City, Hospital Postcode, Last Name, Phone Number, Gen-

der>

Ground Truth : Leonid-Renner-Platz 71165 Wurzen Hamburg

Germany 2004-06-08 A+ Reimar 422893598198 Sankt Annen

Str.9 990702828 Krankenhaus St. Anna-Stift Löningen 49624

Wilms 03549 58413 M

Error Data: LConjd-RCnnCr-Platz 71165 WurzCn Hamburg,

GCrmony 2004-06-0O A+ Reimar 0422893598198 $ankt Amen

Str.9 960702328 Krankenhau$ St. Anna-Stift Löningen 49624

Wilm$ 03549 58413 M

The dataset is divided into train, test and validation sets having

two parallel documents (Ground truth and error data) since

OpenNMT requires a source(error data) and target(ground truth)

as an input during training. The distribution of the data into

Training, Validation, and Testing is elaborated in the Table I.

2) Private Use Case

This dataset is rather a small one as compared to synthetic but it

is based on the actual information from an insurance company

which makes this a critical use case. Since the number of given

unique profiles is only 94 which are certainly not enough to

train a deep neural network so we increased the number of

profiles by augmenting the data and introducing different errors

in a similar way as we have made in the synthetic data use

case. This approach leads to 20,000 profiles where each profile

is treated in a single sentence and we have corrupted 95% of

data in the same manner as we did for the synthetic data use

case. The distribution of the data into Training, Validation, and

Testing for this case is also explained in Table I.

Dataset Statistics for both of the use cases

Datasets # Sentences Training Validation Test

Synthetic 150,000 70,000 10,000 30,000

Private 20,000 12,000 1,000 3,000

TABLE I: Data distribution showing the number of samples

used in each case for the first feedback learning cycle where

one sample is a single user profile.

The Table II illustrates the data distribution of feedback cycle

2 which is basically the second iteration. In this loop, we

combine the prediction results obtained from the feedback

cycle 1 with our training data. Hence, the size of the training

set for synthetic use will be 100,000 samples (70,000 + 30,000

from feedback cycle 1). After updating the vocabularies in the

preprocessing stage, we train the model again for further 10,000

steps in the synthetic use case and 5,000 more steps in private

use case. While deciding the number of steps in the second

feedback learning cycle, the evaluation loss is considered as

a significant factor. Once the model is trained, we infer the

test set from Table II on both of our models and calculate the

prediction accuracy.

Dataset Statistics for both of the use cases

Datasets # Sentences Training Validation Test

Synthetic 150,000 100,000 10,000 30,000

Private 20,000 15,000 1,000 3,000

TABLE II: Data distribution showing the number of samples

used in each case for the second feedback learning cycle where

one sample is a single user profile.

VI. PERFORMANCE EVALUATION

In this section, we present the results of the various test cases.

This helps us to understand whether the predicted output of

our deep learning trained network has improved or not. The

accuracy is defined as how identical is the predicted document

with respect to the target document. To calculate the accuracy

we use Levenshtein distance[4] as it helps in identifying the

number of edit operations required to transform the error data

to ground truth and it gives the similarity measure between

two documents. In all of our test cases, we have used token

level error measurement. The following test cases were used :

• Test Case 1 : In this experiment, we used the test set that

was obtained by splitting the erroneous data.

• Test Case 2 : In this experiment, we introduced a new

set of errors to test case 1. We did this to check if the

model still predicts the output sequence correctly even

when it has not seen or trained on new kind of errors.

Example : Lconid-Rcnncr-Platz 77165 Wurzen Hamburg

Gcrmany 2oo4-06-08 A+ Reiiimar 0422893598198 Sankt

Annen Str.9 990702828 Krankenhaus St.Anna-Stift Leanin-

gen 49624 Wiiilms 03549 58413 M

• Test Case 3 : In this experiment, we removed a few data

fields from the ground truth that was generated initially.

Example : Leonid-Renner-Platz 71165 Wurzen Hamburg

Germany 2004-06-08 A+ Sankt Annen Str.9 990702828

Krankenhaus St. Anna-Stift Löningen 49624 Wilms 03549

58413 M

• Test Case 4 : In this experiment, we removed one random

field on even line and two random fields if it’s an odd

line in the dataset.

Example : LConjd-RCnnCr-Platz 71165 Hamburg

GCrmany 2004-06-0O A+ Reimar 0422893598198 $ankt

Amen Str.9 Krankenhau$ St.Anna-Stift Löningen 49624

Wilm$ 03549 58413 M

• Hunspell Case 5 : This experiment is followed on

the basis of the second approach mentioned in the
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methodology (IV-B) of using Hunspell[15] to check the

prediction.

