FEEDBACK STABILIZATION OF A FLUID-STRUCTURE MODEL

JEAN-PIERRE RAYMOND*

Abstract. We study a system coupling the incompressible Navier-Stokes equations in a 2D rectangular type domain
with a damped Euler-Bernoulli beam equation, where the beam is a part of the upper boundary of the domain occupied by
the fluid. Due to the deformation of the beam the fluid domain depends on time. We prove that this system is exponentially
stabilizable, locally about the null solution, with any prescribed decay rate, by a feedback control corresponding to a force
term in the beam equation. The feedback is determined, via a Riccati equation, by solving an infinite time horizon control
problem for the linearized model. A crucial step in this analysis consists in showing that this linearized system can be
rewritten thanks to an analytic semigroup of which the infinitesimal generator has a compact resolvent.
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1. Setting of the problem. Let ) be the rectangular domain (0, L) x (0,1) C R?, with boundary

I'. Let us set I'y = (0,L) x {1}, the upper part of the boundary of Q, and Ty = I' \ T's. For a given
function 7 from I'y x (0, 00) into (—1,00), we denote by €,y and Iy ;) the sets

Uy = { (@) |2 € (0,0), 0<y<1+n)},

Pony = {(@:9) |2 € (0,L), y =1+ n(a,t)}.
For 0 < T < o0 or T = oo, we also use the notation

¥ =Ty x (0,7), Zr=Tx(0,T),

Qr =Qx(0,T), Qr = Uteo,m) ey x {t},

25 =Ts x (0,T), %§ = Useo,m) Tsiney x {t}-

We consider the following fluid-structure model coupling the Navier-Stokes equations with a damped
Euler-Bernoulli beam equation:

u + (u-Vi)u—divo(u,p) =0, divau=0 in Qoo

u=mé onx, u=0 on%’, u(0)=u’in Qy0) = Do,

Net — BNex — Miza + WMazea = P1D + H(u7 77) +f on X%, (1'1)
n=0 and n, =0 on {0,L} x (0,00),
n(0) =77 and m3(0)=n3 inT,,
with
H(u,n) = —pov(Va+ Vu") (=0, + &) - &,
o(u,p) =v(Vu+vul) —pI, & =(1,0), & =(0,1).
In this setting v > 0 is the fluid viscosity, « > 0, 8 > 0, and § > 0 are the adimensional rigidity, stretching,
and friction coefficients of the beam, p; and py are positive constants related to the density of the fluid
and the density of the structure (see [4]), f is a control function. Our objective is to determine f in
feedback form, able to stabilizes the system (1.1) (in an appropriate space) with a prescribed exponential
decay rate —w < 0, locally about (0,0,0,0). Existence of a local strong solution for system (1.1) with

f = 0 has been proved in [4] (with periodic boundary conditions on the lateral boundary of ), under
smallness conditions on the data, while existence of Hopf solutions for a slightly different model is proved
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in [13] (see also [8] and [12] for other models for the beam equation and for existence results in the three
dimensional case). To the author knowledge nothing is known about control and stabilization of such a
system. To study the control system (1.1), as in [4], we make a change of variable in order to rewrite
system (1.1) in the cylindrical domain Q x (0,00) and we denote by (@, p) the image of (u,p) by this
transformation. Since we are looking for solutions satisfying a prescribed exponential decay rate —w,
we rewrite the system as a first order system by setting 7 = n; and 7 = 12 and we study the control
system satisfied by (@,p,71,72) = e“*(0,p,m,n2). We linearize the system satisfied by (Q,p,71,72)
about (0,0,0,0) and we determine a feedback control, able to stabilize the linearized system satisfied by
(v,p,m,n2), by solving an infinite time horizon control problem. Next we prove that this linear feedback
law, applied in the nonlinear system satisfied by (@, p,71,72), is able to stabilize the nonlinear system
provided that the intial condition is small enough in an appropriate norm.

The analysis that we do for the linearized system is completely new for this type of fluid-structure
system. Indeed we show that the linearized system satisfied by (v,p,n1,72) is equivalent to a system of
the form

Pv Pv 0 Pv(0) Py

d

— = Bl O 0 = 0

q m Au m + ) m(0) ’7; (1.2)
72 72 f 12(0) 73

(I = P)v(t) = (I = P)D(na(t) & xr,),

where P is the so-called Leray projector and D is the Dirichlet operator associated with the stationary
Stokes equation (P and D are defined in section 3, while A, and B are defined in section 4). This type
of decomposition of velocity fields, into Pv and (I — P)v, has already been introduced for the Navier-
Stokes equations with nonhomogeneous boundary conditions in [22]. Finding again this decomposition
for system (1.2) is not totally obvious because the pressure, which is eliminated in the Navier-Stokes
equations thanks to the projector P, also appears in the beam equation. Rewriting the system satisfied
by (v,p,m,7n2) in the form (1.2) is crucial to prove the stabilizability of this system. Indeed, we show
that the operator (A,,D(A,)) is the infinitesimal generator of an analytic semigroup on the space
H = VI(Q) x (H3(Ts) N L3(T's)) x LE(Ts) and has a compact resolvent in this space (for the precise
definitions of these spaces we refer to section 3). We show that the stabilizability of system (1.2) reduces to
proving an approximate controllability result for a projected system. Such an approximate controllability
result can be deduced from [18] in the case of a rectangular domain (see also [19, 20] for supplementary
approximate controllability results).

The plan of the paper is as follows. Section 2 is devoted to rewriting system (1.1) in a fixed domain and
to the obtention of a linearized system. We study the semigroup of the linearized system and properties
of its infinitesimal generator in section 3. Existence and regularity results for the linearized system are
stated in section 4. We study the stabilizability of the linearized system in section 5. Three feedback
control laws for the linearized system (1.2) are introduced in section 6. The first one is a feedback law
for system (1.2) written as a system of partial differential equations, involving the pressure (see system
(2.6)). The second one is a feedback law obtained by the classical approach introduced in [2] or in [15].
In that case the pressure is eliminated since it does not appear in (1.2). The corresponding feedback law
is defined via the solution to a Riccati equation of the form

e £H), M=I*>0 A, +AJ—IBB I+ C*C =0

(See equation (6.2) for the definition of C.) Since A%, which is determined in section 3.5, cannot be

interpreted only in terms of partial operators (contrarily to A, ), we introduce a third feedback law
obtained by solving a Riccati equation of the form

MecH), H=0">0, A, + A —TBBII+1=0,

where H is the space H equipped with another inner product (see section 3.5), A% € E(ﬁ) is the adjoint

of A, € L(H) and B* € L(H, L(T,)) is the adjoint of B € L(L3(T's),H). The main interest of this

approach is that ABJ can be interpreted in terms of partial differential operators (which can be helpful for
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numerical calculations). Moreover, we are able to establish the precise relationship between the feedback
operators obtained by the first approach and the third one.

The optimal control problems corresponding to the first approach are studied in details in sections 7
and 8.1. In these sections, all the calculations are made in a very simple way via integrations by parts.
Therefore they can be easily checked and do not need a sophisticated functional analysis framework.
However the feedback law corresponding to the first approach is expressed in terms of an operator Il
which is not, at that stage, characterized by a Riccati equation. This is why the third approach is helpful
even if in that case the representation of the state and adjoint systems via A, and Af, cannot be avoided.

To deal with the nonlinear closed loop system, we first study the nonhomogeneous linearized closed
loop system in section 9. The main results of the paper are stated in section 10 (Theorems 10.2 and
10.3). Some Lipschitz properties of the nonlinear terms in the nonlinear system are established in section
11. These properties are next used in section 12 in the proof of the main results.

Let us finally give some references which are connected to the present work. The control of a channel
flow with periodic boundary conditions have been studied in [5, 31, 32, 33]. We think that the results in
those papers may be very useful to study the control of a channel flow coupled with a beam equation, with
periodic boundary conditions at the lateral boundary {0} x [0, L]U{L} x [0, L]. This will be investigated
in a future work. Let us also mention some controllability results obtained for systems coupling the
Navier-Stokes equations with finite dimensional solid-structure models [6, 21, 26] (and see also [25] for a
simplified model). These controllability resuls are mainly based on results first obtained for the Navier-
Stokes equations in [3]. In those models the controls act in the fluid equation and not in the structure
equation as in (1.1). Thus the problems are quite different. The feedback stabilization of the Navier-
Stokes equations in the three dimensional case is studied in [24]. It can be a starting point to study the
stabilization of systems similar to (1.1) in the 3D case.

2. The linearized system. The solutions to system (1.1) obey

0= divu(t) = u(t) -n(t) = [ m(t) = ) i, t)dt,
Q r Ty 0

n(t) s,m(t)
since the unit normal to I ;) outward €2, is

n(t) = —1a(1) ! '
VI+nit) Vi+n2(t))

Thus we must choose 79 in the space
1) = {ne 2wy | [ n=o}.
If n{ also belongs to L3(T's), then we have
/F n(t) =0 and /F n:(t) =0 for all ¢ > 0.

Everywhere throughout the paper we shall choose 7{ and nJ with zero mean value over I'y. If we denote
by M the orthogonal projection in L?(T's) onto L3(T'y), the equation satisfied by 1 in system (1.1) must
be written in the form

Mt — anm - 677ta::r + aMs(na:mww) - Ms(plp + H<u7 77) + f) on Ech)
Observe that due to the boundary conditions
n=0 and 7n,=0 on {O,L} x (0, 00),

we have (for solutions regular enough and when 7y and 13 belong to L3(T))

/ntt=0, /nm=0, and /mm:O,
Ty Iy Ty

s s
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but we do not necessarily have

r

s

This is why, in the equation satisfied by 7, we have to write M (7,42, ) in place of 1,,.4.. But for simplicity
we shall skip the writing of M in the different equations, except if we want to stress on the role of the
operator M, (which is for example the case when we shall define the operator (.Aw, D(A,))).

We consider system (1.1) for initial conditions u® such that divu” = uf , +uJ , = 0 and obeying the
compatibility condition

u’ =0 onTy, u(z,1+n(x,0)=u’x1+n(z))=n3(x)é forzc (0,L). (2.1)

As in [4], for a given function n : (0,L) x (0,T) — R satisfying n > —1, we consider the changes of
variables

T, (z,y,t) — (x,2,t) = (1‘, 1—H;J(:n,t)’t> and Ty @ (2,y) — (2,2) = <x, %) . (2.2)

The mapping 7, is defined in a similar way. The mapping 7, transforms £, into 2 = (0,L) x (0,1).
Setting

u(z,z,t) =u(z,y.t), pz,2,t)=p(xyt),
the nonlinear system (1.1) is rewritten in the form
+ (- V)a—vAa—Vp=F,pn), divi=G,n) in Qu,
=mey on¥s,, =0 on¥’, 0(0)=1u"inQ,
Net — Baz — Mtww + Mpgez = 1D+ H( a77) +f on X7, (2'3)
n=0 and 7, =0 on{OL} (0,

n(0) =mni and 7 (0) =73 inT,,
where 0°(x, 2) = u’(z,y) = u®(x, 2(1 + n(,0))) = u’(z, 2(1 + n¥(z))) =u’o Tn?(x, z),
F(a,p,n)

= —nl; + (zm + vz (1+n nm>> a,

v (=220t + it + (1) e )

+Z(nwﬁz - nﬁa:)é'l - (1 + 77)111111 + (znzrﬁl - ﬁ2)ﬁ27

G(0,n) = —nly p + 200, = div (W)  with W = —n €1 + 21,01 €5,
and
H(ﬁ, n) = pav <1+nu1 2+l — 21171;” Uz, z) = —2pavlz ; + pav (H_nul 2+l — n’{;inﬁQ z> .
Due to (2.1), we can see that
div(@® —=w(0)) =0 inQ, @ —-w(0)=0 onTy, 1w’ —w(0)=ndey on . (2.4)

For —w < 0, we make the following change of variables:

wt o

~ ~ ta ~ t ~ t
u=e'a, p=e€rp, m=en, f2=e"n.
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The system (2.3) is transformed into

o

1 +€_wt(ﬁ'V)ﬁ—VAﬁ_Vﬁ_wﬁ: e_th(~7ﬁa ﬁ17772)7 diva = e_WtG<ﬁlaﬁ) in QOO’
0

=1éy on¥5,, u=0 onX%, u(0)=1a"inQ,

=1}

Mt =72+wh on X5,

. } ) } 3 3 ) o . , (2.5)
N2,t — Whj2 — ﬁnl,a:a: - 6772,wz + AN, zxzx = P1P — 2V,02112,z + e_UJtH(uv 7]1) + f on 2207

=0 and 71, =0 on {0,L} x (0,00),

7(0) =7y and 7(0) =73 inT,,

with

f~ = eWtfv
- =2
(@, 5,1, 72) = — (i — wit) + (27 + vz (255 — ) ) e
~ o~ ~ ~ 2272 —e ¢t ~
+v (_22771,xuxz + MmUgy + (W) uzz)

+Z(ﬁ1,zﬁz - ﬁlﬁz)gl - (1 + e_wtﬁl)ﬁlﬁw + (Ze_Wtﬁl,zﬁl - 62)112’

=~ ~ ~ ~ ~ ~ . ~ ~ = ~ ~ =
G(M,0) = =y 5 + 2701 501, = div (=71 0181 + 271 ;W1 €2)
Cwt s =2
~ o~y e “"e ~ S~ ~ M  ~ 2e " “i ~
H(u7 771) =V ( e“T 4+, ul,z + 771,1:“2,13 - et u2,z + e“T4, u2,z .

