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Abstract. This paper considers feedback stabilization for the semilinear 
control system ~( t )=Au( t )+v( t )B(u ( t ) ) .  Here A is the infinitesimal 
generator of a linear C O semigroup of contractions on a Hilbert space H and 
B : H ~ H  is a nonlinear operator. A sufficient condition for feedback 
stabilization is given and applications to hyperbolic boundary value 
problems are presented. 

Introduction 

This paper  considers the question of feedback stabilizability for the semilinear 
control system 

ft(t) = Au(t)  + v( t )B(u( t ) ) .  (9) 

Here A is the infinitesimal generator of a linear C O semigroup of contractions 
e At on a real Hilbert space H with inner product  ( , ), so that A is dissipative, 
i.e. 

( A ~ , ~ )  < 0 for all q, E D(A).  

B is a (possibly nonlinear) operator from H into H and v(t) is a real valued 
control. 

An important special case of (.~) is when e At is a group of isometries (so 
that ( A ~ , ~ ) = 0  for all ~ E D ( A ) )  and B is a bounded linear operator. This 
bilinear controlproblem has been considered in the case H =  R" by Jurdjevic and 
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Quinn [10] and Slemrod [14], who showed that the condition 

<em~p,B(em~p))=O f o r a l l t ~ R  + ~ t p = 0  (c) 

is sufficient for stabilizability of (6~). We generalize this result to the 
infinite-dimensional case with A dissipative under the assumption that B is 
sequentially continuous from H w (H endowed with its weak topology) to H. In 
the bilinear control problem this is equivalent to assuming that B is compact. 
Note that in the case when e At is a group of isometries the equation (6~) with 
v(t)=O is undamped. 

The paper is divided into four sections. Sections 1 and 2 provide 
background material on nonlinear semigroups and nonlinear evolution 
equations respectively. In particular, we derive in Section 2 a simplified version 
of an invariance principle originally presented in Ball [2]. In Section 3 we apply 
the invariance principle to the stabilization problem and show that under our 
assumptions condition (G) implies weak stabilizability of (6)). Section 4 provides 
an application to certain hyperbolic boundary value p ro b l em s -a s  an example 
of the type of result we obtain, consider the system 

y , - A y + v ( t ) y = O ,  x ~ 2 ,  t ~ R  +, 

yla~=0, t ~ R  t, 

where y = y ( x , t )  and f~ is a bounded open subset of R ". We prove that this 
system is weakly stabilizable in H01(~2)× L2(f]) if and only if f~ is such that all 
eigenvalues of - A  with Dirichlet boundary conditions are simple. 

In order to simplify the proofs it will be assumed throughout that H is 
separable. The necessary techniques for dealing with nonseparable H may be 
found in [2]. 

1. Preliminary Results on Nonlinear Semigroups 

Definitions. Let H be a real Hilbert space. A (generally nonlinear) semigroup 
T(t) on H is a family of continuous maps T ( t ) : H - - ~ H , t ~ R  +, satisfying (i) 
T(0) = identity, (ii) T(t + s) = T(t) T(s), for all t, s E B~ +. 

For ~ E H define the positive orbit through ¢p by 0 + (~) = U t ~ n + T(t)q~. The 
co-limit set of ~ is the (possibly empty) set given by ¢0(~)= {~ E H: there exists a 
sequence t n - - ~  as n- - -~  such that T(t~)~---~ as n - - ~ ) .  The weak co-limit set of 

is the (possibly empty) set given by cow(q~)= {qJ ~ H :  there exists a sequence 
t ~ - - ~  as n-~oo such that T(tn)e~--'tp as n - - ~ } .  

A subset C of H is said to be positively invariant if T(t)C c C  for all t E •  +, 
and invariant if T(t)C = C for all t E R +. 

