{: SCISPACE

formerly Typeset

@ Open access - Journal Article - DOI:10.1103/PHYSREVA.64.063810
Feedback-stabilization of an arbitrary pure state of a two-level atom — Source link [

Jin Wang, Howard M. Wiseman

Institutions: University of Queensland, Griffith University

Published on: 16 Nov 2001 - Physical Review A (American Physical Society)

Topics: Bloch sphere, Homodyne detection, Quantum state, Bloch space and Master equation

Related papers:

« Quantum theory of continuous feedback.

« Quantum theory of optical feedback via homodyne detection.

« Feedback control of quantum state reduction

» Feedback control of quantum systems using continuous state estimation

« Quantum Computation and Quantum Information

Share thispaper: @ ¥ M &

View more about this paper here: https:/typeset.io/papers/feedback-stabilization-of-an-arbitrary-pure-state-of-a-two-
54vkkb6iah


https://typeset.io/
https://www.doi.org/10.1103/PHYSREVA.64.063810
https://typeset.io/papers/feedback-stabilization-of-an-arbitrary-pure-state-of-a-two-54vkkb6iah
https://typeset.io/authors/jin-wang-56ebvkxcda
https://typeset.io/authors/howard-m-wiseman-48aq8mosgh
https://typeset.io/institutions/university-of-queensland-thgar0ub
https://typeset.io/institutions/griffith-university-151u4w72
https://typeset.io/journals/physical-review-a-j6ltrmrf
https://typeset.io/topics/bloch-sphere-3st4tf5t
https://typeset.io/topics/homodyne-detection-2sbz0mx0
https://typeset.io/topics/quantum-state-2ewc8n2w
https://typeset.io/topics/bloch-space-3n9mopz8
https://typeset.io/topics/master-equation-3c366ftv
https://typeset.io/papers/quantum-theory-of-continuous-feedback-4duz62t0w3
https://typeset.io/papers/quantum-theory-of-optical-feedback-via-homodyne-detection-356z4ly7i3
https://typeset.io/papers/feedback-control-of-quantum-state-reduction-3cmrcla18a
https://typeset.io/papers/feedback-control-of-quantum-systems-using-continuous-state-2hr91kknbe
https://typeset.io/papers/quantum-computation-and-quantum-information-3v8m8z30vw
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/feedback-stabilization-of-an-arbitrary-pure-state-of-a-two-54vkkb6iah
https://twitter.com/intent/tweet?text=Feedback-stabilization%20of%20an%20arbitrary%20pure%20state%20of%20a%20two-level%20atom&url=https://typeset.io/papers/feedback-stabilization-of-an-arbitrary-pure-state-of-a-two-54vkkb6iah
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/feedback-stabilization-of-an-arbitrary-pure-state-of-a-two-54vkkb6iah
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/feedback-stabilization-of-an-arbitrary-pure-state-of-a-two-54vkkb6iah
https://typeset.io/papers/feedback-stabilization-of-an-arbitrary-pure-state-of-a-two-54vkkb6iah

PHYSICAL REVIEW A, VOLUME 64, 063810

Feedback-stabilization of an arbitrary pure state of a two-level atom
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Unit-efficiency homodyne detection of the resonance fluorescence of a two-level atom collapses the quantum
state of the atom to a stochastically moving point on the Bloch sphere. Recently, Hofmann, Mahler, and Hess
[Phys. Rev. A 57, 4877 (1998)] showed that by making part of the coherent driving proportional to the
homodyne photocurrent one can stabilize the state to any point on the bottom-half of the sphere. Here we
reanalyze their proposal using the technique of stochastic master equations, allowing their results to be gen-
eralized in two ways. First, we show that any point on the upper- or lower-half, but not the equator, of the
sphere may be stabilized. Second, we consider nonunit-efficiency detection, and quantify the effectiveness of
the feedback by calculating the maximal purity obtainable in any particular direction in Bloch space.

DOI: 10.1103/PhysRevA.64.063810

I. INTRODUCTION

Although classical models of feedback schemes have
been used for a long time to control dynamical noise, an
analogous quantum theory of feedback has been developed
only in the last 15 years [1-7]. Recently there has been con-
siderable interest in quantum feedback as a way to fight de-
coherence in isolated quantum systems, using the approach
of Refs. [4,5]. The central idea is to use a continuous mea-
surement record, whose existence is due to the coupling of
the system to a bath, to control the dynamics of the system so
as to counteract the noise introduced by that bath and possi-
bly other baths. For example, it has been suggested as a way
to create optical squeezed states [8], to create micromaser
number states [9], to correct errors in quantum bits [10], and
to protect optical and microwave Schrodinger cat states
against dissipation [11-13].

