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and, for a fixed i, the maximum value assumed byj�i(k)j is
��1kx(0)k�k.

Observe that whenj�i(k)j assumes its maximum value, the
remainder components of the vector�(k) have to be zero due to
inequality (57). Hence, for the worst case,�i(k) 6= 0 and�j(k) = 0
for j 6= i.

From (47)

lim
k!1

h
T (k)(�(k)� p) = 0: (58)

Without loss of generality, we will assume for the worst case that
�i(k) is equal to��1kx(0)k�k, which implies

h(k) = �
�1kx(0)k�khi: (59)

Substituting (59) into (58), yields

lim
k!1

�
�1kx(0)k�khTi [p� �(k)] = 0: (60)

Using (52) and (60), we can write, for the worst case, that

lim
k!1

y(k + d)� h
T (k + d)�(k)

= lim
k!1

�i(k + d)hTi [p� �(k)]

= lim
k!1

�
�1kx(0)k�(k+d)hTi [p� �(k)]

= �
d lim
k!1

�
�1kx(0)k�khTi [p� �(k)] = 0: (61)

This completes the proof.
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Feedback Stabilization of MIMO 3-D Linear Systems

Zhiping Lin

Abstract—In this paper, the authors solve the open problem of the
existence of double coprime factorizations for a large class of multi-
input/multi-output (MIMO) three-dimensional (3-D) linear systems. It
is proven that if all the unstable zeros of the contents associated with
a left and a right matrix fraction descriptions of a given feedback
stabilizable causal MIMO 3-D plant are simple, then the plant has a
double coprime factorization. The authors then give a parameterization
of all stabilizing compensators for an MIMO 3-D system in this class. The
key result developed in the paper is a novel and constructive technique
of “replacing” an unstable polynomial with a stable polynomial step by
step. An illustrative example is also provided.

Index Terms—Coprime factorization, feedback stabilization, multidi-
mensional systems.

I. INTRODUCTION

The problem of feedback stabilization of multi-input/multi-output
(MIMO) linear systems has drawn much attention in the past years
because of its importance in control and systems (see, e.g., [1]–[11]
and the references therein). Consider the feedback system shown in
Fig. 1, whereP represents a plant andC represents a compensator.
The relationship betweenu1, u2 ande1, e2 can be expressed as

e1

e2
=

(I + PC)�1 �P (I + CP )�1

C(I + PC)�1 (I + CP )�1

H

u1

u2
: (1)

A given plantP is said to be feedback stabilizable if and only if
there exists a compensatorC such that the feedback systemHeu is
stable, i.e., each entry ofHeu has no poles in the unstable region [3],
[4]. For linear discrete multidimensional (n-D) systems, the feedback
system is structurally stable1 if and only if each entry ofHeu has no
poles inUn = f(z1; � � � ; zn): jz1j � 1; � � � ; jznj � 1g [12], [13].

The problem of feedback stabilization of MIMO two-dimensional
(2-D) systems using the matrix fraction description (MFD) approach
has been investigated by a number of researchers (see, e.g., [5]–[8]
and the references therein). It is now well known that by decomposing
a given plantP into an MFD P = ~D�1 ~N , where ~D and ~N are
minor coprime2 2-D polynomial matrices, a necessary and sufficient
condition for feedback stabilizability ofP is that the matrix[ ~D ~N ]
is of full rank inU2 [5], [6]. Constructive algorithms for the feedback
stabilizability and stabilization problem have also been presented for
MIMO 2-D systems [5]–[8]. Furthermore, the parameterization of
all stabilizing compensators for a given stabilizable 2-D plant has
been given in [5], which is a generalization of the celebrating result
on the parameterization ofall stabilizing compensators for a given
one-dimensional (1-D) plant [1]–[4].
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Fig. 1. Feedback system.

Forn-D (n � 3) systems, it becomes much more difficult to tackle
the feedback stabilization problem because of some fundamental
differences between MIMO 2-D systems and theirn-D (n � 3)
counterparts [14]–[18]. In particular, since a given MIMOn-D
(n � 3) systemP may not always admit a minor coprime MFD
[14], [16], existing criterion for feedback stabilizability of MIMO
2-D systems is not applicable to ann-D (n � 3) systemP that
does not admit a minor coprime MFD. Suppose thatP admits a
factor coprime (but not minor coprime) MFDP = ~D�1 ~N ; Sule
[9] and Lin [10] have recently shown that the condition[ ~D ~N ]
being of full rank in Un is not necessary forP to be feedback
stabilizable. By introducing the new concept of “reduced minors”
[9] and “generating polynomials”3 [16], it has been shown that a
necessary and sufficient condition forP to be feedback stabilizable
is that the reduced minors of the matrix[ ~D ~N ] have no common
zeros inUn [9], [10].

