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Feedback-related Negativity Codes Prediction Error
but Not Behavioral Adjustment during

Probabilistic Reversal Learning

Henry W. Chase1, Rachel Swainson2, Lucy Durham1, Laura Benham1,
and Roshan Cools1,3

Abstract

■ We assessed electrophysiological activity over the medial

frontal cortex (MFC) during outcome-based behavioral adjust-

ment using a probabilistic reversal learning task. During record-

ing, participants were presented two abstract visual patterns on

each trial and had to select the stimulus rewarded on 80% of

trials and to avoid the stimulus rewarded on 20% of trials. These

contingencies were reversed frequently during the experiment.

Previous EEG work has revealed feedback-locked electrophys-

iological responses over the MFC (feedback-related negativ-

ity; FRN), which correlate with the negative prediction error

[Holroyd, C. B., & Coles, M. G. The neural basis of human error

processing: Reinforcement learning, dopamine, and the error-

related negativity. Psychological Review, 109, 679–709, 2002]

and which predict outcome-based adjustment of decision values

[Cohen, M. X., & Ranganath, C. Reinforcement learning signals

predict future decisions. Journal of Neuroscience, 27, 371–378,

2007]. Unlike previous paradigms, our paradigm enabled us to

disentangle, on the one hand, mechanisms related to the re-

ward prediction error, derived from reinforcement learning

(RL) modeling, and on the other hand, mechanisms related to

explicit rule-based adjustment of actual behavior. Our results

demonstrate greater FRN amplitudes with greater RL model-

derived prediction errors. Conversely expected negative out-

comes that preceded rule-based behavioral reversal were not

accompanied by an FRN. This pattern contrasted remarkably

with that of the P3 amplitude, which was significantly greater

for expected negative outcomes that preceded rule-based be-

havioral reversal than for unexpected negative outcomes that

did not precede behavioral reversal. These data suggest that

the FRN reflects prediction error and associated RL-based adjust-

ment of decision values, whereas the P3 reflects adjustment of

behavior on the basis of explicit rules. ■

INTRODUCTION

The medial frontal cortex (MFC) has been implicated in

the flexible adjustment of behavior on the basis of changes

in reward and punishment values (Cohen & Ranganath,

2007; Rushworth, Buckley, Behrens,Walton,&Bannerman,

2007; Roelofs, van Turennout, & Coles, 2006; Ridderinkhof,

Ullsperger, Crone, &Nieuwenhuis, 2004). However, debate

continues over its precise contribution. Here we focus on

one of its electrophysiological signatures, the feedback-

related negativity (FRN), to further elucidate the role of

the MFC (Holroyd & Coles, 2008; Gehring & Willoughby,

2002, but seeNieuwenhuis, Slagter, vonGeusau,Heslenfeld,

& Holroyd, 2005; van Veen, Holroyd, Cohen, Stenger, &

Carter, 2004) in distinct formsof outcome-based adjustment.

It has long been accepted that behavior can be adjusted

by one or more of multiple decision systems (Daw, Niv, &

Dayan, 2005). For example, behavioral adjustment might

be controlled by incremental “caching”-like reinforcement

learning (RL), associated most commonly with the (dorso-

lateral) striatum, or by more explicit rules, associated most

commonly with the pFC. Here we aim to assess the de-

gree to which the FRN, measured over the MFC, reflects

outcome-induced adjustment of decisions on the basis of

the reward prediction error, derived from a standard RL

model, or alternatively outcome-based adjustment of deci-

sions on the basis of an explicit rule, given to participants

during task instruction.

This question relates to the ongoing debate about the

function of the MFC (Botvinick, 2007; Rushworth et al.,

2007; Devinsky, Morrell, & Vogt, 1995). In particular, it

speaks to current hypotheses that theMFC signals the need

to adjust performance (Roelofs et al., 2006; Ridderinkhof

et al., 2004; MacDonald, Cohen, Stenger, & Carter, 2000).

Specifically, the present study aims to extend recent find-

ings by Cohen and Ranganath (2007), who reported a

relationship between FRN amplitude and behavioral ad-

justment during a probabilistic decision making task. Criti-

cally, in this task, there was no explicit rule, and participants

were required to select between two options on the screen,

each of which was rewarded with a 50% probability. The

authors observed greater FRN amplitude after reward

omission than after reward. In addition, FRN amplitude

(accompanying feedback on trial n) was larger when the
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subject switched their response on the subsequent trial

(n + 1) to the other option (i.e., not the option they had

selected on trial n) compared with when they did not

switch. The authors presented a prediction error learning

model that accounted for their FRN data. This model reg-

istered a larger prediction error accompanying feedback

before a response switch than before a response repeat,

controlling for feedback valence. The present study aims

to extend these findings by assessing FRN amplitudes dur-

ing unexpected reward omissions that do not lead to actual

behavioral adjustment with those during expected reward

omissions that do lead to behavioral adjustment.