Decoherence in quantum systems can be loosely defined
as loss of purity. Therefore the ultimate success in using
feedback to fight decoherence would be to create an arbitrary
stable pure state in the presence of dissipation. This goal was
realized (better even that they realized) by Hoffman, Mahler,
and Hess (HMH) [14,15] for a very simple system: a reso-
nantly driven two-level atom. They showed that by using the
photocurrent derived from unit-efficiency homodyne detec-
tion of the atom’s fluorescence to control part of the driving
field of the atom, it is possible to exactly cancel the noise
introduced by the electromagnetic vacuum field when the
atom is in a particular pure state. By choosing the driving
strength and feedback strength appropriately, any pure state
on the Bloch sphere may be picked out, although HMH
claimed that only pure states on the lower-half of the sphere
would be stable under their scheme.

HMH chose to describe detection and feedback in their
system in a way different from (but equivalent to) the stan-
dard approach in Refs. [4,5]. In this paper we reformulate
their theory using the latter approach. This has the advantage
of enabling a number of generalizations of their results. First,
we revisit the question of stability and find that, contrary to
the claims of HMH, the states in the upper-half of the Bloch
sphere can be stabilized as well as those in the lower-half
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(this is what was better than they realized). The only states
that cannot be stabilized, in the sense that an arbitrary initial
state would not always end up in the desired state, are those
on the equator of the Bloch sphere; that is, those that are
equal superpositions of excited and ground states.

Our second generalization is to consider how effective
feedback is with »<1; i.e., with nonunit-efficiency detec-
tion. In this case it is not possible to stabilize the atom at any
pure state, except the ground state, which is trivially stable
by setting the driving and feedback to zero. Instead, we aim
to produce a steady state that is as close as possible to a
given pure state. For the two-level atom, this is equivalent to
trying to create a state that is as pure as possible in a par-
ticular direction in Bloch space. Not surprisingly (given the
above result), we find that states near the equator cannot be
well protected against decoherence. We also find an echo of
the distinction HMH found between the upper- and lower-
halves of the Bloch sphere, in that states in the upper-half
sphere are affected much more by loss of detection efficiency
that those in the lower-half.

The paper is organized as follows. In Sec. II we present
the model of a driven two-level atom, including the stochas-
tic Schrodinger equation for unit-efficiency homodyne detec-
tion. In Sec. IIT we use this equation to derive the driving and
feedback required to stabilize the atom in an arbitrary pure
state. These results agree with those of HMH. However, our
stability analysis disagrees substantially with theirs. In Sec.
IV we present entirely new analytical results relating to the
effect of nonunit-efficiency detection. In Sec. V we give nu-
merical simulations of the stochastic evolution equations, il-
lustrating the issues discussed in the preceding two sections.
In Sec. VI we summarize and interpret our results, explain
their significance, and discuss the possibility of future work.

II. HOMODYNE DETECTION
A. Master equation

Consider an atom, with two relevant levels {|g),|e)} and
lowering operator o= |g)(e|. Let the decay rate be vy, and let
it be driven by a resonant classical driving field with Rabi
frequency 2«. This is as shown in Fig. 1, where for the
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FIG. 1. Diagram of the experimental apparatus. The laser beam
is split to produce both the local oscillator B and the field «, which
is modulated using the current /(7). The modulated beam, with
amplitude proportional to e+ NI(?), drives an atom at the center of
the parabolic mirror. The fluorescence thus collected is subject to
homodyne detection using the local oscillator, and gives rise to the
homodyne photocurrent /(¢).

moment we are omitting feedback by setting A =0. This sys-
tem is well approximated by the master equation

p=yDlolp—ialo,.p]. 2.1)
where the Lindblad [16] superoperator is defined as usual
D[A]B=ABAT—{ATA,B}/2. In this master equation we
have chosen to define the o, =0+ ¢’ and oy =io—i o'
quadratures of the atomic dipole relative to the driving field.
The effect of driving is to rotate the atom in Bloch space
around the y axis. The state of the atom in Bloch space is
described by the three-vector (x,y,z). It is related to the state
matrix p by

p=3(l+xo,+yo,+z0,). (2.2)
It is easy to show that the stationary solution of the master
equation (2.1) is

—4davy (2.3)
X=—F—, .
* 'yz+8a'2
Vss=0, (2.4)
2
-
I=——. (2.5)
) y2+8a2

For v fixed, this is a family of solutions parametrized by the
driving strength a € (—,). All members of the family are
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FIG. 2. Locus of the solutions to the Bloch equations. The el-
lipse in the lower-half plane is the locus for the equations with
driving only. The full circle (minus the points on the equator) is the
locus for the equations with optimal driving and feedback, as de-
fined in Sec. III.

in the x-z plane on the Bloch sphere. Thus, for this purpose,
we can reparametrize the relevant states using r and 6 by

x=rsin 0, (2.6)
z=rcos b, (2.7)

where 6 e[ —m,m]. Since
T p*]=5(1+x*+y*+2%) (2.8)

is a measure of the purity of the Bloch sphere, r
= x2+z7, the distance from the center of the sphere, is also
a measure of purity. Pure states correspond to r=1 and
maximally mixed states to r=0.

