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Abstract. We study a system coupling the incompressible Navier-Stokes equations in a 2D rectangular type domain
with a damped Euler-Bernoulli beam equation, where the beam is a part of the upper boundary of the domain occupied by
the fluid. Due to the deformation of the beam the fluid domain depends on time. We prove that this system is exponentially
stabilizable, locally about the null solution, with any prescribed decay rate, by a feedback control corresponding to a force
term in the beam equation. The feedback is determined, via a Riccati equation, by solving an infinite time horizon control
problem for the linearized model. A crucial step in this analysis consists in showing that this linearized system can be
rewritten thanks to an analytic semigroup of which the infinitesimal generator has a compact resolvent.
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1. Setting of the problem. Let Ω be the rectangular domain (0, L)× (0, 1) ⊂ R2, with boundary
Γ. Let us set Γs = (0, L) × {1}, the upper part of the boundary of Ω, and Γ0 = Γ \ Γs. For a given
function η from Γs × (0,∞) into (−1,∞), we denote by Ωη(t) and Γs,η(t) the sets

Ωη(t) =
{

(x, y) | x ∈ (0, L), 0 < y < 1 + η(x, t)
}
,

Γs,η(t) =
{

(x, y) | x ∈ (0, L), y = 1 + η(x, t)
}
.

For 0 < T <∞ or T = ∞, we also use the notation

Σ0
T = Γ0 × (0, T ), ΣT = Γ× (0, T ),

QT = Ω× (0, T ), Q̃T =
⋃

t∈(0,T ) Ωη(t) × {t},

Σs
T = Γs × (0, T ), Σ̃s

T =
⋃

t∈(0,T ) Γs,η(t) × {t}.

We consider the following fluid-structure model coupling the Navier-Stokes equations with a damped
Euler-Bernoulli beam equation:

ut + (u · ∇)u− div σ(u, p) = 0, div u = 0 in Q̃∞,

u = ηt~e2 on Σ̃s
∞, u = 0 on Σ0

∞, u(0) = u0 in Ωη(0) = Ωη0
1
,

ηtt − βηxx − δηtxx + αηxxxx = ρ1p+H(u, η) + f on Σs
∞,

η = 0 and ηx = 0 on
{
0, L

}
× (0,∞),

η(0) = η0
1 and ηt(0) = η0

2 in Γs,

(1.1)

with

H(u, η) = −ρ2ν(∇u +∇uT )(−ηx~e1 + ~e2) · ~e2,

σ(u, p) = ν(∇u +∇uT )− p I, ~e1 = (1, 0), ~e2 = (0, 1).

In this setting ν > 0 is the fluid viscosity, α > 0, β ≥ 0, and δ > 0 are the adimensional rigidity, stretching,
and friction coefficients of the beam, ρ1 and ρ2 are positive constants related to the density of the fluid
and the density of the structure (see [4]), f is a control function. Our objective is to determine f in
feedback form, able to stabilizes the system (1.1) (in an appropriate space) with a prescribed exponential
decay rate −ω < 0, locally about (0, 0, 0, 0). Existence of a local strong solution for system (1.1) with
f = 0 has been proved in [4] (with periodic boundary conditions on the lateral boundary of Ω), under
smallness conditions on the data, while existence of Hopf solutions for a slightly different model is proved
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in [13] (see also [8] and [12] for other models for the beam equation and for existence results in the three
dimensional case). To the author knowledge nothing is known about control and stabilization of such a
system. To study the control system (1.1), as in [4], we make a change of variable in order to rewrite
system (1.1) in the cylindrical domain Ω × (0,∞) and we denote by (û, p̂) the image of (u, p) by this
transformation. Since we are looking for solutions satisfying a prescribed exponential decay rate −ω,
we rewrite the system as a first order system by setting η = η1 and ηt = η2 and we study the control
system satisfied by (ũ, p̃, η̃1, η̃2) = eωt(û, p̂, η1, η2). We linearize the system satisfied by (ũ, p̃, η̃1, η̃2)
about (0, 0, 0, 0) and we determine a feedback control, able to stabilize the linearized system satisfied by
(v, p, η1, η2), by solving an infinite time horizon control problem. Next we prove that this linear feedback
law, applied in the nonlinear system satisfied by (ũ, p̃, η̃1, η̃2), is able to stabilize the nonlinear system
provided that the intial condition is small enough in an appropriate norm.

The analysis that we do for the linearized system is completely new for this type of fluid–structure
system. Indeed we show that the linearized system satisfied by (v, p, η1, η2) is equivalent to a system of
the form

d
dt


Pv

η1

η2

 = Aω


Pv

η1

η2

+ B


0
¯
0

f

 ,


Pv(0)

η1(0)

η2(0)

 =


Pv0

η0
1

η0
2

 ,

(I − P )v(t) = (I − P )D(η2(t)~e2 χΓs),

(1.2)

where P is the so-called Leray projector and D is the Dirichlet operator associated with the stationary
Stokes equation (P and D are defined in section 3, while Aω and B are defined in section 4). This type
of decomposition of velocity fields, into Pv and (I − P )v, has already been introduced for the Navier-
Stokes equations with nonhomogeneous boundary conditions in [22]. Finding again this decomposition
for system (1.2) is not totally obvious because the pressure, which is eliminated in the Navier-Stokes
equations thanks to the projector P , also appears in the beam equation. Rewriting the system satisfied
by (v, p, η1, η2) in the form (1.2) is crucial to prove the stabilizability of this system. Indeed, we show
that the operator (Aω, D(Aω)) is the infinitesimal generator of an analytic semigroup on the space
H = V0

n(Ω) × (H2
0 (Γs) ∩ L2

0(Γs)) × L2
0(Γs) and has a compact resolvent in this space (for the precise

definitions of these spaces we refer to section 3). We show that the stabilizability of system (1.2) reduces to
proving an approximate controllability result for a projected system. Such an approximate controllability
result can be deduced from [18] in the case of a rectangular domain (see also [19, 20] for supplementary
approximate controllability results).

The plan of the paper is as follows. Section 2 is devoted to rewriting system (1.1) in a fixed domain and
to the obtention of a linearized system. We study the semigroup of the linearized system and properties
of its infinitesimal generator in section 3. Existence and regularity results for the linearized system are
stated in section 4. We study the stabilizability of the linearized system in section 5. Three feedback
control laws for the linearized system (1.2) are introduced in section 6. The first one is a feedback law
for system (1.2) written as a system of partial differential equations, involving the pressure (see system
(2.6)). The second one is a feedback law obtained by the classical approach introduced in [2] or in [15].
In that case the pressure is eliminated since it does not appear in (1.2). The corresponding feedback law
is defined via the solution to a Riccati equation of the form

Π̃ ∈ L(H), Π̃ = Π̃∗ ≥ 0, Π̃Aω +A∗ωΠ̃− Π̃BB∗Π̃ + C∗C = 0.

(See equation (6.2) for the definition of C.) Since A∗ω, which is determined in section 3.5, cannot be
interpreted only in terms of partial operators (contrarily to Aω), we introduce a third feedback law
obtained by solving a Riccati equation of the form

Π̂ ∈ L(Ĥ), Π̂ = Π̂∗ ≥ 0, Π̂Aω +A]
ωΠ̂− Π̂BB]Π̂ + I = 0,

where Ĥ is the space H equipped with another inner product (see section 3.5), A]
ω ∈ L(Ĥ) is the adjoint

of Aω ∈ L(Ĥ) and B] ∈ L(Ĥ, L2
0(Γs)) is the adjoint of B ∈ L(L2

0(Γs), Ĥ). The main interest of this
approach is that A]

ω can be interpreted in terms of partial differential operators (which can be helpful for
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numerical calculations). Moreover, we are able to establish the precise relationship between the feedback
operators obtained by the first approach and the third one.

The optimal control problems corresponding to the first approach are studied in details in sections 7
and 8.1. In these sections, all the calculations are made in a very simple way via integrations by parts.
Therefore they can be easily checked and do not need a sophisticated functional analysis framework.
However the feedback law corresponding to the first approach is expressed in terms of an operator Π
which is not, at that stage, characterized by a Riccati equation. This is why the third approach is helpful
even if in that case the representation of the state and adjoint systems via Aω and A]

ω cannot be avoided.
To deal with the nonlinear closed loop system, we first study the nonhomogeneous linearized closed

loop system in section 9. The main results of the paper are stated in section 10 (Theorems 10.2 and
10.3). Some Lipschitz properties of the nonlinear terms in the nonlinear system are established in section
11. These properties are next used in section 12 in the proof of the main results.

Let us finally give some references which are connected to the present work. The control of a channel
flow with periodic boundary conditions have been studied in [5, 31, 32, 33]. We think that the results in
those papers may be very useful to study the control of a channel flow coupled with a beam equation, with
periodic boundary conditions at the lateral boundary {0}× [0, L]∪{L}× [0, L]. This will be investigated
in a future work. Let us also mention some controllability results obtained for systems coupling the
Navier-Stokes equations with finite dimensional solid-structure models [6, 21, 26] (and see also [25] for a
simplified model). These controllability resuls are mainly based on results first obtained for the Navier-
Stokes equations in [3]. In those models the controls act in the fluid equation and not in the structure
equation as in (1.1). Thus the problems are quite different. The feedback stabilization of the Navier-
Stokes equations in the three dimensional case is studied in [24]. It can be a starting point to study the
stabilization of systems similar to (1.1) in the 3D case.

2. The linearized system. The solutions to system (1.1) obey

0 =
∫

Ωη(t)

div u(t) =
∫

Γs,η(t)

u(t) · n(t) =
∫

Γs

ηt(t) =
∫ L

0

ηt(x, t)dt,

since the unit normal to Γs,η(t) outward Ωη(t) is

n(t) =

(
−ηx(t)√
1 + η2

x(t)
,

1√
1 + η2

x(t)

)T

.

Thus we must choose η0
2 in the space

L2
0(Γs) =

{
η ∈ L2(Γs) |

∫
Γs

η = 0
}
.

If η0
1 also belongs to L2

0(Γs), then we have∫
Γs

η(t) = 0 and
∫

Γs

ηt(t) = 0 for all t ≥ 0.

Everywhere throughout the paper we shall choose η0
1 and η0

2 with zero mean value over Γs. If we denote
by Ms the orthogonal projection in L2(Γs) onto L2

0(Γs), the equation satisfied by η in system (1.1) must
be written in the form

ηtt − βηxx − δηtxx + αMs(ηxxxx) = Ms(ρ1p+H(u, η) + f) on Σs
∞.

Observe that due to the boundary conditions

η = 0 and ηx = 0 on
{
0, L

}
× (0,∞),

we have (for solutions regular enough and when η0
1 and η0

2 belong to L2
0(Γs))∫

Γs

ηtt = 0,
∫

Γs

ηxx = 0, and
∫

Γs

ηtxx = 0,
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but we do not necessarily have ∫
Γs

ηxxxx = 0.

This is why, in the equation satisfied by η, we have to write Ms(ηxxxx) in place of ηxxxx. But for simplicity
we shall skip the writing of Ms in the different equations, except if we want to stress on the role of the
operator Ms (which is for example the case when we shall define the operator (Aω, D(Aω))).

We consider system (1.1) for initial conditions u0 such that div u0 = u0
1,x +u0

2,y = 0 and obeying the
compatibility condition

u0 = 0 on Γ0, u0(x, 1 + η(x, 0)) = u0(x, 1 + η0
1(x)) = η0

2(x)~e2 for x ∈ (0, L). (2.1)

As in [4], for a given function η : (0, L) × (0, T ) 7→ R satisfying η > −1, we consider the changes of
variables

Tη : (x, y, t) 7−→ (x, z, t) =
(
x,

y

1 + η(x, t)
, t

)
and Tη(t) : (x, y) 7−→ (x, z) =

(
x,

y

1 + η(x, t)

)
. (2.2)

The mapping Tη0
1

is defined in a similar way. The mapping Tη(t) transforms Ωη(t) into Ω = (0, L)× (0, 1).
Setting

û(x, z, t) = u(x, y, t), p̂(x, z, t) = p(x, y, t),

the nonlinear system (1.1) is rewritten in the form

ût + (û · ∇)û− ν∆û−∇p̂ = F̂ (û, p̂, η), div û = Ĝ(û, η) in Q∞,

û = ηt~e2 on Σs
∞, û = 0 on Σ0

∞, û(0) = û0 in Ω,

ηtt − βηxx − δηtxx + αηxxxx = ρ1p̂+ Ĥ(û, η) + f on Σs
∞,

η = 0 and ηx = 0 on
{
0, L

}
× (0,∞),

η(0) = η0
1 and ηt(0) = η0

2 in Γs,

(2.3)

where û0(x, z) = u0(x, y) = u0(x, z(1 + η(x, 0))) = u0(x, z(1 + η0
1(x))) = u0 ◦ T −1

η0
1

(x, z),

F̂ (û, p̂, η)

= −ηût +
(
zηt + νz

(
η2

x

1+η − ηxx

))
ûz

+ν
(
−2zηxûxz + ηûxx +

(
z2η2

x−η
1+η

)
ûzz

)
+z(ηxp̂z − ηp̂x)~e1 − (1 + η)û1ûx + (zηxû1 − û2)ûz,

Ĝ(û, η) = −ηû1,x + zηxû1,z = div (ŵ) with ŵ = −ηû1~e1 + zηxû1~e2,

and

Ĥ(û, η) = ρ2ν
(

ηx

1+η û1,z + ηxû2,x − 2+η2
x

1+η û2,z

)
= −2ρ2νû2,z + ρ2ν

(
ηx

1+η û1,z + ηxû2,x − η2
x−2η
1+η û2,z

)
.

Due to (2.1), we can see that

div (û0 − ŵ(0)) = 0 in Ω, û0 − ŵ(0) = 0 on Γ0, û0 − ŵ(0) = η0
2~e2 on Γs. (2.4)

For −ω < 0, we make the following change of variables:

ũ = eωtû, p̃ = eωtp̂, η̃1 = eωtη, η̃2 = eωtηt.
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The system (2.3) is transformed into

ũt + e−ωt(ũ · ∇)ũ− ν∆ũ−∇p̃− ωũ = e−ωtF̃ (ũ, p̃, η̃1, η̃2), div ũ = e−ωtG̃(η̃1, ũ) in Q∞,

ũ = η̃2~e2 on Σs
∞, ũ = 0 on Σ0

∞, ũ(0) = û0 in Ω,

η̃1,t = η̃2 + ωη̃1 on Σs
∞,

η̃2,t − ωη̃2 − βη̃1,xx − δη̃2,xx + αη̃1,xxxx = ρ1p̃− 2νρ2ũ2,z + e−ωtH̃(ũ, η̃1) + f̃ on Σs
∞,

η̃1 = 0 and η̃1,x = 0 on
{
0, L

}
× (0,∞),

η̃1(0) = η0
1 and η̃2(0) = η0

2 in Γs,

(2.5)

with

f̃ = eωtf,

F̃ (ũ, p̃, η̃1, η̃2) = −η̃1(ũt − ωũ) +
(
zη̃2 + νz

(
η̃2
1,x

eωt+η̃1
− η̃1,xx

))
ũz

+ν
(
−2zη̃1,xũxz + η̃1ũxx +

(
z2η̃2

1,x−e−ωtη̃1

eωt+η̃1

)
ũzz

)
+z(η̃1,xp̃z − η̃1p̃x)~e1 − (1 + e−ωtη̃1)ũ1ũx + (ze−ωtη̃1,xũ1 − ũ2)ũz,

G̃(η̃1, ũ) = −η̃1ũ1,x + zη̃1,xũ1,z = div (−η̃1ũ1~e1 + zη̃1,xũ1~e2) ,

H̃(ũ, η̃1) = ν
(

e−ωtη̃1,x

eωt+η̃1
ũ1,z + η̃1,xũ2,x −

η̃2
1,x

eωt+η̃1
ũ2,z + 2e−ωtη̃1

eωt+η̃1
ũ2,z

)
.

If we linearize (2.5) about (0, 0, 0, 0), we obtain the system

vt − div σ(v, p)− ωv = 0,

div v = 0 in Q∞,

v = η2~e2 on Σs
∞, v = 0 on Σ0

∞, v(0) = v0 in Ω,

η1,t = η2 + ωη1 on Σs
∞,

η2,t − ωη2 − βη1,xx − δη2,xx + αMsη1,xxxx = Ms(ρ1p− 2νv2,z + f) on Σs
∞,

η1 = 0 and η1,x = 0 on
{
0, L

}
× (0,∞),

η1(0) = η0
1 and η2(0) = η0

2 in Γs.

(2.6)

Observe that

v1,x + v2,z = 0 implies v2,z|Γs
= 0,

if for example v belongs to L2(0,∞;H2(Ω)). This is why the term −2νv2,z will be dropped out from the
equation satisfied by η2. Let us notice that ũ2,z cannot be dropped out in system (2.5).