To this end, weused a paradigm that has been commonly

used to study outcome-based behavioral adjustment, that

is, the probabilistic reversal learning task (Cools, Clark,

Owen, & Robbins, 2002; Swainson et al., 2000). After hav-

ing obtained a learning criterion, the contingencies re-

verse and participants adjust their behavior accordingly.

In our version of the task, we instructed participants to

reverse responding to the previously punished but newly

rewarded stimulus only when they were sure that the con-

tingencies had changed. This explicit rule enabled us to

separately assess, on the one hand, mechanisms related

to the reward prediction error and, on the other hand,

mechanisms related to explicit rule-based adjustment of

actual behavior. Indeed as instructed, after contingency

reversal, participants continued to choose the previously

rewarded stimulus until they had acquired sufficient and

unambiguous evidence for the need to adjust respond-

ing. Accordingly, the negative prediction error was larg-

est during a first reward omission but then reduced with

successive reward omissions, until, just before reversal,

the subject was no longer surprised, hence reversed re-

sponding on the next trial. Thus, if the FRN reflects nega-

tive prediction error (and associated RL-based adjustment

of decision values), then its amplitude should diminish as

reward omissions become better predicted. Indeed, its

amplitude should be smallest just before actual behav-

ioral reversal. However, if the FRN reflects explicit rule-

based behavioral adjustment, then its amplitude should

be largest (more negative) during the reward omission

just before behavioral reversal. Consistent with previous

theorizing and empirical data (Cohen & Ranganath, 2007;

Holroyd, Nieuwenhuis, Yeung, & Cohen, 2003; Holroyd &

Coles, 2002; Nieuwenhuis et al., 2002), we anticipated that

the FRN amplitude would correlate positively with the re-

ward prediction error and not with rule-based behavioral

adjustment.

To test this hypothesis, we assessed the relationship be-

tween the FRN amplitude and (both the positive and the

negative) the reward prediction error, derived from a stan-

dard RL model, not only across different trial types (as has

been done previously; Holroyd et al., 2003, Nieuwenhuis

et al., 2002) but also by examining trial-by-trial variation

in FRN amplitude. Specifically, we used linear regression

analysis, with the FRN amplitude as the dependent mea-

sure and the model-derived prediction error as the inde-

pendent measure, to test whether the FRN scales with

increasing magnitude of prediction error (as reflected in

the slope of the regression line).

METHODS

Participants

Thirteen healthy, right-handed students from the Univer-

sity of Cambridge (5 men, age 19–22 years) were recruited.

Exclusion criteria were recent head injury, psychiatric or

neurological disease, use of psychiatric drugs, and color

blindness. Participants received a small fee for participation

and provided informed consent approved by the Univer-

sity of Cambridge Research Ethics Committee.

Experimental Design

The study used a probabilistic reversal learning paradigm,

adapted from Cools, Lewis, Clark, Barker, and Robbins

(2007) and Cools et al. (2002), administered on a desktop

computer. Responses were recorded using a button box.

On each trial, two Hiragana characters were presented on

either side of a central fixation point. Participants were in-

structed to select one of the characters and received feed-

back on their choice in the form of either a green smiling

face (reward) or a red frowning face (punishment). One of

the stimuli (the correct stimulus) would result in reward

on 80% of trials, whereas the other (the incorrect stimu-

lus) would be rewarded on 20% of trials. Intermittently,

the contingencies reversed, after between 4 and 10 choices

of the highly rewarded stimulus. After contingency rever-

sal, selection of the previously correct stimulus would lead

to punishment on every trial until the subject selected the

now-correct stimulus. Each block contained four rever-

sals. Participants completed 10 blocks, preceded by a short

practice session. Participants were presented with the fol-

lowing task instructions.

You will see two pictures. One of the pictures is

correct and the other is wrong. You have to choose the

correct pattern on each go. On some goes, the computer

will tell you that you were wrong even if you chose the

correct pattern. Your task is to stick to the pattern that is

usually correct. Sometimes the rule may change so that

the other pattern is now usually correct. You then have

to follow this new rule and choose the new pattern so

that, in general, you still get as many green smiley faces

as possible over the whole of the task. It is important

that you only start choosing the other pattern when you

are sure that the rule has changed!!! The rulewill change

several times, but there is no way of predicting when it

will change. The same two patterns will be presented

throughout the task. Try to respond as quickly as you

can. If you respond too slowly, then the computer will

tell you that you were “too late.” Try to avoid this as

much as possible. Fixate on the cross in between trials.