The locus of solutions in this plane (an ellipse) is shown
in Fig. 2. Since z,<<0, all solutions are in the lower-half of
the Bloch sphere. That is, we are restricted to |6]> /2.
Also, it is evident that the smaller |6 is (i.e., the more ex-
cited the atom is) the smaller r is (i.e., the less pure the atom
is). At |0|=m, the stationary state is pure, but this is not
surprising as it is simply the ground state of the atom with no
driving. As |6|— /2 we have r—0. This can only be ap-
proached asymptotically as || — <. In summary, the station-
ary states we can reach by driving the atom are limited, and
generally far from pure.

B. Homodyne detection

Now consider subjecting the atom to homodyne detection.
As shown in Fig. 1, we assume that all of the fluorescence of
the atom is collected and turned into a beam (represented in
Fig. 1 by placing the atom at the focus of a mirror). Ignoring
the vacuum fluctuations in the field, the annihilation operator
for this beam is \/;0', normalized so that the mean intensity
¥ ojo> is equal to the number of photons per unit time in
the beam. This beam then enters one port of a 50:50 beam
splitter, while a strong local oscillator 8 enters the other. To

063810-2



FEEDBACK-STABILIZATION OF AN ARBITRARY PURE. ..

ensure that this local oscillator has a fixed phase relationship
with the driving laser used in the measurement, it would be
natural to utilize the same coherent light field source in the
driving process and as the local oscillator in the homodyne
detection. This is as shown in Fig. 1.

Again ignoring vacuum fluctuations, the two field opera-
tors exiting the beam splitter, b; and b,, are

be=[\yo—(—1D*BI2.

When these two fields are detected, the two photocurrents
produced have means

(2.9)

L=(|B*= (- D*(NyBo+\yop*) + yo'ay2.  (2.10)
The middle two terms represent the interference between the
system and the local oscillator.

Equation (2.10) gives only the mean photocurrent. In an
individual run of the experiment for a system, what is re-
corded is not the mean photocurrent, but the instantaneous
photocurrent. This photocurrent will vary stochastically from
one run to the next, because of the irreducible randomness in
the quantum measurement process. This randomness is not
just noise, however. It is correlated with the evolution of the
system and thus tells the experimenter something about the
state of the system. In fact, if the detection efficiency is per-
fect, the system is collapsed into a pure state, rather than the
mixed state, which is the solution of the master equation. The
stochastic evolution of the state of the system conditioned on
the measurement record is called a “quantum trajectory”
[17]. Of course, the master equation is still obeyed on aver-
age, so the set of possible quantum trajectories is called an
unraveling of the master equation [17]. It is the conditioning
of the system state on the photocurrent record that allows
feedback of the photocurrent to control the system state. The
application of an appropriate feedback loop to this continu-
ous measurement process (to be considered in Sec. III) real-
izes an effective ‘“‘reservoir engineering”’ to control the sys-
tem at the quantum level.

The ideal limit of homodyne detection is when the local
oscillator amplitude goes to infinity, which in practical terms
means | 3|>> y. In this limit, the rate of the photodetections
goes to infinity and thus it should be possible to change the
point process of photocounts into a continuous photocurrent
with white noise. Also, the only relevant quantity is the dif-
ference between the two photocurrents. Suitably normalized,
this is [17,18]

(l‘)_lz(t):

I(z)zl1 B V(e ol +e'®a) (1) + &(r). (2.11)

A number of aspects of Eq. (2.11) need to be explained. First,
®=arg B, the phase of the local oscillator (defined relative
to the driving field). Second, the subscript ¢ means condi-
tioned and refers to the fact that if one is making a homo-
dyne measurement then this yields information about the
system. Hence, any system averages will be conditioned on
the previous photocurrent record. Third, the final term &(¢)
represents Gaussian white noise, so that

PHYSICAL REVIEW A 64 063810

E(r)dt=dW(r), (2.12)

an infinitesimal Wiener increment defined by [19]
dw(t)*=dt, (2.13)
E[dW(r)]=0. (2.14)

Since the stationary solution of the master equation confines
the state to the x-z plane, it makes sense to follow HMH by
setting ®@=0. In that case,

I(1)=\¥{o) 1)+ &),

That is, the deterministic part of the homodyne photocurrent
is proportional to x,={o).. This should be useful for con-
trolling the dynamics of the state in the x-z plane by feed-
back, as we will consider in Sec. III. Of course, all that really
matters here is the relationship between the driving phase
and the local oscillator phase, not the absolute phase of ei-
ther.

The conditioning process referred to above can be made
explicit by calculating how the system state changes in re-
sponse to the measured photocurrent. Assuming that the state
at some point in time is pure (which will tend to happen
because of the conditioning anyway), its future evolution can
be described by the stochastic Schrodinger equation (SSE)
[17,18]

(2.15)

d| () =AD)]@(1))dt+ B (1)) dW(1). (2.16)

This is an Ito stochastic equation [19] with a drift term and a
diffusion term. The operator for the drift term is

A= %[— ol o+(a ) No— (o) (D] -ias,, (2.17)
while that for the diffusion is
But)y=\yo—(o)(1)2]. (2.18)

Both of these operators are conditioned in that they depend
on the system average

(o)) =(p(D)|o | (1)).