3. Definition of an analytic semigroup.

3.1. Transformation of system (2.6). Let us recall that L2(Ω) = L2(Ω; R2) admits the following
orthogonal decomposition

L2(Ω) = V0
n(Ω)⊕ gradH1(Ω),

with

V0
n(Ω) =

{
y ∈ L2(Ω) | div y = 0, y · n = 0 on Γ

}
,
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and let us denote by P : L2(Ω) 7−→ V0
n(Ω) the so-called Leray or Helmholtz projector. We also introduce

the notations

V0(Ω) =
{
y ∈ L2(Ω) | div y = 0

}
, H1

0(Ω) = H1
0 (Ω; R2), H2(Ω) = H2(Ω; R2),

V2(Ω) = H2(Ω) ∩V0(Ω), V1
0(Ω) = H1

0(Ω) ∩V0
n(Ω), V−1(Ω) = (V1

0(Ω))′,

L2
0(Ω) =

{
p ∈ L2(Ω) |

∫
Ω
p = 0

}
, Hσ(Ω) = Hσ(Ω) ∩ L2

0(Ω), Vσ
n(Ω) = Hσ(Ω) ∩V0

n(Ω) for σ ≥ 0,

for σ < 0, Hσ(Ω) = (H−σ(Ω))′, (H−σ(Ω))′ is the dual of H−σ(Ω) with L2
0(Ω) as pivot space,

L2
0(Γs) =

{
η ∈ L2(Γs) |

∫
Γs
η = 0

}
, L2

0(Γ) =
{
π ∈ L2(Γ) |

∫
Γ
π = 0

}
,

Hσ(Γs) = Hσ(Γs) ∩ L2
0(Γs) and Hσ(Γ) = Hσ(Γ) ∩ L2

0(Γ) for σ ≥ 0,

for σ < 0, Hσ(Γ) = (H−σ(Γ))′ where (H−σ(Γ))′ is the dual of H−σ(Γ) with L2
0(Γ) as pivot space,

for σ < 0, Hσ(Γs) = (H−σ(Γs))′, (H−σ(Γs))′ is the dual of H−σ(Γs) with L2
0(Γs) as pivot space.

We denote by A0 = νP∆ the Stokes operator in V0
n(Ω) with domain

D(A0) = V2(Ω) ∩V1
0(Ω).

It is well known that, by the extrapolation method, the Stokes operator can be extended as an unbounded
operator in (V2(Ω) ∩V1

0(Ω))′ with domain V0
n(Ω). This extension will be still denoted by A0, and we

shall see that it does not lead to confusion. The operator P may also be extended to a bounded operator
from H−1(Ω) (the dual of H1

0(Ω) with L2(Ω) as pivot space) to V−1(Ω) (the dual of V1
0(Ω) with V0

n(Ω)
as pivot space) by the formula

〈Pu,Φ〉V−1(Ω),V1
0(Ω) = 〈u,Φ〉H−1(Ω),H1

0(Ω) for all Φ ∈ V1
0(Ω).

In that case P is a projector in H−1(Ω) but no longer an orthogonal projector.
We only need to consider system (2.6) in the case when ω = 0. Following [22], it is convenient to

rewrite the equation satisfied by v in system (2.6) (for ω = 0) into two equations, one satisfied by Pv
and the other one by (I − P )v. More precisely we have

Pv′ = A0Pv + (−A0)PD(η2~e2χΓs
), v(0) = v0 in Ω,

(I − P )v(t) = (I − P )D(η2(t)~e2χΓs).

In this setting A0 is the Stokes operator in (V2(Ω) ∩ V1
0(Ω))′ with domain V0

n(Ω), χΓs denotes the
characteristic function of Γs, and D is defined by Dg = w, where (w, q) is the solution to the Dirichlet
problem

−ν∆w +∇q = 0 and div w = 0 in Ω, w = g on Γ.

We shall also set

Dsη2 = D(η2 ~e2 χΓs
).

This rewriting is a way to eliminate the pressure in the equation satisfied by v. However, since the
pressure p also appears in the equation satisfied by η2, we have to express p in terms of Pv and (I−P )v.
For that we can notice that (I − P )v is the gradient of the function q ∈ H1(Ω) solution to the Neumann
problem

∆q(t) = 0 in Ω,
∂q(t)
∂n

= η2(t) on Γs,
∂q(t)
∂n

= 0 on Γ0. (3.1)

We denote by Ns ∈ L(L2
0(Γs),H3/2(Ω)) the operator defined by Nsη2(t) = q(t). In [22] it is shown that

the pressure p appearing in the first equation in (2.6) satisfies

p = π − qt,
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where qt is the time derivative of q and π(t) is the solution of the other Neumann problem

∆π(t) = 0 in Ω,
∂π(t)
∂n

= ν∆Pv(t) · n on Γ. (3.2)

Let us notice that ∆Pv(t) · n is well defined in H−1/2(Γ) if ∆Pv(t) belongs to L2(Ω). Indeed in
that case ∆Pv(t) ∈ L2(Ω) and div (∆Pv(t)) = 0 ∈ L2(Ω). Moreover 〈∆Pv(t) · n, 1〉H−1/2(Γ),H1/2(Γ)

(see [28, Chapter 1, Theorem 1.2]). Therefore if the solution to system (2.6) is such that Pv ∈
L2(0,∞;V2(Ω)), the solution π to the above Neumann problem belongs to L2(0,∞;H1(Ω)). We de-
note by N0 ∈ L(H−1/2(Γ),H1(Ω)) the operator defined by N0(ν∆Pv(t) · n) = π(t), when ∆Pv(t) · n ∈
H−1/2(Γ). We denote by γs the modified trace operator on Γs defined by

γsp = Ms(p|Γs) = p|Γs −
1
|Γs|

∫
Γs

p for all p ∈ Hσ(Ω) with σ > 1/2.

Thus we have

Ms(p(t)|Γs
) = Ms

(
(π(t)− qt(t))|Γs

)
= ν γsN0∆Pv(t) · n− γsNsη2,t(t).

We can now rewrite the equation satisfied by η2 in (2.6) in the form

(I + ρ1γsNs)η2,t − ωη2 − βη1,xx − δη2,xx + αMsη1,xxxx = ρ1νγsN0∆Pv(t) · n +Msf on Σs
∞.

Lemma 3.1. The operator I + ρ1γsNs is an automorphism in L2
0(Γs).

Proof. The operator γsNs, considered as an operator belonging to L(L2
0(Γs)), is symmetric, positive,

and compact. Indeed if q = Nsη and q̃ = Nsη̃, we have

0 =
∫

Ω

∆q q̃ =
∫

Γs

η γsNsη̃ −
∫

Γs

γsNsη η̃,

for all η, η̃ ∈ L2
0(Γs). Thus γsNs is symmetric. Moreover

0 =
∫

Ω

∆q q = −
∫

Ω

|∇q|2 +
∫

Γs

η γsNsη,

from which we deduce that γsNs is nonnegative. If

0 =
∫

Γs

η γsNsη =
∫

Ω

|∇q|2,

we have q = C = 0 and ∂q
∂n = η = 0, which proves that γsNs is positive. Since γsNs ∈ L(L2

0(Γs),H1(Γ)),
it is clear that γsNs is a compact operator in L2

0(Γs). Thus I + ρ1γsNs is symmetric and positive and it
is an automorphism in L2

0(Γs).
In order to write the system satisfied by (Pv, η1, η2) as an evolution equation, we introduce the

unbounded operator (Aα,β , D(Aα,β)) in L2
0(Γs) defined by

D(Aα,β) = H4(Γs) ∩H2
0 (Γs) ∩ L2

0(Γs), Aα,βη = βηxx − αMsηxxxx.

Let us notice that (Aα,β , D(Aα,β)) is a selfadjoint operator in L2
0(Γs). Since Aα,β is an isomorphism

from D(Aα,β) to L2
0(Γs), it can be extended as an isomorphism from L2

0(Γs) to (D(Aα,β))′ (the dual of
D(Aα,β) with L2

0(Γs) as pivot space), and from H2
0 (Γs) ∩ L2

0(Γs) into (H2
0 (Γs) ∩ L2

0(Γs))′. The space

H = V0
n(Ω)× (H2

0 (Γs) ∩ L2
0(Γs))× L2

0(Γs)

will be equipped with the inner product(
(v, η1, η2), (w, ζ1, ζ2)

)
H

= ρ1(v,w)V0
n(Ω) + (η1, ζ1)H2

0 (Γs) + (η2, ζ2)L2
0(Γs),
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with

(η1, ζ1)H2
0 (Γs) =

∫
Γs

(−Aα,β)1/2η1 (−Aα,β)1/2ζ1 =
∫

Γs

(βη1,xζ1,x + αη1,xxζ1,xx) dx.

We define the unbounded operator (A, D(A)) in H by

D(A) ={
(Pv, η1, η2) ∈ V2

n(Ω)× (H4 ∩H2
0 ∩ L2

0)(Γs)× (H2
0 ∩ L2

0)(Γs) | Pv − PDsη2 ∈ V2(Ω) ∩V1
0(Ω)

}
,

and

A =


I 0 0

0 I 0

0 0 (I + ρ1γsNs)−1




A0 0 (−A0)PDs

0 0 I

ρ1 ν γsN0(∆(·) · n) Aα,β δ∆s

 ,

where ∆s = ∂2

∂x2
s
. We define the unbounded operator (As, D(As)) in Hs = (H2

0 (Γs)∩L2
0(Γs))×L2

0(Γs) by

As =

(
0 I

Aα,β δ∆s

)
, D(As) = (H4(Γs) ∩H2

0 (Γs) ∩ L2
0(Γs))× (H2

0 (Γs) ∩ L2
0(Γs)).

It can be easily shown that As is an isomorphism from D(As) into Hs.
Now, it is clear that, for ω = 0, we can rewrite system (2.6) in the form

d
dt


Pv

η1

η2

 = A


Pv

η1

η2

 ,


Pv(0)

η1(0)

η2(0)

 =


Pv0

η0
1

η0
2

 ,

(I − P )v(t) = (I − P )D(η2(t)~e2 χΓs
).

The rewriting of system (2.6) when ω 6= 0 is done in (4.1).
Proposition 3.2. The norm

(Pv, η1, η2) 7−→ ‖(Pv, η1, η2)‖H + ‖A0Pv + (−A0)PDsη2‖V0
n(Ω) + ‖As(η1, η2)‖Hs

is a norm on D(A) equivalent to the norm

(Pv, η1, η2) 7−→ ‖Pv‖V2
n(Ω) + ‖η1‖H4(Γs) + ‖η2‖H2

0 (Γs).

Proof. For λ > 0, λI − As is an isomorphism from D(As) to Hs (see e.g. section 3.4). Thus
(η1, η2) 7→ ‖(η1, η2)‖Hs +‖As(η1, η2)‖Hs is a norm equivalent to (η1, η2) 7→ ‖η1‖H4(Γs) +‖η2‖H2

0 (Γs). Since
(−A0) is an isomorphism from V2(Ω) ∩V1

0(Ω) to V0
n(Ω), there exist positive constants C1 and C2 such

that

C1‖Pv − PDsη2‖V2
n(Ω) ≤ ‖A0Pv + (−A0)PDsη2‖V0

n(Ω) ≤ C2‖Pv − PDsη2‖V2
n(Ω).

Moreover Ds ∈ L(H3/2
0 (Γs),V2(Ω)) (see Lemma 3.10) and As ∈ L(D(As),Hs), therefore we have

‖(Pv, η1, η2)‖H + ‖A0Pv + (−A0)PDsη2‖V0
n(Ω) + ‖As(η1, η2)‖Hs

≤ C(‖Pv‖V2
n(Ω) + ‖η1‖H4(Γs) + ‖η2‖H2

0 (Γs)).

To prove the reverse inequality we write

‖Pv‖V2
n(Ω) + ‖η1‖H4(Γs) + ‖η2‖H2

0 (Γs)

≤ 1
C1
‖A0(Pv − PDsη2)‖V0

n(Ω) + ‖PDsη2‖V2
n(Ω) + ‖η1‖H4(Γs) + ‖η2‖H2

0 (Γs)

≤ 1
C1
‖A0(Pv − PDsη2)‖V0

n(Ω) + ‖η1‖H4(Γs) + C‖η2‖H2
0 (Γs).
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The proof is complete.
Theorem 3.3. The operator (A, D(A)) is the infinitesimal generator of an analytic semigroup on

H, and the resolvent of A is compact.
To prove this theorem, we rewrite A in the form A = A1 +B0, with

A1 =


A0 0 (−A0)PDs

0 0 I

0 Aα,β δ∆s


and

B0 =


0 0 0

0 0 0

ρ1ν(I + ρ1γsNs)−1γsN0(∆(·) · n)) KsAα,β δKs ∆s

 ,

with Ks = (I + ρ1γsNs)−1 − I.
Theorem 3.4. The operator (A1, D(A1)) is the infinitesimal generator of a strongly continuous

semigroup on H.
Proof. Step 1. We first show that the unbounded operator (Ã1, D(Ã1)) in V−1(Ω)×Hs, defined by

D(Ã1) ={
(Pv, η1, η2) ∈ V1

n(Ω)× (H4 ∩H2
0 ∩ L2

0)(Γs)× (H2
0 ∩ L2

0)(Γs) | Pv − PDsη2 ∈ V1
0(Ω)

}
and Ã1 =


A0 0 (−A0)PDs

0 0 I

0 Aα,β δ∆s

 ,

is the infinitesimal generator of a strongly continuous semigroup on V−1(Ω) × Hs. We endow V−1(Ω)
with the norm

v 7−→
(〈

(−A0)−1v,v
〉
V1

0(Ω),V−1(Ω)

)1/2

,

and Hs with the norm ‖ · ‖H2
0 (Γs)×L2

0(Γs). For λ > 0, we have(
(Ã1 − λI)(Pv, η1, η2), (Pv, η1, η2)

)
V−1(Ω)×Hs

= −‖Pv‖2V0
n(Ω) + (PDsη2, Pv)V0

n(Ω) − λ‖Pv‖2V−1(Ω) − λ‖(η1, η2)‖2Hs
− δ‖η2‖L2

0(Γs).

Thus, for λ > 0 big enough, (Ã1−λI,D(Ã1)) is dissipative in V−1(Ω)×Hs. It can also be shown that it
is maximal. Thus, for λ > 0 big enough, (Ã1 − λI,D(Ã1)) is the infinitesimal generator of a semigroup
of contractions on V−1(Ω)×Hs, and (Ã1, D(Ã1)) is the infinitesimal generator of a strongly continuous
semigroup on V−1(Ω)×Hs.
Step 2. Let us consider the evolution equation

d
dt


Pv

η1

η2

 = Ã1


Pv

η1

η2

 ,


Pv(0)

η1(0)

η2(0)

 =


Pv0

η0
1

η0
2

 . (3.3)

Let us recall that (As, D(As)) is the infinitesimal generator of an analytic semigroup on Hs (see e.g.
[9, 29]). Let us notice that the solution (Pv, η1, η2) to equation (3.3) can be solved by first determining
(η1, η2) and next Pv. Thus, if (Pv0, η0

1 , η
0
2) ∈ V−1(Ω) ×Hs, the solution (Pv, η1, η2) to equation (3.3)

is such that η1 ∈ H3,3/2(Σs
T ) and η2 ∈ H1,1/2(Σs

T ) for all T > 0 (see e.g. [1, Chapter 3, Corollary 2.1]).
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From [22, Theorem 2.7] it follows that if (Pv0, η0
1 , η

0
2) ∈ H then Pv ∈ H1,1/2(QT )∩C([0, T ];V0

n(Ω)), and
(Pv, η1, η2) ∈ C([0, T ];H). Therefore the restriction of the semigroup (et eA1)t∈R+ to H is a semigroup on
H. It is easy to verify that its domain is D(A1) = D(A).

We are going to prove the two following theorems.
Theorem 3.5. The operator (A1, D(A1)), with D(A1) = D(A), is the infinitesimal generator of an

analytic semigroup on H = V0
n(Ω)× (H2

0 (Γs) ∩ L2
0(Γs))× L2

0(Γs).
Theorem 3.6. The operator (B0, D(A1)) is A1-bounded with relative bound zero.
The first claim in Theorem 3.3 clearly follows from Theorems 3.5 and 3.6 (see [14, Chapter 9, Corollary

2.5]). The second claim is proved in section 3.4.

3.2. Proof of Theorem 3.5. Now we are going to estimate the resolvent of A1. We have

(λI −A1)−1 =

(
(λI −A0)−1 0

(
(λI −A0)−1(−A0)PDs

)
(λI −As)−1

0 (λI −As)−1

)
.

Since (λI −A0)−1(−A0)PDs = −λ(λI −A0)−1PDs + PDs, we obtain

(λI −A1)−1 =

(
(λI −A0)−1 0

(
−λ(λI −A0)−1PDs + PDs

)
(λI −As)−1

0 (λI −As)−1

)
.