If we linearize (2.5) about (0,0,0,0), we obtain the system

vy —divo(v,p) —wv =0,

divv=0 in Qu,

v=m onX, v=0 onXl, v(0)=v"inQ,

Mt ="n2 +wn on X, (2.6)
N2t — W2 — BM g — ON2,p0 + MM poze = Ms(p1p — 20ve . + f) on X5,

m=0 and 7, =0 on {O,L} x (0, 00),

m(0) =n and ny(0) =n3 inT..

Observe that

Vie + Ve, =0 implies vy.|r, =0,

if for example v belongs to L?(0, oo; H?(12)). This is why the term —2vvs , will be dropped out from the
equation satisfied by n2. Let us notice that Gz , cannot be dropped out in system (2.5).

3. Definition of an analytic semigroup.

3.1. Transformation of system (2.6). Let us recall that L?(Q) = L?(Q; R?) admits the following
orthogonal decomposition

L%(Q) = V(Q) @ grad H(Q),
with

VO

(Q):{yeL2(Q)\ divy =0, y-nzOonI‘},
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and let us denote by P : L?(Q) — V2(Q) the so-called Leray or Helmholtz projector. We also introduce
the notations

Vo@) = {y eL¥(@) | divy =0}, HiQ)=H}(%R?), HXQ)=H (%R,

V3(Q) = H*(Q) N VO(Q), V§(Q) =H(Q)NV(Q), VH(Q)=(V(Q),

L2(Q) = {p e L2(Q) | [,p= o}, HO(Q) = HO(Q) N L23(Q), VI(Q)=H(Q)NVOQ) foro >0,
for 0 <0, H7(Q) = (H7(Q), (H() is the dual of H~(Q) with LZ(Q) as pivot space,

L3(0) = {n e L2 | fr,n =0}, 13(r) = {r € L2(D) | fm =0},
Ho(Ts) = H° (D) N L3(Ts) and  HO(T) = H°(I)N L3(T) for o >0,
for 0 <0, H(T)=(H°()) where (H 7(T)) is the dual of H=7(T") with L3(T") as pivot space,
for 0 <0, H(s)=(HTs)), (H () is the dual of H=7(I's) with LZ(Ts) as pivot space.
We denote by Ag = vPA the Stokes operator in V() with domain
D(Ap) = VZ(Q) N V().

It is well known that, by the extrapolation method, the Stokes operator can be extended as an unbounded
operator in (V2(Q) N V()" with domain V(). This extension will be still denoted by Ag, and we
shall see that it does not lead to confusion. The operator P may also be extended to a bounded operator
from H~1(Q) (the dual of H}(Q) with L2(Q) as pivot space) to V~1(Q) (the dual of V}(£2) with VI(Q)
as pivot space) by the formula

<Pu, (I)>V*1(Q),V(1)(Q) = <u, ¢>H*1(Q),Hé(9) for all ® € Vé(Q)

In that case P is a projector in H=1(Q) but no longer an orthogonal projector.

We only need to consider system (2.6) in the case when w = 0. Following [22], it is convenient to
rewrite the equation satisfied by v in system (2.6) (for w = 0) into two equations, one satisfied by Pv
and the other one by (I — P)v. More precisely we have

Pv' = AgPv + (—Ag)PD(n28>xr.), v(0)=v" in Q
(I = P)v(t) = (I = P)D(na(t)é2xr. ).

In this setting Ag is the Stokes operator in (VZ(Q) N V() with domain V2(Q), xr, denotes the
characteristic function of I'y, and D is defined by Dg = w, where (w, q) is the solution to the Dirichlet
problem

—vAw +Vq¢=0 and divw=0 in Q w=g on TI.
We shall also set
Dgny = D(n2 € xr,)-

This rewriting is a way to eliminate the pressure in the equation satisfied by v. However, since the
pressure p also appears in the equation satisfied by 72, we have to express p in terms of Pv and (I — P)v.
For that we can notice that (I — P)v is the gradient of the function ¢ € H!(£2) solution to the Neumann
problem
Oq(t Oq(t

Ag(t)=0 in £, % =mn(t) on T, % =0 on Ty (3.1)
We denote by N, € L(L3(T,), H?/?(Q)) the operator defined by N,no(t) = q(t). In [22] it is shown that
the pressure p appearing in the first equation in (2.6) satisfies

=T —4q,
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where ¢, is the time derivative of ¢ and 7(¢) is the solution of the other Neumann problem

Am(t)=0 in Q, 6%1(5) =vAPv(t)-n on T. (3.2)
Let us notice that APv(t) - n is well defined in H~Y/2(T) if APv(t) belongs to L?(Q). Indeed in
that case APv(t) € L*(Q) and div (APv(t)) = 0 € L*(Q2). Moreover (APV(t) - 0, 1) g-1/2(r) i/2(r)
(see [28, Chapter 1, Theorem 1.2]). Therefore if the solution to system (2.6) is such that Pv €
L?(0,00; V2(Q)), the solution 7 to the above Neumann problem belongs to L?(0,00; H!(R2)). We de-
note by Ny € L(H~Y/2(T"), H*(R2)) the operator defined by No(vAPv(t)-n) = n(t), when APv(t) -n €
H~1/2(T"). We denote by ~, the modified trace operator on T'y defined by

1
’YspzMs(prs)Zprs—ﬁ/ p foralpe H7(Q) witho>1/2.
sl JI'g

Thus we have

M (p(t)

r.) = M((m(t) — a(t))

We can now rewrite the equation satisfied by 72 in (2.6) in the form

Fs) = y’ysNoAPV(t) ‘n— ’YSNan,t(t)'

(I + pl’Yst)"h,t — w2 — 57717;” - 6772,x:r + aMsnl,wa:xw = pr’YSNOAPV(t) -n+ Msf on Z;o

LEMMA 3.1. The operator I + p1vsNs is an automorphism in L3(Ty).
Proof. The operator 5 N;, considered as an operator belonging to £L(L3(Ts)), is symmetric, positive,
and compact. Indeed if ¢ = Nyn and ¢ = N7, we have

OZ/Aq(j:/ n’Ystﬁ_/ ’Ystnﬁa
Q s s

for all n, ) € L3(T's). Thus 5N, is symmetric. Moreover

0=/Aqq=—/ |VCI|2+/ N s N1,
Q Q FS

from which we deduce that v,y is nonnegative. If

0:/ UVstU:/WQP,
T Q

s

we have g = C = 0 and g—fl =1 = 0, which proves that 4 N; is positive. Since v Ny € L(L3(T), H}(T)),
it is clear that 5Ny is a compact operator in LZ(T's). Thus I + p17vsN; is symmetric and positive and it
is an automorphism in L3(T). O

In order to write the system satisfied by (Pv,n1,72) as an evolution equation, we introduce the
unbounded operator (A, g, D(Aq ) in L3(Ts) defined by

D(Aap) = H4(FS) N HS(FS) N L(2)(FS)» Aa,pn = Pza — OMstzzza-
Let us notice that (Aa g, D(Aa)) is a selfadjoint operator in L3(I's). Since A, g is an isomorphism
from D(Aa g) to LE(Ts), it can be extended as an isomorphism from L3(T's) to (D(A4 5))" (the dual of
D(An,p) with L3(T's) as pivot space), and from HZ(I's) N LE(T) into (HZ(Ts) N L3(Ts))’. The space
H = V3 (Q) x (H§(Ls) N L§(Ty)) x L§(Ts)

will be equipped with the inner product

((Vomsm2), (W, €1, G2) )y = P (Vs W) o) + (15 ) e, + (25 C2) L2 (o),
7



with

(_Aa,ﬁ)1/2771 (_Aa,ﬁ)1/2C1 = / (5,’71,14-1,9: + O‘nl,mesz) dx.
s

(n1;C1)Hg(FS) :/

s

We define the unbounded operator (A, D(A)) in H by
D(A) =
{(Pv.mme) € VE(@) x (H' 0 HE 0 L3)(T) x (HE N IR)(T,) | Py = PDyn € V(@) N VE(Q) |,

and
I0 0 Ao 0 (=Ay)PDy
A=| o0 1 0 0 0 1 ;
0 0 (I+p17sNy)?! p1vsNo(A() -m)  Aap 04,

where Ag = 887:3' We define the unbounded operator (Ag, D(A)) in Hy = (H3(T's) N LE(Ts)) x LE(Ts) by
0 I
As = A SA , D(As) = (H4(F5) n Hg(FS) N L(Q)(FS)) x (Hg(FS) n L%(FS))~
o, s

It can be easily shown that A is an isomorphism from D(Ay) into Hy.
Now, it is clear that, for w = 0, we can rewrite system (2.6) in the form

Pv Pv Pv(0) pPv°

d

— = 0 = 0

| ™ Al m |, 71(0) no|,
Up) 2 12(0) 5

(I = P)v(t) = (I = P)D(n2(t) €2 xr.,)-

The rewriting of system (2.6) when w # 0 is done in (4.1).
ProprOSITION 3.2. The norm

(Pv,mi,m2) — [[(Pv,m1,m2) |1 + [[Ao PV + (= Ao0) PDsnz|[vo (o) + | As(n1,m2) &,

is a norm on D(A) equivalent to the norm

(Pv,m,m2) — [|Pvlive @) + Imllza@, + In2llaze.)-

Proof. For A > 0, Al — A, is an isomorphism from D(Ag) to H, (see e.g. section 3.4). Thus
(m1,m2) = |1, m2) i, + (| As (1, m2) [ 1, is & norm equivalent to (1, 72) — |[mllgar,) + 2/l gz (r,)- Since
(—Ap) is an isomorphism from V2(Q) N V{(Q) to VI (), there exist positive constants C; and Cy such
that

C4||Pv — PDgnpa|

vz (@) < [[AoPv + (=A0) PDsn2|lvo (o) < Co|| Pv — PDgnal

V()

Moreover D, € E(HS’/Q(FS),VQ(Q)) (see Lemma 3.10) and As € L(D(Ay), Hs), therefore we have

[(Pv,m1,m2) [l + Ao PV + (= Ao) PDsna2|lvo () + | As (1, m2)]
< C(||Pv|

Hs

vz@) + Imllaew,) + n2llgzr.))-
To prove the reverse inequality we write

[Pvllvz ) + Imllgae,) + [In2llmz @,
< &1 Ao(Pv = PDgna)|lvo o) + [[PDsna

vz + Imllae. + n2llgzr,)
<

|Ao(Pv — PDsna)llvo () + Imllaar.) + Clinzllmzr,)-
8
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The proof is complete. O

THEOREM 3.3. The operator (A, D(A)) is the infinitesimal generator of an analytic semigroup on
H, and the resolvent of A is compact.

To prove this theorem, we rewrite A in the form A = A; + By, with

and
0 0 0
By = 0 0 0 ,
oI+ p17sNe) T No(A() ) KA K, A,
with Ks = (I 4+ p1vsNs) ™' — L.

THEOREM 3.4. The operator (A1, D(Ay)) is the infinitesimal generator of a strongly continuous

semagroup on H. _ _
Proof. Step 1. We first show that the unbounded operator (A, D(A;)) in V=1(Q) x H,, defined by

D(A) =
{(Pv,m,ng) € VI(Q) x (H* N HZ N L2)(Ts) x (H2 N L2)(Ty) | Pv — PDyis € Vg(Q)}
A 0 (=Ag)PDq
and A, =| 0 0 I ,
0 Aup A,
is the infinitesimal generator of a strongly continuous semigroup on V=1(Q2) x H,. We endow V~1(Q)
with the norm
1/2

Vi (((-Ao)flv’V>v3(n),v-l(ﬂ>> ’

and Hy with the norm || - || g2(r,)x z2(r,)- For A > 0, we have

(A=A ), (Pym))

= —I1PVI30 (@) + (PDsti2, PV)yo ) = AIPVIS -1 () = M1, m2) 1, — dlinallzzr,)-

Thus, for A > 0 big enough, (./11 — A, D(VZ1)) is dissipative in V~1(Q) x Hy. It can also be shown that it
is maximal. Thus, for A > 0 big enough, (Kl — A, D(le)) is the infinitesimal generator of a semigroup
of contractions on V=1(Q) x Hy, and (A;, D(A;)) is the infinitesimal generator of a strongly continuous
semigroup on V~1(Q) x H,.

Step 2. Let us consider the evolution equation

Pv Pv Pv(0) PO

d -

o mo= At m |, m() | = n} : (3.3)
M2 M2 n2(0) 75

Let us recall that (As, D(A;)) is the infinitesimal generator of an analytic semigroup on H (see e.g.
[9, 29]). Let us notice that the solution (Pv,n;,7n2) to equation (3.3) can be solved by first determining
(m1,m2) and next Pv. Thus, if (Pv%,n{,nY) € V71(Q) x Hj, the solution (Pv,n1,12) to equation (3.3)
is such that 1, € H>3/2(2%) and 1y € HYY/2(25,) for all T > 0 (see e.g. [1, Chapter 3, Corollary 2.1]).
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From [22, Theorem 2.7] it follows that if (Pv°,79,79) € H then Pv € HY/2(Q7)NC([0,T]; VI(Q)), and
(Pv,n1,m2) € C([0,T]; H). Therefore the restriction of the semigroup (e**);cr+ to H is a semigroup on
H. It is easy to verify that its domain is D(A;) = D(A). O

We are going to prove the two following theorems.

