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Feedback Limitations in Nonlinear Systems:
From Bode Integrals to Cheap Control

M. M. Seron, J. H. Braslavsky, P. V. Kokotović, and D. Q. Mayne

Abstract—Feedback limitations of nonlinear systems are investigated
using the cheap control approach. The main result is that in the limit,
when the control effort is free, the smallest achievableL2 norm of the
output is equal to the least amount of control energy (L2 norm) needed to
stabilize the unstable zero dynamics. This nonlinear result is structurally
similar to an earlier linear result by Qiu and Davison (1993), which, in
turn, is connected with a Bode-type integral derived by Middleton (1991).

Index Terms—Cheap optimal control, nonlinear systems, nonminimum
phase systems, performance limitations, zero dynamics.

I. INTRODUCTION

In this paper we investigate and quantify obstacles limiting the
performance of nonlinear systems. We clarify which structural prop-
erties of the nonlinear system prevent any feedback controller from
reducing to zero theL2 norm of the output.

For linear systems such questions have been answered by classical
and modern results, extensively reviewed in a recent monograph [1].
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However, most of these linear results are formulated in the frequency
domain and are not directly applicable to nonlinear systems.

Feedback limitations of linear systems have also been approached
via “cheap” optimal control, which we now extend to nonlinear
systems. The key idea is that an optimal controller will be close
to its ideal performanceif the control effort is cheap and will attain
it if the control effort is free. The penalty on the control effort is
thus scaled by a small parameter" > 0 and the ideal performance is
evaluated in the limit as" ! 0.

Although the linear cheap control problem is well understood [2],
[3], we revisit it in Section II for two reasons. First, we use it to
introduce a singular perturbation technique which we subsequently
apply to the nonlinear problem. This parallel development makes the
structural similarities of the two problems more apparent. Second,
we point out to a heretofore unnoticed connection between Bode-
type integrals and linear cheap control. Specifically, we show that a
T -integral formula derived by Middleton [4] reduces to a limiting
cheap control formula derived by Qiu and Davison [3]. The new
insight gained is that the value of theT -integral is, in fact, the least
amount of energy (L2 norm) required to stabilize the unstable zeros
of the linear system.

Because of this insight, the nonlinear cheap control analysis in
Section III focuses on the unstable zero dynamics—the nonlinear
counterpart of nonminimum-phase (NMP) zeros. For simplicity, we
assume that the zero dynamics areantistable(asymptotically stable
in reverse time) and affinely driven by the output and that the
relative degree of the nonlinear system is one. In this way we avoid
complicated derivations and gain in clarity. Our main result is that
in the limit, as " ! 0, the cheap control problem reduces to the
minimum energy (L2 norm) problem in which the system output
is used to stabilize the nonlinear zero dynamics. This result is a
nonlinear counterpart of the Qiu–Davison formula, through which it
is also connected with Middleton’s integral formula.

II. FEEDBACK LIMITATIONS IN LINEAR SYSTEMS

A. Cheap Optimal Control

The cheap control problem for a stabilizable and detectable linear
time-invariant system

_x(t) = Ax(t) +Bu(t); x 2 R
n
; u 2 R

m

y(t) = Cx(t); y 2 R
m

(1)

consists of finding a stabilizing state feedback control which mini-
mizes the functional

J" =
1

2

1

0

[yT (t)y(t) + "
2
u
T (t)u(t)] dt (2)

when " > 0 is small.
As "! 0, the optimal valueJ�" tends toJ�0 , theideal performance.

Kwakernaak and Sivan proved thatJ�0 = 0 if and only if the system
(1) is minimum phase and right invertible[2, Th. 3.14]. Qiu and
Davison derived an explicit formula as a function of the NMP zeros
[3]. We will rederive the Qiu–Davison formula under the assumption
that the system (1) has relative degree one (rank CB = m). Then,
a change of coordinatesx 7! (y; z) exists which transforms (1) into
the form

_y = A1y + A2z +B1u; B1 = CB

_z = B0y + A0z; y 2 R
m
; z 2 R

n�m
:

(3)
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The zeros ofC(sI �A)�1B are the eigenvalues ofA0. We assume
that all the zeros are NMP, that is,�A0 is Hurwitz.