From [9] (see also [29, section 2.2]), we know that there exist a ∈ R and π/2 < θ0 < π such that

‖(λI −As)−1‖L(Hs) ≤
Cs

|λ− a|
for all λ ∈ Sa,θ0 , (3.4)

where

Sa,θ0 =
{
λ ∈ C | λ 6= a, |arg(λ− a)| < θ0

}
.

For the Stokes resolvent we have

‖(λI −A0)−1f‖V0
n(Ω) ≤

C0

|λ|
‖Θ‖V0

n(Ω) for all λ ∈ S0,θ1 , (3.5)

with π/2 < θ1 < π. We can choose θ0 = θ1 and a > 0. Thus if (f ,Θ) ∈ V0
n(Ω)×Hs, we have

(λI −A1)−1

(
f

Θ

)

=

(
(λI −A0)−1f − λ(λI −A0)−1PDs

(
(λI −As)−1Θ

)
2

+ PD
(
(λI −As)−1Θ

)
2

(λI −As)−1Θ

)
.

From (3.4) and (3.5), it follows that

‖(λI −As)−1Θ‖Hs
≤ Cs

|λ−a|‖Θ‖Hs
, ‖PD

(
(λI −As)−1Θ

)
2
‖V0

n(Ω) ≤ CP D Cs

|λ−a| ‖Θ‖Hs
,

‖λ(λI −A0)−1PD
(
(λI −As)−1Θ

)
2
‖V0

n(Ω) ≤ C0 CP D Cs

|λ−a| ‖Θ‖Hs
for all λ ∈ Sa,θ0 .

By combining the previous estimates we obtain∥∥∥∥∥(λI −A1)−1

(
f

Θ

)∥∥∥∥∥
V0

n(Ω)×Hs

≤ C0

|λ|
‖f‖V0

n(Ω) +
C0 CPD Cs

|λ− a|
‖Θ‖Hs +

CPD Cs

|λ− a|
‖Θ‖Hs +

Cs

|λ− a|
‖Θ‖Hs ,

for all λ ∈ Sa,θ0 , which proves the analyticity of the semigroup generated by A1.
10



3.3. Proof of Theorem 3.6. We set

B1 =


0 0 0

0 0 0

ρ1ν (I + ρ1γsN)−1γsN0(∆(·) · n)) 0 0

 , B2 =


0 0 0

0 0 0

0 KsAα,β 0

 ,

and

B3 =


0 0 0

0 0 0

0 0 δKs ∆s

 .

Lemma 3.7. The operator (B1, D(A1)) is A1-bounded with relative bound zero.
Proof. Let us prove that, for all ε > 0, there exists Cε > 0 such that

‖γsN0(∆v · n)‖L2
0(Γs) ≤ ε‖v‖V2

n(Ω) + Cε‖v‖V0
n(Ω), (3.6)

for all v ∈ V2
n(Ω). To prove (3.6), we argue by contradiction. We assume that there exists a sequence

(vk)k ⊂ V2
n(Ω) such that

‖γsN0(∆vk · n)‖L2
0(Γs) = 1, ‖vk‖V0

n(Ω) −→ 0 and ‖vk‖V2
n(Ω) ≤M,

for some M > 0. Therefore, without loss of generality, we can assume that there exists v ∈ V2
n(Ω) such

that

vk ⇀ 0 in V2
n(Ω), ∆vk · n ⇀ 0 in H−1/2(Γ) and ∆vk · n −→ 0 in H−1/2−ε(Γ),

for all 0 < ε ≤ 1/2. From [7, Lemma A.5], we know that γsN0 is bounded from H−1(Γs) to L2
0(Γs). Thus

γsN0(∆vk · n) −→ 0 in L2
0(Γs),

which is in contradiction with

‖γsN0(∆vk · n)‖L2
0(Γs) = 1.

Thus (3.6) is proved. The lemma is a direct consequence of (3.6), of Lemma 3.1 and Proposition 3.2.
Lemma 3.8. There exists 0 < θ2 < 1 such that B2 is bounded from D((−A1)θ2) into H.
Proof. Let (φk)k≥1 be an orthonormal basis in L2

0(Γs) constituted of eigenvectors of the operator
ρ1γsN and let λk > 0 be the eigenvalue associated with φk. We have

(I + ρ1γsNs)f =
∞∑

k=1

(1 + λk)fk φk.

Thus

(I + ρ1γsNs)−1f =
∞∑

k=1

fk

1 + λk
φk,

and

Ksf = (I − (I + ρ1γsNs)−1)f =
∞∑

k=1

λk

1 + λk
fk φk.

Since the operator Aα,β is an isomorphism from H4(Γs)∩H2
0 (Γs)∩L2

0(Γs) into L2
0(Γs) and from L2

0(Γs)
into (H4(Γs)∩H2

0 (Γs)∩L2
0(Γs))′, by interpolation it is also continuous from H4−ε(Γs)∩H2

0 (Γs)∩L2
0(Γs)

into H−ε(Γs) for all 0 ≤ ε ≤ 1.
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Denoting by (Aα,βf)k the coefficient of Aα,βf in the basis (φk)k≥1, we have

‖KsAα,βf‖2L2
0(Γs)

=
∑∞

k=1
λ2

k

(1+λk)2 (Aα,βf)2k ≤
∑∞

k=1 λ
2
k(Aα,βf)2k = ‖ρ1γsNsAα,βf‖2L2

0(Γs)

≤ Cε‖Aα,βf‖2H−ε(Γs) ≤ Cε‖f‖2H4−ε(Γs),

for all f ∈ H4−ε(Γs) ∩H2
0 (Γs) ∩ L2

0(Γs) and all 0 ≤ ε < 1/2. Indeed γsNs is continuous from H−ε(Γs)
into L2

0(Γs) if 0 ≤ ε < 1/2 (see e.g. [7, Lemma A.5]). Since(
H4−ε(Γs) ∩H2

0 (Γs) ∩ L2
0(Γs)

)
⊃ D((−A1)(4−ε′)/4),

for all 0 ≤ ε′ < ε < 1/2, the proof is complete.
Lemma 3.9. There exists 0 < θ3 < 1 such that B3 is bounded from D((−A1)θ3) into H.
Proof. The proof is very similar to that of the previous Lemma and is left to the reader.
Theorem 3.6 is a direct consequence of Lemmas 3.7, 3.8 and 3.9.

3.4. Resolvent of A. In this section we want to show that the resolvent of A is compact. For that
we study the stationary problem

λv − div σ(v, p) = f and div v = 0 in Ω,

v = η2~e2 on Γs, v = 0 on Γ0,

λη1 − η2 = g in Γs,

λη2 − βη1,xx − δη2,xx + αMsη1,xxxx = Ms(ρ1p+ h) in Γs,

η1 = 0 and η1,x = 0 on
{
0, L

}
,

(3.7)

where f ∈ V0
n(Ω), g ∈ H2

0 (Γs) ∩ L2
0(Γs), h ∈ L2

0(Γs), λ ∈ R and λ > 0. This system is equivalent to

λv − div σ(v, p) = f and div v = 0 in Ω,

v = (λη1 − g)~e2 on Γs, v = 0 on Γ0,

λη1 − η2 = g in Γs,

λ2η1 − βη1,xx − δλη1,xx + αMsη1,xxxx = Ms(ρ1p+ h+ λg − δλgxx) in Γs,

η1 = 0 and η1,x = 0 on
{
0, L

}
.

(3.8)

We denote by L the unbounded operator in L2
0(Γs) with domain H4(Γs) ∩H2

0 (Γs) ∩ L2
0(Γs) defined by

Lη = λ2η − βηxx − δληxx + αMsηxxxx.

The operator L is also an isomorphism from H4(Γs) ∩H2
0 (Γs) ∩ L2

0(Γs) into L2
0(Γs) and from H2

0 (Γs) ∩
L2

0(Γs) into (H2
0 (Γs) ∩ L2

0(Γs))′. Thus, we can rewrite the system (3.8) in the form

λv − div σ(v, p) = f and div v = 0 in Ω,

v = (λL−1Ms(ρ1γsp+ h+ λg − δλgxx)− g)~e2 on Γs, v = 0 on Γ0,

λη1 − η2 = g in Γs,

λ2η1 − βη1,xx − δλη1,xx + αMsη1,xxxx = ρ1γsp+ h+ λg − δλgxx in Γs,

η1 = 0 and η1,x = 0 on
{
0, L

}
.

(3.9)

We consider the system

λv − div σ(v, p) = f and div v = 0 in Ω,

v = λρ1L
−1(γsp)~e2 + f~e2 on Γs, v = 0 on Γ0,

(3.10)
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where f ∈ H2
0 (Γs) ∩ L2

0(Γs) stands for λL−1Ms(h+ λg − δλgxx)− g. We set

E =
{
w ∈ V1(Ω) | v = 0 on Γ0, v1 = 0 on Γs, v2|Γs

∈ H2
0 (Γs) ∩ L2

0(Γs)
}
.

The space E, equipped with the norm

‖v‖E =
(
‖v‖2V1(Ω) + ‖L1/2v2|Γs‖2L2

0(Γs)

)1/2

,

is a Hilbert space because L1/2 is an isomorphism from H2
0 (Γs) ∩ L2

0(Γs) onto L2
0(Γs).

Multiplying the first equation in (3.10) by w ∈ E, after integration we obtain∫
Ω

(λv ·w + ν∇v : ∇w) +
∫

Γs

pw2 =
∫

Ω

f w.

Using

λρ1γsp = Lv2 − Lf in (H2
0 (Γs) ∩ L2

0(Γs))′,

we obtain∫
Ω

(λv ·w + ν∇v : ∇w) +
1
λρ1

∫
Γs

L1/2v2 L
1/2w2 =

∫
Ω

f w +
1
λρ1

∫
Γs

L1/2f L1/2w2.

Next, we set

a(v,w) =
∫

Ω

(λv ·w +∇v : ∇w) +
1
λρ1

∫
Γs

L1/2v2 L
1/2w2

and

`(w) =
∫

Ω

f w +
1
λρ1

∫
Γs

L1/2f L1/2w2.

Thus system (3.10) is equivalent to

a(v,w) = `(w) for all w ∈ E,

λρ1γsp = Lv2 − Lf in (H2
0 (Γs) ∩ L2

0(Γs))′.
(3.11)

With the Lax-Milgram theorem, we can prove that the variational problem

Find v ∈ E such that a(v,w) = `(w) for all w ∈ E, (3.12)

has a unique solution. Indeed, for all H2
0 (Γs) ∩ L2

0(Γs), we have∫
Γs

L1/2η L1/2η =
∫

Γs

(
λ2|η|2 + β|ηx|2 + α|ηxx|2

)
≥ ρ‖η‖2H2

0 (Γs),

for some ρ > 0.
The solution v ∈ E to the above variational problem obeys

‖v‖E ≤ C(‖f‖Vn
0 (Ω) + ‖L1/2f‖L2(Γs)).

Since f = λL−1Ms(h+ λg − δλgxx)− g, we have

‖v‖E ≤ C(‖f‖Vn
0 (Ω) + ‖L−1/2h‖L2

0(Γs) + ‖L1/2g‖L2
0(Γs)) ≤ C(‖f‖Vn

0 (Ω) + ‖h‖L2
0(Γs) + ‖g‖H2

0 (Γs)).

Therefore

‖v2|Γs
‖H2

0 (Γs) ≤ C(‖f‖Vn
0 (Ω) + ‖h‖L2

0(Γs) + ‖g‖H2
0 (Γs)).
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By taking w ∈ V1
0(Ω) in the variational problem, we prove that v ∈ E is the unique solution to the

problem

Find v ∈ E such that
∫

Ω

(λv ·w +∇v : ∇w) =
∫

Ω

f w for all w ∈ V1
0(Ω),

v = 0 on Γ0, v = v2|Γs~e2 on Γs.

Since v|Γ0 = 0, v1|Γs
= 0, and v2|Γs

∈ H2
0 (Γs) ∩ L2

0(Γs), due to Lemma 3.10 below, it follows that
v ∈ V2(Ω) ∩E, and that

‖v‖V2(Ω) ≤ C(‖f‖V0
n(Ω) + ‖g‖H2

0 (Γs) + ‖h‖L2
0(Γs)).

From the equation satisfied by v we also deduce that p ∈ H1(Ω), and

‖p‖H1(Ω) ≤ C(‖f‖V0
n(Ω) + ‖g‖H2

0 (Γs) + ‖h‖L2
0(Γs)).

Finally, with the equation satisfied by η1 and η2 in (3.9), we have shown that system (3.7) admits a
unique solution (v, p, η1, η2) ∈ V2(Ω)×H1(Ω)× (H4(Γs) ∩H2

0 (Γs) ∩ L2
0(Γs))× (H2

0 (Γs) ∩ L2
0(Γs)) and

‖v‖V2(Ω) + ‖p‖H1(Ω) + ‖η1‖H4(Γs) + ‖η2‖H2
0 (Γs) ≤ C(‖f‖V0

n(Ω) + ‖g‖H2
0 (Γs) + ‖h‖L2

0(Γs)).

Thus the resolvent of A is compact in H.
Lemma 3.10. If f ∈ V0

n(Ω), g ∈ H3/2
0 (Γs)∩L2

0(Γs) (with H3/2
0 (Γs) = [H1

0 (Γs),H2
0 (Γs)]1/2), then the

solution v to

λv − div σ(v, p) = f and div v = 0 in Ω, v = 0 on Γ0, v = g ~e2 on Γs,

belongs to V2(Ω) and

‖v‖V2(Ω) ≤ C(‖f‖V0
n(Ω) + ‖g‖

H
3/2
0 (Γs)

).

Proof. With a localization argument and regularity results in [11], we can show that v|(0,L)×(0,1−ε)

belongs to V2((0, L)× (0, 1− ε)) and that v|(ε,L−ε)×(0,1) belongs to V2((ε, L− ε)× (0, 1)) for all 0 < ε <
min(1, L). Thus the only difficulty is at the corners (0, 1) and (L, 1). Let us set

Ω̃ = (−L,L)× (0, 1), Γ̃s = (−L,L)× {1}, ṽ(x, z) =
{

v(x, z) if x ∈ (0, L),
−v(x,−z) if x ∈ (−L, 0),

f̃(x, z) =
{

f(x, z) if x ∈ (0, L),
−f(x,−z) if x ∈ (−L, 0), g̃(x) =

{
g(x) if x ∈ (0, L),

−g(−z) if x ∈ (−L, 0).

It can be shown that g̃ ∈ H3/2
0 (Γ̃s), and that ṽ is solution to

λṽ − div σ(ṽ, p̃) = f and div ṽ = 0 in Ω̃,

ṽ = 0 on {−L} × (0, 1) ∪ {L} × (0, 1) ∪ (−L,L)× {0}, ṽ = g̃ ~e2 on Γ̃s.

Next as previously we can show that ṽ|(−L+ε,L−ε)×(0,1) belongs to V2((−L + ε, L − ε) × (0, 1)) for all
0 < ε < L. Thus v|(0,L−ε)×(0,1) belongs to V2((0, L − ε) × (0, 1)) for all 0 < ε < L. We can proceed
similarly with the other corner.

3.5. Adjoint of (A, D(A)). Theorem 3.11. The adjoint of (A, D(A)) in H is defined by D(A∗) =
D(A) and

A∗ =


A0 0 (−A0)PDs

0 0 −I

ρ1νγsN0(∆(·) · n) −Aα,β δ∆s




I 0 0

0 I 0

0 0 (I + ρ1γsNs)−1

 .
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Proof. Let f belong to V0
n(Ω), g belong to H2

0 (Γs)∩L2
0(Γs), and h belong to L2

0(Γs). Let (v, p, η1, η2)
be the solution to (3.7). Let Θ belong to V0

n(Ω), ζ belong to H2
0 (Γs) ∩ L2

0(Γs), ξ belong to L2
0(Γs) and

let (Φ, ψ, k1, k2) be the solution to system

λΦ− div σ(Φ, ψ) = Θ and div Φ = 0 in Ω,

Φ = k2~e2 on Γs, Φ = 0 on Γ0,

λk1 + k2 = ζ in Γs,

λk2 + βk1,xx − δk2,xx − αMsk1,xxxx = Ms(ρ1ψ) + ξ in Γs,

k1 = 0 and k1,x = 0 on
{
0, L

}
.