THEOREM 3.5. The operator (A1, D(A1)), with D(Ay) = D(A), is the infinitesimal generator of an
analytic semigroup on H = V9(Q) x (HZ(Ts) N L3(Ty)) x L3(Ty).

THEOREM 3.6. The operator (Bo, D(A)) is Ai-bounded with relative bound zero.

The first claim in Theorem 3.3 clearly follows from Theorems 3.5 and 3.6 (see [14, Chapter 9, Corollary
2.5]). The second claim is proved in section 3.4.

3.2. Proof of Theorem 3.5. Now we are going to estimate the resolvent of A;. We have

(A — A"t = ( (M —Ag)™" 0 (M —Ag)" (=Ag)PDy) (A — A,)7? > |

0 (M — A,)!

Since (A — Ag) " (—=Ag)PDs = =AM — Ag)"'PDg + PD;, we obtain

(M —Ag)™t 0 (=AM —Ag)"'PDs+ PDy) (M — Ag)~!
(N — Ayt = ( ) .
0 (M — A,)!
From [9] (see also [29, section 2.2]), we know that there exist a € R and 7/2 < 6y < 7 such that
1 Cs
H()\I - AS) ||£(Hs) S m for all A € Sa,907 (34)

where
Sugy = {A €C|A#£a, |arg(h—a)| < 90}.
For the Stokes resolvent we have

_ C
A = Ag) ™ flve (o) < ﬁH@va(n) for all A € So.g,, (3.5)
with 7/2 < 6; < w. We can choose 6y = ¢, and a > 0. Thus if (f,©) € V(Q) x Hj, we have

f
(/\I—Al)_l ( o )

(ML = Ag) ™M = MM — Ag) ' PD, (M — A,)7'©), + PD (M — A,)7'©),
( (A — A,)"'© ) '

From (3.4) and (3.5), it follows that

I~ 4)70]l5, < (E1@lla.  [PD (M~ 4)720), v < G2E=[©]ln..
AL = Ag) "' PD (AT = Ay)7'©), [lve o) < “FELE(|O] 1, for all A € Sqg,-
By combining the previous estimates we obtain
f Co CoCpp C CppC C
(M — Ay~ < 5ilflve) + —v——11®lla, + = 1®]ln. + ——1©llx.,
© Jllvopn, P HT N—al A=l A —dl

for all A € S,.¢,, which proves the analyticity of the semigroup generated by A;.
10



3.3. Proof of Theorem 3.6. We set

0 00 0 0 0
B, = 0 0 0|, Ba=| 0 0 01,
p1v (I + p17sN) "1y No(A(-)-m)) 0 0 0 KsAap O
and
00 0
B;=1]1 00 0
0 0 O0K,A,

LEMMA 3.7. The operator (B1, D(A1)) is Ai-bounded with relative bound zero.
Proof. Let us prove that, for all € > 0, there exists C; > 0 such that

e No(Av - 0) 3, < ellvllva @) + Cellviiva @, (3.6)

for all v € V2(Q). To prove (3.6), we argue by contradiction. We assume that there exists a sequence
(Vi)r C V2(9) such that

[vsNo(Avi -n)|rzr,y =1, [[villvo@ — 0 and |vi|vz@) <M,

for some M > 0. Therefore, without loss of generality, we can assume that there exists v € V2(Q) such
that

vi =0 in V2(Q), Avi-n—0 in HY?T) and Avy,-n-—0 in H-Y/?27¢(T),
for all 0 < & < 1/2. From [7, Lemma A.5], we know that 5Ny is bounded from H~!(T) to L3(T's). Thus
YsNo(Avg -n) — 0 in Lg(I‘S),
which is in contradiction with
|75 No(Avy - n)|[2p,) = 1.

Thus (3.6) is proved. The lemma is a direct consequence of (3.6), of Lemma 3.1 and Proposition 3.2. O
LEMMA 3.8. There exists 0 < 0o < 1 such that By is bounded from D((—A;)%) into H.
Proof. Let (¢r)k>1 be an orthonormal basis in LZ(T's) constituted of eigenvectors of the operator
p17sIN and let Ay > 0 be the eigenvalue associated with ¢5. We have

o0

(I+p1ysNo) f = kZ(l + M) fie D
=
Thus
(I + praNa) ™ = ki; L,
and
Kof =(I=(I+pysNo) N f = i : i’;k Fr Ok
=

Since the operator A, g is an isomorphism from H*(I's) N HZ(I's) N L3(Ts) into L3(Ts) and from LZ(Ts)
into (H*(T's)NHZ(Ts)NLE(Ts))’, by interpolation it is also continuous from H*=¢(T'y)N HZ(Ts) N LE(Ts)
into H™¢([) for all 0 <e < 1.
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Denoting by (Aa,gf)x the coefficient of A, gf in the basis (¢)r>1, we have

)\2
||KsAa,ﬁf||ig(ps) = Zl?;l W(Aaﬂf)i < 220:1 )‘%(Aoe,ﬁf)i = ”pl'}/stAoz,ﬁf”ig(rs)
< OEHAa,Bf”%-rE(FS) < CEHf”%Mfs(rs)’

for all f € H*°(T's) N H3(T's) N L3(Ts) and all 0 < e < 1/2. Indeed 75N is continuous from H~¢(Ts)
into LZ(T) if 0 < e < 1/2 (see e.g. [7, Lemma A.5]). Since

(H*=(T's\) N H3(Is) N L§(Ty)) D D((—A;) 4074y,

for all 0 <&’ < e < 1/2, the proof is complete. O
LEMMA 3.9. There exists 0 < 03 < 1 such that By is bounded from D((—A;)%) into H.
Proof. The proof is very similar to that of the previous Lemma and is left to the reader. O
Theorem 3.6 is a direct consequence of Lemmas 3.7, 3.8 and 3.9.

3.4. Resolvent of A. In this section we want to show that the resolvent of A is compact. For that
we study the stationary problem

v —divo(v,p) =f and divv=0 1inQ,

v=1€y on 'y, v=0 on Ty,

A —ne =g in Ty, (3.7)
A2 — B ex — 002,20 + M1 goze = Ms(p1p+h) in Ty,

m=0 and m,=0 on{0,L},

where f € V2(Q), g € H3(I's) N L3(T), h € L(T), A € R and X > 0. This system is equivalent to

Av —divo(v,p)=f and divv=0 1inQ,

v=(Ap —g)é on I'y, v=0 on Iy,

A —nz =g inTy, (3.8)
N2y — B gz — AN 2o + OMsm gaze = Ms(p1p + h + Ag — 0Ages) in Ts,

m=0 and m,=0 on {0,L}.

We denote by L the unbounded operator in L3(T's) with domain H*(T's) N HZ(T's) N LE(Ts) defined by
LT] == )\27’ - anm - (;Anrz + OéMs"?xzzz-

The operator L is also an isomorphism from H*(T's) N HZ(T's) N L3(Ts) into L3(Ts) and from HZ(Ts) N
L3(T) into (H3(Ts) N L3(T's))’. Thus, we can rewrite the system (3.8) in the form
A —divo(v,p) =f and divv=0 inQ,
v = (AL *M(p17ysp+ h+ Ag — Agzz) — g)é2 on Iy, v =0 on Iy,
A —mp =g inTy, (3.9)
N1 = Bize — 0N g + AM 1 gawe = prysp + h+Ag — 0Ages in T,
m=0 and n,=0 on {O,L}.

We consider the system

Av —dive(v,p)=f and divv=0 1inQ,
(3.10)
v =M1 L7 (ysp)és + fé on I'y, v=0 on Iy,

12



where f € HZ(I's) N L3(T) stands for ALY M (h + \g — 0Agzz) — g. We set

E:{WEVl(Q)|V:O0n1"07 vi=0onTIy, vo

r, € H3(Dy) N L3(T,) }.
The space E, equipped with the norm

) )1/2
L3ry)

is a Hilbert space because L'/? is an isomorphism from HZ(T',) N L3(T's) onto LZ(T).
Multiplying the first equation in (3.10) by w € E, after integration we obtain

/()\V'W+VVV:VW)+/ pr:/fw.
Q r, Q

IVlie = (IIvI3s 0 + I1L2vs

r,

Using
Ap1ysp = Lva — L in (Hg(Ts) N L3(Ts))',

we obtain

1 1
/ (AW -w+vVv:Vw) + —/ LY ?vy L'V 2wy = / fw+ 7-/ LM2f LV 2wy,
Q Ap1 Jr, Q Ap1

s

Next, we set

1
a(v,w) = / (AWv-w+Vv:Vw) + )\—/ LY vy LY 2wy
Q P1

s

and

Uw)= [ fw+ L/ LY2f L1 2w,
Q Ap1 I,

Thus system (3.10) is equivalent to
a(v,w) ={(w) forall wekE,
Ap1vsp = Lvo — Lf in (H3(Ts) N L3(Ty))".
With the Lax-Milgram theorem, we can prove that the variational problem
Find v € E such that a(v,w)=4£(w) forallweE,

has a unique solution. Indeed, for all H3(T's) N L3(T,), we have

[ r = [ O3 + Bl + alnael?) = ol

s

for some p > 0.
The solution v € E to the above variational problem obeys

Ivlle < C(Ifllvg @ + ILY2 fllz2r,)-

Since f = ALY M,(h + A\g — 0A\gzz) — g, we have

IVlle < CIEllvg ) + IL7 2Rl sz, + 1LY 29l 2z r.) < CUEllvg @) + I1Blzw.) + 9l mz

Therefore

[valr, [lmzr.) < CUIEllvy @) + 1Az, + l9llm2r.))-
13

(3.11)

(3.12)

)



By taking w € V() in the variational problem, we prove that v € E is the unique solution to the
problem

Find v € E such that /()\v-w—i—Vv:VW):/fw for all w € V§(Q),
Q Q

v=0 on T, v =va|r.é2 on T,

Since v|p, = 0, vi|r, = 0, and vo|r, € HZ([s) N L3(T), due to Lemma 3.10 below, it follows that
v € V3(Q) NE, and that

vllve < C(|If]

vo) + l9llmza.) + [1hllczr,))-
From the equation satisfied by v we also deduce that p € H!(£2), and

[Pl ) < CUIEllvo @) + lgllazr.) + 1Bl Lz@,))-

Finally, with the equation satisfied by 7; and 72 in (3.9), we have shown that system (3.7) admits a
unique solution (v, p,n1,72) € V() x H'(Q) x (H*(T's) N H§ (L) N LE(Ts)) x (H§(Ts) N LE(Ts)) and

[VIlvei) + Pl @) + [Imll e,y + 20z, < CUElvo@) + 9l 2w, + 1Rz r.))-

Thus the resolvent of A is compact in H.
LEMMA 3.10. Iff € VO(Q), g € Hy*(Ts) NL2(T,) (with HY'*(Ty) = [HY(Ts), HZ(Ts)]1/2), then the
solution v to

A —dive(v,p)=f and divv=0 inQ, v=0 on Ty, v=gé on T
belongs to V2(Q) and

Vlive@) < CIElve @) + 9l oz r,)-

Proof. With a localization argument and regularity results in [11], we can show that v| 1)x(0,1—¢)
belongs to V2((0, L) x (0,1 —¢)) and that V| 1—¢)x(0,1) belongs to VZ((e, L —¢€) x (0,1)) for all 0 < € <
min(1, L). Thus the only difficulty is at the corners (0,1) and (L, 1). Let us set

- ns o fem i, sea-{ 300§ 0,

(z) = { glx) if xe€(0,L),

= { f(z,2) if x€(0,L)
—g(—2) if ze(-L,0).

@)=\ _t(o.—2) it ve(-L0) U

It can be shown that g € Hg/z(f‘s), and that v is solution to

AW —dive(v,p)=f and divv=0 1in €,

v=0 on {-L}x(0,1)U{L}x (0,1)U(—L,L)x {0}, v=géa on I,
Next as previously we can show that V|1 r—c)x(0,1) belongs to V2((—=L +¢,L —¢) x (0,1)) for all
0 < € < L. Thus v|(,—¢)x(0,1) belongs to V2((0,L —€) x (0,1)) for all 0 < ¢ < L. We can proceed

similarly with the other corner.
0

3.5. Adjoint of (A, D(A)). THEOREM 3.11. The adjoint of (A, D(A)) in H is defined by D(A*) =
D(A) and

Ao 0 (—Ag)PD, I 0 0
A = 0 0 —1I 0 I 0
pll/’YSNO(A(') . 1'1) _Aa,ﬁ 6As 0 0 (I + pl’Yst)_l
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Proof. Let f belong to V2(€2), g belong to HZ(I's) N L3(Ts), and h belong to L3(Ts). Let (v, p,m1,72)
be the solution to (3.7). Let © belong to V9 (£2), ¢ belong to H3(I's) N L3(Ts), & belong to L3(T's) and

let (®,, k1, ko) be the solution to system
A® —divo(®,0)=© and div® =0 inQ,

@Zkggg on FS, ® =0 on FQ,

Aer + ko =( inTy,
Akg + ﬁkl,acx - 5k2,xz - aMskl,xxmc = Ms(Pﬂ/)) +& in Ty,

ki =0 and k;,=0 on {O,L}.

