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ABSTRACT Design of tracking controller for quadrotor is an important issue for many engineering

fields such as COVID-19 epidemic prevention, intelligent agriculture, military photography and rescue

nowadays. This study applies the feedback linearized method and linear quadratic regulator (LQR) method

using particle swarm optimization (PSO) to analysis and stabilize the highly nonlinear quadrotor system

without applying any nonlinear function approximator that includes neural network approach and fuzzy

approach. The article proposes a new method based on the firstly proposed convergence rate formula to

achieve the optimal weighting matrices of LQR such that the composite controller can reduce the amplitudes

of system control inputs. Determination of the LQR tuning parameters is conventionally achieved via trial

and error approach. In addition to being very troublesome, it is difficult to find the globally best tuning

matrices with LQR method. This article firstly uses the convergence rate formula of the nonlinear system

as the fitness function of LQR approach by using PSO to take the place of the trial and error method.

The generalities and implications of proposed approach are globally valid, whereas the Jacobian linearized

approach is locally valid due to the Taylor expansion theorem. In addition to these two major achievements,

the significant innovation of the proposed method is to possess ‘‘simultaneously’’ additional performances

including the almost disturbance decoupling, input amplitude reduction, tuning parameter optimization and

globally exponential stability performances. Comparative examples show that the convergence rate with our

proposed optimal controller using the PSO algorithm is larger than the fuzzy method, and better than the

singular perturbation method with high-gain feedback.

INDEX TERMS Almost disturbance decoupling, COVID-19 epidemic prevention, feedback linearized

approach, linear quadratic regulator, particle swarm optimization, quadrotor.

I. INTRODUCTION

The air vehicles can be divided into two types including pro-

peller aircraft and jet aircraft according to the engine propul-

sion method used. Propeller aircraft is a type of fixed-wing

aircraft that uses turboprop or reciprocating engines to pro-

vide power [1], [2]. Early aircrafts are basically propeller air-

crafts. Although jet aircrafts appear later, propeller aircrafts

are still widely used. The propeller aircraft can propel forward

mainly due to two functions. One is the design of the blade

shape, which makes the front and rear air speed difference.

According to Bernoulli’s law, the resulting speed difference

allows the aircraft to gain forward force. The second is

the well-known force and reaction force. Pushing the air
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backward, the aircraft gains forward power. A jet is an aircraft

that uses a jet engine as the source of propulsion [3], [4]. It is

not same as the traditional propeller aircraft except for the

power system used, and the suitable flight environment is also

different. Propeller aircrafts need to disturb the surrounding

air through the propeller to achieve the purpose of forward

propulsion, so it cannot fly in the high altitude where the

air density is too thin. On the contrary, due to the different

operating principles of the engine, the jet needs to be at

an altitude of 10,000 to 15,000 meters and achieve the best

propulsion efficiency. Some significant control technologies,

such as lift control method [5] and thrust control method [6],

have been used to design robust controllers for propeller

aircrafts. PID approach [7], model reference adaptive con-

trol [8] and backstepping control [8] are applied to address the

controller design problem for jet aircrafts. In the past decades,
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unmanned aerial vehicles have attracted many researches.

This research interest is mainly based on the low cost of

unmanned aerial vehicle and its large-scale industrial applica-

tions in different fields. Among all these drones, quadrotors

are considered the most useful due to their flighting modes

and simple flighting operations. Quadrotors are widely used

in the practical industries including delivery, agriculture, pho-

tography, entertainment and rescue [9], [10]. They can fly

through complicated structures and check dirty underground

tunnel according to their hovering capabilities and maneuver-

ability. Quadrotors have four symmetrical propellers which

can produce great thrust in the vertical direction [11]. They

have vertical take-off, hovering and landing capabilities like a

helicopter. These important functionsmake them be attractive

for many significant industrial applications, such as cooper-

ative operations, academic research and performing tasks in

harsh environments.

The researches related to the quadrotors are extensive and

many significant approaches, such as model predictive con-

trol [12], [13], sliding mode control [14]–[16] and adaptive

control [1], [4], [17], [18], have been used to design robust

controllers for quadrotors. Reference [19] applied model pre-

dictive control for obtaining a precise trajectory with the

forcible wind gusts.Model predictive control approach is use-

ful based on its optimal tracking characteristics [20]. Compar-

isons between this study and [20] are summarized as follows:

(i)The existing model predictive control cannot be used to

solve the mismatched disturbance case. In contrast, both this

study and [20] can completely solve it; (ii)The disturbance

effect can be completely cancelled by applying compensation

gain in [20]. On the contrary, this study can only almost

decouple the disturbance effect; (iii)Deriving the observer

gain of [20] needs to solve the complicated differential equa-

tion. In contrast, this study only needs to solve algebraic

equation. Sliding mode control strategy in [21], [22] shows

good robustness to the design of nonlinear system. However,

the chattering behaviour is the serious shortcoming which

may drive the system to be unstable [23]. Adaptive control

approach is usually applied to solve quadrotor system [24].

The shortcoming of adaptive control approach is that the

complex updating rule makes it be not practical [25].

For the control of nonlinear system, some performances

including the reduction of the disturbance, input com-

mand reduction and stability should be simultaneously

solved [26]. To address the compromise between these per-

formances, some effective control methods, such as model

predictive control [27], deep reinforcement learning [28],

multi-objective control [29], backstepping control [30] and

preview control [31], have been applied for nonlinear sys-

tems. However, in the aforementioned researches, a serious

common requirement is that all systems should be approx-

imated to be linear model by using locally Jacobian lin-

earized approach. This requirement may be impractical in

the realistic systems. To get over nonlinear behaviours of

the realistic systems, function approximators, such as neural

network approach [32] and fuzzy logic approach [33], have

been applied tominimize the desired performance errors [34].

The neural network approach in [35] is suitable for the con-

trol design of nonlinear system and achieves better perfor-

mances. However, it is a supervised learning approach and

needs the system to provide lots of samples. Designing the

controller only uses the current state and seriously limits

its performance for the neural network method. Moreover,

complex coupling structure and computing efforts make the

practical realization of nonlinear function approximators be

not mature. Building fuzzy control rule actually requires

many design experiences and knowledges, and the control

performance is closely decided by the chosen rules [36].

It is obvious to see that the robust tracking control issue

for quadrotors still is a challenging research due to the dif-

ficult stability requirement and disturbances acting on the

quadrotor dynamics. Motivated by the aforementioned diffi-

cult points, we use feedback linearized approach to design

the controller of quadrotor system with the almost distur-

bance decoupling, input amplitude reduction, tuning param-

eter optimization, controllable convergence rate and globally

exponential stability performances and take the place of tra-

ditional LQR trial and error method and Jacobian locally

linearized approach. Researches on the feedback linearized

approach have made important contributions [37]–[39], and

have been widely applied in many engineering applications

including the induction motor drive [37], the interior perma-

nent magnet synchronous motors [38], aerial robots [40] and

the water pumping [41].

The control strategy partially applied in this article is the

linear quadratic regulator (LQR) optimal method. LQR opti-

mal method is an important method to decide the feedback

signal for a linear system or linearized system by optimizing

the quadratic performance cost index. Appropriate selecting

optimal performance cost index, that can achieve the determi-

nation of the vector K, results the optimal control system. The

optimal K value is decided by the calculation of the famous

Riccati equation that needs the input parameters including

a semi-positive definite matrix Q and the positive definite

matrix R. Comparing the LQR optimal control approach with

PID approach yields that LQR has more superior perfor-

mances [42]. LQR optimal control approach has been applied

successfully to many engineering applications. These appli-

cations include the control of DC Motor [43], the magnetic

levitation system [44], the coupled tank system [45] and the

quad-rotor hovering mode [46].

The optimal performance cost index of LQR controller

satisfactorily works. However selecting the weighting matri-

ces Q and R is difficult. Some selecting approaches, such as

Kalman’s pole-assignment approach and genetic algorithm

approach, have been investigated in recent researches, but

they have strict drawbacks, such as high computing load

and low convergent rate of optimal solution [47]. Due to the

difficulty of selecting the weighting matrices Q and R, this

article proposes a new approach to efficiently obtain them

based on particle swarm optimization [48] approach under the

guarantee of globally exponential stability. This article has
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firstly proposed the convergence rate formula of the nonlinear

system as the fitness function of LQR approach by using PSO

to take the place of the conventional trial and error method.

Moreover, the generality of the proposed approach is global,

whereas the Jacobian linearized approach is local [49].

In [50], the strict requirement of almost disturbance decou-

pling standards for control systems was addressed to depress

the disturbances on the output, and then many important

related researches have been proposed [51]. However, ref-

erence [50] can only solve the ADD problem for nonlinear

SISO system subject to the global non-Lipschitz nonlinearity

and the nonlinear multiplied disturbance conditions, and then

the ADD cannot be well addressed for the control system:

ẋ1(t) = x2 + w1(t), ẋ2(t) = u + x32w2(t), yo1 = x1 ≡ ho1,

where x1 and x2 denote the states, u and yo1 are the input

and output, respectively, w1(t) and w2(t) are the disturbance

terms. On the contrary, above system can be well solved by

the proposed approach in this article.

The significant novelty of this article is to present optimal

controller design for MIMO highly nonlinear quadrotor sys-

tems based on feedback linearized and linear quadratic reg-

ulator approaches using PSO, and simultaneously achieves

the almost disturbance decoupling, input amplitude reduc-

tion, tuning parameter optimization, controllable conver-

gence rate, improved suspension and globally exponential

stability multiple-performances. Major novelties of this arti-

cle are summarized as follows:

(i) This study has firstly proposed the convergence rate

formula of the nonlinear system as the performance cost index

of LQR proc the conventional trial and error approach.

(ii) The quadrotor system is firstly designed by applying

the feedback linearized approach and linear quadratic reg-

ulator using PSO optimization approach that take the place

of using traditional Jacobian linearization method with the

almost disturbance decoupling performance.

(iii)An optimal controller is proposed to achieve the global

exponential stability without solving the Hamilton-Jacobi

equation, that is a complicated partial differential equation

with many calculations and needs to be solved for the

H-infinity control method.

(iv)In this work, the PSO algorithm is applied to select the

optimal weighting matrices Q and R of LQR controller for

quadrotor system.

(v) The article gives a method to select the weighting

matrices Q and R of linear quadratic regulator such that the

composite controller can depress the amplitudes of system

inputs.