(3.13)

With integration by parts we have∫
Ω

f ·Φ =
∫

Ω

(λv − div σ(v, p))Φ

=
∫

Ω

v (λΦ− div σ(Φ, ψ))−
∫

Γs

σ(v, p)n ·Φ +
∫

Γs

σ(Φ, ψ)n ·w

=
∫

Ω

v ·Θ +
∫

Γs

pΦ2 −
∫

Γs

ψ v2

=
∫

Ω

v ·Θ +
∫

Γs

p k2 −
∫

Γs

ψ η2,

∫
Γs

ζ (−Aα,β)η1 =
∫

Γs

(λk1 + k2) (−Aα,β)η1

=
∫

Γs

(λ(−Aα,β)k1 η1 + k2 (−Aα,β)η1)

=
∫

Γs

(
(−βk1,xx + αk1,xxxx)(η2 + g) + k2(−βη1,xx + αη1,xxxx)

)
and ∫

Γs

(ξ + ρ1ψ) η2 =
∫

Γs

(λk2 + βk1,xx − δk2,xx − αk1,xxxx) η2

=
∫

Γs

(λk2 η2 + (βk1,xx − δk2,xx − αk1,xxxx) η2)

=
∫

Γs

(
k2(βη1,xx + δη2,xx − αη1,xxxx + ρ1p+ h) + (βk1,xx − δk2,xx − αk1,xxxx) η2

)
=
∫

Γs

(
k2(βη1,xx − αη1,xxxx + ρ1p+ h) + (βk1,xx − αk1,xxxx) η2

)
.

By combining the three identities, we obtain

ρ1

∫
Ω

f ·Φ +
∫

Γs

g (−Aα,β)k1 +
∫

Γs

k2 h

= ρ1

∫
Ω

v ·Θ + ρ1

∫
Γs

p k2 − ρ1

∫
Γs

ψ η2

+
∫

Γs

ζ (−Aα,β)η1 +
∫

Γs

(
(βk1,xx − αk1,xxxx)η2 − k2(−βη1,xx + αη1,xxxx)

)
+
∫

Γs

(ξ + ρ1ψ) η2 +
∫

Γs

(
k2(−βη1,xx + αη1,xxxx − ρ1p)− (βk1,xx − αk1,xxxx) η2

)
= ρ1

∫
Ω

v ·Θ +
∫

Γs

ζ (−Aα,β)η1 +
∫

Γs

ξ η2.
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To prove the theorem, we have to interpret the identity

ρ1

∫
Ω

f ·Φ +
∫

Γs

g (−Aα,β)k1 +
∫

Γs

k2 h = ρ1

∫
Ω

v ·Θ +
∫

Γs

ζ (−Aα,β)η1 +
∫

Γs

ξ η2. (3.14)

For that we introduce the unbounded operator (A], D(A])) in H defined by D(A]) = D(A) and

A] =


I 0 0

0 I 0

0 0 (I + ρ1γsNs)−1




A0 0 (−A0)PDs

0 0 −I

γsN0(ρ1ν∆(·) · n) −Aα,β δ∆s

 .

We first notice that (v, p, η1, η2) is the solution to (3.7) if and only if it satisfies

(λI −A)


Pv

η1

η2

 =


f

g

(I + ρ1γsNs)−1h

 , (I − P )v = (I − P )Ds(η2).

Similarly, we can show that (Φ, ψ, k1, k2) is the solution to system (3.13) if and only if

(λI −A])


PΦ

k1

k2

 =


Θ

g

(I + ρ1γsNs)−1ξ

 , (I − P )Φ = (I − P )Ds(k2).

Thus, identity (3.14) is equivalent to(
(λI −A)(Pv, η1, η2), (Φ, k1, (I + ρ1γsNs)k2)

)
H

=
(
(λI −A])(PΦ, k1, k2), (v, η1, (I + ρ1γsNs)η2)

)
H

(3.15)

for all (Pv, η1, η2) ∈ D(A) and all (PΦ, k1, k2) ∈ D(A). Let us denote by Ĥ the space H equipped with
the inner product(

(v0, η0
1 , η

0
2), (w0, ζ0

1 , ζ
0
2 )
)bH = ρ1

(
v0,w0

)
V0

n(Ω)
+
(
η0
1 , ζ

0
1

)
H2

0 (Γs)
+
(
η0
2 , (I + ρ1γsNs)ζ0

2

)
L2

0(Γs)
.

Thus identity (3.15) means that (A], D(A])) is the adjoint of (A, D(A)) in Ĥ. We can easily deduce the
theorem from this result.

4. Regularity of solutions to the linearized system.

4.1. Studying system (2.6). We introduce the operator (Aω, D(Aω)) defined by D(Aω) = D(A)
and

Aω = A+


ωI 0 0

0 ωI 0

0 0 ω(I + ρ1γsNs)−1

 .

From calculations in section 3.1, it follows that, if f ∈ L2(0,∞;L2
0(Γs)), system (2.6) can be rewritten in

the following equivalent form:

d
dt


Pv

η1

η2

 = Aω


Pv

η1

η2

+ Bf,


Pv(0)

η1(0)

η2(0)

 =


Pv0

η0
1

η0
2

 ,

(I − P )v(t) = (I − P )D(η2(t)~e2 χΓs
),

(4.1)
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where B ∈ L(L2
0(Γs),H) is defined by

Bf =


0

0

(I + ρ1γsNs)−1f

 .

We have to study solutions to system (4.1) when (Pv0, η0
1 , η

0
2) ∈ [D(A),H]1/2. From the definition of

D(A) and H, we can deduce that

[D(A),H]1/2 ={
(Pv, η1, η2) ∈ V1

n(Ω)× (H3 ∩H2
0 ∩ L2

0)(Γs)× (H1
0 ∩ L2

0)(Γs) | Pv + PDsη2 ∈ V1
0(Ω)

}
.

Equipped with the norm

(Pv, η1, η2) −→
(
‖v‖2V1

n(Ω) + ‖η1‖2H3(Γs) + ‖η2‖2H1(Γs)

)1/2

[D(A),H]1/2 is a Hilbert space.
If (Pv0, η0

1 , η
0
2) belongs to H no compatibility condition, between Pv0 and η0

2 , is needed to define weak
solutions of the evolution equation (4.1). But the mapping t 7→ (I − P )v(t) which satisfies the second
equation in (4.1) will be continuous only if (I − P )v0 and η0

2 satisfy (I − P )v0 · n = η0
2 χΓs

. Notice
that if v0 ∈ V0(Ω), then div (I − P )v0 = 0 and (I − P )v0 · n is well defined in H−1/2(Γ). We define a
space of initial conditions, satisfying the compatibility condition needed for the continuity of the mapping
t 7→ (I − P )v(t), as follows

Hcc =
{

(v0, η0
1 , η

0
2) ∈ V0(Ω)×Hs | v0 · n = η0

2 χΓs

}
.

Recall that Hs = (H2
0 (Γs) ∩ L2

0(Γs))× L2
0(Γs) (see section 3.2). We equip Hcc with the inner product(

(v0, η0
1 , η

0
2), (w0, ζ

0
1 , ζ

0
2 )
)
Hcc

= ρ1(v0,w0)L2(Ω) + (η0
1 , ζ

0
1 )H2

0 (Γs) + (η0
2 , ζ

0
2 )L2

0(Γs).

Theorem 4.1. (i) If (Pv0, η0
1 , η

0
2) ∈ [D(A),H]1/2, (v0, η0

1 , η
0
2) ∈ Hcc, and f ∈ L2(0, T ;L2

0(Γs)),
then system (4.1) admits a unique strict solution satisfying

‖Pv‖H2,1(QT ) + ‖η1‖H4,2(Σs
T ) + ‖η2‖H2,1(Σs

T ) ≤ C(‖(Pv0, η0
1 , η

0
2)‖[D(A),H]1/2

+ ‖f‖L2(0,T ;L2
0(Γs))),

and

‖(I − P )v‖L2(0,T ;H2(Ω)) + ‖(I − P )v‖H1(0,T ;H1/2(Ω)) ≤ C(‖(Pv0, η0
1 , η

0
2)‖[D(A),H]1/2

+ ‖f‖L2(0,T ;L2
0(Γs))).

(ii) If (v0, η0
1 , η

0
2) ∈ Hcc and if f ∈ L2(0, T ;L2

0(Γs)), then system (4.1) admits a unique weak solution (in
the sense of semigroup theory) satisfying

‖Pv‖W (0,T ;V1(Ω),V−1(Ω)) + ‖η1‖H2,1(Σs
T ) + ‖η2‖L2(0,T ;H1(Γs)) ≤ C(‖(Pv0, η0

1 , η
0
2)‖H + ‖f‖L2(0,T ;L2

0(Γs)))

and

‖(I − P )v‖L2(0,T ;H3/2(Ω)) ≤ C(‖(Pv0, η0
1 , η

0
2)‖H + ‖f‖L2(0,T ;L2

0(Γs))).

(Here we use the terminology ’strict solution’ and ’weak solution’ in the sense of semigroup theory for the
evolution equation satisfied by (Pv, η1, η2) and not for the equation satisfied by (I − P )v.)

Proof. (i) If (Pv0, η0
1 , η

0
2) ∈ [D(A),H]1/2 and f ∈ L2(0, T ;L2

0(Γs)), the estimate of (Pv, η1, η2) follows
from [1, Chapter 1, Theorem 3.1]. The estimate of (I −P )v in L2(0, T ;H2(Ω)) follows from Lemma 3.10
and from the estimate of η2 in H2,1(Σs

T ). The estimate of (I − P )v in H1(0, T ;H1/2(Ω)) follows from
the property of the operator D.
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(ii) If (Pv0, η0
1 , η

0
2) ∈ H and f ∈ L2(0, T ;L2

0(Γs)), we know that system (4.1) admits a unique weak
solution in L2(0, T ;H) satisfying

‖(Pv, η1, η2)‖C([0,T ];H) ≤ C(‖(Pv0, η0
1 , η

0
2)‖H + ‖f‖L2(0,T ;L2

0(Γs))).

With this estimate and the equation η1,t = η2 + ωη1, we obtain

‖η1‖H1(0,T ;L2
0(Γs)) ≤ C(‖(Pv0, η0

1 , η
0
2)‖H + ‖f‖L2(0,T ;L2

0(Γs))).

To prove the other estimates, we have to write an energy estimate for strict solutions to system (2.6).
We substitute η2 by η1,t − ωη1 in the equation of η2:

η1,tt − 2ωη1,t + ω2η1 − βη1,xx − δη1,txx + δωη1,xx + αη1,xxxx = ρ1p+ f.

We multiply this equation by η1,t − ωη1 and by ρ1v the equation satisfied by v. After integration and
by adding the two identities, we obtain

ρ1

2

∫
Ω

|v(t)|2 + ν ρ1

∫
Qt

|∇v|2 +
1
2

∫
Γs

|(η1,t − ωη1)(t)|2 − ω

∫ t

0

∫
Γs

|η1,t − ωη1|2 +
β

2

∫
Γs

|η1,x(t)|2

−βω
∫ t

0

∫
Γs

|η1,x|2 + δ

∫ t

0

∫
Γs

|η1,tx − ωη1,x|2 +
α

2

∫
Γs

|η1,xx(t)|2 − αω

∫ t

0

∫
Γs

|η1,xx|2 + ω

∫ t

0

∫
Γs

η1 p

=
ρ1

2

∫
Ω

|v0|2 +
β

2

∫
Γs

|η0
1,x|2 +

α

2

∫
Γs

|η0
1,xx|2 +

1
2

∫
Γs

|η0
2 − ωη0

1 |2 +
∫ t

0

∫
Γs

f(η1,t − ωη1).

We also have

ω

∫ t

0

∫
Γs

η1 p

= ω

∫
Γs

η1(t) η1,t(t)− ω

∫
Γs

η0
1 η

0
2 − ω

∫ t

0

∫
Γs

|η1,t|2 − ω

∫
Γs

|η1(t)|2 + ω

∫
Γs

|η0
1 |2 + ω3

∫ t

0

∫
Γs

|η1|2

+βω
∫ t

0

∫
Γs

|η1,x|2 +
ωδ

2

∫
Γs

|η1,x(t)|2 − ωδ

2

∫
Γs

|η0
1,x|2 − δω2

∫ t

0

∫
Γs

|η1,x|2

+αω
∫ t

0

∫
Γs

|η1,xx|2 − ω

∫ t

0

∫
Γs

f η1.

From these identities and the previous estimates we deduce that

‖v‖L2(0,T ;H1(Ω)) + ‖η2‖L2(0,T ;H1(Γs)) ≤ C(‖(v0, η0
1 , η

0
2)‖Hcc + ‖f‖L2(0,T ;L2

0(Γs))),

not only for strict solutions but also for weak solutions. Next we obtain

‖(I − P )v‖L2(0,T ;H3/2(Ω)) ≤ Cε‖η2‖L2(0,T ;H1(Γs)),

from the properties of the operator D (see e.g. [22]. We can also adapt the proof of Lemma 3.10). Thus
we have

‖Pv‖L2(0,T ;V1(Ω)) + ‖(I − P )v‖L2(0,T ;H3/2(Ω)) ≤ C(‖(v0, η0
1 , η

0
2)‖Hcc + ‖f‖L2(0,T ;L2

0(Γs))).

Finally using that

d
dt

∫
Ω

v ·Φ =
d
dt

∫
Ω

Pv ·Φ = −ν
∫

Ω

∇v : ∇Φ + ω

∫
Ω

v ·Φ,

for all Φ ∈ V1
0(Ω), we deduce that

‖Pv‖H1(0,T ;V−1(Ω)) ≤ C‖v‖L2(0,T ;V1(Ω)) ≤ C(‖(v0, η0
1 , η

0
2)‖Hcc + ‖f‖L2(0,T ;L2

0(Γs))),

and the proof is complete.
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4.2. Another nonhomogeneous system (2.6). We now consider the system

vt − div σ(v, p)− ωv = F and div v = 0 in Q∞,

v = η2~e2 on Σs
∞, v = 0 on Σ0

∞, v(0) = v0 in Ω,

η1,t = η2 + ωη1 on Σs
∞,

η2,t − ωη2 − βη1,xx − δη2,xx + αMsη1,xxxx = Ms(ρ1p+ f) on Σs
∞,

η1 = 0 and η1,x = 0 on
{
0, L

}
× (0,∞),

η1(0) = η0
1 and η2(0) = η0

2 in Γs,

(4.2)

where F belongs to L2(0,∞;L2(Ω)). We shall need to write this system in the form:

d
dt


Pv

η1

η2

 = Aω


Pv

η1

η2

+ Bf + CF,


Pv(0)

η1(0)

η2(0)

 =


Pv0

η0
1

η0
2

 ,

(I − P )v(t) = (I − P )D(η2(t)~e2 χΓs
),

(4.3)

where C ∈ L(L2(Ω),H) as to be determined. For that we decompose F = PF +(I−P )F , and we denote
by πF ∈ L2(0,∞;H1(Ω)) the function defined by ∇πF = (I − P )F . We have

p = π − qt + πF ,

where q is the solution to (3.1), π is the solution to (3.2), and πF = π1 + π2 with

π1 ∈ H1
0 (Ω), ∆π1 = divF in Ω and ∆π2 = 0 in Ω,

∂π2

∂n
= (F −∇π1) · n on Γ.

If we set π1 = −(−∆D)−1(divF ), we have π2 = N((F +∇(−∆D)−1(divF )) · n). Thus the term Msp in
the equation satisfied by η2 in system (4.2) is

Msp = ν γsN0∆Pv(t) · n− γsNsη2,t(t) + γsN((F +∇(−∆D)−1(divF )) · n).

Therefore

CF =


PF

0

ρ1 (I + ρ1γsNs)−1(γsN((F +∇(−∆D)−1(divF )) · n))

 .

5. Approximate controllability and stabilizability. In this section, we study the approximate
controllability of system coupling the Stokes equation with the beam equation. Next we prove that system
(2.6) is exponentially stabilizable.

Recall that the linearized system is

vt − div σ(v, p) = 0 and div v = 0 in QT ,

v = η2~e2 on Σs
T , v = 0 on Σ0

T , v(0) = v0 in Ω,

η1,t = η2,

η2,t − βη1,xx − δη2,xx + αη1,xxxx = ρ1p+ f on Σs
T ,

η1 = 0 and η1,x = 0 on
{
0, L

}
× (0, T ),

η1(0) = η0
1 and η2(0) = η0

2 in Γs.

(5.1)

Theorem 5.1. System (5.1) is approximately controllable, in time T > 0, in the space Hcc by
controls f belonging to L2(0, T ;L2

0(Γs)).
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Proof. To prove the above approximate controllability result in Hcc we have to show that if
(v0, η0, η1) = (0, 0, 0) then the reachable set R(T ) at time T , when the control f describes L2(0, T ;
L2

0(Γs)), is dense in Hcc. To prove that result we assume that (ΦT , kT
1 , k

T
2 ) ∈ R(T )⊥. We want to show

that (ΦT , kT
1 , k

T
2 ) = 0.

We introduce the adjoint system

−Φt − div σ(Φ, ψ) = 0 and div Φ = 0 in QT ,

Φ = k2~e2 on Σs
T , Φ = 0 on Σ0

T , Φ(T ) = ΦT in Ω,

−k1,t = −k2,

−k2,t + βk1,xx − δk2,xx − αk1,xxxx = ρ1ψ on Σs
T ,

k1 = 0 and k1,x = 0 on
{
0, L

}
× (0,∞),

k(T ) = kT
1 and kt(T ) = kT

2 in Γs.