Theorem 1.1. ( i ) / f  (9 + (q~) is precompact then co(¢~) is a nonempty, invariant set in 
H. (ii) I f  each T(t) is sequentially weakly continuous on H (i.e. T(t)e?n~T(t)ep if 
¢Pn--'q'), then (9 + (¢~) bounded implies Ww(ep) is a nonempty, invariant set in H. 
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Proof 
(i) The proof is a direct consequence of Prop. 2.2 in Dafermos [6]. 
(ii) Since (9 + (q~) belongs to a sequentially weakly compact set in H, ~ow(q~ ) 

is non-empty. Furthermore, since H is separable this weakly compact set may be 
regarded as a compact set in a metric space with a metric induced by the weak 
topology (see Dunford and Schwartz [8]). The result again follows from Prop. 
2.2 in Dafermos [6]. 

Remark 1.1. In the study of nonlinear semigroups of "parabolic" type and 
nonlinear contraction semigroups of "hyperbolic" type sufficient conditions 
have been given for (9+ (~) to be precompact and hence ¢o(q,) to be nonempty 
(see Henry [9], Pazy [11] and Dafermos and Slemrod [7]). Unfortunately these 
results do not apply to the problems considered here. For this reason our main 
conceptual tool in studying asymptotic behaviour of (@) is the weak ~o-limit set. 

2. Preliminary Results on Nonlinear Evolution Equations 

Consider the initial value problem 

~(t) = Au(t) + f(u(t),t),  ( ~ )  

U( to) = Uo, 

where A is the infinitesimal generator of a C o semigroup e A t  o n  a real Hilbert 
space H with inner product ( , )  and norm [] ]J, f : H × R - - - ~ H  is a given 
function, and u o E H is a given initial datum. 

Definition. Let t I > t  o. A function u ~ C([to, tt]; H )  is a weak solution of (~)L ) on 
[ to, t I ] i f  U(to) -- Uo, f ( u ( .  ) , . )  E L l(t o, t I ; H )  and if  for  each w ~ D(A *) the function 
( u( t), w )  is absolutely continuous on [to, tl] and satisfies 

d ( u ( t ) , w )  = ( u ( t ) , A * w )  + ( f ( u ( t ) , t ) , w )  

for almost all t~[to,  tl]. 

Theorem 2.1 (cf. Balakrishnan [1], Ball [3]). Let t 1 >t  0. A function u:[to, t l ] ~ H  
is a weak solution of  (~L) on [t0,tl] i f  and only i f  f ( u ( . ) ,  . ) ~ L l ( t o ,  t l ; H )  and u 
satisfies the variation of constants formula 

u( t )  = e A`t '°)u o + ftjeA(t-s)f(u(s) 's)ds 

for all tE[to, tl]. 

Remark 2.1. Functions u satisfying the variation of constants formula are often 
called "mild solutions" of (~C). 

The following elementary existence and uniqueness result for (~L) is 
sufficient for our purposes (see Segal [13] or Pazy [12]). 
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T h e o r e m  2.2. Let  f :  H × N---) H be continuous in t and locally Lipschitz in u. 
Then for each u o E H (~)L) has a unique weak solution u defined on a maximal  
interval of  existence [to, tmax) , tma x > to, U ~ C( [ /o ,  trnax), n ) .  Moreover,  i f  
u, ~ C([to, t l ] ;H ) are weak solutions of  (c~-¢) such that u,(O)---~u o as n--->oo,t I >to, 
then u,--~u in C([to, tl]; H )  as n-->eo, where u is the unique weak solution of  (gL) 
satisfying u(O) = u o. Furthermore, for any weak solution u with tmax < O0 there holds 

lim Ilu(t)H = ~ .  
t m/max 

Theorem 2.2 provides information on continuity with respect to initial 
conditions in the norm topology of weak solutions of (gL). The following 
theorem provides similar information in the weak topology of H. For simplicity 
we consider only the autonomous case f ( t ,  u ) = f ( u ) ,  to= 0. 