(vi)The generalities and implications of this approach

are globally valid, whereas the locally Jacobian linearized

approach is locally valid.

II. OPTIMAL CONTROLLER DESIGN BASED ON PSO AND

LQR ALGORITHMS

Consider the linear continuous-time system

⇀̇
x = A

⇀
x + B

⇀
u (1)

with the performance cost index

J =
1

2

⇀
x
T
(Tf )S(Tf )

⇀
x (Tf ) +

1

2

Tf
∫

t0

(

⇀
x
T
Q
⇀
x + ⇀

u
T
R
⇀
u
)

dt (2)

where Tf denotes the final time and S(Tf ) ≥ 0,Q > 0,

R > 0. The main goal of LQR is to find the optimal input

for driving the system states from given initial state so that

the performance cost index is minimized.

Reference [52] applies the Hamilton-Jacobi-Bellman

equation to get the Riccati equation as

Ṡ + Q+ SA+ AT S − SBR−1BT S = 0 (3)

and the optimal input is given by

⇀
u

∗ = −R−1BT S
⇀
x (4)

Selections of the LQR weighting matrices Q and

R are generally determined via trial and error opera-

tion. In addition to being very troublesome, it is dif-

ficult to achieve the best weighting matrices. Up to

now, in terms of processing practical systems, there are

many optimization techniques [53]–[57] on the existing

researches. Some of optimization techniques, such as PSO

algorithm [48], [58], [59], genetic algorithm [60], bees algo-

rithm [61], etc. can be applied to adjust optimal LQR weight-

ingmatrices. PSO algorithm belongs to be a population-based

heuristic optimization technique activated by Eberhart and

Kennedy [62]. Compared to other optimization techniques,

PSO algorithm has few elements and is easily implemented.

In the process of the PSO algorithm, potential particle

solutions navigate the problem space by catching the best

available solutions. PSO optimization technique basically

is handled on the approximation value of the position for

the individuals of the swarm to the individual with the best

position of the swarm. The initial population is organized

by a group of particles. According to the performance cost

index, the fitness values of random particles are calculated.

The pbest value is the best fitness value and is determined

for each particle. The gbest value is the best fitness value

ever calculated for all particles in the population, and it is

the global best value for the population. According to these

obtained pbest and gbest values, the velocities of the particles

are determined by (5) and their positions are tuned according

to (6). Equation (5) uses the distance between the particle’s

previous iteration speed, current position, its best experience,

and the best experience of the group to update its velocity,

and then the particle flies to a new position according to (6).

vk+1
ij = w · vkij + c1 · r1 · (pbestkij − xkij)

+c2 · r2 · (gbestkij − xkij) (5)

xk+1
ij = xkij + vk+1

ij (6)

where c1 and c2 denote learning factors and guide the moving

trajectory of the particle based on its own accumulated expe-

rience and the accumulated experience of the other particles
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in the swarm, respectively. r1 and r2 are the random factors

located at [0, 1]. w denotes the inertia weighting factor. After

the updating procedure, the performance cost index values of

all particles in the new population are re-calculated.

The PSO algorithm of acquisition process of learning

parameters is shown in Fig. 1 and summarized as follows:

FIGURE 1. Block diagram for the PSO algorithm of acquisition process of
learning parameters.

(Step1)Randomly generate m particles, and initialize the

position vector xki and velocity vki of each particle. Set initial

parameters, including the lower limit Ld and upper limit Ud
of the search space, learning factor c1, c2, minimum and

maximum flight speed vmin, vmax, number k of iterations,

maximum number Tmax of iterations, inertia weight ω and

convergence accuracy ς . Choose the current fitness value of

each particle to the particle’s local optimal value Fki and the

current initial position xki of each particle to the local best

position pbestki of the particle.

(Step 2)Compare the current fitness value of the particle

with the current local best value Fki of the particle. If it is

better than Fki , update the individual local best value F
k
i and

update the local best position pbestki of the particle to the

current location.

(Step 3)Find the best fitness extreme value of the current

population from all particles by min(F∗
1 ,F

∗
2 , · · ·F∗

m). If this

extreme value is better than the current global best extreme

valueFkg , update the global best valueF
k
g and update gbest

k
i to

the position of the particle represented by this extreme value.

(Step 4)Use (5) and (6) to update the particle’s velocity and

position, respectively, and increase k to be k+1. If the moving

distance vk+1
id

of the new velocity vk+1
i

in a certain dimension

of the spatial coordinates is greater than vmax, then update

it to vmax. If v
k+1
id

is less than vmin, then update it to vmin.

If the moving distance xk+1
id

of the new position xk+1
i

in a

certain dimension of the spatial coordinates is greater than

Ud , then update it to Ud . If x
k+1
id

is less than Ld , then update

it to Ld .

(Step 5)If the current iteration number k reaches the preset

maximum number Tmax or the final result is less than the

predetermined convergence accuracy ς , stop the iteration and

output the best solution.

Here is a more detailed explanation as follows. The random

factors r1 and r2 are used to maintain the diversity of group

movement directions. c1 can bring the particle closer to its

own historical best point, so it is also called the cognitive

learning factor. c2 can make the particle approach the best

point in the history of the group, so it is also called the

social learning factor. Generally speaking, c1 and c2 are set

to two. When the inertial weight w is large (w > 1.2), PSO

algorithm tends to explore new areas on a large scale. At this

time, PSO algorithm is a global search method. When the

inertial weight w is small (w < 0.8), PSO algorithm tends

to find the best value in a local area, and PSO algorithm is

a local search method at this time. Therefore, if the inertia

weight is linearly decreased in the iterative calculation pro-

cess, the PSO algorithm has a good global search ability at

the beginning, and can quickly locate the area close to the

best solution in the entire domain. In the later stage, it has a

good local search ability to accurately obtain the best global

solution. The general literature suggests that decreasing from

0.9 to 0.4 is the best choice. The linearly decreased formula

is given by

w = wstart − [(wstart − wend ) /Tmax] × n (7)

where n is the current number of iterations, Tmax denotes

the maximum number of iterations, wstart is the initial inertia

weight and wend is inertia weight of termination.

III. FEEDBACK LINEARIZED AND LINEAR QUADRATIC

REGULATOR USING PSO COMPOSITE CONTROLLER

DESIGN

In this article, we consider the general nonlinear system with

disturbances to construct a composite feedback linearized and

LQR controller using PSO with almost disturbance decou-

pling, input amplitude reduction, tuning parameter optimiza-

tion, controllable convergence rate, improved suspension and

globally exponential stability multi-performances:
[

ẋ1 · · · ẋn
]T

=
[

f1(
⇀

X ) · · · fn(
⇀

X )

]T

+
[

⇀
g1(

⇀

X ) · · · ⇀
gm(

⇀

X )

] [

u1(
⇀

X ) · · · um(
⇀

X )

]T

+
p
∑

j=1

⇀
q

∗
j

(

θj
)

(8)
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[

yo1(
⇀

X ) · · · yom(
⇀

X )

]T

=
[

ho1(
⇀

X ) · · · hom(
⇀

X )

]T
(9)

i.e.,

⇀̇

X (t) =
⇀

f (
⇀

X (t))+ →
∼

g(
⇀

X (t))
⇀
u +

p
∑

j=1

⇀
q

∗
j

(

θj
)

(10)

⇀
yo(t) =

⇀

ho(
⇀

X (t)) (11)

where
⇀

X (t) ≡ [x1(t) x2(t) · · · xn(t)]T is the system

state vector,
⇀
u ≡ [u1u2 · · · um]T denotes the con-

trol vector,
⇀
yo ≡ [yo1yo2 · · · yom]T denotes the desired

output vector,
⇀
q

∗
j denotes the adjoint constant vector,

⇀

θ ≡
[

θ1(t) θ2(t) · · · θp(t)
]T

is the disturbances vector,
⇀

f ≡ [f1f2 · · · fn]T ,→
∼

g ≡
[

⇀
g1

⇀
g2 · · ·⇀gm

]

and
⇀

ho ≡
[ho1ho2 · · · hom]T are infinitely continuous vector fields.

Define the nominal system to be

⇀̇

X (t) =
⇀

f (
⇀

X (t)) + g
∼

(
⇀

X (t))
⇀
u (12)

⇀
yo(t) =

⇀

ho(
⇀

X (t)) (13)

and has the vector relative degree {ro1, ro2, · · · , rom}
[63], [64]:

<i> the following equation holds:

L⇀
g j
Lk⇀
f
hoi(

⇀

X ) = 0 (14)

for all 1 ≤ i, j ≤ m, k < roi − 1, where the operator L is the

Lie derivative.

<ii> The m× m matrix

A ≡









Lg1L
ro1−1
f ho1(

⇀

X ) · · · LgmL
ro1−1
f ho1(

⇀

X )

...
...

Lg1L
rom−1
f hom(

⇀

X ) · · · LgmL
rom−1
f hom(

⇀

X )









(15)

is a nonsingular matrix. The desired tracking signals yiod ,

1 ≤ i ≤ m and its first roi derivatives are bounded as:
∥

∥

∥

[

yiod , y
i
od

(1)
, · · · , yiod

(roi)
] ∥

∥

∥
≤ Biod , 1 ≤ i ≤ m

where Biod are positive constants and the distribution

G ≡ span{⇀g1,
⇀
g2, · · · ,

⇀
gm} (16)

has involutive property. Therefore, reference [63] had

exploited the fact that the function

φ : ℜn → ℜn (17)

described as
⇀

ξ i ≡
[

ξ i1 · · · ξ iroi
]T ≡

[

φi1 · · · φiroi
]T

≡
[

L0⇀
f
hoi(

⇀

X ) · · · Lroi−1
⇀
f

hoi(
⇀

X )

]T

(18)

φk (
⇀

X (t)) ≡ ηk (t), k = ro + 1, ro + 2, · · · , n (19)

and satisfying

Lgjφk (
⇀

X (t)) = 0, k=ro + 1, ro + 2, · · · , n, 1≤ j≤m (20)

is a bijective and infinitely continuous function.