(5.2)

With an integration by parts we obtain

ρ1

∫
Ω

v(T ) ·ΦT +
∫

Γs

(−Aα,β)1/2η1(T ) (−Aα,β)1/2kT
1 +

∫
Γs

η2(T ) kT
2 =

∫ T

0

∫
Γs

f k2.

If (ΦT , kT
1 , k

T
2 ) ∈ R(T )⊥, we deduce that ∫ T

0

∫
Γs

f k2 = 0

for all f ∈ L2(0, T ;L2
0(Γs)), that is k2 = 0. Thus we must show that if k2 = 0 and if Φ is solution to

−Φt − div σ(Φ, ψ) = 0, div Φ = 0 in QT ,

Φ = 0 on ΣT , Φ(T ) = ΦT in Ω,
(5.3)

then (ΦT , kT
1 , k

T
2 ) = 0.

By taking the time derivative in the equation

k2,t − βk1,xx + δk2,xx − αMsk1,xxxx = −ρ1Msψ

we deduce that ψt|Σs
= C(t). Thus using an expansion of the solution Φ to equation (5.3) in terms of

the eigenfunctions of the Stokes operator, as in Osses-Puel [18], the approximate controllability problem
reduces to show that if

−ν∆v +∇p = µv, div v = 0 in Ω,

v = 0 on Γ and p = C on Γs,

with µ ∈ R, then v = 0. Thus we can use reults from [18, 19] to complete the proof.
Theorem 5.2. For all ω > 0, and all (v0, η0

1 , η
0
2) ∈ Hcc, there exists f ∈ L2(0,∞;L2

0(Γs)) such that
the solution to system (2.6) obeys

‖(v, η1, η2)‖L2(0,∞;Hcc) <∞.

Proof. Without loss of generality, we can choose ω in the resolvent set of A. Due to Theorem 3.5,
we know that the spectrum of −A is only a pointwise spectrum constituted of a countable number of
distinct eigenvalues, that we can order as follows

<λ1 ≥ <λ2 ≥ · · · ≥ <λN > −ω > <λN+1 ≥ · · · .

Moreover the generalized eigenspace of each eigenvalue is of finite dimension (see [14]). Let us denote
by G(λi) the real generalized eigenspace associated to λi if λi ∈ R and to the pair (λi, λ̄i) if =λi 6= 0,
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and let us set Hu =
⊕N

i=1G(λi) and Hs =
⊕∞

i=N+1G(λi). If E(λi) denotes the complex generalized
eigenspace associated to λi and if (ej(λi))1≤j≤m(λi) is a basis of E(λi), then G(λi) is nothing else than
the space generated by the family {<ej(λi), =ej(λi) | 1 ≤ j ≤ m(λi)}. Let us observe that Hu is the
unstable subspace of system (2.6) while Hs is the stable space. Let us denote by Pω the projection onto
the finite-dimensional unstable subspace Hu (parallel to the stable subspace Hs). If we project system
(5.1) on Hu, we obtain

d
dt
Pω


Pv

η1

η2

 = APω


Pv

η1

η2

+ PωBf, Pω


Pv(0)

η1(0)

η2(0)

 = Pω


Pv0

η0
1

η0
2

 . (5.4)

Due to Theorem 5.1, system (5.1) is approximately controllable in time T > 0. Thus the projected
system (5.4) is also approximately controllable. Since it is of finite dimension, it is also controllable.
Let f0 ∈ L2(0, T ;L2

0(Γs)) be a control such that Pω(Pv, η1, η2)(T ) = (0, 0, 0), and still denote by f0
its extension by zero to (T,∞). Now, we notice that Pω(Pv, η1, η2) is the solution of system (5.4)
corresponding to f = f0 if and only if Pω(P v̂, η̂1, η̂2) = eωtPω(Pv, η1, η2) is the solution of system

d
dt
Pω


Pv

η1

η2

 = Aω Pω


Pv

η1

η2

+ PωBf, Pω


Pv(0)

η1(0)

η2(0)

 = Pω


Pv0

η0
1

η0
2

 , (5.5)

corresponding to the control f = eωtf0. Thus system (5.5) is stabilizable. System (5.5) is the projection
of system (2.6) onto its unstable subspace. Due to [30, 17], system (2.6) is stabilizable by a control f
belonging in L2(0,∞;L2

0(Γs)), if and only if its projection onto its finite dimensional unstable subspace
is stabilizable. The proof is complete.

6. Feedback stabilization of system (2.6). In this section, we study the feedback stabilization of
system (2.6). There are several ways to do that. One way consists in studying the infinite time horizon
control problem

(P∞
0,v0,η0

1 ,η0
2
) inf

{
I(v, η1, η2, f) | (v, η1, η2, f) satisfies (2.6), f ∈ L2(0,∞;L2

0(Γs))
}
,

where

I(v, η1, η2, f)

=
ρ1

2

∫ ∞

0

∫
Ω

|v|2 dxdzdt+
1
2

∫ ∞

0

‖η1(t)‖2H2
0 (Γs) dt+

1
2

∫ ∞

0

∫
Γs

|η2|2 dxdt+
1
2

∫ ∞

0

|f(t)|2L2(Γs) dt,

and (see section 3)

‖η1‖2H2
0 (Γs) =

∫
Γs

|(−Aα,β)1/2η1|2.

From Theorem 5.2 we know that system (2.6) is stabilizable in Hcc. Thanks to this stabilizability result,
and following the approach in [23], the next theorem can be proved.

Theorem 6.1. For all (v0, η0
1 , η

0
2) ∈ Hcc, Problem (P∞

0,v0,η0
1 ,η0

2
) admits a unique solution (vv0,η0

1 ,η0
2
,

η1,v0,η0
1 ,η0

2
, η2,v0,η0

1 ,η0
2
, fv0,η0

1 ,η0
2
). There exists Π ∈ L(Hcc), obeying Π = Π∗ ≥ 0, such that the optimal cost

is given by

inf(P∞0,v0,η0
1 ,η0

2
) =

1
2

(
Π(v0, η0

1 , η
0
2), (v0, η0

1 , η
0
2)
)
Hcc

. (6.1)

Theorem 6.1 will be proved in section 8.1.
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The operator Π ∈ L(Hcc), which defines the value function of (P∞
0,v0,η0

1 ,η0
2
) through formula (6.1), is

obtained as the limit of the operator Π(T ) ∈ L(Hcc) when T tends to infinity, where Π(T ) ∈ L(Hcc) is
the operator defining the value function of the corresponding finite time horizon control problem

(PT
0,v0,η0

1 ,η0
2
) inf

{
IT
0 (v, η1, η2, f) | (v, η1, η2, f) satisfies (2.6), f ∈ L2(0, T ;L2

0(Γs))
}
,

where

IT
0 (v, η1, η2, f)

=
ρ1

2

∫ T

0

∫
Ω

|v|2 dxdzdt+
1
2

∫ T

0

‖η1(t)‖2H2
0 (Γs) dt+

1
2

∫ T

0

∫
Γs

|η2|2 dxdt+
1
2

∫ T

0

|f(t)|2L2
0(Γs) dt.

We are going to see in section 8.1 that the solution
(
vv0,η0

1 ,η0
2
, η1,v0,η0

1 ,η0
2
, η2,v0,η0

1 ,η0
2
, fv0,η0

1 ,η0
2

)
of problem

(P∞
0,v0,η0

1 ,η0
2
) obeys the feedback law

fv0,η0
1 ,η0

2
(t) = −Π3

(
vv0,η0

1 ,η0
2
(t), η1,v0,η0

1 ,η0
2
(t), η2,v0,η0

1 ,η0
2
(t)
)
,

where Π3 ∈ L(Hcc, L
2
0(Γs)) is the third component of the mapping Π:

Π =


Π1

Π2

Π3

 =


Π11 Π12 Π13

Π21 Π22 Π23

Π31 Π32 Π33

 ∈ L(Hcc).

We would like to find an equation characterizing the operator Π. For that the most natural way is to
follow [2] or [15].

The classical approach to find a feedback control law, as developed in [2] or in [15], consists in
considering the evolution equation (4.1) rather than the system (2.6). In that case (I − P )v must be
considered as an auxiliary variable and must be removed from the control problem. For that we set

Ĩ(Pv, η1, η2, f) =
ρ1

2

∫ ∞

0

∫
Ω

|Pv|2 dxdzdt+
1
2

∫ ∞

0

‖η1(t)‖2H2
0 (Γs) dt

+
1
2

∫ ∞

0

∫
Γs

|(I + ρ1D
∗
s(I − P )Ds)1/2η2|2 dxdt+

1
2

∫ ∞

0

‖f(t)‖2L2(Γs) dt.

We can notice that Ĩ(Pv, η1, η2, f) = I(v, η1, η2, f) if (v, η1, η2, f) obeys (4.1). We consider the problem

(Q∞
0,Pv0,η0

1 ,η0
2
) inf

{
Ĩ(Pv, η1, η2, f) | (v, η1, η2, f) satisfies (4.1), f ∈ L2(0,∞;L2

0(Γs))
}
.

As in [2] or in [15], the following theorem can be proved.
Theorem 6.2. For all (Pv0, η0

1 , η
0
2) ∈ H, problem (Q∞

0,Pv0,η0
1 ,η0

2
) admits a unique solution (vPv0,η0

1 ,η0
2
,

η1,Pv0,η0
1 ,η0

2
, η2,Pv0,η0

1 ,η0
2
, fPv0,η0

1 ,η0
2
). There exists Π̃ ∈ L(H), obeying Π̃ = Π̃∗ ≥ 0, such that the optimal

cost is given by

inf(Q∞0,Pv0,η0
1 ,η0

2
) =

1
2

(
Π̃(Pv0, η0

1 , η
0
2), (Pv0, η0

1 , η
0
2)
)
H
.

Moreover, Π̃ is the solution to the algebraic Riccati equation

Π̃ ∈ L(H), Π̃ = Π̃∗ ≥ 0, Π̃Aω +A∗ωΠ̃− Π̃BB∗Π̃ + C∗C = 0, (6.2)

with

C =


I 0 0

0 I 0

0 0 (I + ρ1D
∗
s(I − P )Ds)1/2

 and C∗C =


I 0 0

0 I 0

0 0 (I + ρ1D
∗
s(I − P )Ds)

 .
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The operator B∗ ∈ L(H, L2
0(Γs)) is the adjoint of B ∈ L(L2

0(Γs),H), and one can easily verify that

B∗(f , g, h)T = (0, 0, (I + ρ1γsNs)−1h)T .

The optimal control of problem (Q∞
0,Pv0,η0

1 ,η0
2
) obeys the feedback law

f = −B∗Π̃(Pv(t), η1(t), η2(t)) = −(I + ρ1γsNs)−1Π̃3(Pv(t), η1(t), η2(t)).

(Here Π̃3 is the third component of the mapping Π̃.) Since (Q∞
0,Pv0,η0

1 ,η0
2
) is an equivalent formulation of

problem (P∞
0,Pv0,η0

1 ,η0
2
), we have

(I + ρ1γsNs)−1Π̃3(Pv(t), η1(t), η2(t)) = Π3(v(t), η1(t), η2(t)), (6.3)

along the optimal trajectory. This does not give any precise relationship between Π̃ and Π.
If we compare both approaches we can say that the drawback of problem (P∞

0,v0,η0
1 ,η0

2
) is that the

operator Π is not characterized by an algebraic Riccati equation. But from the numerical viewpoint,
it can be more interesting to work with a system of partial differential equations rather than with a
system in the form (4.1) in which the numerical approximation of A∗ may be more tricky. The numerical
approximation of the adjoint system may be also useful to design reduced order models (see e.g. [27]).
This is why it is interesting to determine a feedback control law by solving an optimal control problem
for which the adjoint system may be easily interpreted as a system of partial differential equations.

To address this issue we introduce a third problem leading to another feedback law that we can link
with the one expressed with Π. We consider the problem

(R∞
0,Pv0,η0

1 ,η0
2
) inf

{
Î(Pv, η1, η2, f) | (Pv, η1, η2, f) satisfies (4.1), f ∈ L2(0,∞;L2

0(Γs))
}
,

where

Î(Pv, η1, η2, f) =
ρ1

2

∫
Q∞

|Pv|2 +
1
2

∫ ∞

0

‖η1‖2H2
0 (Γs) +

1
2

∫
Σs
∞

|(I + ρ1γsNs)η2|2 +
1
2

∫
Σs
∞

|f |2.

Observe that

Î(Pv, η1, η2, f) =
1
2

∫ ∞

0

‖(Pv(t), η1(t), η2(t))‖2bH dt+
1
2

∫
Σs
∞

|f |2.

Problem (R∞
0,Pv0,η0

1 ,η0
2
) will be studied in section 8.2. The following analogue of Theorem 6.2 can be

proved, still with [2] or [15].
Theorem 6.3. For all (Pv0, η0

1 , η
0
2) ∈ Ĥ, problem (R∞

0,Pv0,η0
1 ,η0

2
) admits a unique solution

(PvPv0,η0
1 ,η0

2
, η1,Pv0,η0

1 ,η0
2
, η2,Pv0,η0

1 ,η0
2
, fPv0,η0

1 ,η0
2
). There exists Π̂ ∈ L(Ĥ), obeying Π̂ = Π̂∗ ≥ 0, such

that the optimal cost is given by

inf(R∞
0,Pv0,η0

1 ,η0
2
) =

1
2

(
Π̂(Pv0, η0

1 , η
0
2), (Pv0, η0

1 , η
0
2)
)

bH.
Moreover, Π̂ is the solution to the algebraic Riccati equation

Π̂ ∈ L(Ĥ), Π̂ = Π̂∗ ≥ 0, Π̂Aω +A]
ωΠ̂− Π̂BB]Π̂ + I = 0,

where (A]
ω, D(A]

ω)) is the adjoint of (Aω, D(Aω)) in Ĥ, and B] ∈ L(Ĥ, L2
0(Γs)) is the adjoint of B ∈

L(L2
0(Γs), Ĥ).
One can verify that D(A]

ω) = D(Aω) = D(A) and

A]
ω = A] +


ωI 0 0

0 ωI 0

0 0 ω(I + ρ1γsNs)−1

 .
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Moreover

B](f , g, h)T = (0, 0, h)T .

We are able to prove the following relationship between Π and Π̂.
Theorem 6.4. The operator Π ∈ L(Hcc) can be expressed in terms of

Π̂ =


Π̂1

Π̂2

Π̂3

 =


Π̂11 Π̂12 Π̂13

Π̂21 Π̂22 Π̂23

Π̂31 Π̂32 Π̂33

 ∈ L(Ĥ)

as follows

PΠ1(v0, η0
1 , η

0
2) = Π̂1(Pv0, η0

1 , η
0
2), Π2(v0, η0

1 , η
0
2) = Π̂2(Pv0, η0

1 , η
0
2),

Π3(v0, η0
1 , η

0
2) = Π̂3(Pv0, η0

1 , η
0
2), (I − P )Π1(v0, η0

1 , η
0
2) = (I − P )DsΠ̂3(Pv0, η0

1 , η
0
2),

for all (v0, η0
1 , η

0
2) ∈ Hcc.

The main interest of problem (R∞
0,Pv0,η0

1 ,η0
2
) is that its optimality system is the same one as for

problem (P∞
0,v0,η0

1 ,η0
2
) (see section 8.2).

7. Studying problem (PT
0,v0,η0

1 ,η0
2
). Theorem 7.1. For all (v0, η0

1 , η
0
2) ∈ Hcc, Problem

(PT
0,v0,η0

1 ,η0
2
) admits a unique solution (v̄, η̄1, η̄2, f̄) and the optimal control is

f̄ = −k2,

where (Φ, k1, k2) is the solution of the following adjoint system

−Φt − div σ(Φ, ψ)− ωΦ = v̄ and div Φ = 0 in QT ,

Φ = k2~e2 on Σs
T , Φ = 0 on Σ0

T , Φ(T ) = 0 in Ω,

−k1,t = −k2 + ωk1 + η̄1,

−k2,t − ωk2 + βk1,xx − δk2,xx − αk1,xxxx = ρ1ψ + η̄2 on Σs
T ,

k1 = 0 and k1,x = 0 on
{
0, L

}
× (0,∞),

k1(T ) = 0 and k2(T ) = 0 in Γs.