As stated above, on average the system still obeys the master
equation (2.1). This is easiest to see from the stochastic mas-
ter equation (SME), which allows for impure initial condi-
tions. The SME can be derived from the SSE by constructing

d(l ¢c><¢c|): (d| 'pc>)<¢c| + | ¢c>(d< ¢c|)+ (d| ¢c>)(d< bel),
(2.20)

(2.19)

using the 1to rule (2.13), and then identifying | ){ .| with
pc- The result is

dp=diyD[alp.—idia|ay.p]+dW(t)\yH[o]p,,
(2.21)

where H[A]B=AB+BA"—Ti{AB+BA']. Although this
has been derived assuming pure initial conditions, it is valid
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for any initial conditions [18]. This is also an Ito equation,
which means the evolution for the ensemble average state
matrix

p(1)=E[p.(1)] (2.22)

is found simply by averaging over the photocurrent noise
term by using Eq. (2.14). This procedure yields the original
Master equation (2.1) again. The term “quantum trajectory”
can be applied to any stochastic conditioned evolution of the
system, be it described by a SSE or SME.

III. FEEDBACK WITH UNIT-EFFICIENCY DETECTION
A. SSE including feedback

We now include feedback onto the amplitude of the driv-
ing on the atom, proportional to the homodyne photocurrent,
as done by HMH. This is as shown in Fig. 1, where the
driving field passes through an electro-optic amplitude
modulator controlled by the photocurrent, yielding a field
proportional to e+ NI(#). This means that the feedback can
be described by the Hamiltonian

Hy=\a,I(1). 3.1)

In this paper we are assuming instantaneous feedback, where
the time delay in the feedback loop is negligible.

Since the homodyne photocurrent (2.11) is defined in
terms of system averages and the noise dW(t), the SSE in-
cluding feedback can still be written as an equation of the
form (2.16). The effect of the feedback Hamiltonian can be
shown [4,8] to change the drift and diffusion operators to

A= %[ — oo+ {o)(t)o—(a,)2(1)/4]
— iaO'y-f-g V- i{o)(t)o,—20 o]~ A22, (3.2)

B(t)=\o—(o)(D2]=iNa. (3.3)

Say we wish to stabilize the pure state with Bloch angle 6, as
defined in Egs. (2.6) and (2.7), with r=1 of course. In terms
of the ground and excited states, this state is

0 0
|6)=cos= |e) +sinz|g). (3.4)
2 2
Now for this state to be stabilized we must have

[A(t)dt+B(1)dW(1)]|6)=]6). (3.5)

We cannot say the left-hand side should equal zero because a
change in the overall phase still leaves the physical state
unchanged. However, we can work with this equation, and
simplify it by dropping all terms proportional to the identity

operator in Ac(t) and f?c(t). We can also demand that it be
satisfied for the deterministic and noise terms separately, be-
cause dW(t) can take any value. This gives the two equa-
tions

PHYSICAL REVIEW A 64 063810
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FIG. 3. Plot of the optimal driving («, solid) and feedback (\,
dashed) required to produce a pure state with Bloch angle 6. For
this plot we have set y=1 so that & and N are dimensionless. The
purity (r2, starred) is one except for #= =+ 77/2, where the feedback
is not stable.

(\Vyo—iNa,)|6)=|6), (3.6)

[y(—ofo+sin o) — 2ao,
+My(—isinbo,—20"0)]|6)<|6), (3.7)

where we have put (o). () equal to sin 6, its value for the
state | 6).
Solving the first equation easily yields the condition

Vy

)\=—7

(1+cos 6). (3.8)

This is equivalent to the feedback condition derived by
HMH, stated as Eq. (35) of Ref. [15]. Substituting this into
the second equation gives, after some trigonometric manipu-
lation, the second condition

a= 24 sin 6 cos 6. (3.9)

4

Again, this agrees with the driving strength of HMH, given
as Eq. (44) of Ref. [15]. It is worth emphasizing that the
derivation given here is entirely different in detail from that
of HMH, and so is an independent verification of their result.
These functions are plotted in Fig. 3. Note that there are two
points with the same values of both A\ and «, at 8= * 7/2.

B. Stability

The preceding derivation seems to show that any pure
state can be stabilized by a suitable choice of driving and
feedback. Indeed our derivation proves that that if one pre-
pares a state in exactly the pure state one desires, then the
feedback scheme of HMH, which we have analyzed, will
keep the system in that state. However, to discuss stability
we need to know what will happen for states that are not
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initially in the desired state. To deal with this it is much more
convenient to use the SME rather than the SSE, as will be-
come apparent.