Chase et al. 937



Stimuli remained on the screen until the subject made

a response on the button box, then, after a 1000-msec de-

lay, feedback was presented for 500 msec. The feedback/

subsequent stimuli delay was jittered between 750 and

1250 msec to ensure that feedback-related activity was

not confounded by presentation of the next stimulus.

Electrophysiological Recording and ERP Extraction

Scalp electrical activity was recorded with a 128-electrode

HydroCel Geodesic Sensor Net (Tucker, 1993). Each elec-

trode was adjusted until its impedance was below 50 kΩ.

Data were recorded at 250 Hz, using the vertex electrode

(129th electrode) as the reference. The amplifier band-pass

was 0.1–100 Hz, and the data were low-pass filtered at 40 Hz

off-line. The data were average referenced and corrected

for the polar average reference effect ( Junghofer, Elbert,

Tucker, & Braun, 1999). Epochs of 700 msec (200 msec

baseline before feedback presentation, 500 msec after)

were extracted. Epochs were excluded if they had am-

plitudes greater than 70 μV or a channel variance of 0, as

these were likely to contain eye blinks or other artifacts.

Channels for which 15% or more of segments contained

artifacts were marked as bad, and their data were excluded.

In epochs where fewer than 15% channels were marked

bad, data from bad channels were interpolated from the re-

maining channels. Notably only one channel of one epoch

for one subject was marked bad on the basis of the elec-

trodes included in the ROIs.

Feedback-locked ERPs were extracted from five trial

types to investigate our a priori hypotheses:

1. “valid positive” (vP) feedback coinciding with correct

responses (excluding the first correct response after be-

havioral switching);

2. “spurious negative” (sN) feedback coinciding with

correct responses;

3. negative feedback coincidingwith erroneous responses

after contingency reversal, which were not followed by be-

havioral switching (“preceding negative”; pN);

4. negative feedback coinciding with the final erroneous

response before behavioral switching (“final negative”;

fN); and

5. positive feedback coinciding with the first correct re-

sponse after behavioral switching (“first positive”; fP).

The data from the epochs were averaged across each

condition to produce an average waveform for each trial

type and each subject. These waveforms were then base-

line corrected by subtracting the mean of the first (pre-

stimulus) 200 msec from the rest of the epoch.

Feedback-related Negativity

The amplitude of the FRN for each subject was deter-

mined by subtracting the average of the preceding and

following positive peaks (Yeung & Sanfey, 2004) from

the lowest point within a window 248–296 msec post-

feedback (Yeung, Holroyd, & Cohen, 2005), using data

from a symmetrical cluster of eight central electrodes (6,

7, 13, 31, 55, 80, 106, and 112; see Figure 1, top marked

cluster). If the lowest point was at the edge of the win-

dow, the size of the window was widened until the lowest

point was then no longer on the edge of the window in

order that the nadir of the FRN be identified correctly.

The equivalent was performed for the preceding and fol-

lowing peaks (if the highest point was at the edge of the

window, the window was increased in size) to ensure that

the zeniths were identified. The window for the preced-

ing peak was between 180 and 208 msec postfeedback,

and the window for the following peak was between 346

and 376 msec postfeedback.

P3

Inspection of the data revealed large P3 responses during

selective trial types. We decided to also quantify the P3

amplitude for the following two reasons. First, the mea-

surement of the FRN can be affected by the P3 amplitude.

Second, evidence indicates that the P3 can be elicited by

detection of changes in task contingency (Barcelo, Escera,

Corral, & Perianez, 2006; Johnson & Donchin, 1982) as

well as by unpredicted (rewarding) events (Bellebaum &

Daum, 2008; Hajcak, Moser, Holroyd, & Simons, 2007;

Hajcak, Holroyd, Moser, & Simons, 2005; Hajcak, Moser,

Yeung, & Simons, 2005). Our paradigm provides a unique

opportunity to disentangle the role of the P3 in the de-

tection of unexpected events, contingency changes, and

actual behavioral adaptation. Hence, we used a method

similar to that used by Yeung and Sanfey (2004) to obtain

independent estimates of FRN and P3 amplitude and ap-

plied the trial-by-trial linear regression method to the P3

as well as the FRN. Critically, we performed supplementary

analyses to disentangle the estimates of these two ERPs

(see Supplementary ERP analyses section).