The above bijective and infinitely continuous function will

convert the full nonlinear quadrotor system into a controllable

system including the partially nonlinear subsystem (19) and

the partially linear subsystem (18). Parameters ξmrom and ηk
denote the state variables of the partially linear subsystem

and partially nonlinear subsystem, respectively. In order to

achieve the tracking performance, define

eij ≡ ξ ij − y
i(j−1)
od (21)

ei ≡
[

ei1 e
i
2 · · · eiroi

]T
∈ ℜri (22)

eij ≡ εj−1eij, i = 1, 2, · · · ,m, j = 1, 2, · · · , roi (23)

ei ≡
[

ei1 ei2 · · · eiroi (t)
]T

∈ ℜroi (24)

e ≡
[

e1 e2 · · · em
]T

∈ ℜro (25)

⇀

ξ ≡
[

ξ1 ξ2 · · · ξro
]T

(26)

⇀
η ≡

[

ηro+1 ηro+2 · · · ηn
]T

(27)

⇀
ρ(

⇀

ξ ,
⇀
η) ≡

[

Lf φro+1 Lf φro+2 · · · Lf φn
]T

≡
[

ρro+1 ρro+2 · · · ρn
]T

(28)

Aic ≡















0 1 0 · · · 0

0 0 1 · · · 0
...

...

0 0 0 · · · 1

−αi1 −αi2 −αi3 · · · −αiroi















roi×roi

(29)

⇀

B
i

≡
[

0 0 · · · 0 1
]T

roi×1
, 1 ≤ i ≤ m (30)

where αi1, α
i
2, · · · , αiroi are adjustable constants such that Aic

are Hurwitz matrices and Pi > 0 are the solutions of the

Lyapunov equation described as.

(Aic)
TPi + PiAic = −I (31)

∇max(P
i) ≡ the maximum eigenvalue of Pi (32)

∇min(P
i) ≡ the minimum eigenvalue of Pi (33)

∇∗
max ≡ max

{

∇max(P
1), ∇max(P

2), · · · ,∇max(P
m)
}

(34)

∇∗
min ≡ min

{

∇min(P
1), ∇min(P

2), · · · ,∇min(P
m)
}

(35)

Assumption 1: Exists a positive numberMnon such that the

following condition holds, for t ≥ 0,
⇀
η ∈ ℜn−ro and

⇀

ξ ∈ ℜro :

∥

∥

∥

⇀
ρnon(t,

⇀
η, ē) − ⇀

ρnon(t,
⇀
η, 0)

∥

∥

∥
≤ Mnon (‖ē‖) (36)

where
⇀
ρnon(t,

⇀
η, ē) ≡ ⇀

ρ(
⇀

ξ ,
⇀
η).
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To analysis precisely the controller design of quadrotor

system, let

udij ≡ L⇀
g j
L
rio−1
⇀
f

hoi(
⇀

X ) (37)

uci ≡ L
roi
f hoi(

⇀

X ) (38)

ei ≡ αi1 e
i
1 + αi2 e

i
2 + · · · + αiroie

i
roi

(39)

and give two definitions as follow [65]:

Definition 1: Consider a nonlinear system
⇀̇
x =

⇀

f (t,
⇀
x ,

⇀
u)

with an input
⇀
u, where

⇀
x is state vector, a22 ≡ −0.0578 −

0.0578
(

−x21 + x22 − x23
)

, is infinitely continuous and
⇀
x ,

⇀
u are Lipschitz. This system is input-to-state stable if exists

a K -class function β and KL-class function γ such that
∥

∥

∥

⇀
x (t)

∥

∥

∥
≤ γ

(∥

∥

∥

⇀
x (t0)

∥

∥

∥
, t − t0

)

+ β

(

sup
t0≤τ≤t

∥

∥

∥

⇀
u(τ )

∥

∥

∥

)

(40)

Definition 2: The almost disturbance decoupling perfor-

mance is achievable with noise input
⇀

θ noise for a control

system, if the following conditions hold:
<i> The control system is input-to-state stable with noise

input
⇀

θ noise
<ii> The desired output tracking errors satisfy the follow-

ing conditions:
∣

∣

∣
yoi(t) − yi

od
(t)

∣

∣

∣
≤ β11

(
∥

∥

∥

⇀
x (t0)

∥

∥

∥
, t − t0

)

+
1

√
β22

β33

(

sup
t0≤τ≤t

∥

∥

∥

⇀

θ noise(τ )

∥

∥

∥

)

(41)

and

t
∫

t0

[

yoi(τ ) − yi
od
(τ )
]2
dτ

≤
1

β44



β55

(∥

∥

∥

⇀
x e0

∥

∥

∥

)

+
t
∫

t0

β33

(

∥

∥

∥

⇀

θ noise (τ )

∥

∥

∥

2
)

dτ



 (42)

where t0 is initial time,
⇀
x (t0) denotes the initial state, β22 and

β44 are positive constants, β11 is a KL-class function, and

β33, β55 are K -class functions.

We immediately propose significant contribution for

simultaneously satisfying the almost disturbance decoupling,

controllable convergence rate, selecting parameter optimiza-

tion, the input amplitude reduction and globally exponential

stability multi-performances as follows.

Theorem 1. Exists a Lyapunov function Vnon : ℜn−r →
ℜ+ for transformed nonlinear subsystem such that three con-

ditions hold for all
⇀
η ∈ ℜn−ro

:
(a)

ωnon1

∥

∥

∥

⇀
η

∥

∥

∥

2
≤ Vnon(

⇀
η) ≤ ωnon2

∥

∥

∥

⇀
η

∥

∥

∥

2
, ωnon1,

ωnon2 > 0 (43)

(b)

∇tVnon + (∇⇀
η
Vnon)

T⇀ρnon(t,
⇀
η, 0) ≤ −8αxVnon(

⇀
η),

αx > 0 (44)

(c)
∥

∥

∥
∇⇀
η
Vnon

∥

∥

∥
≤ ̟non

∥

∥

∥

⇀
η

∥

∥

∥
,̟non > 0 (45)

Then the LQR optimal problem using PSO algorithm with

almost disturbance decoupling, controllable convergence

rate, selecting parameter optimization and the input ampli-

tude reduction multi-performances is achievable by the fol-

lowing input

⇀
u = A−1{−⇀

ub + ⇀
uv + ⇀

vLQR} (46)

⇀
vLQR ≡

[

⇀
vLQR1 · · · ⇀

vLQRm
]T

(47)

J =
1

2

Tf
∫

t0

(

ei
T
Qei+(

⇀
vLQRi)

TR(
⇀
vLQRi)

)

dt,

Q > 0,R > 0 (48)
⇀

Broi ≡
[

0 · · · 0 1
]

∈ ℜroi×1 (49)

(ε−1AiC )
T S i + S i(ε−1AiC )

−S i(εroi−1
⇀

Broi )R
−1(εroi−1

⇀

Broi )
T S i + Q = 0 (50)

K i = R−1(εroi−1
⇀

Broi )S
i ≡

[

Ki1 · · · Kiroi
]

,

i = 1, 2, · · · ,m (51)

K i
max ≡ max

{

Ki1,Ki2, · · · ,Kiroi
}

, i = 1, 2, · · · ,m (52)

⇀
ub ≡

[

ub1 ub2 · · · ubm
]T

≡
[

L
ro1
⇀
f
ho1 L

ro2
⇀
f
ho2 · · · Lrom⇀

f
hom

]T
(53)

⇀
uv ≡

[

uv1 uv2 · · · uvm
]T

uvi ≡ yid
(roi) − ε−roiαi1

[

L0f hoi(
⇀

X ) − yiod

]

−ε1−roiαi2
[

L1f hoi(
⇀

X ) − yiod
(1)
]

− · · ·

−ε−1αiroi

[

L
roi−1
f hoi(

⇀

X ) − yiod
(roi−1)

]

(54)

⇀
vLQRi = −K iei ≡ −

[

Ki1 · · · Kiroi
]

[

ei1 ei2 · · · eiroi
]T

= −Ki1ei1 − Ki2e
i
2 − · · · − Kiroie

i
roi
, i = 1, 2, · · · ,m

(55)

and the output tracking errors can be depressed by tuning the

factor NN2 > 1:

H (ε) ≡
[

H11 H12

H12 H22

]

(56)

H11 = 8αx −
81

18

ω2
non3

ωnon1

∥

∥

∥
φ⇀
η

∥

∥

∥

2
(57)

H12 = −
[

wbon3Mnon
√

2k(ε)wnon1∇∗
min

]

(58)

H22 =
1

ε∇∗
max

−
K 1
maxε

ro1−1

∥

∥

∥

∥

⇀

B
T

ro1
P1
∥

∥

∥

∥

1
/

2∇min(P1)

− · · · −
Km
maxε

rom−1

∥

∥

∥

∥

⇀

B
T

rom
Pm
∥

∥

∥

∥

1
/

2∇min(Pm)
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−
(

81

18

) k(ε)

∥

∥

∥

∥

φ1⇀
ξ

∥

∥

∥

∥

2
∥

∥P1
∥

∥

2

1
/

2ε
2∇min(P1)

− · · · −
(

81

18

) k(ε)

∥

∥

∥
φmξ

∥

∥

∥

2
‖Pm‖2

1
/

2ε
2∇min(Pm)

(59)

αs(ε) ≡
H11 + H22 −

[

(H11 − H22)
2 + 4H2

12

]
1/2

4
(60)

N ≡ 2αs(ε) (61)

N1 ≡
m+ 1

18

(

sup
t0≤τ≤t

∥

∥

∥

⇀

θ

∥

∥

∥

)2

(62)

N2 ≡ min

{

ωnon1,
k(ε)

2
∇∗
min

}

(63)

φi⇀
ξ
(ε)≡















ε

(

∂

∂
⇀
X
hoi

)

⇀
q

∗
1 · · · ε

(

∂

∂
⇀
X
hoi

)

⇀
q

∗
p

...
...

εroi

(

∂

∂
⇀
X
Lroi−1
f

hoi

)

⇀
q

∗
1 · · · εroi

(

∂

∂
⇀
X
Lroi−1
f

hoi

)

⇀
q

∗
p















(64)

φ⇀
η
(ε) ≡















(

∂

∂
⇀
X
φro+1

)

⇀
q

∗
1 · · ·

(

∂

∂
⇀
X
φro+1

)

⇀
q

∗
p

...
...