The SME can be constructed from the SSE in the same
way as before. The result is [4,8]

dp.=dtyD[olp.—idta[oy,p.]—idt\[o,,0p.+ p.o']

+dt(\Hy)Dloylpet+dW(D)H[yo—ika,]p..
(3.10)

Also as before, this is an It0 stochastic equation, which
means that the ensemble average can be found simply by
dropping the stochastic terms. This time, the result is not the
original master equation, but rather the feedback-modified
master equation

b:—i[a()'y,p]+D[\/;0'—l'7\0'y]pE£p. (3.11)
Here we have put the Liouvillian superoperator £ in a mani-
festly Lindblad form.

Now we have shown already that the pure state p
=]6)( 0| must be a solution of this master equation, for the
appropriate choices of N [Eq. (3.8)] and « [Eq. (3.9)]. But
for it to be a stable solution we require all of the eigenvalues
of the resulting £, to have a negative real part (except for the
one eigenvalue that is always zero, as required for L4 to be
normpreserving). It is not difficult to find these eigenvalues,
and in terms of 6 they are

— y/2,— y/2,— y cos? 6. (3.12)
Evidently the state |#) will be stable for all 6 except 8=
* /2. That is, all states are stable except those on the equa-
tor. This is contrary to the conclusion of HMH [15], based
on a linearized stability analysis, that “long-term stability
of ... inverted states (i.e., states in the upper-half-plane)
cannot be achieved.” We emphasize that our stability analy-
sis contains no approximations.

In hindsight, the lack of stability for pure states on the
equator could have been predicted from expressions (3.8)
and (3.9). As discussed above and shown in Fig. 3, the values
for driving and feedback for 6= /2 are the same as those
for §=— /2. This means that both p=|m/2){m/2| and p
=|—m/2)(—m/2| are solutions of Lyp=0 for §=/2 or
—m/2. By linearity, any mixture of |m/2)(w/2| and
| = 7/2)(— m/2| will be a solution also. Hence any deviation
away from one of these pure states will not necessarily be
suppressed, and the system lacks stability. With random ex-
ternal perturbations, the system will eventually reach an
equal mixture of | 7/2)( /2| and | — 7/2)(— /2|, which is a
state with =0 (minimum purity). This is why we have plot-
ted a value of r=0 in Fig. 3 for | §|= /2. We also plot r as
a function of € in Bloch space in Fig 2, giving the locus of
states that can be stabilized by feedback. This can compared
to the locus of the mixed states that are accessible by driving
alone. We will return to the stability issue in the context of
stochastic dynamics in Sec. V.

PHYSICAL REVIEW A 64 063810

IV. FEEDBACK WITH NONUNIT-EFFICIENCY
DETECTION

We have seen that the stochastic master equation is a very
useful representation of a quantum trajectory, as it allows the
unconditioned (deterministic) master equation to be derived
easily, and this latter equation is all that is required for a
completely rigorous stability analysis. The SME is also su-
perior to the SSE in that it allows inefficient detection to be
described. In a real experiment this has to be taken into ac-
count. The effect of nonunit 7 on feedback in the present
system is of interest both in itself, and because of the ex-
treme nonlinearity of the system dynamics as compared to
other quantum optical feedback systems such as considered
in Ref. [8].

As explained in Ref. [18], the homodyne photocurrent
from a detection scheme with efficiency # is

1(1) =y ) (1) + &) 7.

Here we have used a normalization such that the determin-
istic part does not depend on 7. The effect of decreased
efficiency is increased noise. This means that we can retain
the same feedback Hamiltonian as above [Eq. (3.1)], without
changing the significance of the feedback parameter A. The
SME with <1, including feedback, is [8]

(4.1)

dp.=dtyD{olp.—idta[oy,p]—idt\[ o, ,optp.o']
+dt()\2/y7;)D[0'y]pc+ dW(t)H
X[\yno—ixa,/\n]p..

The no-feedback SME, analogous to Eq. (2.21), can be ob-
tained simply by setting A =0, and was derived in Ref. [18].

Once again, it is easiest for the moment to just consider
the ensemble-average evolution by averaging dW to zero.
The Lindblad form of the resulting master equation is

4.2)

p=—i[oary,p]+1>[@a—imy]p+(v/n)D[ay]p(.4 Y

We do not know a priori what values of A and « to choose
to give the best results with inefficient detection, as the SSE
analysis in Sec. III A obviously does not apply. Hence we
simply solve for the stationary matrix in terms of « and \.
Using the Bloch representation we find

xo=—4dan (y+2\y\N)/D, (4.4)

Ys=0, (4.5)

2e=—Vyn(Ny+2N) (yn+4JypN+4N\2)/D, (4.6)
where

D=y 72+ 6y 2PN +2yn(3+4 A2+ 161y y\>

+8(a’y?+ 7). 4.7)