A. Synthetic Use Case

The Table III explains the results for the individual test cases

which were elaborated earlier and it can be clearly seen that

our model has predicted better results in all of the first four test

cases. Another important thing to shed light on is the difference

between the performances from the first four cases and the

fifth case which is the Hunspell. This clearly demonstrates

that the feedback learning technique has absolutely outsmarted

the use of the dictionary in post-IE correction specially when

the dataset consists of many proper nouns while the Table IV

presents the results of Table III showing the improvement in

accuracy after the second feedback learning cycle.

Test Cases Accuracy Before Accuracy After

1 27.14 93.21

2 27.03 92.47

3 38.80 91.48

4 21.08 90.89

5 27.14 31.39

TABLE III: Accuracy in each of the test case before and after

applying the trained model on extracted information in the first

feedback learning cycle.

Test Cases Accuracy Before Feedback Accuracy

1 93.21 94.91

2 92.47 93.22

3 91.48 93.18

4 90.89 92.63

5 31.39 32.12

TABLE IV: Accuracy in each test case before and after applying

the trained model on extracted information in the second

feedback learning cycle.

The Figure [4] displays the evaluation loss of our training

model. The training has been stopped by us after 15,000 steps

since the evaluation loss starts ascending and could cause the

model to overfit. The orange line indicates the training loss

while the blue line implies the evaluation loss.

B. Private Use Case

For the private use case, we have also achieved fairly good

results. The Table V describes the result on post OCR

information extraction done on the data directly taken from

the OCR output.

The Figure [5] is the evaluation loss of private use case and

the training is done only until 10,000 steps as the dataset is

small and it has least validation loss at that particular point.

Fig. 4: Training progress of the network after every 2,000

steps on Synthetic use case to monitor the evaluation loss. The

model starts to converge after 15,000 steps.

Test Cases Accuracy Before Feedback Accuracy

1 59.45 91.15

TABLE V: Accuracy of Private test case before and after

applying the trained model on extracted information in the first

feedback learning cycle.

The Table VI represents the results of Table V and it clearly

depicts the improvement in accuracy after the second feedback

learning cycle in the private use case as well.

Fig. 5: Training progress of the network after every 1,000 steps

on Private use case to monitor the evaluation loss. The model

starts to converge after 9,000 steps

Test Cases Accuracy Before Feedback Accuracy

1 91.15 92.61

TABLE VI: Accuracy of Private test case before and after

applying the trained model on extracted information in the

second feedback learning cycle.

C. Significance Test

We wanted to prove that the new model trained in the second

feedback cycle having the prediction results from the first

feedback cycle would give us better results as compared to

the model trained in the first feedback cycle. We proposed

a null hypothesis which is precisely the contradiction of our

assumption. In order to reject or accept the null hypothesis,

we performed the significance test by applying reinforcement

sampling technique and divided our synthetic test set of 30,000

samples into 10 pieces of 3,000 samples each and a private

test set of 3,000 samples into 10 batches of 300 samples.

We calculated the prediction accuracy by inferring each of

these samples and our t-test value identifies that the new

model produced after second feedback cycle has a significant
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improvement in performance and predicted better results. This

also proves our assumption and rejects the null hypothesis. It

also helps us recognizing another point that retraining with

the predicted output will always improve the results each time

accounting to the feedback patterns and reduces the human

involvement in correcting the errors with the increase in the

size of the dataset.

VII. CONCLUSION

Post-IE error corrections have become a vital step for pro-

cessing information from the graphical documents. Sometimes

these corrections develop into a challenging task, specially

when the data is not prominent in the scanned images, along

with it, when we are treating proper noun error correction. In

this paper, we proposed the new feedback learning technique

that explains how erroneous words after information extraction

can be corrected by reducing the human effort in the detection

and correction of post-IE errors. We have implemented this

concept through deep learning architecture using OpenNMT

which is an open source tool. Our method manages to convert

27.14% accuracy of information extraction in test case 1 into

93.21% accuracy of information extraction after first feedback

learning cycle and this accuracy is further increased up to

94.91% in the second feedback learning cycle in the synthetic

use case. While in the private use case it, converts 59.45%

accuracy of information extraction for the test case 1 into

91.15% accuracy after first feedback learning cycle which is

further improved to 92.61% in the second feedback learning

cycle.

Our current results have involved word based tokenization;

however, it would be interesting to explore the current approach

using character-based tokenization. Taking the limited size of

the dataset into consideration, we have used uni-directional

LSTM. In case of a relatively bigger dataset, bi-directional

LSTM can be used which may lead to even better performances.

Exploiting this feedback learning approach on other supervised

classification problems could be a thought-provoking idea.
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