We now minimize the functional (2) for the system (3). The
associated algebraic Riccati equation is

A1 A2

B0 A0

T

P (") + P (")
A1 A2

B0 A0

+
I 0
0 0

=
1

"2
P (")

B1B
T
1 0

0 0
P ("): (4)

To find the limit of the positive definite solutionP (") as " ! 0,
we must resolve the singularity at" = 0. Following Jameson and
O’Malley [5] we seekP (") in the form of a series in"

P (") =
"P1 "P2
"PT

2 P0 + "P3
+O("2) (5)

whereP0; P1; P2; andP3 are independent of". The substitution of
(5) into (4) yields

I � P1B1B
T
1 P1 +O(") = 0 (6)

B
T
0 P0 � P1B1B

T
1 P2 +O(") = 0 (7)

A
T
0 P0 + P0A0 � P

T
2 B1B

T
1 P2 +O(") = 0: (8)

Setting " = 0, we find P1 = (B1B
T
1 )
�1=2 from (6), andP2 =

(B1B
T
1 )
�1=2BT

0 P0 from (7), and, substituting in (8), we obtain

A
T
0 P0 + P0A0 = P0B0B

T
0 P0: (9)

Because system (3) is stabilizable and�A0 is Hurwitz, the unique
positive definiteP0 exists. By equating to zero theO(") terms (not
shown in (6)–(8)) we findP3 = P0B0(B1B

T
1 )
�1=2BT

0 P0.
Finally, the optimal valueJ�" = V (y; z; ") is calculated to be

J
�

" =
1

2
z
T
P0z +

"

2
y +B

T
0 P0z

T

� B1B
T
1

�1

y +B
T
0 P0z +O("2)

= V0(z) + "V1(y; z) +O("2): (10)

Its limit as " ! 0

V0(z) =
1

2
z
T
P0z (11)

defines theideal performanceof system (3).
We interpret this result via theminimum energy problem: Find y

to stabilize _z = A0z + B0y and to minimize

J =
1

2

1

0

y
T (t)y(t)dt: (12)

Here the system outputy acts as the control variable for the zero
dynamics. The optimal value isV0(z) given in (11). This means
that the limiting optimal value for the full system is equal to the least
amount of energy required to stabilize the zero-dynamics subsystem.

B. Singular Perturbation Analysis

When the optimal feedback control

u
� = �

1

"
B

T
1 B1B

T
1

�1=2
y +B

T
0 P0z +O(")

is applied to (3), the resulting closed-loop system is in the standard
singular perturbation form

" _y = � B1B
T
1

1=2
y +B

T
0 P0z +O(")

_z = B0y + A0z:
(13)

For a slow–fast analysis [6] we set" = 0 and gety = �BT
0 P0z.

Then, substituting in thez-equation, we find that the slow subsystem
of (13) is the optimal zero-dynamics subsystem

_z = �P�10 A
T
0 P0z: (14)

These slow dynamics evolve in theslow invariant subspacey +
BT
0 P0z = 0, while the fast dynamics represent the convergence of

y+BT
0 P0z to zero. The two parts of the optimal value areV0(z) slow

and"V1(y; z) fast. We note that the eigenvalues of (14) are the mirror
image of the NMP zeros of (3), a fact known from [2, Th. 3.12].

C. Cheap Control and the BodeT -Integral

We now apply the above results to the problem of regulating the
outputy of (3) to a constant setpointr. With the feedforward term
�u = �B�1

1
(A1 � A2A

�1

0
B0)r we place the equilibrium of (3) at

y = r. Introducing the error variablese = y � r; ~z = z + A�1
0
B0r,

and ~u = u � �u, we rewrite (3) as

_e = A1e+A2~z +B1~u

_~z = A0~z +B0e:
(15)

Then the cheap control problem is the same as for (3), but with(e; ~z)
replacing(y; z). The ideal performance isV0(~z). We are interested in
V0(~z(0)) for the initial conditione(0) = r; ~z(0) = A�1

0
B0r, which

corresponds to the statey being transferred from zero tor.
Qiu–Davison Formula: For the initial conditione(0) = r; ~z(0) =

A�1
0
B0r, the ideal performance of (15) is

V0(~z(0)) =
1

2
r
T
Hr; where trace H = 2

k

i=1

1

�i
(16)

and�1; � � � ; �k are the unstable eigenvalues ofA0, that is the NMP
zeros of system (15). This formula is obtained from (11) and (9)

V0(~z(0)) =
1

2
~zT (0)P0~z(0)

=
1

2
r
T
B

T
0 A

T
0

�1

P0A
�1

0 B0r
1

2
r
T
Hr

trace H = trace P
1=2
0

A
�1

0 B0B
T
0 A

T
0

�1

P
1=2
0

= trace P
1=2
0

A
�1

0 P
�1=2
0

+ P
�1=2
0

A
T
0

�1

P
1=2
0

= 2 trace A�10 = 2

k

i=1

1

�i
:

How is this result related to the performance limitations defined
by well-known Bode integrals? An integral formula for the comple-
mentary sensitivity functionT derived by Middleton [4] is

1

�

1

0

logjT (j!)j
d!