However, it is still unknown whether or not there exists a double
coprime factorization (DCF) for a given stabilizable MIMOn-D
(n � 3) linear system [9]–[11]. This problem is in fact a special
case of a more general problem posed by Vidyasagaret al. in [3]
“ Is it always necessary thatC and P individually have coprime
factorizations when the closed loop is stable?” The answer to this
question is affirmative for MIMO 1-D and 2-D linear systems [1]–[5].
However, for general linear systems, the above question is not easy to
answer. Anantharam showed via an example that for linear systems
over an arbitrary integral domain, it is possible to stabilize plants
which have no coprime factorizations [19]. Lin conjectured in [10]
that a stabilizable MIMOn-D linear system also has a DCF, but a
proof is not available currently.

Another closely related important problem is the parameterization
of all stabilizing compensators for a given stabilizable MIMOn-
D plant. Sule gave a characterization of stabilizing compensators
for a stabilizablen-D plant in [9]. However, as to be discussed
in Section III, his characterization [9] is not equivalent to the well-
knownQ-parameterization [1]–[5] in the sense that the characteriza-
tion given in [9] is not constructive.

In this paper, we show that for a large class of MIMO 3-D linear
systems, it is always possible to construct DCF’s, thus proving in part
the conjecture raised in [10]. The parameterization ofall stabilizing
compensators for this class of MIMO 3-D systems is also given.

The organization of the paper is as follows. In the next section,
we give a constructive proof for the existence of DCF’s for a large
class of MIMO 3-D linear systems. In Section III, the problem
of parameterization ofall stabilizing compensators for a given
stabilizablen-D plant is discussed. An example is illustrated in
Section IV, and conclusions are given in Section V. To save space,
we refer the reader to the cited references for some definitions which
require rather lengthy descriptions such as content, coprimeness, and
reduced minors.

3Both are in fact equivalent; see [9], [10], and [16] for the definitions and
more details.

II. DOUBLE COPRIME FACTORIZATIONS

In the following, we shall denote:C(R) the field of complex (real)
numbers;C(z) = C(z1; � � � ; zn) the set of rational functions in
complex variablesz1; � � � ; zn with coefficients inC; C[z] the set of
polynomials in complex variablesz1; � � � ; zn with coefficients inC;
Cs(z) the set of rational functions inC(z) having no poles inUn;
C

m�l[z] the set ofm� l matrices with entries inC[z], Cs

m�l(z)
the set ofm� l matrices with entries inCs(z), etc. Throughout this
paper, a zero of ann-D polynomial is called a stable zero if it is not
in Un; otherwise, it is called an unstable zero. Ann-D polynomial
is called a stable polynomial if it has no zeros inUn; otherwise, it
is called an unstable polynomial.

We now reproduce the definition of DCF.
Definition 1 [3], [4]: Let P 2 C

m�l(z). ThenP is said to have
a DCF if:

1) there exist~Ds 2 Cs

m�m(z), Ds 2 Cs

l�l(z), and ~Ns; Ns 2

Cs

m�l(z);
2) there exist ~Xs 2 Cs

l�l(z), Xs 2 Cs

m�m(z), and ~Ys; Ys 2
Cs

l�m(z);
3) ~Ds, Ds, ~Xs, Xs are all nonsingular;
4) P = ~D�1s

~Ns = NsD
�1

s and the identity holds4:

~Xs
~Ys

� ~Ns
~Ds

Ds �Ys
Ns Xs

=
Il 0l;m

0m; l Im
:

In this section, we solve the DCF problem constructively for a
large class of MIMO 3-D systems. Some lemmas are first required.

Lemma 1: Let P 2 C
m�l(z1; z2; z3). Then P (z1; z2; z3)

can be decomposed into MFD’sP = ~D�1 ~N = ND�1, where
~D 2 C

m�m[z1; z2; z3], D 2 C
l�l[z1; z2; z3], and ~N; N 2

C
m�l[z1; z2; z3], such that the greatest common divisor (g.c.d.),

denoted byd(z1; z2; z3), of the l � l minors ofF = [DT NT ]T

and the g.c.d.~d(z1; z2; z3) of them�m minors of ~F = [� ~N ~D ]
are both independent of the variablesz2; z3.