Theorem 2.3. Let  f :H--->H be sequentially weakly continuous (~- - - '~  implies 
f ( ~ ) ~ f ( ~ b ) ) .  Let  (~L) possess a unique weak solution u(t; uo) on [0, T] for  each 
u o E H.  Furthermore suppose I1 u(t; uo)ll < const, i f  t ~ [0, T] and u o is restricted to a 
bounded subset of  H.  Then u o ~ u  o implies u(t; Uon)~u(t;  Uo) for every t ~[0, T]. 

Proof  Let u~(t)=u(t ;Uo,  ) and u( t )=  u( t; Uo). Since (Uo~ } is bounded so is 
(u,(t)} for all n, t E[0, T]. Also, f maps bounded sets to bounded sets, so that 
llf(u~(t))ll < const, for all n, t E[0, T]. Let t , ' .~t in [0, T]. For w E H  let 

a~= sup ' ~  ~- "'l~LeA('-~)-e'~(t.-')j.,W2l . 
I1~,11 ~ 1 
O ~ s ~ t  

We claim that a ~ O  as r--~oc.  If  not there exist sequences {~.}, (s .]  such that 
~ e o ,  s . ~ s  in [O, t] , t .~ t ,  and a number e>O with 

A(" 

But the map (t,d?)r--~eA'(? is jointly sequentially weakly continuous on N+ × H  
(see Ball [2]) so that 

eA(t-s,,)dpt~ ~ eA( t - s )~ ,  

cA(t,, s,,)(pt ~ ~ eA(t-s)d?, 

and hence argO. 
We have by the variation of constants formula that 

E(un( tr ) - -un( t ) ,w) I  < I([eA"--eA']Uo~,W)[ 
+ fo' I ([  e A('r- ~)- e A('- ~)] f(un(T)), w)I dr 

+ f"l(e A('r-')f(u.(.c)), w>ld'c 

< constqa r + const.2lt r - t I. 
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Hence (u~(tr)-un(t), w ) ~ O  uniformly as r--*~. A similar argument shows that 
for t , . T t , ( u , ( t ~ ) - u n ( t ) , w ) ~ O  uniformly as r---~oo. Thus (u,(t)} is 
equicontinuous in C([O,T];H~). Furthermore, since {u,(t)) is uniformly 
bounded in n for all t~[O,T], we may view {u~(t)} as belonging to a bounded 
set in H endowed with the metrized weak topology. Hence we can apply the 
Ascoli-Arzela theorem for metric spaces to conclude that there exists 
~EC([O,T];Hw) and a subsequence {u~(t)} so that u~(t)~ff(t) uniformly on 
[0, T] as v~oo .  But 

up(t) = eAtUo,, + fo'eA(t-s)f(u,(s))ds, 

and hence, for any w E H, 

(u,(t),  w) = (e~'uo,, w) + f ' ( e  A('-')f(u,(s)), w)ds. 
J0 

We may now take the limit as u ~  and employ the sequential weak continuity 
of f and the dominated convergence theorem to conclude that 

( ft( t), w) = ( eA'Uo, W) + £ ' (  eA(t- ~)f( £t(s) ), w)ds. 

Since this equality holds for all w E H, 

~(t) = eA'Uo + fo'e A('- s)f(ft(s))ds. 

By uniqueness of solutions to (.Q) we must have u( t )=  ~(t) on [0, T]. 
To conclude the proof assume that u o , ~ u  o and that (u,(t)} does not 

converge to u(t) in C([0, T]; Hw). We may assume that (u,(t)} lies outside a fixed 
neighbourhood of u(t) in C([0, T]; Hw). By the above argument { u,(t)) possesses 
a subsequence converging to u(t). This contradiction completes the proof. 

The next result characterizes the asymptotic behaviour of solutions to (q)~) 
in an important special case. We apply it to the stabilization problem in the next 
section. 

Theorem 2.4. Let A generate a linear C O semigroup e "4t of contractions on H. Let 
f :  H---~ H satisfy 

(i) f is locally Lipschitz, 
(ii) f fn~b ~ f (~n)~f(~) ,  

(iii) ( f ( ~ ) , ~ , ) < 0  for all 4 ~ H .  
Then (gL) possesses a unique weak solution u(t; Uo) on R + for each uo~H.  