The question now arises, what do we mean by “best results”™
for the feedback system? We cannot hope anymore to pro-
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FIG. 4. Locus of the solutions to the Bloch equations with op-

timal feedback for different values of detector efficiency 7. From
the outside in, we have »=1, 0.8, 0.6, 0.4, 0.2, 0.

duce stable pure states anywhere on the Bloch sphere. How-
ever, we can pick a direction 6 on the Bloch sphere and ask
how close can we get to a pure state? That is, we use the
radius r in Egs. (2.6) and (2.7) as the quantity to be maxi-
mized, for each 6. From these two equations we have

tan 0=x /7. (4.8)
From Egs. (4.4) and (4.6) we can immediately find the de-
sired driving in terms of N\ and 6 as

Jyn(y+20) (ynp+4Vygh+47\2)tan 0
472 (y+2yN) '

4.9)

The aim is then, for each 6, to find the feedback A that
maximizes

rzzxfs-l— 22, (4.10)
This was done numerically using MATLAB.

The results of our calculations are shown in Fig. 4, where
we plot the locus in Bloch space of the best (most pure)
stationary states that can be achieved by feedback from
nonunit-efficiency detection. We use a variety of values of 7.
A number of points are worth noting. First, and most obvi-
ously, the degree of purity (measured by the r, the distance
from the origin) decreases with 7. Second, the gap at the
equator for #»=1 quickly widens, so that the purity of the
best states with 6 close to 7/2 is small. Third, the purity of
the best states in the upper-half of the Bloch sphere is af-
fected much more by loss of detection efficiency than those
in the lower-half. Fourth, in the limit =0, the best solu-
tions correspond to the no-feedback solutions shown in Fig.
2. This is not surprising, since with =0 the photocurrent
contains no information about the system (as the noise is
infinitely large) and hence there is no point doing feedback.
Since the stationary states with no feedback are confined to
the lower-half of the Bloch sphere, this explains why the best
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FIG. 5. Plot of the optimal driving («, solid) and feedback (A,
dashed) required to produce the most pure state with Bloch angle 6.
For this plot we have set y=1 so that @ and \ are dimensionless.
The purity obtained is also plotted (2, starred).

states with feedback in the lower-half are less affected as #
decreases than those in the upper-half.

For the particular value 7=0.8 we plot in Fig. 5 the val-
ues of a and \ (as well as purity, quantified as r>) vs 6. By
comparing this plot with Fig. 3 one obtains some idea of the
effect of inefficient detection. A number of features remain
the same. First, « is antisymmetric in ¢, while A is symmet-
ric. Recalling that the deterministic part of the feedback is
proportional to N(o )., the feedback itself is actually anti-
symmetric as well as the driving. Second, the magnitude of
the feedback is zero for |§|= (the ground state) and in-
creases monotonically to a maximum of Jy at =0 (in the
direction of the excited state). Third, the driving is zero at the
ground state and at #=0, and also changes sign as one
passes through the equatorial place. The most obvious differ-
ence between the parameters for =1 and those for 7
=0.8 is that the latter have a discontinuity at | §| = 7/2. The
feedback parameter A jumps as one crosses the equatorial
plane, while the driving « asymptotes to +% on one side
and — ¢ on the other. These extreme variations in the driving
do not prevent the best purity from approaching zero in the
equatorial plane.

V. STOCHASTIC DYNAMICS
A. Stochastic Bloch equations

So far we have considered the stochastic conditioned dy-
namics for the system state in order to derive the parameters
N\ and « such that for =1 those dynamics are banished in
the steady state. In this section we will consider them in
more detail, highlighting the difference between the n=1
case and the 7<<1 case, and also looking in more detail at
the special case of |6|=/2. The most convenient way to
treat the stochastic dynamics in general is through the sto-
chastic Bloch equations (SBE). These are simply the stochas-
tic equations for the conditioned Bloch vector, defined by
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pe=1(I+x.0,+y. o, +z2.0)). (5.1)
From the SME including feedback (4.2), we find
dx. —y/2—2k 0 2a X
dy. | =dt 0 -2 0 Ve
dz. —2a 0 —y—2k Ze
0
—dt 0 +dW(1)
2\ \/;-1— y
—ynl+(Nyn+ 2z vy
X “NYNXY 5
—(Nyn+2onpx—ynxz,
(5.2)

where k=\2/5+\\/y. If we ignore the final (noise) term,
we get the Bloch equations from the Master equation (4.3).

B. Unit efficiency

In the case »=1, considered in Sec. III, both the deter-
ministic and stochastic dynamics disappeared in the steady
state for the appropriate choice of « and N. Because the
stationary solution of the SSE was a unique pure state, that
was necessarily also the stationary solution of the master
equation found by averaging over the noise in the equivalent
SME. Thus there was no distinction between the uncondi-
tioned and conditioned states. There are two exceptions to
this lack of distinction. The first is in the transients, before
the system reaches its steady state. The second is for the
special case |6|=m/2. In this section we investigate these
exceptions.