P3 amplitude was quantified by extracting data from the

central as well as a parieto-occipital region (a symmetrical

cluster of eight posterior electrodes: 61, 62, 67, 71, 72, 76,

77, and 78; see Figure 1, bottom marked cluster). Because

the data in the time range of the P3 component included

some noise such that a clear P3 peak was not easy to

determine, a measure of mean amplitude over a 300- to

500-msec postfeedback window was used. Of the sensors

used, five specific locations correspond closely to locations

within the 10–10 system, that is, 6 (FCz), 55 (CpZ), 67

(PO3), 72 (POz), and 77 (PO4) (Luu & Ferree, 2000).

Reinforcement Learning Model

To further investigate our predictions, specifically those in-

spired byHolroyd and Coles (2002), the RL (Q value)model

used by Cohen and Ranganath (2007) was implemented.

938 Journal of Cognitive Neuroscience Volume 23, Number 4



The Q value of the selected stimulus A is updated with

new information using the following algorithm:

QAðt þ 1Þ ¼ QAðtÞ þ αδ

where δ is the prediction error (outcome(t)− QA(t)), α is

the learning rate, t is current trial, and outcome is 1 or−1

depending on feedback valence. Note that the discount-

ing parameter present in Cohen and Ranganathʼs model

was omitted because of a concern that the parameter

would reflect the autocorrelation of correct responses as a

result of the contingencies used in the task and be greater

than 1 if freely estimated. It was therefore set equal to 1.

The relative Q values of stimulus A and B were used to

compute the probability of selecting one of the stimuli

using the following equation:

PAðtÞ ¼ expðQAðtÞÞ=ðexpðQAðtÞÞ þ expðQBðtÞÞÞ

Individual learning rate parameters (i.e., α) were deter-

mined for each subject by optimizing the fit of the model,

that is, by maximizing the modelʼs estimation of the prob-

ability of selecting the outcome that the subject picks on

each trial using the nonlinear, unconstrained Nelder–Mead

simplex method implemented in Matlab 6.5 (MathWorks,

Natick, MA). The optimization algorithmwas run from differ-

ent starting points to ensure that the presence of local min-

ima did not influence accurate estimation of the parameter.

Having determined learning rate parameters for each

subject, values representing the prediction error δ on

each trial could be determined. The relationship between

these values and the FRN and P3 amplitude for each trial

were determined separately for each subject. First, all

trials were independently baseline corrected. The ampli-

tude of the FRN was determined for each trial using a sim-

ilar base/peak method to that described earlier, except

that the same latency for the FRN dip, preceding peak,

and following peak was used for each trial for a given sub-

ject. The latencies at the dip and peaks were estimated by

averaging all trials for each subject and then finding the

smallest voltage in the 248- to 296-msec window and the

preceding and following peak voltages. FRN amplitude

for each trial was then determined by subtracting the av-

erage of the voltages at the peaks from the voltage at the

dip. P3 amplitude on every trial was estimated by finding

the mean amplitude in the 300- to 500-msec postfeedback

window from the parietal electrodes. Using these values,

a linear model could then be fitted for each subject:

ERP Amplitude ¼ kδ þ intercept þ noise

Slopes (k) and intercepts were determined using FRN

and P3 amplitudes as the dependent measures. We then

determined whether the value of the slope was different

overall from 0 for the group for each dependent measure

using a one-sample t test. A significant difference from 0

would suggest a relationship between the size of the predic-

tion error and the size of the ERP amplitude on individual

trials. Separate analyses for positive and negative pre-

diction errors were performed given current controversy

Figure 1. Diagram showing

the distribution of scalp

electrodes (anterior electrodes

are at the top). Electrodes 6, 7,

13, 31, 55, 80, 106, and 112

were used to acquire central

electrical activity (for FRN

extraction—black outline, top

cluster), whereas electrodes 61,

62, 67, 71, 72, 76, 77, and 78

were used to acquire parietal

electrical activity (for P3

extraction—black outline,

bottom cluster).
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regarding the valence-specificity of the FRN. Although the

FRN is commonly thought to accompany outcomes that

are worse than expected, recent evidence indicates that it

might also have a larger (more negative) amplitude when

the outcome is better than expected (Oliveira, McDonald,

& Goodman, 2007). If the FRN scales with both types of

prediction error, then we would see significant linear rela-

tionships (as evidenced by regression slopes that are signif-

icantly greater than zero) between FRN and both negative

and positive prediction errors. Accordingly, we performed

two linear regression analyses, separately considering trials

on which prediction error was negative (the outcome was

worse than expected) and trials on which the prediction

error was positive (outcome better than expected). We

then compared the slopes and intercepts of these relation-

ships. If the FRN scales with the magnitude of the negative

prediction error (Holroyd & Coles, 2002), then the slope of

this relationship should be positive (more negative predic-

tion errors with more negative FRN). If it also scales with

the magnitude of the positive prediction error, then the

slope of the relationship between the positive prediction

error and the FRN should be negative (more positive pre-

diction errors with more negative FRN). In addition, if the

prediction error (negative or positive) is the critical deter-

minant of the FRN amplitude, then the intercepts of the

two regression equations should be similar. Alternatively,

if the FRN amplitude does not scale with increasing nega-

tive prediction error but simply reflects a binary evaluation

of whether the feedback was positive or negative, then

there should be a difference between the intercepts of

the two regression equations, but not their slopes (which

should be close to zero).