Furthermore T(t)Uo--u(t;Uo) defines a semigroup on H, o~w(Uo) is a nonempty 
invariant set for each u o E H, and for each ~p ~t%(Uo) 

(T(t)~p,f(T(t)~p)) = 0 for all t ~ •+ 

lf, in addition, the only solution to the above equation is ~p=0, then u(t; Uo)---~O as 
t----~ oo . 
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Proof From Theorem 2.1 we know (°7C) possesses a unique local weak solution 
u(t)=u(t;Uo) for each uo~H.  Since A is dissipative a simple approximation 
argument (cf. Ball [2 Lemma 5.5]) shows that 

llu(t)ll 2 -  [lUol[ 2 < 2£'( f (u(s)) ,u(s)>ds < O, 

and hence, again using Theorem 2.1, u(t; Uo) exists for all t E R  +. Also (E) and 
Theorem 2.3 imply that u(t; .): H ~  H is sequentially weakly continuous. Clearly 
T(t)Uo= u(t; Uo) defines a semigroup, and by Theorem 1.1 the weak w-limit set 
%(Uo) is nonempty and invariant. Let ~p EO~w(Uo). Then there exists a sequence 
t , ,~m such that T(tn)uo--~p as n---~.  By (E)  

f"+ '<f(  lim T( s)Uo), T( s)uo)ds 

£'<J( ( ( ) ) ) = l im r s ) r  t.)u o ,V(s T(t.  uo)ds = 0 

for each t ~ N +. By Theorem 2.3 and hypothesis (ii) 

,!ins ( f (  T(s) T( t.)Uo) , r(s) r( t.)uo> = <fir(s)+), r(s)+> 

for each s ~ [0, t]. Hence by the dominated convergence theorem 

'<f(r()+) T( ) >ds S , S = 0 .  

Since f is continuous this implies that 

(f(T(t)~p), T(t)~p) = 0 for all t ~ N +, 

as required. 

3. The Stabil ization Problem 

Let (('•) be as given in the introduction, and let B be locally Lipschitz. 

Def in i t i on .  System (~)  is stabilizable (weakly stabilizable) /f there exists a 
continuous feedback control v : H--~R such that (@ ) with v( t)= v(u( t)) satisfies the 
properties 

(i) For each u o there exists a unique weak solution u(t; Uo) defined for all 
t E N  +, of (°,?). 

(ii) {0) is a stable equilibrium of (@). 
(iii) u(t; Uo)---~O (u(t; Uo)-~0) as t---~v for all u o ~ H. 

The natural approach to the stabilization problem 
differentiate [tu(t)l[ 2 along trajectories of (@), obtaining thus 

d 
~-II u(t)]] 2 = 2(Au(t),  u(t))  + 2v(t)(u(t) ,  B(u(t))).  

is to formally 
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An obvious choice of feedback control (though not the only one) is 

v(u) = - ( u , B ( u ) > ,  

since this control yields the "dissipating energy inequality" 

d llu(t)tl < - 2 ( u ( t ) , B ( u ( t ) ) )  z. 

For this choice of v(u) our feedback control system becomes 

{t(t) = Au(t)  - (u(t) ,  B(u( t ) ) )B(u( t ) ) .  (.if) 

While we would like to be able to treat the general case of continuous B : H ~ H ,  
our results unfortunately apply only to the case when B : H w ~ H  is sequentially 
continuous. 

Theorem 3.1. I f  B : H,.--. H is sequentially continuous and 

(eAt~p,B(eA'~p)~ - - - -  0 for all t E l~ + ~ ~p = 0, ((?) 

then (('?) is weakly stabilizable. 