(

∂

∂
⇀
X
φn

)

⇀
q

∗
1 · · ·

(

∂

∂
⇀
X
φn

)

⇀
q

∗
p















(65)

where H possesses positive definite property and the contin-

uous function k(ε) : ℜ+ → ℜ+ satisfies lim
ε→0

k(ε) = 0 and

lim
ε→0

ε

k(ε)
= 0 (66)

Moreover, the convergence rate formula of the output track-

ing error is firstly given to be

NN2

1max
(67)

with the globally exponential stability, where

1max ≡ max

{

ωnon2,
k

2
∇∗
max

}

(68)

and the output tracking error of control system (8) is expo-

nentially attracted into a ball Br , r =
√

N1
NN2

Proof. Based on the (14)∼(16), the function φ defined

as (18)∼(20) is a bijective and infinitely continuous function

and then one can apply it to yield the following partially linear

and partially nonlinear transformations

ξ̇11 =
∂ho1

∂
⇀

X





⇀

f + g
∼

· ⇀u +
p
∑

j=1

⇀
q

∗
j θj





= ξ12 +
p
∑

j=1

(

∂ho1

∂
↼

X

⇀
q

∗
j

)

θj (69)

...

ξ̇1r1−1 =
∂L

ro1−2
f ho1

∂
⇀

X





⇀

f + g
∼

· ⇀u +
p
∑

j=1

⇀
q

∗
j θj





= ξ1ro1 +
p
∑

j=1

(

∂L
ro1−2
f ho1

∂
⇀

X

⇀
q

∗
j

)

θj (70)

ξ̇1r1 =
∂φ1ro1

∂
⇀

X

d
⇀

X

dt

=
∂L

ro1−1
f ho1

∂
⇀

X





⇀

f + g
∼

· ⇀u +
p
∑

j=1

⇀
q

∗
j θj





= L
ro1
⇀
f
ho1 + L⇀

g 1
L
ro1−1
⇀
f

ho1 u1 + · · ·

+L⇀
gm
L
ro1−1
⇀
f

ho1 um

+
p
∑

j=1

(

∂L
ro1−1
f ho1

∂
⇀

X

⇀
q

∗
j

)

θj (71)

...

ξ̇m1 =
∂hom

∂
⇀

X





⇀

f + g
∼

· ⇀u +
p
∑

j=1

⇀
q

∗
j

(

θj
)





= ξm2 +
p
∑

j=1

(

∂hom

∂
⇀

X

⇀
q

∗
j

(

θj
)

)

(72)

...

ξ̇mrom−1 =
∂L

rom−2
f hom

∂
⇀

X





⇀

f + g
∼

· ⇀u +
p
∑

j=1

⇀
q

∗
j

(

θj
)





= ξ1ro1 +
p
∑

j=1

(

∂L
rom−2
f hom

∂
⇀

X

⇀
q

∗
j

)

(

θj
)

(73)

ξ̇mrom =
∂L

rom−1
f hom

∂
⇀

X





⇀

f + g
∼

· ⇀u +
p
∑

j=1

⇀
q

∗
j

(

θj
)





= L
rom
⇀
f
hom + L⇀

g 1
L
rom−1
⇀
f

hom u1 + · · ·
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+L⇀
gm
L
rom−1
⇀
f

hom um

+
p
∑

j=1

(

∂L
rom−1
f hom

∂
⇀

X

⇀
q

∗
j

)

(

θj
)

(74)

⇀̇
ηk =

∂φk

∂
⇀

X





⇀

f + g
∼

· ⇀u +
p
∑

j=1

⇀
q

∗
j

(

θj
)





= qk +
p
∑

j=1

(

∂φk

∂
⇀

X

⇀
q

∗
j

)

(

θj
)

(75)

Since

uci(
⇀

ξ ,
⇀
η) ≡ L

rio
⇀
f
hoi(

⇀

X (t)) (76)

udij ≡ L⇀
g j
L
roi−1
⇀
f

hoi(
⇀

X ), 1 ≤ i, j ≤ m (77)

⇀
ρk (

⇀

ξ ,
⇀
η) = L⇀

f
ϕk (

⇀

X ), k = ro + 1, ro + 2, · · · , n (78)

the dynamic equations of control system (8) can be described

with new transformed states as

ξ̇1i (t) = ξ1i+1(t) +
p
∑

j=1

(

∂

∂
⇀

X
L i−1
⇀
f
ho1

)

⇀
q

∗
j

(

θj
)

,

i = 1, 2, · · · , ro1 − 1 (79)

ξ̇1ro1 = uc1(
⇀

ξ ,
⇀
η) + ud11(

⇀

ξ ,
⇀
η)u1 + · · · + ud1m(

⇀

ξ ,
⇀
η)um

+
p
∑

j=1

(

∂

∂
⇀

X
L
ro1−1
⇀
f

ho1

)

⇀
q

∗
j

(

θj
)

(80)

...

ξ̇mi = ξmi+1 +
p
∑

j=1

(

∂

∂
⇀

X
L i−1
⇀
f
hom

)

⇀
q

∗
j

(

θj
)

,

i = 1, 2, · · · , rom − 1 (81)

ξ̇mrom = ucm(
⇀

ξ ,
⇀
η) + udm1(

⇀

ξ ,
⇀
η)u1 + · · ·

+udmm(
⇀

ξ ,
⇀
η)um

+
p
∑

j=1

(

∂

∂
⇀

X
L
rom−1
⇀
f

hom

)

⇀
q

∗
j

(

θj
)

(82)

⇀̇
ηk = ⇀

ρk (
⇀

ξ ,
⇀
η) +

p
∑

j=1

(

∂

∂
⇀

X
φk (

⇀

X )

)

⇀
q

∗
j

(

θj
)

,

k = ro + 1, · · · , n (83)

yoi = ξ i1, 1 ≤ i ≤ m (84)

In this study, the desired inputs are constructed by the vir-

tual input
⇀
ub ≡

[

L
ro1
⇀
f
ho1 L

ro2
⇀
f
ho2 · · · Lrom⇀

f
hom

]T
, part input

⇀
uv ≡

[

uv1 uv2 · · · uvm
]T

and the LQR part input
⇀
vLQR using

PSO, and are mainly combined to simultaneously achieve

almost disturbance decoupling performance, input amplitude

reduction performance and controllable convergent rate per-

formance, respectively. From (55)(76) and (77), the hybrid

control can be described as

⇀
u = A−1{−⇀

ub + ⇀
uv + ⇀

vLQR} (85)

Substituting (85) into (80) and (82), the dynamic equations of

system (8) can be derived as:


















ξ̇ i1

ξ̇ i2
...

ξ̇ iroi−1

ξ̇ iroi



















=

















0 1 0 · · · 0

0 0 1 0 · · · 0

...
...

0 0 0 · · · 1

0 0 0 · · · 0



































ξ i1

ξ i2
...

ξ iroi−1

ξ iroi



















+

















0

0

...

0

1

















(

uvi + vLQRi
)

+



























p
∑

j=1

(

∂

∂
⇀
X
hoi

)

(

⇀
q

∗
j

(

θj
)

)

p
∑

j=1

(

∂

∂
⇀
X
L1⇀
f
hoi

)

(

⇀
q

∗
j

(

θj
)

)

...
p
∑

j=1

(

∂

∂
⇀
X
L
roi−1
f hoi

)

(

⇀
q

∗
j

(

θj
)

)



























(86)

[

η̇ro+1 · · · η̇n(t)
]T

=
[

ρro+1 · · · ρn
]T

+





p
∑

j=1

(

∂

∂
⇀

X
φro+1

)

(

⇀
q

∗
j

(

θj
)

)

· · ·
p
∑

j=1

(

∂

∂
⇀

X
φn

)

(

⇀
q

∗
j

(

θj
)

)





T

(87)

yoi = ξ i1 (88)

Stabilization and tracking problems are significant subjects

for nonlinear control theory. Tracking problem is generally

more complex than stabilization problem for nonlinear con-

trol systems. In order to convert the tracking problem to stabi-

lization problem, we apply parameters eij, e
i
j, e

i, e to track the

desired signals y
i(j−1)
od . Applying (21)(23)(24)(29) and (55)

converts (86)∼(88) to be

⇀̇
η = ⇀

ρ(
⇀

ξ ,
⇀
η) + φ⇀

η

(

⇀

θ
)

≡ ⇀
ρnon(t,

⇀
η, ē) + φ⇀

η

(

⇀

θ
)

(89)

ε

.

ei = Aice
i +

⇀

Broi

(

εroi
⇀
vLQRi

)

+ φiξ

(

⇀

θ
)

(90)

yoi = ξ i1 (91)
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Applying the linear quadratic regulator approach with PSO

algorithm obtains

⇀
vLQR ≡

[

⇀
vLQR1 · · · ⇀

vLQRm
]T

(92)

⇀
vLQRi = −K iei ≡ −

[

Ki1 · · · Kiroi
]

[

ei1 ei2 · · · eiroi
]T

= −Ki1ei1 − Ki2e
i
2 − · · · − Kiroie

i
roi
,

i = 1, 2, · · · ,m (93)
⇀

Broi ≡
[

0 · · · 0 1
]

∈ ℜroi×1 (94)

K i = R−1(εroi−1
⇀

Broi )S
i ≡

[

Ki1 · · · Kiroi
]

,

i = 1, 2, · · · ,m (95)

K i
max ≡max

{

Ki1,Ki2, · · · ,Kiroi
}

, i=1, 2, · · · ,m (96)

with the performance cost index

J =
1

2

Tf
∫

t0

(

ei
T
Qei+(

⇀
vLQRi)

TR(
⇀
vLQRi)

)

dt (97)

and the algebraic Riccati equation

(ε−1AiC )
T S i + S i(ε−1AiC )

− S i(εroi−1
⇀

Broi )R
−1(εroi−1

⇀

Broi )
T S i + Q = 0 (98)

For the new dynamic equations, a composite Lyapunov

functionVcom

(

ē,
⇀
η
)

is constructed to be sum of Lyapunov

functions Vnon(
⇀
η) and W (ē) for nonlinear subsystem and

linear subsystem, respectively [66],

Vcom

(

ē,
⇀
η
)

≡ Vnon(
⇀
η) + k(ε)W (ē) (99)

whereW (ē) is defined to be

W (ē) = W 1
(

e1
)

+ · · · +Wm
(

em
)

(100)

and

W i
(

ei
)

≡
1

2
ei
T
Piei (101)

Using (21)(36)(43)(44) and (45) yields the derivative of the

composite Lyapunov function

V̇com

=
[

∇tVnon +
(

∇⇀
η
Vnon

)T
⇀̇
η

]