Behavioral and ERP Data Analysis

Parameters of interest for each subject were as follows

(see previous paragraphs): mean number of valid positive

(vP) trials, spurious negative (sN) trials, preceding nega-

tive (pN) trials, final negative (fN) trials, and first positive

(fP) trials; mean number of perseverative errors (pN + fN

trials); and probability of switching following spurious neg-

ative (sN) trials. Analysis of the FRN and P3 amplitude was

performed using repeated measures ANOVA, contrasting

each of the five trial types. Paired two-tailed t tests were

used to further assess planned comparisons of primary in-

terest, as outlined in the Introduction. An alpha level of .05

was used in all statistical comparisons. The Greenhouse–

Geisser correctionwas appliedwhen the sphericity assump-

tion was violated.

RESULTS

Behavioral Data

All participants completed 10 blocks, aside from one sub-

ject who completed 13 blocks and another who completed

7 blocks because of a computer error. Mean numbers of

trial types were as follows: 322.9 vP trials (SD = 48.0),

93.0 sN trials (SD = 15.0), 52.6 pN trials (SD = 17.0),

39.3 fN (SD= 5.8), and 39.3 fP trials (SD= 5.8). There were

a mean of 2.3 perseverative errors (pN and fN trials) per

reversal (SD = 0.3), whereas the mean probability of

switching cue after a spurious negative trial was 0.075

(SD = 0.05).

After artifact detection and removal, the mean numbers

of artifact-free epochs were as follows: 239.9 vP trials (SD=

88.6), 72.9 sN trials (SD = 22.4, range = 26–107), 41.8 pN

trials (SD= 20.3), 28.5 fN trials (SD= 10.5, range = 8–40),

and 27.6 fP trials (SD = 10.5).

ERP Analysis: FRN

FRN amplitude for each trial type, computed using a peak

to peak method, was analyzed using a repeated measures

ANOVA with the within-subject factor trial type (five lev-

els). There was a main effect of trial type, F(2.2, 26.8) =

10.7, p < .001. Paired t tests were used to investigate this

effect (Figure 2): As predicted, FRN amplitude was larg-

est on spurious negative trials, then preceding negative

trials, whereas FRN amplitude was indistinguishable be-

tween final negative trials, valid positive trials, and first pos-

itive trials. Temporal dynamics of the FRN are displayed in

Figure 3A.

Thus, the events on which negative feedback was least

expected, that is, the spurious negative (sN) trials and the

preceding negative (pN) trials evoked the largest FRN am-

plitudes. However, the event that led to behavioral switch-

ing (fN) was not accompanied by an FRN relative to positive

feedback (either vP or fP trials). Hence, the FRN amplitude

was large during unexpected punishment events that were

not followed by behavioral switching. Conversely, there

Figure 2. Mean FRN amplitude for each trial type: vP = valid

positive; sN = spurious negative; pN = preceding negative; fN = final

negative; fP = first positive (*p < .05; **p < .005).
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was no FRN on expected punishment events that were fol-

lowed by behavioral switching.

ERP Analysis: P3

Mean amplitudes were extracted for each trial type from

parietal electrodes in a window of 300–500 msec post-

feedback and inserted in a repeated measures ANOVA.

There was a main effect of trial type, F(2.2, 26.6) = 12.527,

p < .001. Subsequent paired t tests (Figure 4) showed

that the largest P3 was produced on final negative (fN) trials.

The P3 on these fN trials was significantly larger than that

on spurious negative (sN) trials, t(12) = 4.15, p = .001.

The P3 amplitude did not differ significantly between the

first positive (fP), spurious negative (sN), and preceding

negative (pN) trials but was larger on each of these negative

feedback trials than on the valid positive (vP) trials (although

the difference between fP and vPwasmarginally significant),

t(12) = 1.85, p = .09. Temporal dynamics of the P3 are

displayed in Figure 3B.

Thus, P3 amplitude was greater during the negative

feedback trials that directly preceded behavioral switching

than during the spurious and preceding negative trials.

This pattern contrasts with that seen for the FRN.