Proof. Set f l u ) = - ( u , B ( u ) ) B ( u ) .  (i) Since B maps bounded sets to bounded 
sets, it is easily verified that f is locally Lipschitz. (ii) Since B:Hw---~H is 
sequentially continuous, ~bn~ ~ implies f (¢n)~f (~) .  (iii) Clearly { f (~ ) , f f )<  0 for 
all ~p ~ H. Yhus f  satisfies the hypotheses of Theorem 2.4. Let u 0 ~ H,~p ~%(Uo). 
By Theorem 2.4 

(T(t)~p,f(T(t)~p)) = 0 for all t ~ ~+.  

Hence (T( t )~,  B(T(t)~p)~ = 0 for all t ~ It~ +, so that f l  T(t)~)= 0 for all t ~ ~+.  By 
the variation of constants formula T ( t ) 4 =  eA'4. Hence (C) implies that ~b=0. 

4. Applications to Hyperbolic Problems 

Let V be a real Hilbert space with inner product { , )v.  Let P be a densely 
defined positive self-adjoint linear operator on V such that P - i  is everywhere 

defined and compact. Let V e = D(P 7). Vp forms a Hilbert space under the inner 
product 

I l 

(wl,w2>e = (e~-w~,PTw2>v. 

Consider the abstract wave equation 

Y + ey  + v(t)y = o, (~)  

where v(t) is a real valued control. 
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To write ((2) in the form (°2) we set 

u = (y , z ) ,H ---- Vp X V,((y,,z,),(y2,z2))H = (Y,,Y2)e + (zl,z2)v, 

A is skew-adjoint, and the compactness of the injection V e ~  V implies that 
B : H--->H is compact. 

Theorem 4.1. System (~) is weakly stabilizable if and only if all eigenvalues X m 
of P are simple. 

Proof. Suppose that the eigenvalues (X,,) are simple, and let (~,~) denote the 
corresponding eigenfunctions normalized so that {1fire1{ V = 1 for all m=  1,2,. .-.  
We apply Theorem 3.1; the feedback control is given by 

t) = - ( u (  t) ,  l u( t ) ) .  

= ( y ( t ) , f ; ( t ) )  v .  

• To check whether (G) is satisfied we expand + ~ H in terms of the complete 
set of eigenfunctions of A, i.e. 

m = l  

Separation of variables yields 

-- ~m, 
m=l --V~m CmSin'~m t+  V~m dmcos '~m t 

and we easily see that 

1 2 _ C m d ~ , . .  (em~,Bem~/);4 ~ ~r~m [~(Cm-d2m)sin2~m t cos2V~.~ t] g 

r n =  l 

From the uniqueness of the Fourier series expansion for almost periodic 
functions (el. Besicovitch [4]) we deduce that (emg,,Bem~)n=O for all t ~ R* 
implies e2-d~=O,e,,,d,,,=O,m=l,2, . . . ,  i.e. c, ,=d,~=0 for r e= l , 2 , . - ,  and 
~b = 0. Hence (C) holds, so that by Theorem 3.1 system (d~) is weakly stabilizable. 

Conversely, let X be an eigenvalue of P with two linearly independent (o) (o') 
eigenfunctions ~ and ~*. Let q~= /? ok+ B* ~* with ~*Be~,~B*. Then the 

solution y of ((~) satisfying (y(0),)~(0))= ~ is given by 

y(t) = w(t)~ + w*(t)~*, 
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where 

¢~ + ~w + v( t)w = O, 

¢~* + Xw* + v(t)w* = o, 

and w(0) = a, if(0) = ,8, w*(0) = a*, if*(0) =/3*. Eliminating v(t)  we obtain 

~( t)w*( O - w( t )~*( O = ,~* /3 - ~/3" 4: o. 

Hence (y(t),f~(t))7~(O,O) as t--~oo for any control v(t). 