(3.13)

With integration by parts we have

/Qf@:/Q(Av—diva(v,p))@
:/Qv()\@—divo(‘1>,1/)))—/r U(v,p)ﬂ-‘I’—F/F o (B, )0 - w

s s

~ [ @+/ p‘Pz—/ s
/ @+/ pkz—/wnz,

Ang)i = / (\ks + ) (— Ao )

I's

5
J\

(M=Aa,8)k1m + k2 (—Aa,5)m)

s

((_ﬁkl,zw + akl,$$$7;)("72 + g) + k2(_ﬁ771,a:x + O”]l,wa::m:))

s

I
—

and
/ (5 + le) e = / ()\]{,‘2 + ﬁkl,xz - 5k2,zm - akl,zzxm) 2
I

s

I

(AkZ 2 + (ﬁkl,xm’ - 5k2,zz - akl,zzzx) 772)

(kZ (ﬂnl,rz + 5772,mm - anl,zmxa: + plp + h) + (ﬂkl,xm - 5k2,zm - akl,xzmm) 772)

s

(kQ(ﬂnl,zz - anl,zzzm + plp + h) + (ﬂkl,zm - akl,zzmr) 772)

By combining the three identities, we obtain

pl/f-<I>+/ g(—Aaﬁ)kﬁ/ ko h
Q Ty

Ts

=P1/V'@+,01/ pkz—m/ (R
r, r,

/ C a, 771 +/ ((ﬁkl,zx - akl,zzxm)T]Q - kQ(_ﬁnl,zx + anl,zzmm))
T

s

+/ (5 + ,011/)) 72 + / (kQ(_ﬂnl,mz + QN cece — plp) - (ﬁkl,m’z - akl,xmzz) 772)

FS

s
=p1 | v O+ C(—Aa,ﬁ)ﬂlJr/ E M.
Q r, r,
15



To prove the theorem, we have to interpret the identity

pl/f~<1>+/ g(—Aa,ﬁ>k1+/ k2h=p1/v~c->+/ C(—Aa,ﬁ)m+/ . (3.14)
Q T Iy Q ' I's

s

For that we introduce the unbounded operator (Af, D(A*)) in H defined by D(A*) = D(A) and

0 0 Ay 0 (—Ao)PDy
A= o 1 0 0 0 _I
0 0 (I+p1ysNs)~! YsNo(p1vA() -n)  —Aaps 0As

We first notice that (v, p,n1,72) is the solution to (3.7) if and only if it satisfies

Pv f
M-A) m |[= g ;. (I=P)v=(I—P)Ds(n).
12 I+ Pl'VsNS)ilh

Similarly, we can show that (®,,k;, k2) is the solution to system (3.13) if and only if

P® ®
M—-AY| k| = 9 . (I=P)®= (I~ P)Ds(ks).
ko (I + pl'Yst)ilf

Thus, identity (3.14) is equivalent to

(AT = A)(Pv,m1,m2), (®, k1, (I + PWst)k2))H

(3.15)
- (()‘I - Aﬁ)(Pq)v k1, kQ)’ (V7 M, (I + pl’Yst)UQ))H

for all (Pv,n1,1m2) € D(A) and all (P®, ki, ks) € D(A). Let us denote by H the space H equipped with
the inner product

((VO’ 77?5 773)7 (WO’ C% Cg))ﬁ =p1 (Vov WO)V%(Q) + (77?7 <?)Hg(ps) + (7787 (I + pl’YsNS)Cg)Lg(F )

s

Thus identity (3.15) means that (A?, D(A)) is the adjoint of (A, D(A)) in H. We can easily deduce the
theorem from this result. O

4. Regularity of solutions to the linearized system.

4.1. Studying system (2.6). We introduce the operator (A, D(A,)) defined by D(A,) = D(A)
and

wl 0 0
A, = A+ 0 wl 0
0 0 w({+p1ysNg)t

From calculations in section 3.1, it follows that, if f € L?*(0,00; L3(Ts)), system (2.6) can be rewritten in
the following equivalent form:

Pv Pv Pv(0) pPvY

d 0

T m =A, m + Bf, m(0) = M ) (41)
2 2 12(0) 7)8

(I = P)v(t) = (I = P)D(n2(t)é2 xr,),
16



where B € L(L3(Ts), H) is defined by
0
Bf = 0
<I+p175N5)_1f

We have to study solutions to system (4.1) when (Pv°,n{,79) € [D(A),H]; /. From the definition of
D(A) and H, we can deduce that

[D(A), H]1/2 =

{(Pv.m,m2) € VL(Q) x (H® 0 HE 0 L3)(D) x (H N IR)(T,) | Pv+ PDyng € V() }.

Equipped with the norm

1/
(Pv,mme) — (1@ + I o,y + el e, )

[D(A), H]; /5 is a Hilbert space.

If (Pv° n9,79) belongs to H no compatibility condition, between Pv® and 7, is needed to define weak
solutions of the evolution equation (4.1). But the mapping ¢ — (I — P)v(t) which satisfies the second
equation in (4.1) will be continuous only if (I — P)v® and nJ satisfy (I — P)v®-n = 19 xr,. Notice
that if v0 € VO(Q), then div (I — P)v® = 0 and (I — P)v° - n is well defined in H~'/2(T"). We define a
space of initial conditions, satisfying the compatibility condition needed for the continuity of the mapping
t— (I — P)v(t), as follows

Hee = {(Voan?vng) € VO(Q) x H, | v?.n= 77(2) XFS}'
Recall that Hy = (H2(T's) N L3(Ts)) x L3(T') (see section 3.2). We equip H,. with the inner product
((V07 77% 778)7 (WOa C?7 gg))HN =P1 (VOJ WO)Lz(Q) + (77?7 C?)Hg(l—‘b) + (7737 CQO)Lg(FS)'

TueoREM 4.1. (i) If (Pv°n?,n9) € [D(A),H]1/2, (v°,n?,1n9) € He., and f € L*(0,T; L§(Ts)),
then system (4.1) admits a unique strict solution satisfying

HPVHHQJ(QT) + ||771||H4v2(Z§) + H772HH2’1(ZST) < C(H(PVO,???,773)||[D(A),H]1/2 + ||f||L2(O,T;L(2,(Fs)))7

and
(I = P)VllL20.1:m2 () + (T = P)VI g o.rsmr2()) < CUPYEn0, ) lipeay s, o + 122 0,m02r.))-

(ii) If (v°,n9,7n9) € Hee and if f € L*(0,T; L3(Ts)), then system (4.1) admits a unique weak solution (in
the sense of semigroup theory) satisfying

1PVIlw v, v-r@) + Imllaz s + 12l ez @)y < CUEPYn ) e + 1 z20.r220.))

and

(T = Pl 20, rm572 () < CUPYmds ) lex + 1f 120, m:22cr,))-

(Here we use the terminology ’strict solution’ and "weak solution’ in the sense of semigroup theory for the
evolution equation satisfied by (Pv,n1,m2) and not for the equation satisfied by (I — P)v.)

Proof. (i) If (Pv°,7?,79) € [D(A),H]y 5 and f € L*(0,T; L§(I's)), the estimate of (Pv,71,72) follows
from [1, Chapter 1, Theorem 3.1]. The estimate of (I — P)v in L?(0,T; H?(Q)) follows from Lemma 3.10
and from the estimate of 7y in H>'(X%). The estimate of (I — P)v in H'(0,T;HY?(Q)) follows from
the property of the operator D.
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(i) If (Pv%,n?,nY) € H and f € L?(0,T; L3(Ty)), we know that system (4.1) admits a unique weak
solution in L2(0,T; H) satisfying

1PV, m1,m2) oy < CUNPVY,nY m)llex + (1 Fll 20, :22(0.))-

With this estimate and the equation 7, ; = 12 + wm, we obtain

Il e 0,2y < C([(PV°,nf,n3)|la + 1fll 20,7520, )))-

To prove the other estimates, we have to write an energy estimate for strict solutions to system (2.6).
We substitute 72 by 11+ —wn; in the equation of 7:

771,tt - 2‘4)771,t + W27]1 - Bnl,mx - 5n1,tmr + 5W771,rx + anl,mrzz = p1p + f

We multiply this equation by 71 — wn and by piv the equation satisfied by v. After integration and
by adding the two identities, we obtain

/|v I2+Vm/ v+ /Imt—wm —w// Ime — wml? + /|m,x<t>2
Iy
2, @ 2 2 i
"y / / / e — ol / e (B — aw / / eal? + 0 / / mp
o Jr, o Jr. r, o Jr.
p1 16 o 1
[l [ [ ey [ gt [ son-om
0 T, T, Iy

We also have

t
e
0 Ty
t t
=w/ m(t)nl,t(t)—w/ n9n8—w// |m,t|2—w/ Im(t)|2+w/ \775’|2+w3// i ?
T Ty 0 T Ty Ty 0 I
t t
wd wd
w80 [ [ il [ imaof =5 [P -d [l
0 Iy Iy I's 0 Ty
t t
+aw// Im,m\wa// fm.
o Jr, 0 JT,

From these identities and the previous estimates we deduce that

V[l 22 0.0 (@) + 12l 20,00 )y < CUVE nds )l + 1l 2022 r.))s

not only for strict solutions but also for weak solutions. Next we obtain

(I = PVl p2(0,mm3/200)) < Celln2llrzo,7:m1(r.)),

from the properties of the operator D (see e.g. [22]. We can also adapt the proof of Lemma 3.10). Thus
we have

|Pv[z20,:vi () + (I = P)VlL200mm3/2(0)) < U, nt ) e, + 1 fll 20,7520, )))-
Finally using that

d d

< - [ pPv.o——v | vv:vae .
dt dt/ﬂ v Y Q v +w/ﬂv 7
for all ® € V}(€2), we deduce that

1PvIlz0mv-1(0)) < ClIvILzomvi) < CUCC, nd, ) lm. + 11l 20,722 0)):

and the proof is complete. O
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4.2. Another nonhomogeneous system (2.6). We now consider the system
—divo(v,p) —wv=F and divv=0 in Qu,
v=1péy onXi, v=0 onX%, v(0)=v"inQ,

My =12 +wn  on X3,

(4.2)
N2t — w2 = BN ae — 02,00 + M0 oz = Ms(p1p + f) on X5,
m=0 and m,=0 on {O,L} x (0, 00),
m(0) =n and ny(0) =ny inT,
where F belongs to L%(0, 00; L2(£2)). We shall need to write this system in the form:
Pv Pv Pv(0) PvO
d
4 — A, Bf +CF, 0 |= P
| ™ Ao | m | +Bf+ 1(0) 77(1) (4.3)
2 2 12(0) "2
(I = P)v(t) = (I = P)D(n2(t)é xr.),

where C € L(L?(Q), H) as to be determined. For that we decompose F' = PF + (I — P)F, and we denote
by mr € L?(0,00; H*(2)) the function defined by Vrp = (I — P)F. We have

p=T—q +TF,
where ¢ is the solution to (3.1), 7 is the solution to (3.2), and 7p = 7 + o with

m € HY)(Q), Am =divFinQ and Am=0inQ, %:(F—le)~nonf.

If we set m; = —(—=Ap)~1(divF), we have 13 = N((F + V(=Ap)~(divF)) - n). Thus the term Mp in
the equation satisfied by 72 in system (4.2) is

Mp = vysNoAPV(t) - 11 — s Nena 1 (t) + ¥ N((F + V(—=Ap)~'(divF)) - n).
Therefore
PF
CF = 0
p1 (I + p17sNs) (v N((F + V(=Ap)~!(divF)) - n))

5. Approximate controllability and stabilizability. In this section, we study the approximate
controllability of system coupling the Stokes equation with the beam equation. Next we prove that system
(2.6) is exponentially stabilizable.

Recall that the linearized system is

—divo(v,p) =0 and divv=0 in Qr,
v=139é onX5, v=0 on¥% v(0)=v"inQ,
mt =712,
(5.1)
et — ﬁnl,xm’ - 5772,:61 + M zaax = P1P + f on 2%7
m=0 and m,=0 on {O7L} x (0,7),
m(0) =nt and n2(0) =73 inT,.

THEOREM 5.1. System (5.1) is approzimately controllable, in time T > 0, in the space He. by
controls f belonging to L*(0,T; L3(Ts)).
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Proof. To prove the above approximate controllability result in H.. we have to show that if
(v%,m0,m) = (0,0,0) then the reachable set R(T) at time T, when the control f describes L?(0,T;
L3(Ty)), is dense in H,.. To prove that result we assume that (®7, k' k1) € R(T)*. We want to show
that (@7, k], k3) = 0.

We introduce the adjoint system
—®;, —dive(®,¢)=0 and div® =0 inQr,
D =kyey on¥5, ®=0 onX), &(T)=&T inQ,
_kl,t = _kQa
_k2,t + ﬁkl,za: - 6k2,xw - akl,mmwz = le on 2%7
k=0 and k1, =0 on {O,L} x (0, 00),
K(T)=kI and k(T)=kI inT,.