Supplementary ERP Analyses

One might argue that the difference between the FRN am-

plitude on sN trials and that on fN trials is confounded by

the difference in the P3 amplitude between these trials,

which casts doubt on the validity of the contrast. However,

we performed a secondary analysis to demonstrate that

the same pattern of FRNs was obtained when we matched

a subset of sN and fN trials for parietal P3 amplitude. We

identified pairs of fN and sN trials whose absolute differ-

ence in P3 amplitude (recorded from parietal electrodes)

was as small as possible. If two or more fN trials were close

to a single sN trial, the fN/sN match with the smallest

absolute difference was included, and the fN trial with a

worse match was excluded. Amplitudes recorded from

central electrodes were compared from this subset of tri-

als (mean number of trials per participant = 22.3, range =

6–33). The maximal difference between those trial types

was most clearly evident in the time window in which

the FRN is expected (see Figure 5). Mean amplitude of

the selected sN and fN trails was approximately matched

in the windows that had been used to define the peaks

that preceded and followed the dip, first peak—180 to

208 msec, t(12) = 1.8, p = .098, second peak—356 toFigure 3. (A) Waveform plots for each trial type at central electrodes,

averaged across all participants: vP = valid positive; sN = spurious

negative; pN = preceding negative; fN = final negative; fP = first

positive. The red markers represent the approximate locations of the

peaks and dip used to calculate the FRN (FRN = dip—average of

the peaks). (B) Waveform plots for each trial type at parietal electrodes,

averaged across all participants. Red marker denotes time window in

which the P3 amplitude was determined.

Figure 4. Mean P3 amplitude for each trial type: vP = valid positive;

sN = spurious negative; pN = preceding negative; fN = final negative;

fP = first positive (*p < .05; **p < .005).
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376 msec, t(12) = 1.4, p = .19, whereas mean amplitudes

were clearly different between the two trial types in the

window used to define the dip, 248 to 296 msec, t(12) =

4.0, p = .002. Central P3 amplitudes in the selected sub-

set were also matched, mean amplitude between 300 and

500 msec, t(12) = 1.7, p = .113. A similar pattern of data,

although with weaker effect sizes, was observed when fN

and pN trials were compared in the same way.

Reinforcement Learning Analysis

A simple RL model was fitted to subjectʼs behavioral per-

formance by adjusting the magnitude of the learning rate

parameter. The model gave a good approximation of par-

ticipantsʼ behavioral performance (pseudo-R2 = .39, SE=

0.01). Participants had a mean learning rate of 0.73 (SE =

0.01). Mean prediction error was determined for each

trial type, and there was a significant main effect of trial

type, F(4, 48) = 2278.9, which was due to highly signifi-

cant paired t tests for comparisons between all five trial

types with each other, t(12) > 7.3, p < .001 in all cases.

As predicted, spurious negative trials were accompanied

by the most negative prediction error, followed by pre-

ceding negative, then final negative then valid positive,

and then first positive trials (see Figure 6).

The relationship between the FRN amplitude and the

magnitude of the prediction error was determined on a

trial-by-trial basis. As predicted, there was a positive rela-

tionship between negative prediction errors and FRN am-

plitude in all but one of the participants: Greater negative

prediction errors were associated with larger (more nega-

tive) FRN (Figures 7 and 8). The mean slope for the group

was significantly greater than 0, t(12) = 3.5, p = .004.

There was also a trend toward a significant negative re-

lationship between the positive prediction error and the

FRN amplitude (greater positive prediction errors result-

ing in a larger—more negative—FRN; Figure 7), although

the fitted slope was only marginally significantly different

from 0, t(12) = −2.0, p = .07. Paired t tests showed that

the slopes of the relationship between the prediction

error and the FRN differed significantly between positive

and negative prediction errors, t(12) = 4.6, p = .001, and

there was no significant difference between the absolute

slopes, t(12) = 1.6; p= .14. Together, these observations

suggest that both negative and positive prediction error

scaled linearly with FRN amplitude, although we note

that the relationship with the positive prediction error

should be treated with caution for several reasons (see

Discussion).

There was no significant difference in terms of the es-

timated intercepts, t(12) < 1 (Figure 9). Therefore, this

analysis further strengthened the hypothesis that FRN

amplitude is sensitive to the magnitude of prediction error

Figure 5. Graph describing the supplementary analysis of fN (blue

line) and sN (magenta line) trials using the P3 matching procedure.

The difference wave (black line) clearly demonstrates that the maximal

difference between the two waveforms is in the time window in which

the FRN is expected; hence, the statistical differences between the

conditions are not caused by confounding with P3 magnitude.