+
k

2





( •
e1

)T

P1 e1 +
(

e1
)T

P1

( •
e1

)

+ · · ·

+
( •
em
)T

Pm em +
(

em
)T
Pm
( •
em
)

]

=
[

∇tVnon +
(

∇⇀
η
Vnon

)T (
⇀
ρnon(t,

⇀
η, e) + φ⇀

η

(

⇀

θ
))

]

+
{

k

2ε

(

e1
)T
[

P1
(

A1c

)

+
(

A1c

)T
P1
]

e1 + · · ·

+
k

2ε

(

em
)T
[

Pm
(

Amc
)

+
(

Amc
)T
Pm
]

em

+
k

ε

{

(

⇀

θ
)T
[

(

φ1ξ

)T
P1 e1 + · · · +

(

φmξ

)T
Pm em

]}

+
[

kεro1−1
⇀

B
T

ro1
P1e1vLQR1

+ · · · + kεrom−1
⇀

B
T

rom
PmemvLQRm

]}

≤
[

∇tVnon +
(

∇⇀
η
Vnon

)T
⇀
ρnon(t,

⇀
η, e)

+
∥

∥

∥
∇⇀
η
Vnon

∥

∥

∥

∥

∥

∥
φ⇀
η

∥

∥

∥

∥

∥

∥

(

⇀

θ
)∥

∥

∥

]

−
k

2ε

[

∥

∥

∥
e1
∥

∥

∥

2
+ · · · +

∥

∥em
∥

∥

2
]

+
k

ε

[∥

∥

∥

(

⇀

θ
)∥

∥

∥

(∥

∥

∥
φ1ξ

∥

∥

∥

∥

∥

∥
P1
∥

∥

∥

∥

∥

∥
e1
∥

∥

∥

+ · · · +
∥

∥

∥
φmξ

∥

∥

∥

∥

∥Pm
∥

∥

∥

∥em
∥

∥

)]

+ kεro1−1

∥

∥

∥

∥

⇀

B
T

ro1
P1
∥

∥

∥

∥

∥

∥

∥
e1
∥

∥

∥

∥

∥vLQR1
∥

∥

+ · · · + kεrom−1

∥

∥

∥

∥

⇀

B
T

rom
Pm
∥

∥

∥

∥

∥

∥em
∥

∥

∥

∥vLQRm
∥

∥

≤
[

∇tVnon +
(

∇⇀
η
Vnon

)T
⇀
ρnon(t,

⇀
η, 0)

]

−
(

∇⇀
η
Vnon

)T
⇀
ρnon(t,

⇀
η, 0)

+
(

∇⇀
η
Vnon

)T
⇀
ρnon(t,

⇀
η, e)

+
∥

∥∇ηV
∥

∥

∥

∥φη
∥

∥

∥

∥

∥

⇀

θ

∥

∥

∥
−
k

ε

[

W 1

∇max(P1)
+ · · · +

Wm

∇max(Pm)

]

+
81

18

k2

ε2

∥

∥

∥
φ1ξ

∥

∥

∥

2 ∥
∥

∥
P1
∥

∥

∥

2 ∥
∥

∥
e1
∥

∥

∥

2
+

1

18

∥

∥

∥

⇀

θ

∥

∥

∥

2

+ · · ·

+
81

18

k2

ε2

∥

∥

∥
φmξ

∥

∥

∥

2 ∥
∥Pm

∥

∥

2 ∥
∥em

∥

∥

2 +
1

18

∥

∥

∥

⇀

θ

∥

∥

∥

2

+ kεro1−1

∥

∥

∥

∥

⇀

B
T

ro1
P1
∥

∥

∥

∥

∥

∥

∥
e1
∥

∥

∥
K 1
max

∥

∥

∥
e1
∥

∥

∥
+ · · ·

+ kεrom−1

∥

∥

∥

∥

⇀

B
T

rom
Pm
∥

∥

∥

∥

∥

∥em
∥

∥Km
max

∥

∥em
∥

∥

≤ −8αxVnon + ωnon3

∥

∥

∥

⇀
η

∥

∥

∥
Mnon ‖e‖ + ωnon3

∥

∥

∥

⇀
η

∥

∥

∥

∥

∥φη
∥

∥

∥

∥

∥

⇀

θ

∥

∥

∥

−
k

ε

1

∇∗
max

W +
81

18

k2

ε2

∥

∥

∥
φ1ξ

∥

∥

∥

2 ∥
∥

∥
P1
∥

∥

∥

2 ∥
∥

∥
e1
∥

∥

∥

2
+

1

18

∥

∥

∥

⇀

θ

∥

∥

∥

2

+ · · · +
81

18

k2

ε2

∥

∥

∥
φmξ

∥

∥

∥

2 ∥
∥Pm

∥

∥

2 ∥
∥em

∥

∥

2 +
1

18

∥

∥

∥

⇀

θ

∥

∥

∥

2

+K 1
maxkε

ro1−1

∥

∥

∥

∥

⇀

B
T

ro1
P1
∥

∥

∥

∥

∥

∥

∥
e1
∥

∥

∥

2

+ · · · + Km
maxkε

rom−1

∥

∥

∥

∥

⇀

B
T

rom
Pm
∥

∥

∥

∥

∥

∥em
∥

∥

2

≤ −
(

8αx −
81

18

(

ωnon3√
ωnon1

∥

∥

∥
φ⇀
η

∥

∥

∥

)2
)

(

√

Vnon

)2

+2

(

ωnon3Mnon
√

2ωnon1k∇∗
min

)

√

Vnon
√
kW
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−







1

ε∇∗
max

−
81

18

k

∥

∥

∥
φ1ξ

∥

∥

∥

2 ∥
∥P1

∥

∥

2

1
/

2ε
2∇min(P1)

−
K 1
maxε

ro1−1

∥

∥

∥

∥

⇀

B
T

ro1
P1
∥

∥

∥

∥

1
/

2∇min(P1)
− · · ·

−







1

ε∇∗
max

−
81

18

k

∥

∥

∥
φ1ξ

∥

∥

∥

2 ∥
∥P1

∥

∥

2

1
/

2ε
2∇min(P1)

−
K 1
maxε

ro1−1

∥

∥

∥

∥

⇀

B
T

ro1
P1
∥

∥

∥

∥

1
/

2∇min(P1)
− · · ·

= −
[√

Vnon
√
kW

]

H

[√
Vnon√
kW

]

+
m+ 1

18

∥

∥

∥

⇀

θ

∥

∥

∥

2

(102)

i.e.

V̇com ≤ −∇min(H )Vcom +
m+ 1

18

∥

∥

∥

⇀

θ

∥

∥

∥

2

(103)

where ∇min(H ) is the minimum eigenvalue of the matrix H .

From (60), we get

∇min(H ) = 2αs (104)

Applying ∇min(H ) = 2αs into (103) yields

V̇com ≤ −2αsVcom +
m+ 1

18

∥

∥

∥

⇀

θ

∥

∥

∥

2

≤ −NN2

(

∥

∥

∥

⇀
η

∥

∥

∥

2
+ ‖ē‖2

)

+
m+ 1

18

∥

∥

∥

⇀

θ

∥

∥

∥

2

(105)

Let

e ≡
[

e1 · · · em
]T

≡
[

e11 e
1
rem

]T
, e1rem ∈ ℜro−1 (106)

Hence

V̇com≤−NN2

(

∥

∥

∥

⇀
η

∥

∥

∥

2
+
∥

∥

∥
e11

∥

∥

∥

2
+
∥

∥

∥
e1rem

∥

∥

∥

2
)

+
m+ 1

18

∥

∥

∥

⇀

θ

∥

∥

∥

2

(107)

Then

t
∫

t0

(

yo1(τ ) − y1
od
(τ )
)2
dτ ≤

Vcom (t0)

NN2
+
m+ 1

18NN2

t
∫

t0

∥

∥

∥

⇀

θ

∥

∥

∥

2

dτ

(108)

It is easy to similarly derive that

t
∫

t0

(

yoi(τ ) − yi
od
(τ )
)2
dτ

≤
Vnon (t0)

NN2
+

m+ 1

18NN2

t
∫

t0

∥

∥

∥

⇀

θ

∥

∥

∥

2

dτ, 2 ≤ i ≤ m (109)

so that third almost disturbance decoupling condition (42) is

satisfied. From (105), we obtain

V̇com ≤ −NN2

(

∥

∥

∥

⇀
yo−total

∥

∥

∥

2
)

+
m+ 1

18

∥

∥

∥

⇀

θ

∥

∥

∥

2

(110)

where
∥

∥

∥

⇀
yo−total

∥

∥

∥

2
≡ ‖ē‖2 +

∥

∥

∥

⇀
η

∥

∥

∥

2
(111)

Applying the input-to-state stable theorem [65] yields the

input-to-state stability for the desired control system for first

almost disturbance decoupling condition (40). Moreover, it is

easy to get

1min

(

‖ē‖2 +
∥

∥

∥

⇀
η

∥

∥

∥

2
)

≤ Vnon ≤ 1max

(

‖ē‖2 +
∥

∥

∥

⇀
η

∥

∥

∥

2
)

(112)

i.e.

1min

(

∥

∥

∥

⇀
yo−total

∥

∥

∥

2
)

≤ Vnon ≤ 1max

(

∥

∥

∥

⇀
yo−total

∥

∥

∥

2
)

(113)

where 1min ≡ min
{

ωnon1,
k
2
∇∗
min

}

and 1max ≡
max

{

ωnon2,
k
2
∇∗
max

}

. Combining (62), (105) and (113) gets

V̇com ≤ −
NN2

1max
Vcom + N1 (114)

Then,

Vcom(t) ≤ Vcom(t0)e
− NN2
1max

(t−t0) +
1maxN1

NN2
, t ≥ t0 (115)

which achieves

∣

∣

∣
yo1(t) − y1

od
(t)

∣

∣

∣
≤
√

2Vnon(t0)

k∇∗
min

e
− NN2

21max
(t−t0)+

√

21maxN1

k∇∗
minNN2

(116)

It is easy to similarly derive that

∣

∣

∣
yoi(t) − yi

od
(t)

∣

∣

∣
≤
√

2Vnon(t0)

k∇∗
min

e
− NN2

21max
(t−t0)

+
√

21maxN1

k∇∗
minNN2

, 2 ≤ i ≤ m (117)

So that second almost disturbance decoupling condition (41)

is verified and then three strict almost disturbance decoupling

conditions are simultaneously proved. Moreover, from(117),

we have firstly proposed the convergence rate formula of

output tracking errors to be NN2

/

21max. We can adjust NN2

to increase the convergence rate of the output tracking errors.