With an integration by parts we obtain

T
o /Q v(T) &7 + / (= Aap) P00 (T) (— A p)2KT + / o (T) kY = / / s

s

If (®T, kT kT) € R(T)*, we deduce that

[

for all f € L?(0,T; L(Ts)), that is k2 = 0. Thus we must show that if ko = 0 and if ® is solution to

—®, —dive(®,¢) =0, div®=0 inQp,

(5.3)
®=0 onYy, ®(T)=oTinQ,

then (®7,k{, k1) = 0.
By taking the time derivative in the equation

kQ,t - ﬁkl,mw + 5k2,za: - aMskl,zza::r = _lesw

we deduce that ¢;|s, = C(¢). Thus using an expansion of the solution ® to equation (5.3) in terms of
the eigenfunctions of the Stokes operator, as in Osses-Puel [18], the approximate controllability problem
reduces to show that if

—VvAvV+Vp=pv, divv=0 inQ,
v=0 onI'" and p=C onTy,

with © € R, then v = 0. Thus we can use reults from [18, 19] to complete the proof. O
THEOREM 5.2. For all w > 0, and all (v°,n0,19) € H,., there exists f € L*(0,00; L3(T's)) such that
the solution to system (2.6) obeys

(v, m1,m2) [ 22 (0,00;H..) < 00

Proof. Without loss of generality, we can choose w in the resolvent set of A. Due to Theorem 3.5,
we know that the spectrum of —A is only a pointwise spectrum constituted of a countable number of
distinct eigenvalues, that we can order as follows

§R)\1Z%)\QZ"'Z%)\N>—(U>%)\N+1Z---.

Moreover the generalized eigenspace of each eigenvalue is of finite dimension (see [14]). Let us denote
by G();) the real generalized eigenspace associated to A; if A; € R and to the pair (\;, \;) if S\; # 0,
20



and let us set H, = @f\il G(N\i) and Hy = @2 1 G(Xi). If E();) denotes the complex generalized
eigenspace associated to \; and if (e;(\i))1<j<m(n,) is @ basis of E();), then G();) is nothing else than
the space generated by the family {Re;();), Se;(N\;) | 1 < j < m(X;)}. Let us observe that H,, is the
unstable subspace of system (2.6) while H; is the stable space. Let us denote by P,, the projection onto
the finite-dimensional unstable subspace H,, (parallel to the stable subspace Hy). If we project system
(5.1) on H,, we obtain

Pv Pv Pv(0) PO

d

apw T :APU.; m +Pwa7 Pw 771(0) :Pw 77? . (54)
2 2 12(0) m

Due to Theorem 5.1, system (5.1) is approximately controllable in time 7" > 0. Thus the projected
system (5.4) is also approximately controllable. Since it is of finite dimension, it is also controllable.
Let fo € L*(0,T;L3(T's)) be a control such that P,(Pv,nm,n2)(T) = (0,0,0), and still denote by fo
its extension by zero to (T,00). Now, we notice that P,(Pv,n1,72) is the solution of system (5.4)
corresponding to f = fy if and only if P, (PV,#1,72) = ' P, (Pv,n1,72) is the solution of system

Pv Pv Pv(0) PO

d

&Pw m = Aw Pw m +Pw8fv Pw 7]1(0) = Pw TI? ) (55)
2 2 12(0) 75

corresponding to the control f = e*!fy. Thus system (5.5) is stabilizable. System (5.5) is the projection
of system (2.6) onto its unstable subspace. Due to [30, 17], system (2.6) is stabilizable by a control f
belonging in L?(0,00; L3(T's)), if and only if its projection onto its finite dimensional unstable subspace
is stabilizable. The proof is complete. O

6. Feedback stabilization of system (2.6). In this section, we study the feedback stabilization of
system (2.6). There are several ways to do that. One way consists in studying the infinite time horizon
control problem

( ﬁvo,ng,ng) inf {I(v,nl,ng,f) | (v,m1,1m2, f) satisfies (2.6), f € LQ(O,OO;L(Q)(FS))},
where

I(Va77177727

f)
:ﬂ/m/ |v\2dxdzdt+1/oo I @)1 dt+1/m/ In |2dxdt+1/°°|f(t)\2 at
2 Jo Jo 2/, 1 HZ(T,) 2Jo Jr 2 2 Jo L2(Ds) &5

and (see section 3)

e = | 1=An)

From Theorem 5.2 we know that system (2.6) is stabilizable in H... Thanks to this stabilizability result,
and following the approach in [23], the next theorem can be proved.

THEOREM 6.1. For all (v, n?,79) € He., Problem ( ((J)?vo,n?m;’) admits a unique solution (Vo o no,
1,30 50 m2 s 12,30 70 Qs fvo,n&’mg)' There exists 11 € L(H,.), obeying II = IT* > 0, such that the optimal cost
is given by

inf (Pg", )=

0 0 0
sVE,N1 M2

1
i(n(vovn?7ng)’(Voan?ang)>H . (61)

Theorem 6.1 will be proved in section 8.1.
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The operator I € L(H..), which defines the value function of (P§%0 0 o) through formula (6.1), i
? 212

obtained as the limit of the operator II(T) € L(H,..) when T tends to infinity, where II(T") € L(H CC)
the operator defining the value function of the corresponding finite time horizon control problem

(Pg:vom?mg) inf {I,OT(V7 n, 12, f) | (V7 n, 12, f) satisfies (26)? f € Lz(oa Ta Lg(rs))}7
where

IO v n1a7727

T T
1
//|v|2d:cdzdt+ /Ollm()HHzF)dH //|n2|2dzdt+ /O|f(t)\ig(rs)dt.

We are going to see in section 8.1 that the solution (VV",n‘f,nSv 190 00 19 2,90 100 19 » va,ng,ng) of problem

( govo 0 0) obeys the feedback law

fvo,n‘f,ng (t) = —II3 (Vvo,ng’mg (t)» nl,vU,n?,ng (t)a 772,v0,n‘1],7]g (t)) y

where 113 € £(H,., L3(T')) is the third component of the mapping II:

I, ITy; ILip IIis
II = II, = II5; IIyo Ilos S E(HCC).
115 IM3; I3z 133

We would like to find an equation characterizing the operator II. For that the most natural way is to
follow [2] or [15].

The classical approach to find a feedback control law, as developed in [2] or in [15], consists in
considering the evolution equation (4.1) rather than the system (2.6). In that case (I — P)v must be
considered as an auxiliary variable and must be removed from the control problem. For that we set

~ p e8] 1 (e’
Py )= [ [ 1P dsdzar 5 [ Im(®lgr, e
0 Q 0
L I D*(I — P)D)Y?n|? dad L 2 d
+5 o) |(I + p1D%( )Ds)™ =na| wdt + 5 ; 1f Oz, dt

We can notice that I(Pv,n1,m2, f) = I(v,n1,m2, f) if (v,n1,72, f) obeys (4.1). We consider the problem

( g,opvo,ngmg) lnf{ (PV 771’7727f) | (Va771ﬂ727f) satisfies (41)3 f € Lz(ovoong(FG))}

As in [2] or in [15], the following theorem can be proved

THEOREM 6.2. For all (Pv°,n9,79) € H, problem (Q° 0 PVOm0, 0) admits a unique solution (Vpyo no o,

M1,Pv0 10 0 112, Pv0 0 9 fPvo o mo). There exists Il € L(H), obeymg Il = II* > 0, such that the optimal
cost is given by

o 1/~
inf(QFpyo 40 n9) = Q(H(onm?mg), (onm?,ng))ﬁ

Moreover, II is the solution to the algebraic Riccati equation

MMef(H), M=I*>0 A, + A-IBB I+ C*C =0, (6.2)
with
I 0 0 I 0 0
C= 0 I 0 and C*C = 0 I 0
0 0 (I+piD;(I—P)Dy)"/? 0 0 (I+pDi(I—P)Dy)
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The operator B* € L(H, LZ(T;)) is the adjoint of B € L(LZ(Ts),H), and one can easily verify that
B*(£,9,h)" = (0,0, (I + p17sNs) " h)".

The optimal control of problem (Q obeys the feedback law

o )
0,PvO,n?,n9

f = —B*ﬁ(PV(t),T]l(t),T]Q(t)) = —(I'f'pﬂst)_lﬁi’)(PV(t)aUl(t)an2(t))~

oo

(Here I3 is the third component of the mapping IL.) Since (Qp o 0 770)
’ >M15M2

(o]
problem (P5%. 0 0 ,nS)

(I + prysNs) M5 (P (t), m(t), n2(t)) = s (v (L), m (£), m2(t)), (6.3)

is an equivalent formulation of

, we have

along the optimal trajectory. This does not give any precise relationship between II and II.

If we compare both approaches we can say that the drawback of problem (ngvo,n?,ng) is that the
operator II is not characterized by an algebraic Riccati equation. But from the numerical viewpoint,
it can be more interesting to work with a system of partial differential equations rather than with a
system in the form (4.1) in which the numerical approximation of .4* may be more tricky. The numerical
approximation of the adjoint system may be also useful to design reduced order models (see e.g. [27]).
This is why it is interesting to determine a feedback control law by solving an optimal control problem
for which the adjoint system may be easily interpreted as a system of partial differential equations.

To address this issue we introduce a third problem leading to another feedback law that we can link
with the one expressed with II. We consider the problem

(RS?PVO»W?JIS) inf{f(PVﬂ?lJ]%f) | (PV,7717’I72,f) satisfies (41)7 f € L2(07OO7L(2)(FS))}?

where

N 1 1 (> 1 1
I(Pv,m,m2, f) = 5/ |Pv|? + 5/ [ 5/ (T + prysNo)ml* + 5 [ IfI*.

Observe that

~

1 [ 1
fPvomm ) =5 [ IO me)Gd+ g [ 1P

Problem (’RSOPVO 0 no) will be studied in section 8.2. The following analogue of Theorem 6.2 can be
’ 11572

proved, still with [2] or [15].

THEOREM 6.3. For all (Pv°,n%,n9) € H, problem (RS?on,n‘f,ng)

(PVPyo 10 50 M1, Pvo 0 0 M2, Pv0 0 59 fPvo o mo) . There exists Il € £(H), obeying Il = II* > 0, such
that the optimal cost is given by

admits a unique solution

. 1/
lnf(RO,on,n?,ng) = §(H(PV0777(1)7778)’ (PVOan?aUS))ﬁ

Moreover, I is the solution to the algebraic Riccati equation
MefH), O=0">0, A, +AI-TBBI+TI=0,

where (AL, D(AY)) is the adjoint of (Aw, D(AL)) in H, and B* € L(H, L3(Ty)) is the adjoint of B €

L(LG(Ts), H).
One can verify that D(A%) = D(A,) = D(A) and

wl 0 0
AL =L 4| 0 wI 0

0 0 w({l+p1ysNs)™t
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Moreover
BH(f,g,h)" = (0,0,h).

We are able to prove the following relationship between IT and .
THEOREM 6.4. The operator 11 € L(H..) can be expressed in terms of

I, My, I, I
IT = ﬁz = ﬁQl ﬁzz ﬁ23 € L(H)
I, M, Tlsp Tlss

as follows

P (V0,8 n8) = T (PvO,n0,m3),  TIa(vO,n0,nd) = Tha(PVO, 10, 19),
H3(V0777(1J777(2)) = ﬁ3(PV0’n?vn8)v (I - P)Hl(VO»ﬂ?»ng) = (I_ P)Dsﬁ3(PV07"7?a778)7
for all (v°,n{,nY) € He,.

The main interest of problem (R5% o 20 770) is that its optimality system is the same one as for
» IR DY
problem (ngvo,n?,nﬁ (see section 8.2).

7. Studying problem (PI

0,v0,n‘f,n3)‘ THEOREM 7.1.  For all (v°,n9,n)) € H.., Problem

admits a unique solution (v, 71,72, f) and the optimal control is

(Py,

O,Vf’,n?mg)

f=—ks,
where (®,ky, ka) is the solution of the following adjoint system
—®;, —dive(®,9y) —w®=v and div®=0 in Qr,
b =rlkyehbonXi, ®=00nxy), ®T)=0in,
—k1t = —ko +wki + 11,

—k2,t — wha + Bk1,z0 — ka0 — K1 prge = P13+ 172 on T, =
ky=0 and k;,=0on {O,L} x (0, 00),
E1(T)=0 and ko(T)=01inT,.
Conversely, the system
vi—dive(v,p) —wv=0 and divv=0 in Qr,
v=1péron¥s v=0on3X% v(0)=v"inQ,
Ni,e = N2 + wn,
N2t — W2 = BN1zz — 02,00 + AN gaze = p1p — k2 on X7,
m=0 and 7, =0o0n {O,L} x (0, 00),
m(0) =ni and n2(0) =3 inT, 72

—®;, —divo(®,¢) —w®=v and div®=0 in Qr,

S =kyeoonXy, ®=00n%% @T)=0inQ,

—k1t = —ko + wki + 1,

—kot — wko + Bk1 e — 0k2 20 — 0Kl gzaa = P19 + 12 o0 X7,
k=0 and ki, =0o0n {O,L} x (0, 00),

ki(T)=0 and ko(T)=01inT}y
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admits a unique solution (v,p,n1,m2, ®, 0, k1, ks) and the optimal solution to (ngo 0 770) 18
DAARYERUDY
[=—ka.