A proof can be given by consideringP (z1; z2; z3) as a rational
matrix in two variablesz2; z3 over the field of rational functions
C(z1), applying the known result on factorization of 2-D polynomial
matrices over an arbitrary coefficient field [20] and then using a
renormalization technique proposed in [21]. The details are omitted
here to save space. In the remainder of this paper and particularly in
Theorem 2, we assume that the MFD’s of a given MIMO 3-D system
always possess the property stated in Lemma 1, i.e.,d(z1; z2; z3)
( ~d(z1; z2; z3)) is equal to its content5 g(z1) (~g(z1)). For this reason,
we simply callg(z1) (~g(z1)) the content ofF ( ~F ).

Lemma 2: Let F (z1) 2 C
k�l[z1] be of normal full rank with

k � l. Let a(z1) be the g.c.d. of thel� l minors ofF (z1). If z11 is
a simple zero6 of a(z1), then rankF (z11) = l � 1.

Proof: By transformingF (z1) into its Smith form [22], the
result follows immediately.

Lemma 3: Let F (z1; z2; z3) 2 C
k�l[z1; z2; z3] be of

normal full rank, with k � l. Let a1(z1; z2; z3); � � �,
a�(z1; z2; z3) be the l � l minors of F (z1; z2; z3), and
ai(z1; z2; z3) = g(z1)bi(z1; z2; z3) (i = 1; � � � ; �) such that
b1(z1; z2; z3); � � � ; b�(z1; z2; z3) have no common divisors of the
form (z1 � z10) for any z10 2 C. Assume thatz11 is a simple zero
of g(z1). If for some fixedz2 = z21; z3 = z31, (z11; z21; z31)
is not a common zero ofb1(z1; z2; z3); � � � ; b�(z1; z2; z3), then
rank F (z11; z21; z31) = l � 1. Furthermore, the normal rank of
F (z11; z2; z3) is equal tol � 1.

4
Il is the l � l identity matrix and0l, 0m; l denote thel � l andm � l

zero matrices, respectively.
5See [13] and [17] for the definition of content for ann-D polynomial.
6
z11 is called a simple zero ofa(z1) if z1� z11 is a divisor ofa(z1), but

(z1 � z11)2 is not a divisor ofa(z1).
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Proof: Consider the 1-D polynomial matrixF (z1; z21; z31).
Let a01(z1); � � � ; a

0

�(z1) denote thel� l minors ofF (z1; z21; z31).
We have

a
0

i(z1) = ai(z1; z21; z31)

= g(z1)bi(z1; z21; z31); i = 1; � � � ; �: (2)

Let c(z1) denote the g.c.d. ofb1(z1; z21; z31); � � � ; b�(z1; z21; z31).
The assumption that(z11; z21; z31) is not a common zero of
b1(z1; z2; z3); � � � ; b�(z1; z2; z3) implies thatz11 is not a zero of
c(z1). Hence,z11 is a simple zero ofg(z1) c(z1). From (2) and the
fact thatc(z1) is the g.c.d. ofb1(z1; z21; z31); � � � ; b�(z1; z21; z31),
it follows that g(z1) c(z1) is the g.c.d. ofa01(z1); � � � ; a

0

�(z1). By
Lemma 2, rankF (z11; z21; z31) = l�1: Furthermore, we claim that
there indeed exists somez2 = z21; z3 = z31 such that(z11; z21; z31)
is not a common zero ofb1(z1; z2; z3); � � � ; b�(z1; z2; z3).
For otherwise, (z1 � z11) would be a common divisor of
b1(z1; z2; z3); � � � ; b�(z1; z2; z3), contradicting to the assumption.
Therefore, the normal rank ofF (z11; z2; z3) is equal tol� 1.