(7.1)

Conversely, the system

vt − div σ(v, p)− ωv = 0 and div v = 0 in QT ,

v = η2~e2 on Σs
T , v = 0 on Σ0

T , v(0) = v0 in Ω,

η1,t = η2 + ωη1,

η2,t − ωη2 − βη1,xx − δη2,xx + αη1,xxxx = ρ1p− k2 on Σs
T ,

η1 = 0 and η1,x = 0 on
{
0, L

}
× (0,∞),

η1(0) = η0
1 and η2(0) = η0

2 in Γs,

−Φt − div σ(Φ, ψ)− ωΦ = v and div Φ = 0 in QT ,

Φ = k2~e2 on Σs
T , Φ = 0 on Σ0

T , Φ(T ) = 0 in Ω,

−k1,t = −k2 + ωk1 + η1,

−k2,t − ωk2 + βk1,xx − δk2,xx − αk1,xxxx = ρ1ψ + η2 on Σs
T ,

k1 = 0 and k1,x = 0 on
{
0, L

}
× (0,∞),

k1(T ) = 0 and k2(T ) = 0 in Γs

(7.2)
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admits a unique solution (v, p, η1, η2,Φ, ψ, k1, k2) and the optimal solution to (PT
0,v0,η0

1 ,η0
2
) is

f = −k2.

The operator Π(T ) ∈ L(Hcc) defined by

Π(T )(v0, η0
1 , η

0
2) = (Φ(0), k1(0)), k2(0)) ,

is linear and continuous in Hcc, it is symmetric and semidefinite positive, and the optimal cost is given
by

inf(PT
0,v0,η0

1 ,η0
2
) =

1
2
(
Π(T )(v0, η0

1 , η
0
2), (v0, η0

1 , η
0
2)
)
Hcc

.

Proof. The existence of a unique optimal control can be proved in a classical way.
Let us establish the first order optimality conditions for (PT

0,v0,η0
1 ,η0

2
). Let us denote by (v(f), p(f),

η1(f), η2(f)) the solution of (2.6) corresponding to f and let us set J(f) = IT
0 (v(f), η1(f), η2(f), f). We

have

J ′(f)g = ρ1

∫ T

0

∫
Ω

v ·w dxdzdt+
∫ T

0

∫
Γs

(−Aα,β)η1 ζ1 dxdt+
∫ T

0

∫
Γs

η2 ζ2 dxdt+
∫ T

0

∫
Γs

fg dxdt,

where (w, q, ζ1, ζ2) is the solution to

wt − div σ(w, q)− ωw = 0 and div w = 0 in QT ,

w = ζ2~e2 on Σs
T , w = 0 on Σ0

T , w(0) = 0 in Ω,

ζ1,t = ζ2 + ωζ1,

ζ2,t − ωζ2 − βζ1,xx − δζ2,xx + αζ1,xxxx = ρ1q + g on Σs
T ,

ζ1 = 0 and ζ1,x = 0 on
{
0, L

}
× (0, T ),

ζ1(0) = 0 and ζ2(0) = 0 in Γs.

(7.3)

Let us notice that∫ T

0

∫
Γs

(−Aα,β)1/2η1 (−Aα,β)1/2ζ1 dxdt =
∫ T

0

∫
Γs

(βη1,xζ1,x + αη1,xxζ1,xx) dxdt

=
∫ T

0

〈(−Aα,β)η1, ζ1〉(H2
0 (Γs)∩L2

0(Γs))′,H2
0 (Γs)∩L2

0(Γs) dt

=
∫ T

0

〈η1, (−Aα,β)ζ1〉H2
0 (Γs)∩L2

0(Γs),(H2
0 (Γs)∩L2

0(Γs))′ dt

for all η1 and ζ1 belonging to H2
0 (Γs)∩L2

0(Γs). Actually the writing
∫ T

0

∫
Γs

(−Aα,β)η1 ζ1 dxdt is an abuse
of notation which must be understood in the above sense. In what follows, we shall do this type of abuse
below in order to simplify the writing.

Let (Φ, ψ, k1, k2) be the solution to the adjoint system (7.1) corresponding to (v(f), p(f), η1(f), η2(f))
= (v, p, η1, η2). We have

0 =
∫

QT

(wt − div σ(w, q)− ωw)Φ

=
∫

QT

w (−Φt − div σ(Φ, ψ)− ωΦ)−
∫

Σs
T

σ(w, q)n ·Φ +
∫

Σs
T

σ(Φ, ψ)n ·w

=
∫

QT

w · v +
∫

Σs
T

qΦ2 −
∫

Σs
T

ψw2

=
∫

QT

w · v +
∫

Σs
T

q k2 −
∫

Σs
T

ψ ζ2,
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∫
Σs

T

η1 (−Aα,β)ζ1 =
∫

Σs
T

(−k1,t + k2 − ωk1) (−Aα,β)ζ1

=
∫

Σs
T

((−Aα,β)k1 ζ1,t + (k2 − ωk1) (−Aα,β)ζ1)

=
∫

Σs
T

(
(−βk1,xx + αk1,xxxx)(ζ2 + ωζ1) + (k2 − ωk1)(−βζ1,xx + αζ1,xxxx)

)
=
∫

Σs
T

(
(−βk1,xx + αk1,xxxx)ζ2 + k2(−βζ1,xx + αζ1,xxxx)

)
and ∫

Σs
T

(η2 + ρ1ψ) ζ2 =
∫

Σs
T

(−k2,t − ωk2 + βk1,xx − δk2,xx − αk1,xxxx) ζ2

=
∫

Σs
T

(k2 ζ2,t − (ωk2 − βk1,xx + δk2,xx + αk1,xxxx) ζ2)

=
∫

Σs
T

(
k2(ωζ2 + βζ1,xx + δζ2,xx − αζ1,xxxx + ρ1q + g)− (ωk2 − βk1,xx + δk2,xx + αk1,xxxx) ζ2

)
=
∫

Σs
T

(
k2(βζ1,xx − αζ1,xxxx + ρ1q + g) + (βk1,xx − αk1,xxxx) ζ2

)
.

By combining the three identities, we obtain

ρ1

∫
QT

w · v +
∫

Σs
T

η1 (−Aα,β)ζ1 +
∫

Σs
T

η2 ζ2

=
∫

Σs
T

(
(−βk1,xx + αk1,xxxx)ζ2 + k2(−βζ1,xx + αζ1,xxxx)

)
+
∫

Σs
T

(
k2(βζ1,xx − αζ1,xxxx + g) + (βk1,xx − αk1,xxxx) ζ2

)
=
∫

Σs
T

k2 g.

Thus we have

J ′(f)g =
∫ T

0

∫
Γs

k2 g +
∫ T

0

∫
Γs

f g,

and the optimal solution to (PT
0,v0,η0,η1

) is given by

f = −k2,

where (Φ, ψ, k1, k2) is the solution to (7.1) associated with the optimal state (v, η1, η2).

The converse statement consisting in showing that the optimal control is characterized by system (7.2)
is classical. We refer for example to [23, Theorem 3.1].

The fact that the operator Π(T ) introduced in the statement of the theorem belongs to L(Hcc) and obeys
Π(T ) = Π(T )∗ ≥ 0 is also classical.
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To prove the last statement, we can see that the solution (v, p, η1, η2,Φ, ψ, k1, k2) to system (7.2) obeys

0 =
∫

QT

(vt − div σ(v, p)− ωv)Φ

=
∫

QT

v (−Φt − div σ(Φ, ψ)− ωΦ)−
∫

Σs
T

σ(v, p)n ·Φ +
∫

Σs
T

σ(Φ, ψ)n · v −
∫

Ω

v0 Φ0

=
∫

QT

|v|2 +
∫

Σs
T

pΦ2 −
∫

Σs
T

ψ v2 −
∫

Ω

v0 Φ0

=
∫

QT

|v|2 +
∫

Σs
T

p k2 −
∫

Σs
T

ψ η2 −
∫

Ω

v0 Φ0,

0 =
∫

Σs
T

(η1,t − η2 − ωη1)(−Aα,β)k1

=
∫

Σs
T

(−(−Aα,β)η1k1,t − (−Aα,β)η2 k1 − ωη1(−Aα,β)k1)−
∫

Γs

(−Aα,β)1/2η0
1 (−Aα,β)1/2k1(0)

=
∫

Σs
T

((−Aα,β)η1(−k2 + ωk1 + η1)− (−Aα,β)η2 k1 − ωη1(−Aα,β)k1)

−
∫

Γs

(−Aα,β)1/2η0
1 (−Aα,β)1/2k1(0)

=
∫

Σs
T

((−Aα,β)η1(−k2 + η1)− (−Aα,β)η2 k1)−
∫

Γs

(−Aα,β)1/2η0
1 (−Aα,β)1/2k1(0)

and∫
Σs

T

(f + ρ1p)k2 =
∫

Σs
T

(η2,t − ωη2 − βη1,xx − δη2,xx + αη1,xxxx) k2

=
∫

Σs
T

(−η2 k2,t − ωη2 k2 − (βη1,xx + δη2,xx − αη1,xxxx) k2)−
∫

Γs

k2(0) η0
2

=
∫

Σs
T

(
η2(−βk1,xx + δk2,xx + αk1,xxxx + ρ1ψ + η2)− (βη1,xx + δη2,xx − αη1,xxxx) k2

)
−
∫

Γs

k2(0) η0
2

=
∫

Σs
T

(
η2(−βk1,xx + αk1,xxxx + ρ1ψ + η2)− (βη1,xx − αη1,xxxx) k2

)
−
∫

Γs

k2(0) η0
2 .

By combining the three identities, we obtain

ρ1

∫
QT

|v|2 +
∫

Σs
T

|(−Aα,β)1/2η1|2 +
∫

Σs
T

|η2|2 +
∫

Σs
T

|f |2

= ρ1

∫
Ω

v0 Φ0 +
∫

Γs

(−Aα,β)η0
1 k1(0) +

∫
Γs

η0
2 k2(0).

Thus the optimal state, the optimal control, and the corresponding adjoint states obey

ρ1

∫
QT

|v|2 +
∫

Σs
T

|η2|2 +
∫

Σs
T

|(−Aα,β)1/2η1|2 +
∫

Σs
T

|f |2

= ρ1

∫
Ω

v0 ·Φ(0) +
∫

Γs

(−Aα,β)η0
1 k1(0) +

∫
Γs

η0
2 k2(0)

=
(
Π(T )(v0, η0

1 , η
0
2), (v0, η0

1 , η
0
2)
)
Hcc

.

This ends the proof.
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8. Studying problems (P∞
0,v0,η0

1 ,η0
2
) and (R∞

0,Pv0,η0
1 ,η0

2
).

8.1. Problem (P∞
0,v0,η0

1 ,η0
2
). Proof of Theorem 6.1. The existence of admissible controls follows from

Theorem 5.2. Next the existence of an optimal control can be proved in a classical way. The operator Π
is obtained as the limit of Π(T ) when T tends to infinity (see e.g. [23, Theorem 4.1]). 2

Following the approach of [23, Lemma 4.2], we can obtain an optimality system for Problem
(P∞

0,v0,η0
1 ,η0

2
) in the form

vt − div σ(v, p)− ωv = 0 and div v = 0 in Q∞,

v = η2~e2 on Σs
∞, v = 0 on Σ0

∞, v(0) = v0 in Ω,

η1,t = η2 + ωη1,

η2,t − ωη2 − βη1,xx − δη2,xx + αη1,xxxx = ρ1p− k2 on Σs
∞,

η1 = 0 and η1,xx = 0 on
{
0, L

}
× (0,∞),

η1(0) = η0
1 and η2(0) = η0

2 in Γs,

−Φt − div σ(Φ, ψ)− ωΦ = v and div Φ = 0 in Q∞,

Φ = k2~e2 on Σs
∞, Φ = 0 on Σ0

∞, Φ(∞) = 0 in Ω,

−k1,t = −k2 + ωk1 − η1,

−k2,t − ωk2 + βk1,xx − δk2,xx − αk1,xxxx = ρ1ψ + η2 on Σs
∞,

k1(∞) = 0 and k2(∞) = 0 in Γs,

(Φ(t), k1(t), k2(t)) = Π(v(t), η1(t), η2(t)).

(8.1)

More precisely the following theorem can be proved by adapting the proof of [23, Lemma 4.2] to
problem (P∞

0,v0,η0
1 ,η0

2
).

Theorem 8.1. For all (v0, η0
1 , η

0
2) ∈ Hcc, system (8.1) admits a unique solution (v, p, η1, η2,

Φ, ψ, k1, k2) in W (0,∞;V1(Ω),V−1(Ω))×L2(0,∞;L2
0(Ω))×H2,1(Σs

∞)×L2(0,∞;H1(Γs))×V2,1(Q∞)×
L2(0,∞;H1(Ω))×H4,2(Σs

∞)×H2,1(Σs
∞), and the optimal control to (P∞

0,v0,η0
1 ,η0

2
) is

f = −k2.

Theorem 8.2. If (Pv0, η0
1 , η

0
2) ∈ [D(A),H]1/2, (v0, η0

1 , η
0
2) ∈ Hcc, then the optimal solution to

Problem (P∞
0,v0,η0

1 ,η0
2
) belongs to H2,1(Q∞)×H4,2(Σs

∞)×H2,1(Σs
∞) and

‖v‖H2,1(Q∞) + ‖η1‖H4,2(Σs
∞) + ‖η2‖H2,1(Σs

∞)

≤ C(‖Pv0‖V1
n(Ω) + ‖η0

1‖H3(Γs)∩H2
0 (Γs) + ‖η0

2‖H1
0 (Γs)).

The proof is postponed to subsection 8.3.

8.2. Problem (R∞
0,Pv0,η0

1 ,η0
2
). In order to prove Theorem 6.4, we first need to compare the solutions

to (PT
0,v0,η0

1 ,η0
2
) and (RT

0,Pv0,η0
1 ,η0

2
), where

(RT
0,Pv0,η0

1 ,η0
2
) inf

{
ÎT
0 (Pv, η1, η2, f) | (Pv, η1, η2, f) satisfies (4.1), f ∈ L2(0, T ;L2

0(Γs))
}
,

and

ÎT
0 (Pv, η1, η2, f) =

ρ1

2

∫
QT

|Pv|2 +
1
2

∫ T

0

‖η1(t)‖2H2
0 (Γs) +

1
2

∫
Σs

T

|(I + ρ1γsNs)η2|2 +
1
2

∫
Σs

T

|f |2.

The following theorem is a classical result in control theory.
Theorem 8.3. For all (Pv0, η0

1 , η
0
2) ∈ Ĥ, Problem (RT

0,Pv0,η0
1 ,η0

2
) admits a unique solution.
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The system

d
dt


Pv

η1

η2

 = Aω


Pv

η1

η2

− BB]


PΦ

k1

k2

 ,


Pv(0)

η1(0)

η2(0)

 =


Pv0

η0
1

η0
2

 ,

− d
dt


PΦ

k1

k2

 = A]
ω


PΦ

k1

k2

+


Pv

η1

η2

 ,


PΦ(T )

k1(T )

k2(T )

 =


0

0

0

 ,

(8.2)

admits a unique solution (Pv, η1, η2, PΦ, k1, k2) and the optimal control to (RT
0,Pv0,η0

1 ,η0
2
) is

f(t) = −B](PΦ(t), k1(t), k2(t)) = −k2(t).

The operator Π̂(T ) ∈ L(Ĥ) defined by

Π̂(T )(Pv0, η0
1 , η

0
2) = (PΦ(0), k1(0)), k2(0)) ,

is linear and continuous in Ĥ, it is symmetric and semidefinite positive, and the optimal cost is given by

inf(RT
0,Pv0,η0

1 ,η0
2
) =

1
2
(
Π̂(T )(Pv0, η0

1 , η
0
2), (Pv0, η0

1 , η
0
2)
)bH.

Using the expression of A]
ω determined in section 3.5, it can be shown that the solution (Pv, η1, η2,

PΦ, k1, k2) to system (8.2) and the solution (v̄, p̄, η̄1, η̄2, Φ̄, ψ̄, k̄1, k̄2) to system (7.2) obey

(P v̄, η̄1, η̄2, P Φ̄, k̄1, k̄2) = (Pv, η1, η2, PΦ, k1, k2).

Therefore we have

Π̂(T )(Pv0, η0
1 , η

0
2) = (PΦ(0), k1(0), k2(0)) = (P Φ̄(0), k̄1(0), k̄2(0))

=


P 0 0

0 I 0

0 0 I

Π(T )(v0, η0
1 , η

0
2) for all (v0, η0

1 , η
0
2) ∈ Hcc.

(8.3)

The first part of Theorem 6.3 can be proved as in Theorem 6.1. For the existence of a unique solution
to the Riccati equation (6.2), we may proceed in a usual way as in [2] or in [15].

The following analogue of Theorem 8.1 can be proved for problem (R∞
0,Pv0,η0

1 ,η0
2
).

Theorem 8.4. For all (Pv0, η0
1 , η

0
2) ∈ H, we consider the system

d
dt


Pv

η1

η2

 = Aω


Pv

η1

η2

− BB]


PΦ

k1

k2

 ,


Pv(0)

η1(0)

η2(0)

 =


Pv0

η0
1

η0
2

 ,

− d
dt


PΦ

k1

k2

 = A]
ω


PΦ

k1

k2

+


Pv

η1

η2

 ,


PΦ(∞)

k1(∞)

k2(∞)

 =


0

0

0

 ,

(PΦ(t), k1(t), k2(t)) = Π̂(Pv(t), η1(t), η2(t)).