Finally, we will verify that the ball Br is a global attractor

for the output tracking errors of the control system Eq. (8).

Using (62)(105) and (111) yields

V̇com ≤ −NN2

(

∥

∥

∥

⇀
yo−total

∥

∥

∥

2
)

+ N1 (118)
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For

∥

∥

∥

⇀
yo−total

∥

∥

∥
> r , we get V̇non < 0 and then any ball

described by

Br ≡
{[

ē
⇀
η

]

: ‖ē‖2 +
∥

∥

∥

⇀
η

∥

∥

∥

2
≤ r

}

(119)

is a global final attractor for the output tracking errors of the

control system (8). Furthermore, applying (113) and (115)

gets

Vcom(t) ≤ Vcom(t0)e
− NN2
1max

(t−t0) +
1maxN1

NN2
, t ≥ t0

and

1min

∥

∥

∥

⇀
yo−total

∥

∥

∥

2

≤ Vnon ≤ Vnon(t0)e
− NN2
1max

(t−t0) +
1maxN1

NN2

≤ 1max

∥

∥

∥

⇀
yo−total(t0)

∥

∥

∥

2
e
− NN2
1max

(t−t0) +
1maxN1

NN2
(120)

Consequently, we get

∥

∥

∥

⇀
yo−total

∥

∥

∥

2
≤
1max

1min

∥

∥

∥

⇀
yo−total(t0)

∥

∥

∥

2
e
− NN2
1max

(t−t0)

+
N1

NN2

1max

1min
(121)

Hence we can conclude that the ball Br is a global attractor

for the output tracking errors of the control system (8) with

globally exponential stability.

To systematically design input of achieving multi-

performances with the almost disturbance decoupling, con-

trollable convergence rate, selecting parameter optimization,

the input amplitude reduction and globally exponential sta-

bility, an effective algorithm of designing key factors for

Theorem 1 is shown in Fig. 2 and summarized as follows:

(Step 1)For the desired outputs ho1, · · · , hom, calculate the
vector relative degree ro1, · · · , rom of the dynamic equation.

(Step 2)Build a bijective and infinitely continuous function

ϕ to meet (17).

(Step 3)Adjust factors αiroi according to (29) and (31), and

find the solutions Pi > 0 of the Lyapunov equation, so that

the matrices Aic are Hurwitz matrices via MATLAB.

(Step 4)Construct the Lyapunov function to satisfy the con-

ditions (36)(43)∼(45) of the transformed partially nonlinear

subsystem. If the system possesses full relative degree, i.e.

ro1 + · · · + rom = n, then this step will be neglected and go

to the next step.

(Step 5)According to (56)∼(65), design factorsK i
max,Kiroi ,

k, αs (ε) , ε appropriately by LQR optimization approach

using PSO algorithm to achieveNN2 > 1.Moreover, from the

convergence rate formula (60)(61)(63)(67) and (68), we can

achieve LQR optimal weighting matrices Q and R using PSO

algorithm to increase NN2 and then increase the convergence

rate.

(Step 6)The desired input can be designed by (46).

FIGURE 2. Block diagram for the effective algorithm of designing the
controller.

IV. COMPOSITE FEEDBACK LINEARIZIED LQR

CONTROLLER DESIGN USING PSO FOR

A QUADROTOR

The quadrotor is a great platform for industrial applications as

it is complex nonlinear control system. The motions along x,

y axes are obtained by pitch and roll rotations for a quadrotor,

respectively as shown as Fig. 1. The complete mathematical

model of a quadrotor will be derived by Newton-Euler theo-

rem with the following assumptions [67]:

(i)The aerodynamic forces and moments are assumed to be

neglected.

(ii)The propellers and the quadrotor have rigid and sym-

metrical characteristics.

(iii)The thrust force and drag torque are proportional to

the square of propeller’s speed with thrust and drag factors,

respectively.

(iv)The gravity center of the quadrotor is set to be the origin

of the vehicle frame.

Define the vehicle-1 frame to be positively rotated by the

yaw angle ψ from the vehicle frame, and then the rotation

matrix from the vehicle frame to the vehicle-1 frame is

derived as

ℜv1
v (ψ) =





cosψ sinψ 0

− sinψ cosψ 0

0 0 1



 (122)

The vehicle-2 frame is obtained by rotating positively the

vehicle-1 frame with the pitch angle θ , and then the rotation
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FIGURE 3. The inertial frame (earth frame) and vehicle frame for a
quadrotor.

matrix from the vehicle-1 frame to the vehicle-2 frame is

given by

ℜv2
v1 (θ) =





cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ



 (123)

Let the body frame be obtained by rotating the vehicle-

2 frame in right-handed rotation by the roll angle φ, and then

the rotationmatrix from the vehicle-2 frame to the body frame

is formulated by

ℜb
v2 (φ) =





1 0 0

0 cosφ sinφ

0 − sinφ cosφ



 (124)

Then the complete rotation matrix from the vehicle frame to

the body frame is summarized by

ℜb
v (φ, θ, ψ)

= ℜb
v2 (φ)ℜ

v2
v1 (θ)ℜ

v1
v (ψ)

=





1 0 0

0 cosφ sinφ

0 − sinφ cosφ









cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ





×





cosψ sinψ 0

− sinψ cosψ 0

0 0 1





=





cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ

cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ





(125)

where s and c operators denote s ≡ sin and c ≡ cos functions,

respectively.

To achieve good control performance of a quadrotor,

the kinematics and the dynamic equations of the quadrotor are

derived as follows. The linear velocities (ẋ, ẏ, ż) are inertial

frame quantities, whereas (u, v, ω) are body frame quantities.

Then the rotation relationship between both quantities is

related by




ẋ

ẏ

ż



 = ℜb
v





u

v

ω



 =
(

ℜv
b

)−1





u

v

ω



 =
(

ℜv
b

)T





u

v

ω





=





cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ

cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ

−sθ sϕcθ cϕcθ









u

v

ω





(126)

The angle velocities (p, q, r) are expressed in body frame,

whereas the roll angle velocity ϕ̇, pitch angle velocity θ̇ , yaw

angle velocity ψ̇ are defined in the vehile-2 frame, the vehile-

1 frame and the vehicle frame, respectively. Consider ϕ̇, θ̇ , ψ̇

to be small and then

ℜb
v2(ϕ̇) = ℜv2

v1(θ̇) = ℜv1
v (ψ̇) =





1 0 0

0 1 0

0 0 1



 (127)

Hence




p

q

r





= ℜb
v2(ϕ̇)





ϕ̇

0

0



+ ℜb
v2(ϕ)ℜ

v2
v1(θ̇ )





0

θ̇

0





+ℜb
v2(ϕ)ℜ

v2
v1(θ )ℜ

v1
v (ψ̇)





0

0

ψ̇



 =





ϕ̇

0

0



+ ℜb
v2(ϕ)





0

θ̇

0





+ℜb
v2(ϕ)ℜ

v2
v1(θ )





0

0

ψ̇



 =





1 0 −sθ
0 cϕ sϕcθ

0 −sϕ cϕcθ









ϕ̇

θ̇

ψ̇



 (128)

i.e.




ϕ̇

θ̇

ψ̇



 =





1 sin(ϕ) tan(θ) cos(ϕ) tan(θ)

0 cos(ϕ) − sin(ϕ)

0 sin(ϕ) sec(θ) cos(ϕ) sec(θ)









p

q

r



 (129)

Let
⇀
v and

⇀
a be the velocity vector and acceleration vector,

respectively. Since the Newton’s second law only holds in

inertial frame, using the Newton’s second law yields the

translational motion as

⇀

f = m
⇀
a = m

d
⇀
v

dti
(130)

where d
/

dti denotes the time derivative in the inertial frame,

m is the mass of the quadrotor and
⇀

f denotes the external

force. Applying the Coriolis equation yields

⇀

f = m
d
⇀
v

dti
= m

(

d
⇀
v

dtb
+ ⇀
ωi ×

⇀
v

)

(131)

where
⇀
ωi denotes the angular velocity of the airframe in

inertial frame and × is the cross product vector operator.

Since
⇀

f and
⇀
ωi are used in the body frame, we will express

the Coriolis equation in the body frame with
⇀
ωb =

[

p q r
]T
,

⇀

f b =
[

fx fy fz
]T
, and

⇀
vb =

[

u v ω
]T

to be

⇀

f b = m
d
⇀
vb

dti
= m

(

d
⇀
vb

dtb
+ ⇀
ωb × ⇀

vb

)

= m









u̇

v̇

ω̇



+





p

q

r



×





u

v

ω







 (132)
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i.e.




u̇

v̇

ω̇



 =





rv− qω

pω − ru

qu− pv



+





fx
/

m

fy
/

m

fz
/

m



 (133)

Let
⇀
ω and

⇀
α be the angular velocity vector and angular

acceleration vector, respectively. Since the Newton’s second

law only holds in inertial frame, using the Newton’s second

law yields the rotational motion as

⇀
τ = J

⇀
α = J

d
⇀
ω

dti
≡
d
⇀

h

dti
(134)

where J denotes the inertia of the quadrotor,
⇀

h ≡ J
⇀
ω is the

angular moment and
⇀
τ denotes the external torque. Consider

the quadrotor to be symmetric about three axes, the mutual

inertias are Jxy = Jxz = Jyz = 0 and then the inertia is

expressed by

J ≡





Jx 0 0

0 Jy 0

0 0 Jz



 (135)

Applying the Coriolis equation yields

⇀
τ = J

d
⇀
ω

dti
= J

(

d
⇀
ω

dtb
+ ⇀
ωi ×

⇀
ω

)

=
d(J

⇀
ω)

dtb
+ ⇀
ωi × (J

⇀
ω)

(136)

i.e.