Figure 6. Reinforcement learning model-derived prediction error

associated with each trial type: vP = valid positive; sN = spurious

negative; pN= preceding negative; fN = final negative; fP = first positive.

Figure 7. Mean slope for relationships between negative prediction

error (gray) or positive prediction error (black) and maximum P3

amplitude (P3) and FRN amplitude (FRN), respectively.
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rather than simply its valence. Finally, the P3 amplitude

was fitted to positive and negative prediction errors sepa-

rately: Fitted slopes were not significantly different from 0

in any of the two models, negative, t(12) = 1.0, p= .3, and

positive, t(12) < 1, neither were the intercepts signifi-

cantly different between the two models, t(12) < 1.

Summary

Consistent with previous theorizing and empirical data,

the FRN amplitude in our study correlated positively with

negative prediction error. Specifically, the slope of the

relationship between the FRN amplitude and the negative

prediction error was significantly different from 0. By con-

trast, no evidence was found supporting the hypothesis

that the FRN amplitude reflects explicit rule-based behav-

ioral adjustment. Instead, the P3 amplitude was a better

predictor of rule-based behavioral adjustment because it

was largest on the negative feedback trials directly preced-

ing behavioral switching.

DISCUSSION

Adequate behavioral adjustment during probabilistic re-

versal learning not only depends on RL but might also

implicate explicit higher order knowledge. In the task

Figure 8. Figure showing the

relationship between the FRN

amplitude and the prediction

error in two representative

participants (Participants 4

[top] and 5 [bottom]). Note the

positive gradient between

prediction error and FRN

amplitude for negative

prediction errors. Prediction

error values are clustered

because of a combination of a

high learning rate and the

relatively stereotyped feedback

sequence combinations due to

the 80%/20% contingencies.

Figure 9. Mean intercept for relationships negative prediction error

(gray) or positive prediction error (black) and maximum P3 amplitude

(P3) and FRN amplitude (FRN).
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used here, participants were given such explicit higher or-

der knowledge, that is, the rule to switch responding only

when they were sure that the contingencies had changed.

This explicit rule enabled us to separately assess, on the

one hand, mechanisms related to RL and reward predic-

tion error, which likely contributed to adjustments of co-

vert decision values, and on the other hand, mechanisms

related to perhaps more explicit rule-based adjustment of

actual overt behavior. Previous data have shown that the

FRN predicts overt behavioral adjustment, when such ad-

justment is accompanied by a large reward prediction

error (Cohen & Ranganath, 2007). Conversely, our finding

indicates that outcome-based behavioral adjustment is ac-

companied by a P3 rather than an FRN, when such behav-

ioral adjustment is instead triggered by an explicit rule.

Thus, increases in the FRN with behavioral adjustment

are seen only if it is triggered by a large prediction error

rather than by an explicit rule. Indeed in the study by

Cohen and Ranganath (2007), reward probability was

50%, and the adoption of explicit rules or strategies was

discouraged. Together these data indicate that different

forms of outcome-based behavioral adjustment have dis-

tinct electrophysiological signatures, corresponding to

the FRN and the P3, respectively.

These data speak to the wider literature in which the

observation that distinct neural systems contribute to differ-

ent forms of behavioral control is receiving an increasing

amount of attention (Dayan, 2007; Frank & Claus, 2006;

Daw et al., 2005; Holroyd & Coles, 2002), with one system

implicated primarily in incremental and integrative RL and

another in more flexible and faster “tree-based search”

adjustments. The finding that the FRN correlates with the

reward prediction error rather than with rule-based ad-

justment also concurs more generally with the conclusion

that the MFC might play an important role in the adjust-

ment of decision values based on the integration of events

across reinforcement history ( Jocham, Neumann, Klein,

Danielmeier, & Ullsperger, 2009; Holroyd & Coles, 2008;

Behrens, Woolrich, Walton, & Rushworth, 2007). The find-

ing that, by contrast, the P3 was largest just before (and just

after) rule-based behavioral adjustment concurs with pre-

vious data supporting a relationship between the P3 am-

plitude and the detection and (cued) implementation of

changes in task contingencies (Fleming, Mars, Gladwin, &

Haggard, 2009; Barcelo et al., 2006; Donchin & Coles, 1988;

Johnson & Donchin, 1982). However, there was no clear

evidence for an association between P3 amplitude and pre-

diction error or valence (Bellebaum & Daum, 2008; Hajcak

et al., 2007; Hajcak, Holroyd, et al., 2005; Hajcak, Moser,

et al., 2005). Likewise, accounts of P3 amplitude (Duncan-

Johnson & Donchin, 1977; Squires, Wickens, Squires, &

Donchin, 1976), which focus on the unpredictability of

the sequence of different types of event (in this case, posi-

tive or negative feedback), would not easily capture this

pattern of data because, in general, the longer the sequence

of a particular type of trial, the smaller the P3 amplitude.