(8.4)

System (8.4) admits a unique solution (Pv, η1, η2, PΦ, k1, k2) in W (0,∞;V1(Ω),V−1(Ω))
×H2,1(Σs

∞)×V2,1(Q∞)×H4,2(Σs
∞)×H2,1(Σs

∞), and the optimal control to (R∞
0,Pv0,η0

1 ,η0
2
) is

f = −k2.
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This theorem may be proved, as in [23], by passing to the limit in the optimality system of the finite
time horizon control problem (RT

0,Pv0,η0
1 ,η0

2
).

Proof of Theorem 6.4. Since Π and Π̂ are defined as the respective limits of Π(T ) and Π̂(T ) when T
tends to infinity, with (8.3), we obtain

P 0 0

0 I 0

0 0 I

Π(v0, η0
1 , η

0
2) = Π̂(Pv0, η0

1 , η
0
2),

for all (v0, η0
1 , η

0
2) ∈ Hcc. This equality gives the expression for PΠ1, Π2 and Π3. The expression for

(I − P )Π1 follows from the equalities

(I − P )Π1(v0, η0
1 , η

0
2) = (I − P )Φ(0) = (I − P )Dsk2(0) = (I − P )DsΠ̂3(Pv0, η0

1 , η
0
2).

2

8.3. Proof of Theorem 8.2. The proof is based on the fact that system (8.1) is equivalent to system
(8.4) with the additional equations (I − P )v = (I − P )D(η2~e2χΓs

) and (I − P )Φ = (I − P )D(k2~e2χΓs
).

Since we can use, for system (8.4), the maximal regularity result stated in [1, Chapter 1, Theorem 3.1],
we can derive the same estimates for the solution to system (8.1).

We already know that

‖Pv‖L2(0,∞;V0
n(Ω)) + ‖η1‖L2(0,∞;H2

0 (Γs)) + ‖η2‖L2(0,∞;L2
0(Γs))

+‖PΦ‖L2(0,∞;V0
n(Ω)) + ‖k1‖L2(0,∞;H2

0 (Γs)) + ‖k2‖L2(0,∞;L2
0(Γs))

≤ C(‖Pv0‖V0
n(Ω) + ‖η0

1‖H2
0 (Γs) + ‖η0

2‖L2
0(Γs)).

(8.5)

We can rewrite the adjoint equation of (8.4) in the form

− d
dt


PΦ

k1

k2

 = (A]
ω − λI)


PΦ

k1

k2

+ λ


PΦ

k1

k2

+


Pv

η1

η2

 ,


PΦ(∞)

k1(∞)

k2(∞)

 =


0

0

0

 ,

(8.6)
We choose λ > 0 such that (et(A]

ω−λI))t≥0 is exponentially stable. From [1, Chapter 1, Theorem 3.1],
with estimate (8.5), it can be shown that the solution (PΦ, k1, k2) of system (8.6) obeys

‖PΦ‖H2,1(Q∞) + ‖k1‖H4,2(Σs
∞) + ‖k2‖H2,1(Σs

∞)

≤ C(‖PΦ‖L2(0,∞;V0
n(Ω)) + ‖k1‖L2(0,∞;H2

0 (Γs)) + ‖k2‖L2(0,∞;L2
0(Γs)))

≤ C(‖Pv0‖V0
n(Ω) + ‖η0

1‖H2
0 (Γs) + ‖η0

2‖L2
0(Γs)).

(8.7)

Next, with estimates (8.5) and (8.7), still with [1, Chapter 1, Theorem 3.1], and with [23], we can show
that

‖Pv‖H2,1(Q∞) + ‖η1‖H4,2(Σs
∞) + ‖η2‖H2,1(Σs

∞)

≤ C(‖Pv0‖V1
n(Ω) + ‖η0

1‖(H3∩H2
0 )(Γs) + ‖η0

2‖H1
0 (Γs) + ‖k2‖L2

0(Σ
s
∞)).

(8.8)

This completes the proof.
30



9. Nonhomogeneous system. We now consider the nonhomogeneous linearized system

vt − div σ(v, p)− ωv = F and div v = G = div w̄ in Q∞,

v = η2~e2 on Σs
∞, v = 0 on Σ0

∞, v(0) = v0 in Ω,

η1,t = η2 + ωη1 on Σs
∞,

η2,t − ωη2 − βη1,xx − δη2,xx + αη1,xxxx = ρ1p− 2νρ2v2,z +H −Π3(v, η1, η2) on Σs
∞,

η1 = 0 and η1,x = 0 on
{
0, L

}
× (0,∞),

η1(0) = η0
1 and η2(0) = η0

2 in Γs.

(9.1)

We can look for a solution to system (9.1) in the form v = w + w̄, where (w, p, η) is the solution to

wt − div σ(w, p)− ωw = F − w̄t + ν∆w̄ + ν∇div w̄ + ωw̄ and div w = 0 in Q∞,

w = η2~e2 on Σs
∞, w = 0 on Σ0

∞, w(0) = v0 − w̄(0) in Ω,

η1,t = η2 + ωη1 on Σs
∞,

η2,t − ωη2 − βη1,xx − δη2,xx + αη1,xxxx

= ρ1p− 2νρ2(w2,z + w̄2,z) +H −Π3(w̄, 0, 0)−Π3(w, η1, η2) on Σs
∞,

η1 = 0 and η1,x = 0 on
{
0, L

}
× (0,∞),

η1(0) = η0
1 and η2(0) = η0

2 in Γs.

(9.2)

Since div w = 0, the term 2νρ2w2,z can be dropped out in the equation satisfied by η2, but not the term
2νρ2w̄2,z. We introduce the operator unbounded operator (Aω,bΠ, D(Aω,bΠ)) in H, defined by D(Aω,bΠ) =
D(A) and

Aω,bΠ = Aω − BB]Π̂.

System (9.2) can be written in the form

d
dt


Pw

η1

η2

 = Aω,bΠ


Pw

η1

η2

+ BH̄ +


PF̄

0

0

 ,


Pw(0)

η1(0)

η2(0)

 =


P (v0 − w̄(0))

η0
1

η0
2

 ,

(I − P )w = (I − P )D(η2~e2χΓs
),

(9.3)
where

F̄ = F − w̄t + ν∆w̄ + ν∇div w̄ + ωw̄,

H̄ = −2νρ2w̄2,z +H −Π3(w̄, 0, 0) + ρ1(I + ρ1γsNs)−1γsN((F̄ +∇(−∆D)−1div F̄ ) · n).

We assume that w̄ belongs to H2,1(Q∞), F ∈ L2(0,∞;L2(Ω)), and H ∈ L2(0,∞;L2
0(Γs)). Thus PF̄

belongs to L2(0,∞;V0
n(Ω)). Moreover (F̄+∇(−∆D)−1div F̄ )·n belongs to L2(0,∞;H−1/2(Γ)), γsN((F̄+

∇(−∆D)−1div F̄ ) · n) belongs to L2(0,∞;H1/2(Γs)), and H̄ belongs to L2(0,∞;L2
0(Γs)). Since the

semigroup generated by (Aω,bΠ, D(Aω,bΠ)) is exponentially stable on V0
n(Ω)× (H2

0 (Γs)∩L2
0(Γs))×L2

0(Γs),
system (9.3) admits a unique solution (Pw, η1, η2) in L2(0,∞;V0

n(Ω)× (H2
0 (Γs) ∩ L2

0(Γs))× L2
0(Γs)).

Theorem 9.1. If (Pv0 − P w̄(0), η0
1 , η

0
2) ∈ [D(A),H]1/2, (v0 − w̄(0), η0

1 , η
0
2) ∈ Hcc, F ∈ L2(0,∞;

L2(Ω)), w̄ ∈ H2,1(Q∞), H ∈ L2(0,∞;L2
0(Γs)), then system (9.1) admits a unique solution, which belongs

to H2,1(Q∞)×H4,2(Σs
∞)×H2,1(Σs

∞) and

‖v‖H2,1(Q∞) + ‖p‖L2(0,1;H1(Ω)) + ‖η1‖H4,2(Σs
∞) + ‖η1‖L∞(Σs

∞) + ‖η2‖H2,1(Σs
∞)

≤ C1(‖Pv0‖V1
n(Ω) + ‖η0‖H3(Γs) + ‖η1‖H1(Γs) + ‖F‖L2(Q∞) + ‖w̄‖H2,1(Q∞) + ‖H‖L2(Σs

∞)).
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Proof. We first consider system (9.3). We know that (Pv0 − P w̄(0), η0
1 , η

0
2) ∈ [D(Aω,bΠ),H]1/2,

(PF̄ , 0, H̄) ∈ L2(0,∞;H), and that the semigroup generated by (Aω,bΠ, D(Aω,bΠ)) is exponentially stable
on H. Thus arguing as in (8.6), from [1, Chapter 1, Theorem 3.1] it follows that

‖w‖H2,1(Q∞) + ‖η1‖H4,2(Σs
∞) + ‖η2‖H2,1(Σs

∞)

≤ C1(‖Pv0‖V1
n(Ω) + ‖η0

1‖H3(Γs) + ‖η0
2‖H1(Γs) + ‖F‖L2(Q∞) + ‖w̄‖H2,1(Q∞) + ‖H‖L2(Σs

∞)).

Since v = w + w̄ and w̄ ∈ H2,1(Q∞), we recover the estimate for v. The estimate for the pressure can
be obtained from the estimate for v and from the first equation of system (9.1).

10. Stabilization of the coupled system. In this section we study the nonlinear closed loop
system

ũt − div σ(ũ, p̃)− ωũ = e−ωtF̃ (ũ, p̃, η̃1, η̃2), div ũ = e−ωtG̃(η̃1, ũ) in Q∞,

ũ = η̃2~e2 on Σs
∞, ũ = 0 on Σ0

∞, ũ(0) = û0 in Ω,

η̃1,t = η̃2 + ωη̃1 on Σs
∞,

η̃2,t − ωη̃2 − βη̃1,xx − δη̃2,xx + αη̃1,xxxx

= ρ1p̃− 2νρ2ũ2,z + e−ωtH̃(ũ, η̃1)−Π3(ũ, η̃1, η̃2) on Σs
∞,

η̃1 = 0 and η̃1,x = 0 on
{
0, L

}
× (0,∞),

η̃1(0) = η0
1 and η̃2(0) = η0

2 in Γs,

(10.1)

with

F̃ (ũ, p̃, η̃1, η̃2)

= −η̃1(ũt − ωũ) +
(
zη̃2 + νz

(
η̃2
1,x

eωt+η̃1
− η̃1,xx

))
ũz − (ũ · ∇)ũ

+ν
(
−2zη̃1,xũxz + η̃1ũxx +

(
z2η̃2

1,x−e−ωtη̃1

eωt+η̃1

)
ũzz

)
+z(η̃1,xp̃z − η̃1p̃x)~e1 − (1 + e−ωtη̃1)ũ1ũx + (ze−ωtη̃1,xũ1 − ũ2)ũz,

(10.2)

G̃(ũ, η̃1) = −η̃1ũ1,x + zη̃1,xũ1,z = div w̃, w̃ = −η̃1ũ1~e1 + zη̃1,xũ1~e2, (10.3)

and

H̃(ũ, η̃1) = νρ2

(
η̃1,x

eωt+η̃1
ũ1,z + e−ωtη̃1,xũ2,x −

η̃2
1,x

eωt+η̃1
ũ2,z + η̃1

eωt+η̃1
ũ2,z

)
. (10.4)

We want to show the following theorem.
Theorem 10.1. There exist 0 < µ0 < 1 and an increasing function θ0 from R+ into itself such that if

µ ∈ (0, µ0), (P (û0 +η0
1û

0
1~e1−zη0

1,xû
0
1~e2), η

0
1 , η

0
2) ∈ [D(A),H]1/2, (û0 +η0

1û
0
1~e1−zη0

1,xû
0
1~e2)|Γ = η0

2 ~e2 χΓs
,

‖P û0‖V1
n(Ω) +‖η0

1‖H3(Γs)∩H2
0 (Γs) +‖η0

2‖H1
0 (Γs) ≤ θ0(µ) then system (10.1) admits a unique solution in the

set

D̃µ =
{

(ũ, p̃, η̃1, η̃2) |

‖ũ‖H2,1(Q∞) + ‖p̃‖L2(0,∞;H1(Ω)) + ‖η̃1‖H4,2(Σs
∞) + ‖η̃1‖L∞(Σs

∞) + ‖η̃2‖H2,1(Σs
∞) ≤ µ

}
.
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Next we consider the system

ût − div σ(û, p̂) = F̂ (û, p̂, η1, η2), div û = Ĝ(η1, û) in Q∞,

û = η2~e2 on Σs
∞, û = 0 on Σ0

∞, û(0) = û0 in Ω,

η1,t = η2 on Σs
∞,

η2,t − βη1,xx − δη2,xx + αη1,xxxx = ρ1p̂+ Ĥ(û, η1)−Π3(û, η1, η2) on Σs
∞,

η1 = 0 and η1,x = 0 on
{
0, L

}
× (0,∞),

η1(0) = η0
1 and η2(0) = η0

2 in Γs,

(10.5)

where

F̂ (û, p̂, η1, η2)

= −η1ût +
(
zη2 + νz

(
η2
1,x

1+η1
− η1,xx

))
ûz − (û · ∇)û

+ν
(
−2zη1,xûxz + η1ûxx +

(
z2η2

1,x−η1

1+η1

)
ûzz

)
+z(η1,xp̂z − η1p̂x)~e1 − (1 + η1)û1ûx + (zη1,xû1 − û2)ûz,

Ĝ(û, η1) = −η1û1,x + zη1,xû1,z = div (ŵ), ŵ = (−η1û1~e1 + zη1,xû1~e2),

and

Ĥ(û, η1) = νρ2

(
η1,x

1+η1
û1,z + η1,xû2,x −

2+η2
1,x

1+η1
û2,z

)
.

From calculations in section 2 it follows that (ũ, p̃, η̃1, η̃2) is a solution to system (10.1) if and only if

û = e−ωtũ, p̂ = e−ωtp̃, η1 = e−ωtη̃1, η2 = e−ωtη̃2,

is a solution to system (10.5). Therefore from Theorem 10.1, we deduce:
Theorem 10.2. There exist 0 < µ0 < 1 and an increasing function θ0 from R+ into itself such that if

µ ∈ (0, µ0), (P (û0+η0
1û

0
1~e1−zη0

1,xû
0
1~e2), η

0
1 , η

0
2) ∈ [D(A),H]1/2, (û0+η0

1û
0
1~e1−zη0

1,xû
0
1~e2)|Γs = η0

2 ~e2 χΓs ,
‖P û0‖V1

n(Ω) +‖η0
1‖H3(Γs)∩H2

0 (Γs) +‖η0
2‖H1

0 (Γs) ≤ θ0(µ) then system (10.5) admits a unique solution in the
set

Dµ =
{

(û, p̂, η1, η2) | ‖eω·û‖H2,1(Q∞) + ‖eω·p̂‖L2(0,∞;H1(Ω)) + ‖eω·η1‖H4,2(Σs
∞)

+‖eω·η1‖L∞(Σs
∞) + ‖eω·η2‖H2,1(Σs

∞) ≤ µ
}
.