To investigate these exceptions, we have to consider the
stochastic dynamics as described by the stochastic Schro-
dinger equation (2.16). Stochastic Schrodinger equations
have been used for some time now as an effective numerical
tool to solve the time evolution of the state matrix for an
open system [20,21]. Here we are interested in the stochastic
Schrodinger equation because it generates a single-quantum
trajectory that represents the actual evolution of a system
undergoing continuous measurement of its environment. This
is of fundamental importance in understanding open quan-
tum system behavior, as features of a single realization of a
measurement process can be obscured by Master equation
methods, which averages over the individual realizations.

First, the transient behavior was simulated using the SBE
with »=1. We chose the initial state to be the ground state,
and evolved the system stochastically from =0 to ¢
=10y~ !. With this choice of initial condition, y.=0 for all
time. We verified that in each trajectory xg-i-zz: 1 to a good
approximation (indicating a pure state), but that the ensemble
averages over many trajectories

x=E[x.], z=E[z.] (5.3)
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FIG. 6. Typical quantum trajectories for optimal feedback with
n=1, shown by x, (pluses) and z (dots) as functions of time. (a) A
single trajectory for 6= /6 and (b) two trajectories for 6= /2.

obey the deterministic Bloch equations. A typical trajectory
for = /6 is shown in Fig. 6(a). We see that the initial
evolution is very erratic, but that on a time scale of a few
v~ 1, the system relaxes towards a steady state that is pure
and stationary. By =10y~ ! the system is locked in a stable
pure state for all intents. We have also illustrated another
typical trajectory in Bloch space, in Fig. 7.
It is easy to verify that by putting »=1 and

14 05 0 05 1

FIG. 7. Typical quantum trajectories in Bloch space for ¢
€[0,10y '] under optimal feedback for = /6, starting at the
ground state. The pluses are for =1 and the dots for »=0.8. The
locus for the deterministic stationary states for 7=0.8 are also
shown; the relevant state for this quantum trajectory is at the inter-
section of the locus and the ray at 6= 77/6. Note that the quantum
trajectory for »=0.8 wanders around this average position, while
that for »=1 stops precisely at the desired pure steady state.
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(X¢»Ye»2e)=(sin 6,0,cos 6) (5.4)

on the right-hand side of the SBE (5.2), we obtain complete
cancellation. If we wish, we can follow HMH and separate
the noise term into the contribution from feedback (propor-
tional to \) and the contribution present even without feed-
back (the rest). We interpret the latter stochasticity as being
due to the quantum measurement we are making, with its
underlying probabilistic nature. Obviously the fluctuation
due to measurement is canceled by the feedback, as HMH
point out. It is equally important that the deterministic dy-
namics are also canceled at this point.

The story for the special case = m/2 is quite different.
For this case the SBE’s are

dx, 0 0 0 X,
dy.|=dt| 0 —vy2 0 Ve | +ydw(r)
dz, 0 0 —vy2/\z
l—xz
X[ —xeye (5.5)
—XZc

Here the three eigenvalues in Eq. (3.12) are clearly evident.
Both z,. and y. will decay to zero (as required for 8= 7/2),
and their noise terms vanish at that point. By contrast, the
equation for x. is independent of the others, and is purely
stochastic:

dx.=\ydW(r)(1-x?).

Clearly the equatorial pure states with x,=* 1 are stationary
solutions to this problem. Also, the system will tend to one of
these states. We can see this by calculating

(5.6)

dE[x7]=yd1 E[(1-x))"], (5.7)
which is always positive. That is, on average xLZ. always in-
creases. But it is also clear that x. has no preference to go to
either of these states. Hence they are not stable. The en-
semble average x is unchanging under this evolution. Thus a
perturbation that moves the state from x.=1 to x.=1—¢€
say, will result in a proportion €/2 of the states ending up at
x.=—1, and a proportion 1 —€/2 ending up at x.=1.

We have illustrated these features by showing two typical
trajectories in Fig. 6(b). Once again, the initial evolution is
highly erratic, but the system reaches a fixed point on a time
scale of a few yil. However, with the same initial condition
(the ground state), one trajectory ends up at x,=1 and the
other at x,.=—1.

C. Nonunit efficiency

In the unit-efficiency case the stationary solution of the
master equation is (except for | 8] = 7/2) a pure state. This is
very special in that in means that every unraveling of the
master equation as a SSE or SME must end up in this same
pure state also. For nonunit efficiency we have found the
most pure stable state for each . In this case we must use a
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SME to unravel the master equation, since the conditioned
state will not be pure in general, because of the inefficient
detection. Since the deterministic steady state is not pure
(except for |f|=), the quantum trajectories need not end
up in this state. Instead, the quantum state in an individual
trajectory may continue to evolve stochastically even when
the system is in steady state, and the equivalence to the de-
terministic evolution may hold only on average. On the other
hand, it is also possible that the quantum trajectories all end
up in the deterministic steady state, since we expect the con-
ditioned state to be mixed anyway.