The operator II(T) € L(H,..) defined by
I(T) (v, 7}, m3) = (2(0), k1(0)), k2(0)) ,

is linear and continuous in H., it is symmetric and semidefinite positive, and the optimal cost is given

by

1
inf (Pg yo o 49) = 5 (M), 0lsmg), (V0,0 m3)) g

Proof. The existence of a unique optimal control can be proved in a classical way.

Let us establish the first order optimality conditions for (P} , ! o). Let us denote by (v(f),p(f )
3 5T s

. (f),n2(f)) the solution of (2.6) corresponding to f and let us set J(f) = IT (Vv(f),n(f),n2(f), f). We

have
g—pl/ /V wdacdzdt—i—/ / Anp) nlcldmdt—i—/ / ngggdxdt—i—/ / fgdzdt,

where (w, g, (1, (2) is the solution to
w; —divo(w,q) —ww =0 and divw=0 in Qr,
w=2_08 on¥s w=0 onXl, w(0)=0in,
Crte = G2 + w(y,
Co,t — wC2 — Bl za — 0C2,00 + A1 paws = P14+ g ON LT,
¢i=0 and (=0 on {O,L} x (0,7,
G(0)=0 and ((0)=0 inT,.

Let us notice that

T T
/ / (7AO¢,[3)1/2771 (714(1,5)1/2(1 dxdt = / / (5771,.75(1,3: + O‘nl,:cacCLxx) dxdt
0 JIg 0 JIg

:/0 {(=Aap)m, Q) ronLar.)y B2 (ronLar.) 4t

T
=/O (1, (—Aa,8)C1) H2(0)NL2(T.), (H2 (DAL (T.)) dE

for all 7; and (; belonging to HZ(T's) N LE(Ts). Actually the writing fo fF Aq ) G dzdt is an abuse
of notation which must be understood in the above sense. In what follows, we shall do this type of abuse
below in order to simplify the writing.

Let (®,1), k1, ka) be the solution to the adjoint system (7.1) corresponding to (v(f), p(f), m(f),n2(f))
= (v,p,m,n2). We have

0= /T(wt —divo(w,q) —ww) ®

E s
T T

:/QTW(—(I)t—diva(Q,w)—w@)—/s J(W7q)n~‘13+/ o(®,¢)n

- w-v+/ P
Qr T 7
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o

m (—Aa,p)Ct = /S (—k1,e 4+ k2 — wk1) (—Aa3)C

s
T

I
m\m\m\

Aq )k e + (k2 — wki) (—Aa,3)C1)
/Bkl ez T 0k aca:xac)(CZ + WCl) ( 2 — Wkl)(_ﬂCanc + aCI,xxxx))

6k1 zx T akl zmrz)<2 + k2( ﬂgl,mm + aCl,rxzz))

and

/ (772 + ,011/}) <2 = / (_kZ,t — wky + Bkl,mc - 5k2,3cgc - akl,xmxw) CQ
2 T

s
T

- / (kQ CQ,t - (WkZ - ﬂkl,zm + 5k2,mz + akl,ammz) CQ)
T

= / (k2(w<2 + ﬂ(l,zz + 6(2,11 - aCI,zxmx + P19 + g) - (WkQ - 6k1,zr + 5k2,xm + akl,zxmx) CQ)
5.

= / (k2(ﬁ<.1,wz - O‘Cl,xm:pw + P1q + g) + (ﬁkl,axr - akl,wx;rw) 42)
s
By combining the three identities, we obtain

o[ weve [maaa [ me
Qr T 7

=4,

= /g ((_ﬁk1)$$ + akl,wwﬂiﬂi)CQ + kQ(_ﬁgl,mm + agl,aja:ww))

T

+/ (k2(ﬂ<1,xx - 0461,:cx379: + g) + (ﬂkl,zx - akl,xzxw) CQ) = ko g-

Xr

Thus we have

J’f)g/OT/FSkzw/OT/Fng,

and the optimal solution to (P{. is given by

7V077l077l1)
f = _k27

where (®,1), k1, k2) is the solution to (7.1) associated with the optimal state (v, 71, 72).

The converse statement consisting in showing that the optimal control is characterized by system (7.2)
is classical. We refer for example to [23, Theorem 3.1].

The fact that the operator II(T') introduced in the statement of the theorem belongs to £(H,.) and obeys
I(T) =II(T)* > 0 is also classical.

26



To prove the last statement, we can see that the solution (v, p,n1,m2, ®,1, k1, ka) to system (7.2) obeys
0= / (vi —divo(v,p) —wv) @
T

:/ v(—i’t—diva(¢7w)—w‘§)_/

s
T 35

:/ |v\2+/ p Py — ¢V2—/VO'I>0

T N s, Q

=,
T b

0= / (Mt — 2 — wni)(—Aa,g)k1
5

s
T

a(v,p)n-¢+/

P

o(®,¢Y)n-v— / v' P,

s Q

s
T

pky — 1/”72*/V0<I’07
s Q

s
T

T Ls

((—Aap)m (=ks +wki +m1) — (=Aa,p)n2 k1 — wni(—Aa,p)k1)

s
T

= [ Aupmbs = (<Aughm s~ wm(-Aag)b) = [ (40208 (~ 405 i (0)

~ [ A 0 (A0 s 0)

= [ = Ansim (et m) = (<Aa g i) = [ (=Aa) 208 (=40 5) (0

T

J:

s
T Z:T

= / (—n2 kot —wna ko — (BN 2z + ON2,22 — QN1 gaza) k2) — / k2(0) 3
> Iy

).
).

By combining the three identities, we obtain

" / VP + / (A )20 2 + / il + / P
T =5 pazS VA

= [ V@0t [ (Ao EO)+ [ B

s s

and
(f +pip)ks = / (2,0 — wn2 — BN za — 02,00 + N zawe) k2

(772(_ﬂk1,x3: + 6k2,xz + akl,xmzx + /)17/1 + 772) - (ﬁnl,xw + 6772,9090 - 04771,3:909590) k2) - / k2(0) 773
5 Fe

(nQ(*ﬁkl,zm + akl,zzmm + le + 772) - (ﬁnl,mz - O”]l,mxmz) k2) - / kQ(O) 778

T s

Thus the optimal state, the optimal control, and the corresponding adjoint states obey

o / v+ / mal? + / (A p) 2 2 + / T
QT P2 3 =7
:pl/v00¢(0)+/
Q Ty

(~Aaph E10) + [ 0 ka(0)
= (I(T)(v°,n? ), (VO 0 1) ) -

T

This ends the proof. O
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8. Studying problems (P ) and (RS

0,v0,n9,n9 0,Pv0,n? 7772)'

8.1. Problem (P OO 0 770) Proof of Theorem 6.1. The existence of admissible controls follows from

Theorem 5.2. Next the existence of an optimal control can be proved in a classical way. The operator II
is obtained as the limit of II(7") when T tends to infinity (see e.g. [23, Theorem 4.1]). O
Following the approach of [23, Lemma 4.2], we can obtain an optimality system for Problem

( gf’vo o, no) in the form

—divo(v,p) —wv=0 and divv=0 in Qu,
v=m onXi, v=0 onX?, v(0)=v"inQ,
M = M2 + wni,
N2t — w2 — BN ze — ON2,20 + N1 zaze = p1Pp — k2 on X5
m=0 and mz=0 on {O,L} x (0, 00),
m(0) =7 and n2(0) =7 inTy,
—®, —dive(®,¢) —w®P=v and div® =0 in Qu,
D =Fkyéy onXi, ®=0 onX?, ®(c0)=0in Q,
—k1t = —ko + wky — 1,
—kot — wko + Bk ze — 0k zo — k1 goae = P19 + 12 on L
k1(c0) =0 and ko(oco) =0 in Ty,
(®(t), k1 (1), ka(t)) = TL(v (2), 1 (£), 72 ().

More precisely the following theorem can be proved by adapting the proof of [23, Lemma 4.2] to
problem (P>, o o).

0,v0,n9,n9
THEOREM 8.1. For all (v0,n9,n9) € He., system (8.1) admits a unique solution (v,p,ni,nz,
! )) x L?(0, 003 L§()) x H>1(£3,) x L*(0, 00; HH(I's)) x V31 (Qoo) X
1

S0): and the optimal control to (P, ?71’712)

(vav kl) kZ) in W(Oa OO,Vl( )a

0
1
(©

L(0, 00, H' () x HY2(85,) x H*1(53

18

f=—k

THEOREM 8.2. If (Pv°,n0,13) € [D(A),H]i)2, (v°.n7,n9) € He, then the optimal solution to
Problem (P22, o ) belongs to H>1(Qn) x HH2(25)) x H*Y(X3,) and

0,v%,n?,n3

[VIla21 Qo) + Imllgaess) + In2llm20 (s,
< C(IPY° vy + MM s ynmz ) + 1081 Har.))-
The proof is postponed to subsection 8.3.

8.2. Problem (R
to (’Pg -y 0) and (RI

0.PVO 0 7]0). In order to prove Theorem 6.4, we first need to compare the solutions

0,Pv0,10,n2 o), where

(Rngo 77 ,778) inf{for(PVlelaUQ,f) | (PV,’I]17’I72,f) satisfies (41)7 f € L2(07T7 Lg(rg))}a

and

T
p 1 1 1
By ) =2 [ Py g [ m @, 4y [0 pruNomP 5 [ 17
Or 0 ol ol
T T

The following theorem is a classical result in control theory.

THEOREM 8.3. For all (Pv,n9,79) € H, Problem (RT

admits a unique solution.
0,730 9.2 q
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The system

Pv Pv P® Pv(0) Py
Sl |=alm |- w | | w0 |=| ® |
M2 72 ko n2(0) 5 (8.2)
P® P® Pv P&(T) 0
_% ko | =A k& |+ m |, k(T) | = 0],
ko ko 12 ko (T) 0

admits a unique solution (Pv,ny,n2, P®, ki, k2) and the optimal control to (Rgpvo 0 né’) 18
f(t) = =B P®(t), k1 (t), ka(t)) = —ka(t).

The operator II(T) € L(H) defined by
H(T)(Pv°,n0,m8) = (P®(0), k1(0)), k2(0)) ,

is linear and continuous in ﬁ, it is symmetric and semidefinite positive, and the optimal cost is given by

. 1 -
lnf(R(jJﬂ,on,n‘lng) = 5(H(T)(PV°,7797773)7 (PVO,U?Wg))ﬁ-

Using the expression of A% determined in section 3.5, it can be shown that the solution (Pv,m,n2,
P®, k1, ko) to system (8.2) and the solution (v, p, 71, 72, @, ¥, k1, k2) to system (7.2) obey

(P{’,F]l,ﬁ27p<i),];71,]_€2) = (Pvan177727P<I)aklvk2)'

Therefore we have

~

I(T)(Pv°,n?,n3) = (P®(0), k1(0), k2(0)) = (P®(0), k1(0), k2(0))
P 0 O

=1 0 I 0 |ID™H%2,59) forall (v2,79,19) € He..

0 0 I

(8.3)

The first part of Theorem 6.3 can be proved as in Theorem 6.1. For the existence of a unique solution
to the Riccati equation (6.2), we may proceed in a usual way as in [2] or in [15].
The following analogue of Theorem 8.1 can be proved for problem (’RSOPVO 0 n(’)'
? 21102

THEOREM 8.4. For all (Pv®,n?,18) € H, we consider the system

Pv Pv P® Pv(0) pPvY
% m |=A, | m |-BB| Kk |, m0) | = o
72 72 ko 12(0) 5
P& P& Pv P® () 0 (8.4)
7% T LS (P (O I ki) | =10 |,
ka k2 72 k2 (00) 0

~

(P@(t), k1 (1), ka(t)) = TPV (t), m(t), 12(t))-

System (8.4) admits a wunique solution (Pv,n1,m2, P® ki,ko) in W(0,00; V1(Q2),V71(Q))
x H*H(E5)) x V2 (Quo) x HY2(X5)) x H>'(E5,), and the optimal control to (R3%p. o o.m0) 18
) sT1 M2

f=—ko.
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This theorem may be proved, as in [23], by passing to the limit in the optimality system of the finite
time horizon control problem (ROT on,nﬁ’wg)'

Proof of Theorem 6.4. Since II and II are defined as the respective limits of II(T") and II(T") when T
tends to infinity, with (8.3), we obtain

P 0O 0
0 I 0 |1 qdnd)=1(Pvn,n3),
0 0 I

for all (v, 79,79) € H... This equality gives the expression for PII;, Il and II3. The expression for
(I — P)II; follows from the equalities

(I - P)Hl(VOaU?»W(2)> = (I_ P)(I)(O) = (I - P)Dst(O) = (I - P)Dsﬁ:s(PVOﬂ??ﬂ?g)-

8.3. Proof of Theorem 8.2. The proof is based on the fact that system (8.1) is equivalent to system
(8.4) with the additional equations (I — P)v = (I — P)D(néaxr,) and (I — P)® = (I — P)D(kaéaxr,)-
Since we can use, for system (8.4), the maximal regularity result stated in [1, Chapter 1, Theorem 3.1],
we can derive the same estimates for the solution to system (8.1).