!2
+

1

2Kv
=

k

i=1

1

�i
(17)

where Kv is the velocity constant. The glaring similarity of the
Middleton formula (17) and the Qiu–Davison formula (16) has,
apparently, remained unnoticed.

Proposition (Cheap Control and BodeT -Integral): Let G andK
be the single-input/single-output transfer functions of a plant and a
minimum phase controller, respectively. Suppose thatT = GK(1 +
GK)�1 is stable andT (0) = 1. Then

1

�

1

0

logjT (j!)j
d!

!2
+

1

2Kv
= lim

"!0

1

2

1

0

e
2(t)dt

wheree(t) = y(t) � r is the error in transferring the system from
rest to the setpointr = 1 using the cheap optimal control.

A dual result relates the classical Bode integral for the sensitivity
function S [7] with the minimum energy (L2 norm) required to
transfer the system to rest from the initial condition originating from
a unit impulse at the input [8]. Similar relations have been derived
in linear filtering [9].
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III. FEEDBACK LIMITATIONS IN NONLINEAR SYSTEMS

A. Cheap Optimal Control

We now proceed to the main subject of this paper, i.e., the lowest
attainableL2 norm of the outputy of the nonlinear system

_y = f(y; z) + g(y; z)u; y; u 2 Rm

_z = f0(z) + g0(z)y; z 2 Rn�m
(18)

wheref(0; 0) = 0; f0(0) = 0. The following assumption implies
that the relative degree of (18) is one and that its zero dynamics are
governed by _z = f0(z) [10].

Assumption I: There exists > 0 such that the smallest singular
value ofg(y; z) is greater than or equal to for all y andz.

For the nonlinear system (18), the cheap optimal control problem
consists of finding a feedback controlu which guarantees asymptotic
stability and minimizes the functional (2) when" > 0 is small. It is
well known (e.g., [11, p. 91]) that this problem has a solution if there
exists a positive semidefinite optimal valueV (y; z; ") which satisfies
the Hamilton–Jacobi–Bellman equation (HJBE)

@V

@y
f(y; z) +

@V

@z
[f0(z) + g0(z)y] +

1

2
yT y

�
1

2"2
@V

@y
g(y; z)gT (y; z)

@TV

@y
= 0; V (0; 0; ") = 0 (19)

and such that the feedback control

u = �
1

"2
gT (y; z)

@TV

@y
(20)

asymptotically stabilizes (18). We are interested in the limit of
V (y; z; ") as " ! 0. At " = 0 the HJBE (19) has a singularity,
which we try to resolve by seeking a solution in the form

V (y; z; ") = V0(z) + "V1(y; z) +O("2): (21)

Its substitution in (19) yields

@V0
@z

[f0(z) + g0(z)y] +
1

2
yT y �

1

2

@V1
@y

g(y; z)gT (y; z)
@TV1
@y

+O(") = 0: (22)

A closer examination of (22) shows that the first two terms
represent the Hamiltonian for the minimum energy problem: Find
y to asymptotically stabilize the zero-dynamics subsystem

_z = f0(z) + g0(z)y (23)

and to minimize the cost (12). We therefore make the following
assumption.

Assumption 2:The zero dynamics of (18) areantistable ( _z =
�f0(z) is asymptotically stable), and there exists a positive definite
function V0(z) that satisfies the HJBE

@V0
@z

f0(z)�
1

2

@V0
@z

g0(z)g
T
0 (z)

@TV0
@z

= 0; V0(0) = 0 (24)

and such that the feedback control

y = �0(z) �gT0 (z)
@TV0
@z

(25)

achieves global asymptotic stability (GAS) of (23).
With V0(z) so defined, we return to (22), add and subtract

1

2
k�0(z)k

2 = 1

2
kgT0 @

TV0=@zk
2, and, using (24), obtain

1

2
[y � �0(z)]