The probabilistic reversal learning task is somewhat un-

usual in that the longer the sequence of negative feedback,

the greater the likelihood of a change in task contingency:

In many tasks, it is the surprising trial itself that can be seen

to signal a change in the local stimulus probability (Mars

et al., 2008). One possible explanation for the apparent

discrepancy with previous data is that, unlike in previous

studies, the most unexpected outcome in our task is not

necessarily also the most behaviorally relevant or salient.

Thus, the P3might reflect an aspect of behavioral relevance

not dependent on the violation of a stimulus-outcome ex-

pectancy and one which is likely to involve the updating of

stimulus-response associations. In the present paradigm,

this is better coupled to the detection of a change in the

rule rather than a change in the associative strength of

the stimulus itself (which is reflected by the FRN).

There are a number of open questions regarding the

neural systems that mediate these distinct electrophysio-

logical correlates of probabilistic reversal learning. In par-

ticular, studies with lesion patients (e.g., Barcelo & Knight,

2007) may elucidate the necessary contribution of the re-

gions activated during the distinct trial types (as revealed

by previous fMRI work with the paradigm; Cools et al.,

2002) both to FRN and P3 generation and to behavior.

Candidate regions include not only the MFC and the pari-

etal cortex but also the ventral striatum and the ventrolat-

eral PFC (Cools et al., 2002).

Likewise, questions regarding the influence of neuro-

modulators on these processes require further study. For

example, according to the model of Holroyd and Coles

(2002), dopamine might be critically implicated in the gen-

eration of the FRN. Specifically, a phasic reduction in the

firing of dopamine neurons could disinhibit layer V neu-

rons in the MFC, allowing these cells to become synchro-

nously depolarized. Our finding that the FRN amplitude

tended to correlate positively, albeit only marginally with

the positive prediction error, provides a challenge to this

view. Indeed unexpected positive events are generally

accepted to be accompanied by bursts rather than dips

in the firing of dopamine neurons (Hollerman & Schultz,

1998; but see Brischoux, Chakraborty, Brierley, & Ungless,

2009; Matsumoto & Hikosaka, 2009). By contrast, our data

are compatible with other reports showing that the FRN

amplitude is greater when outcome expectations are vio-

lated, regardless of the expected valence of the outcome

(Oliveira et al., 2007). Nonetheless, caution is warranted

when interpreting this finding for three reasons. First, the

correlation did not quite reach statistical significance. Sec-

ond, our Q-learning model is not optimized for capturing

the dynamics of any positive prediction error in our higher

order reversal task (Hampton, Bossaerts, & OʼDoherty,

2006). For example, participants are unlikely to be surprised

when they receive reward after a contingency reversal, yet

this fP trial is coded as being accompanied by a high positive

prediction error (Figure 6). Third, most importantly, it

should be noted that our base/peak method of evaluating

the FRN is biased against detection of positivities observed

within the 248- to 296-msec window as we determined the
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lowest point within this window. Hence, the magnitude of

any positive deflection within this period would have been

poorly estimated by our measurement of the base ampli-

tude. Future studies should further elucidate the valence-

specificity of the FRN.

There is evidence that dopaminergic and serotoninergic

manipulations influence human probabilistic reversal learn-

ing, in terms of both behavioral performance (Chamberlain

et al., 2006; Cools, Barker, Sahakian, & Robbins, 2001;Mehta,

Swainson, Ogilvie, Sahakian, & Robbins, 2001) and neural

correlates (Cools et al., 2007; Evers et al., 2005). Specifically,

the dopamine-enhancing drugs L-dopa and methylpheni-

date were recently observed to modulate BOLD activity

in the ventral striatum during final reversal errors but not

during spurious negative feedback in this task (Dodds

et al., 2008; Cools et al., 2007). Conversely, serotoninergic

manipulation by the dietary tryptophan depletion proce-

dure modulated activity in the MFC, and this effect was

not restricted to the final reversal errors but extended to

the spurious negative feedback events (Cools, Roberts, &

Robbins, 2008; Evers et al., 2005). Future study should ad-

dress the obvious next question, that is, whether the switch-

specific P3 and the unexpected feedback-related FRN are

differentially modulated by dopaminergic and serotoniner-

gic manipulations, respectively. In addition, noradrenergic

mechanisms might also influence the amplitude of the P3

(Nieuwenhuis, Aston-Jones, & Cohen, 2005) and FRN (Riba,

Rodriguez-Fornells, Morte, Munte, & Barbanoj, 2005).
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