It turns out that with the optimal values of a and A de-
fined in Sec. IV, the actual behavior is the first option de-
scribed above. That is, the system state continues to vary
stochastically in the long-time limit, but is constrained so
that the time-averaged state is equal to the solution of the
deterministic master equation. We show this in Bloch space,
Fig. 7, for =0.8 and 6= w/6. We see that the amount of
randomness in the system state in the long-time limit is quite
large even for fairly high ».

This result suggests another question: Would a different
choice for N be able to reduce, or even eliminate, the ran-
domness in the steady-state quantum trajectory, even though
it would necessarily be at the expense of the purity of the
deterministic stationary solution? [Recall that for a given \,
«a is still necessarily fixed by Eq. (4.9).] To test this idea we
tried choosing N based not on maximizing r> as in Eq.
(4.10), but on minimizing

—ynxl+(Nyn+2onnzg+Vyn\ |
N()()\): TNY N XY ss

- ( \/%+ ZR/\/;)XSS_ \/%xsszss

(5.8

That is, we minimize the noise terms in the SBE Eq. (5.2).
Note that we have replaced the conditioned Bloch variables
X, etc. with the deterministic stationary solutions x, etc.,
and that the dependence of these stationary solutions on «
and A add a further, implicit, dependence on A to Ny(\).
This is a sensible procedure if the aim is realizable, and the
noise in the solutions is reduced or eliminated so that the
conditioned states are approximately or exactly equal to the
deterministic stationary solution.

It turns out that this procedure cannot significantly reduce
the amount of steady-state randomness in the quantum tra-
jectories below that resulting from minimizing the determin-
istic stationary purity. In fact, for all values of #» we consid-
ered, the variation of N (as a function of #) based on
minimizing the noise was indistinguishable by eye from that
based on maximizing the purity. This is not too surprising,
but could not have been predicted a priori.

VI. CONCLUSION

We have given a rigorous analysis of the antidecoherence
feedback scheme proposed by Hofmann er al. [15]. They
proposed modulating the driving of a two-level atom using
the instantaneous homodyne photocurrent, in order to stabi-
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lize the atom in an arbitrary known pure state. We have
shown that, for detection efficiency =1, the pure states
thus produced are stable. This is contrary to the conclusion
of HMH, that only pure states in the lower half of the Bloch
sphere would be stable. The one exception we found is for
pure states on the equator. Although they are fixed points of
the dynamics, they are not stable. A small perturbation away
from one fixed pure state leads to a proportionally small
fraction of the ensemble ending up in the diametrically op-
posite pure state.

It is nevertheless possible to obtain an asymmetry be-
tween the upper and lower halves of the Bloch sphere, remi-
niscent of the conclusion of HMH, if one considers detection
efficiencies less than one. In this case, it is no longer possible
to stabilize the system in a given pure state, so we choose the
feedback and driving so that the solution of the master equa-
tion (including feedback) is as close as possible to a given
pure state. We find that the purity (which measures this
closeness) of states thus produced decays to zero as n de-
creases to zero, for states in the upper half of the Bloch
sphere. By contrast, those in the lower half do not decay to
zero. This is readily understandable since in the absence of
feedback (which is the situation that must prevail when the
detection efficiency goes to zero) the master equation with
driving alone has stationary solutions in the lower half plane
with nonzero purity. The purity decays most rapidly with #
for states near the equator, which is unsurprising given the
instability of states on the equator even for n=1.

In the nonunit-efficiency case, the state of the system con-
ditioned on the homodyne measurement results continues to
evolve stochastically even in the long-time limit, where the
ensemble-average evolution has reached the desired most-
pure state. Moreover, it seems that any other choice of driv-
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ing and feedback will result in more, not less, randomness in
the steady-state quantum trajectory.

Our results are significant in a number of ways. First, they
show the power of the quantum trajectory and master equa-
tion techniques developed in Refs. [4,8,5]. Those techniques
were particularly useful for illuminating subtle questions re-
garding the stability of pure states, and for treating inefficient
detection. Second, the physical system (the two-level atom)
may one day find application as a quantum bit in quantum
information technology [22]. In that eventuality, the ability to
stabilize the atom against dissipation in an arbitrary (known)
pure state may be useful. Third, the system is a simple but
nontrivial example of quantum feedback in a nonlinear sys-
tem (the two-level atom). Thus the effectiveness of feedback,
and in particular the influence of nonunit-efficiency detection
on this effectiveness, is of interest for what it may tell us
about other more complicated nonlinear systems.

In this last context, it would be of interest to also consider
the effect of non-Markovian feedback; i.e., feedback with a
time delay or nonflat loop response function. This is much
more difficult to treat than Markovian feedback because the
Lindblad master equations derived in Refs. [4,8,5] do not
apply. Analytical solutions for non-Markovian feedback are
possible for linear systems [8,23]. For a nonlinear system
like the two-level atom, numerical simulations, or different
analytical approaches, are necessary. This is an issue we plan
to explore in future work.
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