We already know that

[PVl £2(0,00v0 () + 1711122 0,005 520 )) + 1721 22 0,00:22(T. )
PP L2(0,00vo () + 1K1l 220,002 (1)) + [1F2]l 20,0052 (1)) (8.5)
< C(

|PvOlvo o) + ||77?||H3(FS) + ||778||Lg(rs))~

We can rewrite the adjoint equation of (8.4) in the form

P® PP P® Pv P® () 0
d
5| B = (AL =D | ko | X kB |+ om |, k(o) | =] 0 |,
ko ko ko N2 k2(o0) 0

(8.6)
We choose A > 0 such that (et(A?fM))tZO is exponentially stable. From [1, Chapter 1, Theorem 3.1],
with estimate (8.5), it can be shown that the solution (P®, k1, k2) of system (8.6) obeys

[P®|[r21(Q.) + [kl mazss ) + k2l 21 (ss)
< C(IP®|r2(0,00v0 () + k11l £2(0,00:m2(r0)) + [1R2ll 22(0,00522(1.))) (8.7)
< C(||[Pv°

vo@) T I laz ey + 13 llear.))-

Next, with estimates (8.5) and (8.7), still with [1, Chapter 1, Theorem 3.1], and with [23], we can show
that

1PVIa21(Qu) + Imllmeacsy) + In2ll g2 sy (8.8)
< C(HPVOHV;(Q) + ||77?H(H3F‘|H§)(Fs) + ||7]8HH[}(FS) + ||k2||L3(E§O))

This completes the proof.
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9. Nonhomogeneous system. We now consider the nonhomogeneous linearized system
—divo(v,p) —wv=F and divv=G=divw in Qu,
v=m onX:, v=0 onXl, v(0)=v"inQ,
M, =n2+wn  on X3, (9-1)
N2, — W2 — B ze — 02,00 + VN gawe = P1P — 2vp2Va . + H —TI3(v,n1,7m2) on X5,
m=0 and m,=0 on {O,L} x (0, 00),
m(0)=n? and n:(0) =n3 inT,.
We can look for a solution to system (9.1) in the form v = w + W, where (w,p,n) is the solution to
—divo(w,p) —ww =F —w; + VAW +vVdivw +ww and divw =0 in Qu,
w=1e onXs, w=0 onXl, w(0)=v"—w(0)inQ,
Mt ="mn2+wm on X,
N2t — w2 — B e — ON2,20 + 0N zaza (9.2)
= p1p — 2vpa(Wa , + Wa o) + H —TI3(w,0,0) — II3(w,n1,m2) on X5,
m=0 and m,=0 on {0,L} x (0,00),
n1(0) =nY and 1n2(0) =79 in T.

Since divw = 0, the term 2vpaws . can be dropped out in the equation satisfied by 712, but not the term
2vpaWy .. We introduce the operator unbounded operator (A 7, D(A 7)) in H, defined by D(A ) =
D(A) and

A, = A, — BBIL

System (9.2) can be written in the form

Pw Pw PF Pw(0) P(v° —w(0))

d _

| m [ =Aa| m [+BHE+| 0 |, m() | = Ui :
12 72 0 12(0) 5

(I = P)w = (I = P)D(n2€5xr, ),

F=F —w; + vAw + vVdivw + ww,
H = —2vpyWs , + H —TI3(W,0,0) + p1 (I + p17sNs) "2 N((F + V(=Ap)~tdiv F) - n).

We assume that W belongs to H*!(Qu), F € L?(0,00; L*(Q)), and H € L*(0,00; L§(T',)). Thus PF
belongs to L2(0, 00; V2(Q2)). Moreover (F+V(—Ap)~tdiv F) n belongs to L2(0 oo; H™Y2(T)), v N ((F+
V(—=Ap)~'div F) - n) belongs to L?(0,00; H'/?(T',)), and H belongs to L?(0,00; LZ(Ts)). Slnce the
semigroup generated by (A, g, D(A,, )) is exponentially stable on V7 (Q) x (Hg (T )ﬁLQ(F )) x L3(Ty),
system (9.3) admits a unique solution (Pw,ny,n2) in L?(0,00; V2(Q) x (HZ(T's) N L3(Ts)) x L3(Ts)).

THEOREM 9.1. If (Pv? — Pw(0),7),79) € [D(A),H]y /2, (v —w(0),n{,n9) € Hee, F € L?(0, o0;
L2(Q)), w € H>1(Qw,), H € L?(0,00; L3(Ty)), then system (9.1) admits a unique solution, which belongs
to H21 Qo) x H*2(X3,) x H*1(X5,) and

IVIlEz1(Qu) + IPllz20,1:m1 () + Imillaezss ) + [Imllpess ) + [In2lla21(ss,)
< C(1PYv°llvi) + Imollas ey + Imllare.y + 1F 2o + 1Wllazaqu) + 1 H L2 ss,))-
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Proof. We first consider system (9.3). We know that (Pv® — Pw(0),n?,79) € [D(A, 7). H1/2,
(PF,0,H) € L?(0,00; H), and that the semigroup generated by (A 57, D(A_ 57)) is exponentially stable
on H. Thus arguing as in (8.6), from [1, Chapter 1, Theorem 3.1] it follows that

IWlle21 Qo) + Imllzazcss) + lImellmza(ss,)
< CLIPYO v ) + I8l gy + 1m0 oy + 1 F 2@y + W21 (00 + 1H | L2(52,))-

Since v =w + w and w € H>!(Q,), we recover the estimate for v. The estimate for the pressure can
be obtained from the estimate for v and from the first equation of system (9.1). O

10. Stabilization of the coupled system. In this section we study the nonlinear closed loop
system

—divo(a,p) —wi = e F(Q, p, 71, 72), divii=e “'G(f,1) in Q,
U=17péy on X, u=0 onxl, u0)=1a"inQ,
Mt =72 +wi on X5,
Mot — Wiz — BNt gz — 012,22 + O gzax (10.1)
= p1p — 2upatty . + e H (1, 1) — H3(@, 71, 72) on L5,
=0 and 71,=0 on {O,L} x (0, 00),

71(0) =nY and 72(0) =79 in Ty,

with
F(ﬁ7ﬁ7 m, ﬁQ)
~2
= —j (1 — wid) + (Zﬁz + vz (eleTm — ﬁl,xx)) a, — (a-V)u
e (10.2)
~ ~ ~ A~ x ! U
+v (—Qan,xuwz + Muzg + (W) uzz)
+2(M 2Pz — MPr)€1 — (1 4+ e )0t + (ze7“ 1 501 — G2)0,,
é(ﬁ,ﬁﬂ = iy + 20,0, = divw, W= —ij11é) + 27,016, (10.3)
and
~ Zi 1
H(u,71) =vp2 (eut.,f u . +e” f]l,xﬁQ,w - e“’n‘l-fﬁl Uz,. + ewzg‘ﬁl u2’z) ’ <10.4)

We want to show the following theorem.

THEOREM 10 1. There ea:ist 0 < po < 1 and an increasing function 0y from RT into itself such that if
€ (0, o), (P(0°+nPaler —znf ,4)es), 0, n9) € [D(A), H]1 2, (0° +nYaler —2nf ,09€)|r = 13 € xr, ,
1Pa° v )+ 191 s . YNH2 (T, )+ ||T]2HH1 r.) < Oo(p) then system (10.1) admits a unique solution in the
set

Dy = {(8,5,771,72) |

[Qlle121(Quo) + 1Bl L2(0,005m1 () + N1l zr22 (55, ) + (1Tl o 55,y + 172l 20 (2s,) < M}-
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Next we consider the system
- leO'(ltLﬁ) = F(ﬁmﬁa 7717772)7 diva = G(nla ﬁ-) in Qooa
=1 onX, =0 onX! i
Mt =mn2 on X3,
o R (10.5)
2t — Bnl,xw - 6772,11 + QN zexe = P1P + H(u7 771) - H3(u7 m, 772) on 2307
m=0 and m,=0 on {0,L} x (0,00),

m(0) =7 and 1y(0) =79 inT,,

where
F(a,p,m1,12)
= —n iy + (2772 + vz (Hm M, xaz)) a, —(a-V)a
2 2 R
+v (_2Zn1,wﬁ$z + nlﬁzw + (%ﬁhm) uzz)
+2(N,2Pz — MmPz)€1 — (1 + 7))y + (271,01 — G2)0,
G(a,m) = =iy, + 21000, = div (W), W = (=& + 211,11 8),
and

(o z A A 2403 .
— m,x R
H(a,m) =vp2 <1+m Wis + Malize — 30 u2,z) :

From calculations in section 2 it follows that (Q,p,71,72) is a solution to system (10.1) if and only if

u= 67Wtﬁa ﬁ = 67th~)7 = eiwtﬁlv 2 = eiuﬁﬁQ?
is a solution to system (10.5). Therefore from Theorem 10.1, we deduce:

THEOREM 10.2. There exist 0 < ug < 1 and an increasing function 0y from R into itself such that if
ne (07 MO): (P(ﬁ0+77?u(1)61 — 2, a:uleQ) 77177]2) [D(A)a H]1/27 (ﬁ0+77?f1951 —277(1)@{1(1)52) rs = 7]8 52 XTs»
1P0° v ) + 1701 s 0y nmz oy + 1951 e o,y < Oo(p) then system (10.5) admits a unique solution in the
set

D, = {(ﬁ,ll N, m2) | e Qg2 (gu) + 1€ DllL2(0,00;m1 () + € Ml H1.2(5s,)

+Hle“ mllLee(ss) + le n2llm2a(ss,) < M}-

Still from calculations in section 2 we know that (4, p,n1,72) is a solutlon to system (10.5) if and only if
(a,p,n,m) = (0o T, ,po Ty ,m,ne) is solution to system (1.1) with u® =ao T,0. Thus from Theorem
10.2, we deduce:

THEOREM 10.3. There exist 0 < ug < 1 and an increasing function 6y from RY into itself such that if

€ (0, o), (P(a®+nfale, —zn? jalés), nd, n3) € [D(A), H]y /o, (00 +nYale; —znf ,ales)|r, =13 & xr.,

1P80lvs oy + Il yomgaey + 08lyce,) < O0(u), where 80 = (4§,09) = u® 0 Ty1, then system

(1.1) with the feedback law f = —II3(uo ’Tn_l(a:,z,t)m, n:) admits a unique solution in the set

F, = {(U,p,n,nt) | [le“ wo T, 2 gy + 1€ po Ty 20,0081 () + 1€ 0l H22(ss,)
e nll ) + e mllma sy ) < ),

where T, is defined in (2.2).
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11. Some Lipschitz properties. THEOREM 11.1. The mapping

(ﬁvﬁaﬁhfh) — (F(ﬁvﬁv 771,772)76\’(1],771),];[({1,771)),
where F, w, and H are respectively defined by (10.2), (10.3) and (10.4), is locally Lipschitz from
H?1(Qo) x L2(0,00; HY(Q)) x HH2(X3,) x H>1(22,) into L?(Qoo) x H1(Quo ) x L?(X3,). More precisely,
for all (@, p, 71, 72), (L, 54,78, 73), (@2, 52,72, 73) belonging to H*(Quo) x L?(0,00; HL(Q)) x H+2(X2,)
x H2\ (S5, ) and such that max(([(1+ 7)o@y, 11470 ooy |1+ 7)o ) < i and
max (|1, ]| Lo (92, 171 o[l Loe (2 ) 18 2l (s2)) < 1, we have

”F(ﬁ’iﬁv i1, 2) | Lo (0,00.2(0)) < C2(p1) (I [ma2 o) 101 720 (Qu) + 1702l 21 (2 M1 | 20 ()

1l a2 25 ) 1P/ 20,0058 () + 10 H2 1 Qo) Q[ E12.1 (@)
(11.1)

||F(ﬁ17ﬁ17ﬁ%777]%) - F(ﬁzvﬁzvﬁ%vﬁ%)”Lm(O,oo;L?(Q))
< Co(pa) (l(@Y, 2" 1, ) wll (@', 51 7 713) — (@%,5°, 777, 73 [lw (11.2)
+||(ﬁ271~)27ﬁ%aﬁ%)”W“(ﬁlaﬁlaﬁ%aﬁ%) - (ﬁ27ﬁ27ﬁ%7ﬁ§)”W)7

with W = H2'(Qu0) x L2(0,00; H'(Q)) x HY2(25) x H>1($3,),

W (@, 7)l[a21 (Qu) < Colp) Iz [Mlla2 (w0 (11.3)

[Ww(a',q) — w(@?, i?)lluz1 .

~ (@ o N (11.4)
< Co(p) (Il ez oy 181 = 82 (Qu) + 171 = a2 (e, 103 120 ()
1 (i, 70) | 22 se) < Colp) [ ][0 (oo Il 02 (11.5)
and
H(@', i) — H(@2, 7)1z (s
[H (@, q1) — H(a?, 77) [ 2 (s, (11.6)

< Cop)(Iall 21 It = Ml aa2(msy + 101 = 03[ g2 (@) 1| Ha2(5s,))-

(In these estimates the constant Cy depends in an explicit manner of p1.)

Proof.