Still from calculations in section 2 we know that (û, p̂, η1, η2) is a solution to system (10.5) if and only if
(u, p, η, ηt) = (û ◦ Tη1 , p̂ ◦ Tη1 , η1, η2) is solution to system (1.1) with u0 = û0 ◦ Tη0

1
. Thus from Theorem

10.2, we deduce:
Theorem 10.3. There exist 0 < µ0 < 1 and an increasing function θ0 from R+ into itself such that if

µ ∈ (0, µ0), (P (û0+η0
1û

0
1~e1−zη0

1,xû
0
1~e2), η

0
1 , η

0
2) ∈ [D(A),H]1/2, (û0+η0

1û
0
1~e1−zη0

1,xû
0
1~e2)|Γs

= η0
2 ~e2 χΓs

,
‖P û0‖V1

n(Ω) + ‖η0
1‖H3(Γs)∩H2

0 (Γs) + ‖η0
2‖H1

0 (Γs) ≤ θ0(µ), where û0 = (û0
1, û

0
2) = u0 ◦ T −1

η0
1

, then system
(1.1) with the feedback law f = −Π3(u ◦ T −1

η (x, z, t), η, ηt) admits a unique solution in the set

Fµ =
{

(u, p, η, ηt) | ‖eω·u ◦ T −1
η ‖H2,1(Q∞) + ‖eω·p ◦ T −1

η ‖L2(0,∞;H1(Ω)) + ‖eω·η‖H4,2(Σs
∞)

+‖eω·η‖L∞(Σs
∞) + ‖eω·ηt‖H2,1(Σs

∞) ≤ µ
}
,

where Tη is defined in (2.2).
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11. Some Lipschitz properties. Theorem 11.1. The mapping

(ũ, p̃, η̃1, η̃2) 7−→ (F̃ (ũ, p̃, η̃1, η̃2), w̃(ũ, η̃1), H̃(ũ, η̃1)),

where F̃ , w̃, and H̃ are respectively defined by (10.2), (10.3) and (10.4), is locally Lipschitz from
H2,1(Q∞)×L2(0,∞;H1(Ω))×H4,2(Σs

∞)×H2,1(Σs
∞) into L2(Q∞)×H2,1(Q∞)×L2(Σs

∞). More precisely,
for all (ũ, p̃, η̃1, η̃2), (ũ1, p̃1, η̃1

1 , η̃
1
2), (ũ2, p̃2, η̃2

1 , η̃
2
2) belonging to H2,1(Q∞)×L2(0,∞;H1(Ω))×H4,2(Σs

∞)
×H2,1(Σs

∞) and such that max(‖(1+ η̃1)−1‖L∞(Σs
∞), ‖(1+ η̃1

1)−1‖L∞(Σs
∞), ‖(1+ η̃2

1)−1‖L∞(Σs
∞)) ≤ µ1 and

max(‖η̃1,x‖L∞(Σs
∞), ‖η̃1

1,x‖L∞(Σs
∞), ‖η̃2

1,x‖L∞(Σs
∞)) ≤ 1, we have

‖F̃ (ũ, p̃, η̃1, η̃2)‖L∞(0,∞;L2(Ω)) ≤ C2(µ1)(‖η̃1‖H4,2(Σs
∞)‖ũ1‖H2,1(Q∞) + ‖η̃2‖H2,1(Σs

∞)‖ũ1‖H2,1(Q∞)

+‖η̃1‖H4,2(Σs
∞)‖p̃‖L2(0,∞;H1(Ω)) + ‖ũ‖H2,1(Q∞)‖ũ‖H2,1(Q∞)),

(11.1)

‖F̃ (ũ1, p̃1, η̃1
1 , η̃

1
2)− F̃ (ũ2, p̃2, η̃2

1 , η̃
2
2)‖L∞(0,∞;L2(Ω))

≤ C2(µ1)
(
‖(ũ1, p̃1, η̃1

1 , η̃
1
2)‖W‖(ũ1, p̃1, η̃1

1 , η̃
1
2)− (ũ2, p̃2, η̃2

1 , η̃
2
2)‖W

+‖(ũ2, p̃2, η̃2
1 , η̃

2
2)‖W‖(ũ1, p̃1, η̃1

1 , η̃
1
2)− (ũ2, p̃2, η̃2

1 , η̃
2
2)‖W

)
,

(11.2)

with W = H2,1(Q∞)× L2(0,∞;H1(Ω))×H4,2(Σs
∞)×H2,1(Σs

∞),

‖w̃(ũ, η̃1)‖H2,1(Q∞) ≤ C2(µ1)‖η̃1‖H4,2(Σs
∞)‖ũ1‖H2,1(Q∞), (11.3)

‖w̃(ũ1, η̃1
1)− w̃(ũ2, η̃2

1)‖H2,1(Q∞)

≤ C2(µ1)(‖η̃1‖H4,2(Σs
∞)‖ũ1

1 − ũ2
1‖H2,1(Q∞) + ‖η̃1

1 − η̃2
1‖H4,2(Σs

∞)‖ũ2
1‖H2,1(Q∞)),

(11.4)

‖H̃(ũ, η̃1)‖L2(Σs
∞) ≤ C2(µ1)‖ũ1‖H2,1(Q∞)‖η̃1‖H4,2(Σs

∞), (11.5)

and

‖H̃(ũ1, η̃1
1)− H̃(ũ2, η̃2

1)‖L2(Σs
∞)

≤ C2(µ1)(‖ũ1‖H2,1(Q∞)‖η̃1
1 − η̃2

1‖H4,2(Σs
∞) + ‖ũ1

1 − ũ2
1‖H2,1(Q∞)‖η̃1‖H4,2(Σs

∞)).
(11.6)

(In these estimates the constant C2 depends in an explicit manner of µ1.)
Proof.

(i) Proof of (11.3) and (11.4). If (ũ, η̃1) ∈ H2,1(Q∞)×H4,2(Σs
∞), then we have

‖η̃1ũ1‖L2(0,∞;H2(Ω)) + ‖η̃1,xũ1‖L2(0,∞;H2(Ω))

≤ (‖η̃1‖L∞(0,∞;H3(Γs))‖ũ1‖L2(0,∞;H2(Ω)) + ‖η̃1‖L∞(0,∞;H2(Γs))‖ũ1‖L2(0,∞;H2(Ω)))

≤ C‖η̃1‖H4,2(Σs
∞)‖ũ1‖H2,1(Q∞).

We also have

‖η̃1ũ1‖H1(0,∞;L2(Ω)) + ‖η̃1,xũ1‖H1(0,∞;L2(Ω))

≤ (‖η̃1‖H1(0,∞;L∞(Γs))‖ũ1‖H1(0,∞;L2(Ω)) + ‖η̃1‖H1(0,∞;H1(Γs))‖ũ1‖L2(0,∞;H2(Ω)))

≤ C‖η̃1‖H4,2(Σs
∞)‖ũ1‖H2,1(Q∞).

In these estimates we have used that

‖η̃1‖H3/2(0,∞;H1(Γs)) ≤ C‖η̃1‖H4,2(Σs
∞).
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Thus we have

‖η̃1ũ1‖H2,1(Q∞) + ‖η̃1,xũ1‖H2,1(Q∞) ≤ C2‖η̃1‖H4,2(Σs
∞)‖ũ1‖H2,1(Q∞).

Now, we assume that (ũ1, η̃1
1) ∈ H2,1(Q∞) × H4,2(Σs

∞) and (ũ2, η̃2
1) ∈ H2,1(Q∞) × H4,2(Σs

∞). Let us
estimate

η̃1
1,xũ

1
1 − η̃2

1,xũ
2
1.

The other component, that is η̃1
1ũ

1
1 − η̃2

1ũ
2
1, can be estimated in the same way. We have

η̃1
1,xũ

1
1 − η̃2

1,xũ
2
1 = η̃1

1,x(ũ1
1 − ũ2

1) + (η̃1
1,x − η̃2

1,x)ũ2
1.

As above, we estimate these terms as follows

‖η̃1
1,x(ũ1

1 − ũ2
1)‖H2,1(Q∞) + ‖(η̃1

1,x − η̃2
1,x)ũ2

1‖H2,1(Q∞)

≤ C2(‖η̃1‖H4,2(Σs
∞)‖ũ1

1 − ũ2
1‖H2,1(Q∞) + ‖η̃1

1 − η̃2
1‖H4,2(Σs

∞)‖ũ2
1‖H2,1(Q∞)).

(ii) Proof of (11.1) and (11.2). To estimate the different terms in F̃ , we firstly write

‖η̃1ũt‖L2(Q) ≤ ‖η̃1‖L∞(Σs
∞)‖ũt‖L2(Q),

‖η̃1ωũ‖L2(Q) ≤ ‖η̃1‖L∞(Σs
∞)‖ωũ‖L2(Q),

‖zη̃2ũz‖L2(Q) ≤ ‖η̃2‖L∞(Σs
∞)‖ũz‖L2(Q) ≤ C‖η̃2‖L∞(0,∞;H2

0 (Γs))‖ũz‖L2(0,∞;H1(Ω)),∥∥∥∥∥νz 2η̃2
1,x

eωt + η̃1
ũz

∥∥∥∥∥
L2(Q)

≤ C‖(1 + η̃1)−1‖L∞(Σs
∞)‖η̃1,x‖2L∞(Σs

∞)‖ũz‖L2(Q) ≤ C‖η̃1,x‖L∞(Σs
∞)‖ũz‖L2(Q),

‖νzη̃1,xxũz‖L2(Q) ≤ C‖η̃1,xx‖L∞(Σs
∞)‖ũz‖L2(Q).

In these estimates we have used that ‖(1 + η̃1)−1‖L∞(Σs
∞) ≤ µ1, ‖η̃1,x‖L∞(Σs

∞) ≤ 1 and that

η̃1,xx ∈ H2,1(Σs
∞) ⊂ L∞(0,∞;H1(Γs)) ⊂ L∞(Σs

∞),

because Γs is of dimension one.
We continue as follows

‖η̃1,xũxz‖L2(Q) ≤ ‖η̃1,x‖L∞(Σs
∞)‖ũxz‖L2(Q),

‖η̃1ũxx‖L2(Q) ≤ ‖η̃1‖L∞(Σs
∞)‖ũxx‖L2(Q),∥∥∥∥∥ z2η̃2

1,x

eωt + η̃1
ũzz

∥∥∥∥∥
L2(Q)

≤ C‖(1 + η̃1)−1‖L∞(Σs
∞)‖η̃1,x‖2L∞(Σs

∞)‖ũzz‖L2(Q),

∥∥∥∥ e−ωtη̃1
eωt + η̃1

ũzz

∥∥∥∥
L2(Q)

≤ C‖η̃1‖L∞(Σs
∞)‖ũzz‖L2(Q),

‖η̃1,xp̃z‖L2(Q) ≤ ‖η̃1,x‖L∞(Σs
∞)‖p̃z‖L2(Q),

‖η̃1p̃x‖L2(Q) ≤ ‖η̃1‖L∞(Σs
∞)‖p̃x‖L2(Q),

‖(1 + e−ωtη̃1)ũ1ũx‖L2(Q) ≤ C‖1 + η̃1‖L∞(Σs
∞)‖ũ1‖L∞(0,∞;H1(Ω))‖ũx‖L2(0,∞;H1(Ω)),

‖e−ωtη̃1,xũ1‖L2(Q) ≤ C‖η̃1,x‖L∞(Σs
∞)‖ũ1‖L2(0,∞;L2(Ω)),

‖ũ2ũz‖L2(Q) ≤ ‖ũ2‖L∞(0,∞;H1(Ω))‖ũz‖L2(0,∞;H1(Ω)),

‖(ũ · ∇)ũ‖L2(Q) ≤ ‖ũ‖L∞(0,∞;H1(Ω))‖ũ‖L2(0,∞;H1(Ω)).

Thus

‖F̃ (ũ, p̃, η̃1, η̃2)‖L∞(0,∞;L2(Ω)) ≤ C2(‖η̃1‖H4,2(Σs
∞)‖ũ1‖H2,1(Q∞) + ‖η̃2‖H2,1(Σs

∞)‖ũ1‖H2,1(Q∞)

+‖η̃1‖H4,2(Σs
∞)‖p̃‖L2(0,∞;H1(Ω)) + ‖ũ‖H2,1(Q∞)‖ũ‖H2,1(Q∞)).
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Estimate (11.2) can be proved in the same way.
(iii) Proof of (11.5) and (11.6). We have∥∥∥∥ η̃1,x

eωt + η̃1
ũ1,z

∥∥∥∥
L2(Σs

∞)

≤ C‖(1 + η̃1)−1‖L∞(Σs
∞)‖η̃1,x‖L∞(Σs

∞)‖ũ1,z‖L2(Σs
∞),

‖η̃1,xũ2,x‖L2(Σs
∞) ≤ C‖η̃1,x‖L∞(Σs

∞)‖ũ2,x‖L2(Σs
∞),∥∥∥∥∥ η̃2

1,x

eωt + η̃1
ũ2,z

∥∥∥∥∥
L2(Σs

∞)

≤ C‖(1 + η̃1)−1‖L∞(Σs
∞)‖η̃1,x‖2L∞(Σs

∞)‖ũ2,z‖L2(Σs
∞),

∥∥∥∥ η̃1
eωt + η̃1

ũ2,z

∥∥∥∥
L2(Σs

∞)

≤ C‖η̃1‖2L∞(Σs
∞)‖ũ2,z‖L2(Σs

∞).

(We have used that ‖(1+ η̃1)−1‖L∞(Σs
∞) ≤ µ1 and ‖η̃1,x‖L∞(Σs

∞) ≤ 1.) With these estimates we can show
that

‖H̃(ũ, η̃1)‖L2(Σs
∞) ≤ C2‖ũ1‖H2,1(Q∞)‖η̃1‖H4,2(Σs

∞),

and that

‖H̃(ũ1, η̃1
1)− H̃(ũ2, η̃2

1)‖L2(Σs
∞) ≤ C2(‖ũ1‖H2,1(Q∞)(‖η̃1

1 − η̃2
1‖H4,2(Σs

∞) + ‖ũ1
1− ũ2

1‖H2,1(Q∞)‖η̃1‖H4,2(Σs
∞)).

12. Proof of Theorem 10.1. To prove Theorem 10.1, we consider the nonhomogeneous closed
loop linear system

vt − div σ(v, p)− ωv = e−ωtF̃ and div v = e−ωtG̃ = e−ωtdiv w̃ in Q∞,

v = η2~e2 on Σs
∞, v = 0 on Σ0

∞, v(0) = û0 in Ω,

η1,t = η2 + ωη1 on Σs
∞,

η2,t − ωη2 − βη1,xx − δη2,xx + αη1,xxxx = ρ1p− 2νρ2v2,z + e−ωtH̃ −Π3(v, η1, η2) on Σs
∞,

η1 = 0 and η1,x = 0 on
{
0, L

}
× (0,∞),

η1(0) = η0
1 and η2(0) = η0

2 in Γs,

(12.1)

where F̃ , G̃ and H̃ stand respectively for the mappings F̃ (η̃1, η̃2, ũ,∇p̃), G̃(η̃1, ũ) and H̃(ũ, p̃, η̃1) defined
in (10.2), (10.3) and (10.4).

We first choose 0 < µ1. Without loss of generality, we can assume that C1 ≥ 1 and C2(µ1) ≥ 1. We
set

µ0 = min
(

1
2C1 C2(µ1)

, 1− 1
µ1

)
and θ0(µ) =

µ

2C1
.

Let us notice that if (ũ, p̃, η̃1, η̃2) belongs to D̃µ, then ‖(1 + η̃1)−1‖L∞(Σs
∞) ≤ 1

1−µ ≤ 1
1−µ0

≤ µ1 and
‖η̃1,x‖L∞(Σs

∞) ≤ µ < 1. Thus estimates of Theorem 11.1 may be used for elements in D̃µ.
We are going to prove that the mapping

F : (ũ, p̃, η̃1, η̃2) 7−→ (v, p, η1, η2),

where (v, p, η1, η2) is the solution to system (12.1), in which F̃ , G̃ and H̃ are the functions of (ũ, p̃, η̃1, η̃2)
defined by (10.2), (10.3), (10.4), is a contraction in D̃µ.

If (v, p, η1, η2) = F(ũ, p̃, η̃1, η̃2), due to Theorems 9.1 and 11.1, we have

‖v‖H2,1(Q∞) + ‖p‖L2(0,∞;H1(Ω)) + ‖η1‖H4,2(Σs
∞) + ‖η1‖L∞(Σs

∞) + ‖η2‖H2,1(Σs
∞)

≤ C1(‖Pv0‖V1
0(Ω) + ‖η0

1‖H3(Γs)∩H2
0 (Γs) + ‖η0

2‖H1
0 (Γs)

+‖e−ωtF̃‖L2(Q∞) + ‖e−ωtw̃‖H2,1(Q∞) + ‖e−ωtH̃‖L2(Σs
∞))

≤ C1( 1
2C1

µ+ C2µ
2) ≤ µ.
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Thus F is a mapping from D̃µ into itself.
Let (ũ1, p̃1, η̃1

1 , η
1
2) and (ũ2, p̃2, η̃2

1 , η
2
2) belong to Ẽµ. For i = 1, 2, we set (vi, pi, ηi

1, η
i
2) =

F(ũi, p̃i, η̃i
1, η

i
2). Due to Theorems 9.1 and 11.1 , we also have

‖v1 − v2‖H2,1(Q∞) + ‖p1 − p2‖L2(0,∞;H1(Ω)) + ‖η1
1 − η2

1‖H4,2(Σs
∞) + ‖η1

2 − η2
2‖H2,1(Σs

∞)

≤ C1(‖e−ωt(F̃ 1 − F̃ 2)‖L2(Q∞) + ‖e−ωt(w̃1 − w̃2)‖H2,1(Q∞) + ‖e−ωt(H̃1 − H̃2)‖L2(Σs
∞))

≤ C1C2µ(‖v1 − v2‖H2,1(Q∞) + ‖p1 − p2‖L2(0,∞;H1(Ω)) + ‖η1
1 − η2

1‖H4,2(Σs
∞) + ‖η1

2 − η2
2‖H2,1(Σs

∞))

≤ 1
2 (‖v1 − v2‖H2,1(Q∞) + ‖p1 − p2‖L2(0,∞;H1(Ω)) + ‖η1

1 − η2
1‖H4,2(Σs

∞) + ‖η1
2 − η2

2‖H2,1(Σs
∞)).

Thus F is a contraction in D̃µ and the proof is complete.
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