T [y � �0(z)]�
1

2

@V1
@y

g(y; z)gT (y; z)
@TV1
@y

= O("):

(26)

Defining� = y� �0(z); ~g(�; z) = g(�+�0(z); z), and ~V1(�; z) =
V1(� + �0(z); z), and letting" = 0, we rewrite (26) as

1

2
�T � �

1

2

@ ~V1
@�

~g(�; z)~gT (�; z)
@T ~V1
@�

= 0: (27)

This is the HJBE for the cheap control problem: Findu to stabilize
the system_� = ~g(�; z)u, wherez is treated as a constant vector,
and to minimize the functional1

2

1

0
[�T �+ "2uTu] dt. The optimal

value for this problem is"~V1(�; z) and the optimal control is

u = �
1

"
~gT

@T ~V1
@�

= �
1

"
~gT (~g~gT )�1=2�: (28)

Thus, the original cheap control problem (18), (2) has decomposed
in two subproblems: a minimum energy problem for the zero-
dynamics subsystem (23) and a cheap control problem to rapidly
regulate� = y � �0(z) to zero.

B. Singular Perturbation Analysis

We treat (28) as an approximation of the optimal control (20) and
apply it to (18). In the(�; z)-coordinates, the resulting feedback
system is

" _� = �[~g(�; z)~gT (�; z)]1=2� + "�(�; z)

_z = f0(z) + g0(z)�0(z) + g0(z)�
(29)

where�(�; z) = f(� + �0(z); z) � _�0(z).
This system is in standard singular perturbation form [6]. We

investigate its stability properties. In the slow manifold� = 0 the
system reduces to the slow subsystem

_z = f0(z) + g0(z)�0(z) (30)

which, by Assumption 2, is GAS. Convergence to the slow manifold
is governed by the fast (boundary-layer) subsystem

d�

d�
= �[~g(�; z)~gT (�; z)]1=2�; � =

t

"
(31)

with z treated as a constant vector. The fast subsystem (31) is globally
exponentially stable by Assumption 1.

As shown in [12], these stability properties of the slow and fast
subsystems (30) and (31) guarantee semiglobal (in") boundedness
of the solutions of (29). For each pair of positive numbers(R; �),
there exists"R > 0 such that for all" 2 (0; "R] the solutions of (29)
starting in the ballBR of radiusR enter in finite time the ballB�.

However, this is not sufficient for asymptotic stability of the
equilibrium (�; z) = (0; 0): the system" _� = ��+ "z; _z = �z3 + �
has slow and fast subsystems as above, but for" > 0 its equilibrium
is unstable [12]. As suggested in [13], we need to restrict the
interconnection�(�; z).

Lemma (Asymptotic Stability):Supposek�(�; z)k � k1k�k +
k2k�0(z)k in B� for some� > 0. Then, under Assumptions 1 and
2, to eachR > 0 there corresponds an"R > 0 such that for all
" 2 (0; "R] the equilibrium(�; z) = (0; 0) of (29) is asymptotically
stable and its basin of attraction containsBR.

Proof: Using (24) and (25), the derivative of the Lyapunov
function W (�; z) = 1

2
�T � + V0(z) along the solutions of (29) in

B� satisfies

_W � �
1

2

k�k
k�0(z)k

T
2 

" � k1 1 + k2
1 + k2 1

k�k
k�0(z)k

(32)

where is given by Assumption 1.
Thus, _W � 0 for all " 2 (0; "a], where"a = =[(1+k2)

2+2k1].
Pick c such that
c = f(�; z) : W (�; z) � cg � B� . Then, by
LaSalle’s invariance theorem, every solution of (29) starting in
c
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converges to the largest invariant set contained inE = f(�; z) :
_W = 0g � f(�; z) : � = 0; �0(z) = 0g. Because, by Assumption 2,
y = �0(z) asymptotically stabilizes (23), this invariant set is just
(�; z) = (0; 0), which is then asymptotically stable with a basin of
attraction that contains
c.

Next, choose� > 0 such thatB� � 
c. Then, [12, Th. 1]
guarantees the existence of"R 2 (0; "a] such that for all" 2 (0; "R]
the solutions of (29) starting inBR enter B� in finite time and
thereafter converge to(�; z) = (0; 0).