⇀
τ =

d
⇀

h

dti
=
d
⇀

h

dtb
+ ⇀
ωi ×

⇀

h (137)

Since
⇀
τ and

⇀
ωi are applied in the body frame, we will express

the Coriolis equation in the body frame with
⇀
ωb =

[

p q r
]T
,

⇀
τ b =

[

τϕ τθ τψ
]T

and
⇀

hb = J
[

p q r
]T =

[

pJx qJy rJz
]T

= J
⇀
ωb to be

⇀
τ b=

d
⇀

hb

dti
=
d
⇀

hb

dtb
+ ⇀
ωb ×

⇀

hb =





ṗJx
q̇Jy
ṙJz



+





p

q

r



×





pJx
qJy
rJz





(138)

i.e.





ṗ

q̇

ṙ



 =















qr
Jy − Jz

Jx

pr
Jz − Jx

Jy

pq
Jx − Jy

Jz















+













τϕ

Jx
τθ

Jy
τψ

Jz













(139)

Assume the aerodynamic forces and moments to be

neglected. Fig. 4 shows the top view of the quadrotor.

As shown in Fig. 5, four driving motors will produce forces

Ff ,Fb,Fr ,Fl and torques τf , τb, τr , τl . The total force F

applied on the quadrotor is denoted as

F ≡ Ff + Fb + Fr + Fl (140)

FIGURE 4. The top view of the quadrotor.

FIGURE 5. The forces and torques diagram of the quadrotor.

The gravity force acting on the quadrotor in the vehicle frame

is given by

⇀

f
v

g =





0

0

mg



 (141)

Since
⇀
vb in (132) is expressed in the body frame, we will

rewrite (141) in the body frame to be

⇀

f
b

g ≡





fx
fy
fz



 = ℜb
v

⇀

f
v

g −





0

0

F





=





cθcψ cθsψ −sθ
sϕsθcψ − cϕsψ sϕsθsψ + cϕcψ sϕcθ

cϕsθcψ + sϕsψ cϕsθsψ − sϕcψ cϕcθ









0

0

mg





−





0

0

F





=





−mg sin θ
mg sinϕ cos θ

mg cosϕ cos θ



−





0

0

F



 (142)

Substituting (120) to (133) obtains




u̇

v̇

ω̇



 =





rv− qω

pω − ru

qu− pv



+





−gsθ
gsϕcθ

gcϕcθ



−





0

0

F
/

m



 (143)
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Assuming that ϕ and θ are small reduces (129) to be




ϕ̇

θ̇

ψ̇



 =





1 0 0

0 1 0

0 0 1









p

q

r



 =





p

q

r



 (144)

Combining (139) and (144) yields





ϕ̈

θ̈

ψ̈



 =





ṗ

q̇

ṙ



 =















qr
Jy − Jz

Jx

pr
Jz − Jx

Jy

pq
Jx − Jy

Jz















+













τϕ

Jx
τθ

Jy
τψ

Jz













(145)

Differentiating (126) gives




ẍ

ÿ

z̈



=





cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ

cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ

−sθ sϕcθ cϕcθ









u̇

v̇

ω̇





(146)

Neglecting the Coriolis terms p, q, r and substituting (143)

into (146) give




ẍ

ÿ

z̈



 =





cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ

cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ

−sθ sϕcθ cϕcθ













−gsθ
gsϕcθ

gcϕcθ



−





0

0

F
/

m







 =





0

0

g





−





cϕsθcψ + sϕsψ

cϕsθsψ − sϕcψ

cϕcθ





(

F
/

m
)

(147)

From (143) and (147), the simplified model of the quadrotor

is given by

ϕ̈ = qr
Jy − Jz

Jx
+
τϕ

Jx
(148)

θ̈ = pr
Jz − Jx

Jy
+
τθ

Jy
(149)

ψ̈ = pq
Jx − Jy

Jz
+
τψ

Jz
(150)

ẍ = (− cosϕ sin θ cosψ − sinϕ sinψ)
(

F
/

m
)

(151)

ÿ = (− cosϕ sin θ sinψ + sinϕ cosψ)
(

F
/

m
)

(152)

z̈ = g− (cosϕ cos θ)
(

F
/

m
)

(153)

Let the state and input variables of the quadrotor be the

following quantities:
⇀
x ≡

[

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12
]T
, x1 =

ϕ, x2 = ϕ̇, x3 = θ, x4 = θ̇ , x5 = ψ, x6 = ψ̇, x7 = z, x8 =
ż, x9 = x, x10 = ẋ, x11 = y, x12 = ẏ, u1 = F, u2 = τϕ, u3 =
τθ and u4 = τψ
Therefore, the state-space mathematical model with real

physical values can be represented as

ẋ1 = x2 (154)

ẋ2 = −20.52x4x6 + 100u2 (155)

ẋ3 = x4 (156)

ẋ4 = 19.07x2x6 + 92.59u3 (157)

ẋ5 = x6 (158)

ẋ6 = −0.0037x2x4 + 4.629u4 (159)

ẋ7 = x8 + θ1 (160)

ẋ8 = +9.8 − 0.556(cos x1)(cos x3)u1 + θ2 (161)

ẋ9 = x10 (162)

ẋ10 = −0.556 [(cos x1)(sin x3)(cos x5) + (sin x1)(sin x5)] u1

(163)

ẋ11 = x12 (164)

ẋ12 = −0.556 [(cos x1)(sin x3)(sin x5) − (sin x1)(cos x5)] u1

(165)

yo1 = x9 + x10 ≡ ho1 (166)

yo2 = x1 + x2 ≡ ho2 (167)

yo3 = x3 + x4 ≡ ho3 (168)

yo4 = x5 + x6 ≡ ho4 (169)

where θ1 = sin t, θ2 = sin t denote to be disturbances. The

initial values of the states are set to be

⇀
x (0)≡

[

π
/

6 0 π
/

6 0 π
/

4 0 0 1 −0.1 0.21 0.5 1
]T

(170)

Now we will show how to explicitly build the almost dis-

turbance decoupling controller that tracks the desired signals

y1od = y2od = y3od = y4od = 0 and attenuates the disturbance’s

effect on the output terminal. Let’s arbitrarily choose α11 =
α21 = α31 = α41 = 0.02,A1c = A2c = A3c = A4c = −0.02,

P1 = P2 = P3 = P4 = 25 and ∇∗
min = ∇∗

max = 25. The

optimal LQR weighting parameters Q and R are performed

using PSO algorithm. Let the fitness function for LQR be

the inverse of the convergence rate factor N with N2 = 1

and 1max = 387. The parameter values determined for the

optimization are given in Table 1. The weighting parameters

Q, R and the gain K calculated for the LQR controller after

optimization are given Q = 6,R = 1 for ε = 0.006 and then

the solution of algebraic Riccati equation is K = 0.803. The

fitness value for each iteration using PSO algorithm is plotted

in Fig. 6.

TABLE 1. PSO optimazation parameters.
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FIGURE 6. The fitness value for each iteration using PSO algorithm.

From Theorem 1, the desired almost disturbance decou-

pling controller is given by

⇀
u = A−1









−⇀
ub + ⇀

uv +









vLQR1
vLQR2
vLQR3
vLQR‘

















(171)

vLQR1

= −0.803 (x9 + x10) (172)

vLQR2

= −0.803 (x1 + x2) (173)

vLQR3

= −0.803 (x3 + x4) (174)

vLQR4

= −0.803 (x5 + x6) (175)

A=













−0.45

(

(cos x1)(sin x3)(cos x5)

+(sin x1)(sin x5)

)

0 0 0

0 100 0 0

0 0 92.6 0

0 0 0 4.63













(176)

⇀
uv =









−ε−1 (0.02) (x9 + x10)

−ε−1 (0.02) (x1 + x2)

−ε−1 (0.02) (x3 + x4)

−ε−1 (0.02) (x5 + x6)









(177)

⇀
ub =









x10
x2 − 20.52x4x6
x4 + 19.07x2x6
x6 − 0.0037x2x4









(178)

u1 =
−1.786

11

[

−x10 − ε−1 (0.02) (x9 + x10)

−0.803 (x9 + x10)] (179)

u2 = 0.01
[

−x2 + 20.52x4x6 − ε−1 (0.02) (x1 + x2)

− 0.803 (x1 + x2)] (180)

u3 = 0.0108
[

−x4 − 19.07x2x6 − ε−1 (0.02) (x3 + x4)

−0.803 (x3 + x4)] (181)

u4 = 0.216
[

−x6 + 0.0037x2x4 − ε−1 (0.02) (x5 + x6)

−0.803 (x5 + x6)] (182)

11 ≡ (cos x1)(sin x3)(cos x5) + (sin x1)(sin x5) (183)

According to the well defined assumption of the vector rel-

ative degree, it has been shown [63] that the diffeomorphism

function φ : ℜn → ℜn can be chosen as

⇀

ξ 1 ≡ ξ11 = ϕ11 ≡ L0⇀
f
ho1(

⇀
x ) = x9 + x10, (184)

⇀

ξ 2 ≡ ξ21 = ϕ21 ≡ L0⇀
f
ho2(

⇀
x ) = x1 + x2, (185)

⇀

ξ 3 ≡ ξ31 = ϕ31 ≡ L0⇀
f
ho3(

⇀
x ) = x3 + x4, (186)

⇀

ξ 4 ≡ ξ41 = ϕ41 ≡ L0⇀
f
ho4(

⇀
x ) = x5 + x6, (187)

In (184)∼(187), there are four transformed variables due to

the vector relative degree of the system (154)∼(169). How-

ever, the transformed quadrotor system is not full linear and

then we will design additional eight variables. Since the dis-

tributions of
⇀
g1(

⇀
x ),

⇀
g2(

⇀
x ),

⇀
g3(

⇀
x ),

⇀
g4(

⇀
x ) are involutive [64],

the desired eight variables can be chosen according to the con-

dition L⇀
g j
ϕk (

⇀
x (t)) = 0. Then we can choose the following

eight transformed nonlinear variables:

η5 ≡ ϕ5 ≡ x9 (188)

η6 ≡ ϕ6 ≡ x9 (189)

η7 ≡ ϕ7 ≡ x1 (190)

η8 ≡ ϕ8 ≡ x1 (191)

η9 ≡ ϕ9 ≡ x3 (192)

η10 ≡ ϕ10 ≡ x3 (193)

η11 ≡ ϕ11 ≡ x5 (194)

η12 ≡ ϕ12 ≡ x5 (195)

The designed continuous diffeomorphism function trans-

forms the original nonlinear quadrotor system into an equiva-

lent controllable system, including the transformed nonlinear

subsystem and the transformed linear subsystem. These vari-

ables ξ11 , ξ
2
1 , ξ

3
1 , ξ

4
1 and η5 ∼ η12 denote the state variables

of the transformed linear subsystem and nonlinear subsystem,

respectively.