(i) Proof of (11.3) and (11.4). If (@, 71) € H*'(Qs) x H¥?(X5,), then we have
17101 || 22 (0,005182(02)) + 171,201 22(0,00 182 (2))
< (171l o (0,00; 13 (0. 102l £2(0,00:882 (02)) + 1771]] L0 (0,005 (0. [0 | 22 (000582 (2))
< Cliillgaz s 520 Qo) -

We also have
7101 [l 1 (0,00:L2(2)) + 171,001 (| 21 (0,00:L2(02))
< (17l 0,00520 (0o 10 | 221 0,00512(02)) + 171|122 0,001 (0. ) [0 ] £2(0,00:182 (2)))
< Oz 0 llaz @)

In these estimates we have used that

71( 23/2(0,00; 17 (1)) < Clli | H12(2s,)-
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Thus we have

[z @u) + 1M llmz0 (o) < Callinllmae sy 521 (Qu)-

Now, we assume that (@}, 7]) € H*}(Quo) x H*?(X3,) and (0%, 7?) € H>1(Qn) x H¥?(X5,). Let us
estimate

Sl =1 =2 =2
M1 — M7
The other component, that is 710} — 7?0%, can be estimated in the same way. We have
Sl =1 22 22 <1 =1 =2 1 S92\ 22
M0 — 71,01 = 7y (0 —07) + (71, — 77 )07
As above, we estimate these terms as follows

1 (81 = 0) |21 (Que) + (1 o — 77t )6 2 ()

< Co(llmllgaz(ss ot — 0fllaza @) + 191 — T llgazs ) 103 m21 (gu))-
(ii) Proof of (11.1) and (11.2). To estimate the different terms in F, we firstly write
a2y < il (ss)ltellz2(q)s
w22y < 1Ml ze(zs) llwtll 2 (@),
220z | 22(@) < 2]l (2s) 12l L2(Q) < Clli2ll Loe (0,002 (1)) 182 ]| 220,001 (22))

H 27’7%’1 ~
py— 2T

2 2o (e 10| 22()

<O+ 7)) "Ml zoo () 11,217 o0 (2 102 22(@) < Clin e

i ewt + 1
L2(Q)

V271,200l 12 () < Cllae |l Lo (s 102l L2(@) -
In these estimates we have used that [|(1+71) " ||z (ss) < p1, 712/l (zs ) <1 and that
e € H*H(B%) © L=(0,00; H'(Ly)) € L¥(2%,),
because I'y is of dimension one.
We continue as follows
171080z l22(Q) < 712l (52 102z 22(Q)

171002 L2 @) < lMllLee (5o 02zl 22(Q),

Zzﬁ%,z ~ ~ \—1 ~ 2 ~

— 0, SO+ 7)o @s) a1 (e 022 22(q)
et +m £2(Q) o

e—wtﬁl

7~ﬁzz < C|l7 oo (s ﬁzz ;

) o) 711l oo (25,) 1022 M| L2()

IM,epz=lr2Q) < 1,5l (se ) P21 2()
I Pellr2@) < IMllLe(ss) 1PxllL2 (@)
(1 + e " i)t L2(@) < ClI1 + il Lo (ms) 101 | oo (0,008 (2)) 18| £2 0,00 F81 (25
le=“ M 2t lz2(Q) < CliM el s ) 101l 22(0,00:L2(02))
G20 22(q) < 02|l Loe (0,008t (2)) 102 | 2 (0,00:E11 ()
[(@- V)l rz2(Q) < 10l L~ 0,00 () 10l £2(0,00;17 () -
Thus
(8, B, 711, 7i2) || L= 0,002y < Collin | mazme ) 10| g2 gu) + Iall 2 me) 812 (o)

1l 74225 ) 1P/ 20,0051 () + [0 1 (@) [Tl E22.1 (@ ))-
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Estimate (11.2) can be proved in the same way.
(iii) Proof of (11.5) and (11.6). We have
ﬁl,r ~

—uy, < (1 +m "l oo ss 0, ooz |01, 2(35 )
et + iy z ) ¢ m) (EW)HU llL (ZW)H My (=)

||ﬁ17wﬁ2,w||L2(zs ) < CHﬁl,wHLw(Ego)||ﬁ2,w||L2(Egc),

oo

9
nl,x ~ ~ \— 5 u
— < CN+ 7)Mo oo 71,0l e () 82,2 222 )
ewt + 1 L(Es) ~
oo S 2 -
_— 2 <C co (s z 5.)"
T ug, L) < Clmllz (zm)”uz ||L2(Ex,)

(We have used that [[(1+71) 7 | poe(ze ) < g1 and ||71 ]| Lo (zs ) < 1.) With these estimates we can show
that

”‘E[(ﬁa ﬁl)HLQ(EgO) < CQHfllHHQ'l(QOO)||771||H4,2(Ego),
and that
|H (@' 7)) — H@ 3] 2ss ) < Colltll gz guy (It — Al mazcss ) + 1] — 0 |2 (o) 17 L2 ss))-
O

12. Proof of Theorem 10.1. To prove Theorem 10.1, we consider the nonhomogeneous closed
loop linear system

vy —divo(v,p) —wv = e “'F and divv=e¢“'G=e“divw in Qu,
v=mé onXi, v=0 onXl, v(0)=1u"inQ,
My ="n2+wnm on X,
i (12.1)
T2t — Wih2 — ﬁ’r]l,xx - 67727:vw + M zxxzx = P1P — 2”P2V2,z + e_th - H3(Va m, 772) on Ef)oa
m=0 and m,=0 on {O,L} x (0, 00),
m(0) =n7 and n2(0) =n3 in Ty,

where F', G and H stand respectively for the mappings F(ﬁl, 72,1, VD), C;’(ﬁl, a) and ﬁ(ﬁ,ﬁ, 71) defined
in (10.2), (10.3) and (10.4).

We first choose 0 < 1. Without loss of generality, we can assume that C; > 1 and Ca(p1) > 1. We
set

1 1 n
=min|{—————-,1——) and 6 =_—.
1o (201 Tl m) o) 3¢,
Let us notice that if (@,p,7:,72) belongs to D,, then ||(1 + 1) ez < ﬁ 1ju0 < p; and

S INA

71,2 |2 (s.) < < 1. Thus estimates of Theorem 11.1 may be used for elements in
We are going to prove that the mapping

e

F o (ﬁvﬁaﬁlvfh)'—) (V7p,7’]1,772),

where (v, p, 71, 72) is the solution to system (12.1), in which F, G and H are the functions of (4, p, 71, 7j2)
defined by (10.2), (10.3), (10.4), is a contraction in D,,.
If (v,p,m,m2) = F(Q,p,71,72), due to Theorems 9.1 and 11.1, we have

VIl Qo) + 1PNl 220,005 ()) + Ml 222y + Il Lo (ms) + 102l 20 (=)
< C1(I1PVOllviy + 1m0l s rynmz sy + 1090 ma ey
et gy + e "Wl gy + e Al 25 )

< Ci(gep+ Cap®) < .
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Thus F is a mapping from [D/L into itself.

Let (ﬁlﬁlﬁiﬂﬁ) and (ﬁQ’ﬁQaﬁ%an%) belong to EM' For i = 1a27 we set (Vzapzﬂﬁﬂlé)

F(ut,pt, 7%, ms). Due to Theorems 9.1 and 11.1 , we also have

V' = V2l @u) + It = P22 000 @) + It = mEllaraacme) + 2 = w12 (o)
< Ci(|le™H(FY = F?)||r2(guy + lle™ (W = W) |lgzaqu) + lle ™ (H' — H?)||12(s: )
< CL0u([Ivh = v3{lm21 (o) + IP" = PPl L2(0,00im1 )y + 01 = MillHa2(me) + 115 — 131l 21 (o))

< 3V = v m21 (o) + It = P2l L2000 )y + 0t — il gazsey + 103 — 131l H20 (e ))-

Thus F is a contraction in 13“ and the proof is complete.

[20]
21]
22]
[23]
[24]
[25]

[26]
[27]

[28]

REFERENCES

A. Bensoussan, G. Da Prato, M. C. Delfour, S. K. Mitter, Representation and Control of Infinite Dimensional Systems,
Vol. 1, Birkh&user, 1992.

A. Bensoussan, G. Da Prato, M. C. Delfour, S. K. Mitter, Representation and Control of Infinite Dimensional Systems,
Vol. 2, Birkh&user, 1993.

E. Fernandez-Cara, S. Guerrero, O. Yu. Imanuvilov, J.-P. Puel, Local exact controllability of the Navier-Stokes system,
J. Math. Pures Appl., 83 (2004), 1501-1542.

H. Beirao da Veiga, On the existence of strong solutions to a coupled fluid-structure evolution system, J. Math. Fluid
Mech. 6 (2004), 21-52.

V. Barbu, Stabilization of a plane channel flow by wall normal controllers, Nonlinear Analysis 67 (2007), 2573-2588.

M. Boulakia and A. Osses, Local null controllability of a two-dimensional fluid-structure interaction problem, ESAIM
Control, Optimization and Calculus of Variations, 14:1 (2008), 1-42.

E. Casas, M. Mateos, J.-P. Raymond, Penalization of Dirichlet optimal control problems, ESAIM Control, Optimiza-
tion and Calculus of Variations, DOI: 10.1051/cocv:2008049.

A. Chambolle, B. Desjardins, M. J. Esteban, and C. Grandmont, Existence of weak solutions for unsteady fluid-plate
interaction problem, J. Math. Fluid Mech. 7 (2005), 368-404.

S. Chen, R. Triggiani, Proof of extensions of two conjectures on structural damping arising for elastic systems, Pacific
J. Math. 136 (1989), 15-55.

S. Chen, R. Triggiani, Characterization of fractional powers of certian operators arising in elastic systems and appli-
cations, J. Diff. Eq. 88 (1990), 279-293.

G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations, Volume 1, Springer-Verlag,
1994.

C. Grandmont, Existence of weak solutions for unsteady interaction of a viscous fluid with an elastic plate, 2007,
preprint.

M. Guidorzi, M. Padula, P. I. Plotnikov, Hopf solutions to a fluid-elastic interaction model, M3AS, 18 (2008), 215-269.

T. Kato, Perturbation theory for linear operators, Reprint of the 1980 Edition, Springer-Verlag, 1995.

I. Lasiecka, R. Triggiani, Control Theory for Partial Differential Equations, Vol. 1, Cambridge University Press, 2000.

J.-L. Lions, E. Zuazua, Approximate controllability of a hydro-elastic coupled system, ESAIM Control, Optimization
and Calculus of Variations, 1 (1995), 1-15.

A. Manitius, R. Triggiani, Function space controllability of linear retarded systems: a derivation from abstract operator
conditions, SIAM J. Control and Optim., Vol. 16 (1978), 599-645.

A. Osses, J.-P. Puel, Approximate controllability for a hydro-elastic model in a rectangular domain, ISNM 133 (1999),
231-243.

A. Osses, J.-P. Puel, Approximate controllability of a linear model in solid-fluid interaction, ESAIM Control, Opti-
mization and Calculus of Variations, 4 (1999), 497-513.

A. Osses, J.-P. Puel, Unique continuation property near a corner and its fluid-structure controllability consequences,
ESAIM Control, Optimization and Calculus of Variations, DOI: 10.1051/cocv:2008024.

O. Imanuvilov, T. Takahashi, Exact controllability of a fluid-rigid body system, J. Math. Pures Appl., 87 (2007),
408-437.

J.-P. Raymond, Stokes and Navier-Stokes equations with nonhomogeneous boundary conditions, Ann. I. H. Poincaré
— AN 24 (2007), 921-951.

J.-P. Raymond, Feedback boundary stabilization of the two dimensional Navier-Stokes equations, SIAM J. Control
Optim. 45 (2006), 790-828.

J.-P. Raymond, Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations, J.
Math. Pures Appl. 87:9(2007) 627-669.

J.-P. Raymond, M. Vanninathan, Null controllability of a heat-solid structure model, Applied Math. Optim., DOI
10.1007/s00245-008-9053-x

J.-P. Raymond, M. Vanninathan, Null controllability of a fluid-solid structure model, in preparation

C. W. Rowley, Model reduction for fluids, using balanced proper orthogonal decomposition, Int. J. on Bifurcation and
Chaos, 15:3(2005), 997-1013.

R. Temam, Navier-Stokes equations, Theory and numerical analysis, AMS Chelsea Publishing, Providence, Rhode
Island, 2001.

37



R. Triggiani, Regularity of some structurally damped problems with point control and with boundary control, J. Math.
Anal. Appl. 161 (1991), 299-331.

R. Triggiani, On the stabilizability problem in Banach space, J. Math. Anal. Applic. Vol. 32 (1975), 383-403.

R. Vazquez, M. Krstic, A closed-loop feedback controller for stabilization of the linearized 2-D Navier-Stokes Poiseuille
system, IEEE Trans. Aut. Control 52 (2007), 2298-2312.

R. Vazquez, M. Krstic, Control of Turbulent and Magnetohydrodynamic Channel Flows, Boundary Stabilization and
estimation, Birkh&user, Boston, 2008.

R. Vazquez, E. Trélat, J.-M. Coron, Control for fast and stable laminar-to-high-Reynolds-numbers transfer in a 2D
Navier-Stokes channel flow, Disc. Cont. Dyn. Syst. B 10:4(2008), 925-956.

38