C. Limitations to Nonlinear Ideal Performance

Thus far we have established thatV0+"V1 satisfies the HJBE (19)
with anO(") error and that the corresponding control, given by (28)

u = �
1

"2
gT

@T (V0 + "V1)

@y
= �

1

"
~gT

@T ~V1
@�

= �
1

"
~gT (~g~gT )V 1=2�

asymptotically stabilizes (18), written in closed-loop form as (29).
Our analysis has decomposed the optimal cheap control problem in

two separate subproblems: a minimum energy problem for asymptotic
stabilization of the zero-dynamics subsystem (23) and a cheap control
problem for asymptotic stabilization of the boundary-layer subsystem
(31). The solutions of (29), as well as those of (18) and (20), begin by
rapidly (“instantaneously” as"! 0) converging to the zero-dynamics
manifold� = y��0(z) = 0. After that, they settle in a slow motion
during which the zero dynamics are controlled byy = �0(z). The
cost of the rapid transient vanishes as" ! 0. What remains is the
costV0(z) of the slow motion needed to stabilize the unstable zero
dynamics. The overall cost cannot be reduced belowV0(z). We are
now ready to state and prove our main result.

Theorem (Ideal Performance):Under the conditions of the
lemma, for every initial state(y(0); z(0)) for which the cheap
control problem (18), (2) has a solution, the optimal value satisfies

J�" = V (y(0); z(0); ") = V0(z(0)) +O(") (33)

and thus the ideal performance isV0(z(0)), the optimal value of
the minimum energy problem for the zero-dynamics subsystem (23)
controlled by the outputy.

Proof: We prove that the cost produced by the control (28)
satisfies (33). Since the optimal control cannot produce a larger cost,
(33) will therefore hold for the optimal value. Lett� be the finite
time such that(�(t); z(t)) 2 B� for all t � t� . By integrating (32)
over [t�;1) we obtain

1

t

1

2
k�0(z)k

2 + (1 + k2)k�0(z)kk�k+


"R
� k1 k�k2 dt

� V0(z(t�)) +
1

2
k�(t�)k

2 <1: (34)

This, along with the boundedness of the solutions of (29) on[0; t� ],
guarantees that the cost

J" =
1

0

1

2
k�0(z)k

2 + �T0 (z)�+ k�k2 dt (35)

is finite. Observing that (24) and (29) yield1
2
k�0(z)k

2+�T0 (z)� =

� _V0, we express (35) as

J" = V0(z(0)) +
1

0

k�k2 dt: (36)

Multiplying the � equation in (29) by�T

�T _� = �
1

"
�T (~g~gT )1=2� + �T� � �



"
k�k2 + �T�

and integrating we get



"

1

0

k�k2 dt �
1

2
k�(0)k2 +

t

0

�T�dt+
1

t

�T�dt: (37)

Since, by assumption, the boundk�k � k1k�k+ k2k�0k holds on
[t�;1), it follows from (34) and (37) that 1

0
k�k2 dt in (36) is

O("), which proves (33).
Thus, the lowest attainableL2 norm of the output of (18) is the least

amount of energy required to stabilize the unstable zero dynamics.
Although essentially nonlinear, this result is structurally similar to its
linear counterpart.

It is also of interest to find a nonlinear analog of the property that,
as " ! 0, the finite poles of the optimal linear system converge to
the mirror image of the NMP zeros. An expression of this property
is that the zero dynamics are “as stable in the closed loop as they are
unstable in the open loop.” UsingV0(z) as a Lyapunov function we
reveal an analogous property of the nonlinear zero dynamics.

Corollary (Mirroring Property): For the open- and closed-loop
zero dynamics,V0(z) satisfies

@V0
@z

f0(z) = �
@V0
@z

[f0(z) + g0(z)�0(z)]: (38)

This identity is immediate from (24) and (30).

D. Example

The essentially nonlinear character of the obtained results will be
illustrated on the system

_y = 6z5 + u

_z = z3 + y:
(39)

Its linearization _y = u; _z = y is not detectable so that the linear
analysis does not apply.