According to the general Lyapunov theorem, we define the

composite Lyapunov function Vcom (ē, η) to be a weighted

sum of Vnon(η) andW (ē) for the transformed nonlinear sub-

system and the transformed linear subsystem, respectively:

Vcom

(

ē,
⇀
η
)

≡ Vnon(
⇀
η) + k(ε)W (ē)

≡ Vnon(
⇀
η)+k(ε)

(

W 1
(

e1
)

+W 2
(

e2
)

+W 3
(

e3
))

(196)

whereW
(

ei
)

satisfies

W i
(

ei
)

≡
1

2
ei
T
Piei (197)
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Vnon(
⇀
η) ≡ η25 + · · · + η212, ωnon1

∥

∥

∥

⇀
η

∥

∥

∥

2

≤ Vnon(
⇀
η) ≤ ωnon2

∥

∥

∥

⇀
η

∥

∥

∥

2
,

ωnon1 = 1, ωnon2 = 1 (198)

⇀
ρnon(t,

⇀
η, e) =

[

e11 − η5 e
1
1 − η6 e

2
1 − η7 e

2
1 − η8

e31−η9 e
3
1 − η10 e

4
1 − η11 e41 − η12

]T

(199)
∥

∥

∥

⇀
ρnon(t,

⇀
η, ē) − ⇀

ρnon(t,
⇀
η, 0)

∥

∥

∥

2

= 2

[

(

e11

)2
+
(

e21

)2
+
(

e31

)2
+
(

e41

)2
]

≤ Mnon (‖ē‖) ,Mnon =
√
2 (200)

∥

∥

∥
∇⇀
η
Vnon

∥

∥

∥
=
∥

∥

∥

[

2η5 2η6 · · · 2η12
]∥

∥

∥

= 2

√

η25 + η26 + · · · + η212 ≤ ωnon3

∥

∥

∥

⇀
η

∥

∥

∥
,

ωnon3 = 2 (201)

∇tVnon + (∇⇀
η
V )T

⇀
ρnon(t,

⇀
η, 0)

= −2
(

η25 + η26 + · · · + η212

)

≤ −8αx

(

⇀
η
)

,

αx = 1 (202)

Note that the function Vnon(
⇀
η) ≡ η25+· · ·+η212 in (200)(201)

and (202) is a well-known Lyapunov function for transformed

nonlinear subsystem [66]. The function W i
(

ei
)

≡ 1
2
ei
T
Piei

in (197) is the Lyapunov function for transformed linear

subsystem and then combine the Lyapunov functions Vnon
and W to build the composite Lyapunov function for overall

transformed system. It can be proved that the related condi-

tions of Theorem 1 hold if ε = 0.006, k = 400
√
ε, r1 = r2 =

r3 = r4 = 1, αs = 1.00058,H11 = 2, N = 1.99884,
⇀

Br1 =
⇀

Br2 =
⇀

Br3 =
⇀

Br4 = 1,K11 = K21 = K31 = K41 = −0.803,

N2 = 1, H22 = 1
25ε

− 8
(
√

0.0004
ε2

+ Q
R

− 0.02
ε

)

,H12 =
−0.02

ε
1
4

. Hence the almost disturbance decoupling controllers

will drive the tracking errors of the closed-loop system to zero

by Theorem 1. The tracking errors of the quadrotor system

with LQR (epsion=0.006) using PSO are depicted in Fig. 7.

Applying the feedback linearization controller with the opti-

mal control LQR using PSO can indeed make the tracking

errors be zero and satisfy the conditions of almost disturbance

decoupling performance. From Fig. 8 ∼ Fig. 11, a significant

conclusion can be drawn that the control input amplitude with

LQR is smaller than that without LQR. From (47) and (49),

Fig. 12∼ Fig. 15 show that the convergent rates with smaller

epsion value is better than a larger epsion value. Observing

Fig. 16 and Fig. 19 shows that the convergence rate with

optimal controller using PSO algorithm is larger than the con-

ventional trial and error method with non-optimal controller.

FIGURE 7. The output tracking errors using PSO (epsion=0.006).

FIGURE 8. The designed controller u1 with/without LQR controller
(epsion=0.006).

V. COMPARATIVE EXAMPLES TO EXISTING

APPROACHES

In order to show the superiority of the proposed con-

troller, this section will compare the performances with other

existing techniques, such as famous fuzzy controller [68],

and the singular perturbation method with high-gain feed-

back [51] shown as follows.

The block diagram of the fuzzy control is shown in Fig. 20.

In general, the tracking error e(t) and its time derivative ė(t)

are utilized as the input fuzzy variables of the IF-THEN

control rules and the output is the control variable ufuzzy.

Tomake it easier to compute, themembership functions of the

linguistic terms for e(t), ė(t) and ufuzzy are all chosen to be the

triangular shape functions. We define seven linguistic terms:

PB(Positive big), PM(Positive medium), PS(Positive small),

ZE(Zero), NS(Negative small), NM(Negative medium) and

NB(Negative big), for each fuzzy variable as shown

in Fig. 21∼ Fig. 23. Fuzzy control rule table for ufuzzy is

shown in Table 2. The rule base is heuristically built by the

standard Macvicar-Whelan rule base for usual servo control

systems. The Mamdani method is used for fuzzy inference.
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FIGURE 9. The designed controller u2 with/without LQR controller
(epsion=0.006).

FIGURE 10. The designed controller u3 with/without LQR controller
(epsion=0.006).

FIGURE 11. The designed controller u4 with/without LQR controller
(epsion=0.006).

The defuzzification of the output set membership value is

obtained by the centroid method.

In what follows, simulations of the fuzzy controller for

the quadrotor system are shown. Tracking error responses for

FIGURE 12. The output tracking error for h1 with larger/smaller epsion.

FIGURE 13. The output tracking error for h2 with larger/smaller epsion.

FIGURE 14. The output tracking error for h3 with larger/smaller epsion.

outputs h1 to h4 with the help of fuzzy toolbox for matlab,

respectively are given in Fig. 24∼ Fig. 27.

Observing Fig. 24∼ Fig. 27 shows that the convergence

rate with our proposed optimal controller using the PSO

algorithm is larger than the conventional fuzzy controller.
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FIGURE 15. The output tracking error for h4 with larger/smaller epsion.

FIGURE 16. The output tracking errors with optimal/non-optimal Q and R
using PSO algorithm (epsion=0.006).

TABLE 2. Fuzzy control rule base.

Next, we will compare proposed approach with the sin-

gular perturbation method under high-gain feedback [50]

to show that the performance of proposed design is better

than it.

Reference [51] had shown that the almost disturbance

decoupling performance cannot be achieved for the following

FIGURE 17. The output tracking errors with optimal/non-optimal Q and R
using PSO algorithm (epsion=0.006).

FIGURE 18. The output tracking errors with optimal/non-optimal Q and R
using PSO algorithm (epsion=0.006).

nonlinear systems:
[

ẋ1(t)

ẋ2(t)

]

=
[

x2
0

]

+
[

0

1

]

u+
[

w1(t)

x32w2(t)

]

, (203)

y(t) = x1(t) := h(X (t)) (204)

where u, yo1 denote the input and output, respectively,

w1(t) = w2(t) = 0.1 sin t are disturbances and the desired

tracking signal is sin t . The sufficient criterion in [50] requires

that the nonlinearity multiplied by the disturbance satisfies

the structural triangle criterion. It will be easy to calculate

the following items:L0f ho1 = ho1 = x1, dho1 = [ 1 0 ],

L1f ho1 = x2,Lq∗
2
L1f ho1 = x32 and d

(

Lq∗
2
L1f ho1

)

=
[

0 3x22
]

.

Hence the sufficient criterion of [51] is not satisfied, since

d
(

Lq∗
2
L1f ho1

)

/∈ span {dho1}. Then the almost disturbance

decoupling performance is not achieved for this system.

On the contrary, this performance can be easily achieved
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FIGURE 19. The output tracking errors with optimal/non-optimal Q and R
using PSO algorithm (epsion=0.006).

FIGURE 20. Fuzzy logic controller.

FIGURE 21. Membership functions for e(t).

FIGURE 22. Membership functions for ė(t).

FIGURE 23. Membership functions for ufuzzy .

via the proposed approach in this study. Applying the sim-

ilar effective algorithm shown in Figure 2, the tracking

problem with almost disturbance decoupling performance

FIGURE 24. The output tracking errors for h1.

FIGURE 25. The output tracking errors for h2.

FIGURE 26. The output tracking errors for h3.

can be solvable by the state feedback stabilized controller

defined by

u=
(

100
/

9
)

(x2−cos t) −
(

10000
/

81
)

(x1 − sin t) − sin t

(205)
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FIGURE 27. The output tracking errors for h4.

FIGURE 28. The output trajectory of feedback-controlled system for (203).

The output trajectory of feedback-controlled system for

Eq. (203) is shown in Figure 28.

VI. CONCLUSION

The novel COVID-19 virus continues to spread. In this inci-

dent, agricultural spraying quadrotors are expected to develop

cross-domain applications. The important mission stimulates

us to design the stabilizing controller of the highly nonlin-

ear quadrotor system by combining the feedback linearized

method and LQR method using PSO. Because disturbance

has a critical impact on quadrotor, this study adopts stricter

almost disturbance decoupling requirement, i.e., in addition

to the absolute value condition and integration condition of

the tracking error, it must also meet the strict requirement of

the input-to-state stable condition.

This article ‘‘firstly’’ proposes the convergence rate for-

mula of the nonlinear system and uses it as the fitness function

of LQR approach by using PSO to take the place of the

trial and error method for traditional LQR method. More-

over, the significant innovation of the proposed method is

to own ‘‘simultaneously’’ additional performances including

the input amplitude reduction, tuning parameter optimiza-

tion and globally exponential stability performances. Two

comparative examples verify the fact that the convergence

rate with our proposed controller is larger than the fuzzy

controller, and better than the singular perturbation method

with high-gain feedback. Because of the pivotal importance

of quadrotor and the research results of this study, in the

future, we will develop toward quadrotor with loading and

formation execution tasks.
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