Example  1 (Wave equation). Let f~ be a bounded open subset of R n, and 
consider the system 

y , , - - A y + v ( t ) y = O ,  x E ~ 2 , t E R  ÷, 
(1) 

y]a~=0, 

w h e r e y = y ( x , t ) .  This system has the form (C) if we set 

v -- L 2 ( a ) , D ( e )  = ( w E  V:  - A w e  V } , e  = - ~ ,  

so that V e = H01(f~). Hence (1) is weakly stabilizable in Hl(~2)X L2(f2) if and only 
if the eigenvalues 2~ of - A  with Dirichlet boundary conditions are simple. This 
is a condition on ~2, which holds, for example, if n--- 1 and ~2 is an open interval. 
If n = 2 and f~ is a disc then the condition does not hold, while if f2 is a rectangle 
with sides a,b then the condition holds if and only if a / b  is irrational (cf 
Courant-Hilbert [5]). 

Example  2 (Beam equation). Consider the equation 

Ytt + Yxxxx + v ( t ) y  = O, 0 < x < 1,t E g~+, 

with boundary conditions either 

Y = Yx = 0 at x = 0, 1 (clamped ends) (2) 

or  

Y = Yxx = 0 at x = 0, 1 (simple supported ends) 

This system has the form (~)  if we set 

d 4 
z = L2(0, 1 ) , e  = - -  

dx 4 ' 

D(  P ) = ( y  E V : Yxxxx E V,y  satisfies boundary conditions}. 

In the clamped (simply supported) case V e = / /2 (0 ,  1) ( V e = H2(0 ,  1) f") H i ( 0 ,  1)). 
It is well known (cf. Courant-Hilbert [5]) that in both cases the eigenvalues of P 
are simple. Hence (2) is weakly stabilizable in H - -  V e X L2(0, 1). 
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Remark 4.1. We have been unable to determine whether in Examples 1 (with 
2~,,, simple) and 2 above, and with our choice of feedback control 

= (3) 

all solutions (y ,y , )  converge strongly to (0,0) in V e × V as t---~o~. 

Remark 4.2. It is important to notice that the equality in condition (C) must 
hold for a / / t  ~ I~ +, and not merely for all sufficiently small t; this fact was used 
crucially in the proof of Theorem 4.1. Indeed for any 0<~" < 1 there are nonzero 
solutions y of the one-dimensional wave equation 

Yt t  = Y x x '  0 < X < 1, 

y = 0 a t x  = 0 ,  1, 

satisfying 

"fo = ly2dx = 0 for all t ~ (Y,Y,)L2{o,I~ 

(Consider a unidirectional pulse with small compact support.) If v(t)  is given by 
(3) then such solutions satisfy (1) on [0, ~-]; this illustrates the subtle nature of the 
damping induced by the feedback control. 

Remark 4.3. Consider the problem 

Y,  - Y x x  + v ( t ) f ( y )  = O, 0 < x < 1, 

y = 0  a t x = 0 , 1 ,  

where f E C I ( R )  is nonlinear. Let F(y)%fHf s)ds. It is easily seen using 

Theorem 2.4 that with the choice of feedback control 

v( t) = fo l f ( y )y tdx ,  

all solutions (y ,y , )  of (4) converge weakly in Hd(0, 1)×L2(0, 1) to the set S 
consisting of the initial data of all solutions w of 

Wtt = Wxx , 

w = 0  a t x  = 0,1, 

satisfying 

o l F ( w ( x , t ) ) d x  = constant, for all t ~ R +. 

However it seems to be a difficult problem to find conditions on f guaranteeing 
that S = (0, 0), so that (4) is weakly stabilizable. 
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Remark 4.4. An interesting example arising in mechanics is that of stabilizing a 
vibrating beam by choosing the axial load as a feedback control. A simple 
model of this situation consists of the equation 

Y,, + Y . . . .  + v( t )Yxx  = O, 0 < x < 1, 

where v( t )  is the axial load and y ( x , t )  the transverse displacement, with either 
clamped or simply supported boundary conditions. Let H,(- , .>H and A be 
defined as for Example 2. The relevant point is that the operator B : H ~ H  given 
by 

B = - d  2 

dx  2 

is bounded, but not compact. Hence our theory does not apply. 
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