Upon the substitution ofV = V0 + "V1 + O("2) in the HJBE
(19), we obtain

@V0
@z

[z3 + y] +
1

2
y2 �

1

2

@V1
@y

2

+O(") = 0: (40)

The HJBE for the minimum energy stabilization of the zero-dynamics
subsystem_z = z3 + y is

@V0
@z

z3 �
1

2

@V0
@z

2

= 0; V0(0) = 0: (41)

The optimal valueV0(z) and the corresponding control law are

V0(z) =
z4

2
; y = �0(z) = �

@V0
@z

= �2z3:

The substitution ofV0(z) = z4=2 and " = 0 in (40) yields
@V1=@y = y + 2z3, and, hence

u = �
1

"2
@(V0 + "V1)

@y
= �

1

"

@V1
@y

= �
1

"
(y + 2z3) = �

1

"
�:

When this control is applied to (39), the closed-loop system is

_� = �
1

"
� + 6z2�; _z = �z3 + �: (42)

Our proof of asymptotic stability of (29) was in two steps: we first
showed semiglobal boundedness and then local asymptotic stability.
However, for (42) we give a direct proof usingW = �2=2 + z4=2
as a Lyapunov function. Its derivative along the solutions of (42)

_W = �
�
z3

T 1

" � 6z2 �1
�1 2

�
z3

is negative definite if12z2 < (2 � ")=". For " < 1 this inequality
is satisfied ifz2 � (12")�1. Therefore, the invariant setf(�; z) :
�2 + z4 � (12")�2g belongs to the basin of attraction of the
equilibrium (�; z) = (0; 0) of (42). We conclude that the lowest
achievableL2-norm of y in (39) is J�0 = V0(z) = z4=2.
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IV. CONCLUSION

The main result in this paper establishes that the ideal performance
of a nonlinear system, that is the lowest attainableL2 norm of
its output, is the least amount of energy required to stabilize the
zero dynamics. Thus, unstable zero dynamics represent a structural
obstacle to attaining zero ideal performance. Although our results are
for systems of relative degree one with a local growth condition, a
similar structural obstacle is present in a wider class of nonlinear
systems for which its quantification would require a more elaborate
analysis.
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A New Representation of the Parameters of Lifted Systems

Leonid Mirkin and Zalman J. Palmor

Abstract—Lifting, i.e., discretization with built-in intersample behavior,
is an emerging technique for the analysis and design of sampled-data
systems. The applicability of the lifting technique, however, is severely
limited owing to difficulties in dealing with the parameters of the lifted
systems, which are operators overinfinite-dimensionalspaces rather than
finite-dimensional matrices. In this paper, a new representation for the
parameters of the lifted systems is proposed. The technical machinery
developed in the paper based on this representation simplifies consider-
ably algebraic manipulation over parameters of the lifted systems, thus
extending the scope of applicability of the lifting technique. To illustrate
the advantages of the proposed approach, the computational issues in the
sampled-dataHHH111 problem are considered.

Index Terms—Generalized sampling and hold circuits, lifting technique,
sampled-data systems.

I. INTRODUCTION

The main motivation for this paper comes from the consideration
of the intersample behavior of sampled-data systems, that is systems
consisting of a continuous-time plant and a discrete-time controller,
which are connected by sampling and hold devices. Dealing with the
continuous-time behavior of sampled-data systems is complicated by
1) the simultaneous presence of continuous- and discrete-time signals
and 2) inherent periodicity of the interconnection of a sampler, a
discrete-time controller, and a hold. An elegant way to circumvent
these difficulties is offered by the so-calledlifting technique[1]–[3]
(see also [4] and [5]), which allows one to convert periodic continu-
ous/discrete systems to equivalent, in some sense,pure discrete-time
shift-invariant ones.

Although the reduction of hybrid periodic problems to discrete-
time time-invariant ones is clearly advantageous, the lifting method
gives rise to another problem: input and output spaces of the lifted
systems become infinite-dimensional. Conceptually, this fact does
not lead to considerable difficulties since many LTI system notions
have almost one-to-one counterparts in the lifted domain (see [3]
and [6]). Moreover, the preservation of the state-space dimensions
under lifting guarantees that any observer-based (includingH2 and
H1) controller in the lifted domain has a finite state dimension.
Thus, analytic solutions to various sampled-data analysis and design
problems can be obtained in terms of the parameters of the lifted
models in quite a straightforward manner. Yet the latter parameters
are no longer finite-dimensional matrices but rather operators over
infinite-dimensional input and/or output spaces, such asL2[0; h]. For
this reason, the usefulness of a lifted solution relies essentially upon
the ability to treat such infinite-dimensional operators.

Unfortunately, lifted parameters are not readily treatable. Con-
sequently, sampled-data problems solved so far by means of the
lifting technique share one key property: the possibility to separate
beforehand the infinite dimensionality from the design by converting
the problem to an equivalent finite-dimensional one. If a problem
admits such a separation, the complexity of the operations over the
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