Lemma 4 [14], [18]: Let F 2 Cm�l[z2; z3] be of normal rank
r with r < min fm; lg. Then F (z2; z3) can be factorized as
F = F1F2, for someF1 2 C

m�r[z2; z3] andF2 2 C
r�l[z2; z3],

with F2(z2; z3) being MLP.
Lemma 5 [5]: Let F 2 Cr�l[z2; z3] be of normal rankr with

r < l. If F is MLP and all the common zeros of ther � r minors
of F (z2; z3) are not inU2 = f(z2; z3) : jz2j � 1; jz3j � 1g,7

then there existsW 2 Cl�l[z2; z3], with w = det W 6= 0 in U2,
such thatFW = B, with the firstl� r columns ofB(z2; z3) being
identically zero.

We are now in a position to present the key results of this paper
in the following two theorems.

Theorem 1: Let F 2 C
k�l[z1; z2; z3], with k � l, and let

a1(z1; z2; z3); � � � ; a�(z1; z2; z3) denote the l � l minors of
F (z1; z2; z3). Suppose thatai(z1; z2; z3) = g(z1)bi(z1; z2; z3)
(i = 1; � � � ; �) such that b1(z1; z2; z3); � � � ; b�(z1; z2; z3)
have no common divisors of the form(z1 � z10) for any
z10 2 C. If z11 is a simple zero ofg(z1) with jz11j � 1,
and b1(z1; z2; z3); � � � ; b�(z1; z2; z3) have no common zeros
in U

3
, then there existsW 2 C

l�l[z2; z3], with w(z2; z3) =
det W (z2; z3) 6= 0 in U2, such that

F (z1; z2; z3)W (z2; z3) = F1(z1; z2; z3)E1(z1) (3)

where F1 2 C
k�l[z1; z2; z3], and E1 = diagf(z1 �

z11); 1; � � � ; 1g.
Proof: Let F (0)(z2; z3) = F (z11; z2; z3). By Lemma 3, the

normal rank ofF (0)(z2; z3) is l�1. By Lemma 4,F (0)(z2; z3) can
be factorized as

F
(0)(z2; z3) = F

(1)(z2; z3)F
(2)(z2; z3) (4)

where F (1) 2 C
k�(l�1)[z2; z3], F (2) 2 C

(l�1)�l[z2; z3], with
F (2)(z2; z3) being MLP. SinceF (2)(z2; z3) is MLP, there are
only a finite number of points(z2j ; z3j) (j = 1; � � � ; J) such
that rank F (2)(z2; z3) is smaller than l � 1. From (4), rank
F (0)(z2j ; z3j) is also smaller thanl � 1. This, in turn, implies
that rankF (z11; z2j ; z3j) is smaller thanl�1 sinceF (0)(z2; z3) =
F (z11; z2; z3). By Lemma 3,(z11; z2j ; z3j) must be a common
zero of b1(z1; z2; z3); � � � ; b�(z1; z2; z3). The assumptions that
b1(z1; z2; z3); � � � ; b�(z1; z2; z3) have no common zeros inU3

and jz11j � 1 imply that we cannot havejz2j j � 1 and jz3j j � 1,
for j = 1; � � � ; J . By Lemma 5, there existsW 2 Cl�l[z2; z3],
with w(z2; z3) = det W (z2; z3) 6= 0 in U2, such that

F
(2)(z2; z3)W (z2; z3) = B(z2; z3) (5)

7In the rest of this paper, we defineU2 = f(z2; z3) : jz2j � 1; jz3j � 1g.

with the first column ofB(z2; z3) being identically zero. Combining
(4) and (5) gives

F
(0)(z2; z3)W (z2; z3) = B1(z2; z3) (6)

with the first column of B1(z2; z3) being identically
zero. Since F (0)(z2; z3) = F (z11; z2; z3), (6) leads to
F (z11; z2; z3)W (z2; z3) = B1(z2; z3), or

F (z1; z2; z3)W (z2; z3) = F1(z1; z2; z3)E1(z1) (7)

where F1 2 C
k�l[z1; z2; z3], and E1 = diagf(z1 �

z11); 1; � � � ; 1g.
Theorem 2: Let a causal8 3-D plant P = ~D�1 ~N =

ND�1 2 C
m�l(z1; z2; z3), where ~D 2 C

m�m[z1; z2; z3],
D 2 C

l�l[z1; z2; z3], and ~N; N 2 C
m�l[z1; z2; z3],

such that the g.c.d. of the family ofl � l minors of
F = [DT NT ]T 2 C

k�l[z1; z2; z3] (k = m + l) is equal
to the contentg(z1) of F and the g.c.d. of the family ofm � m

minors of ~F = [� ~N ~D ] is equal to the content~g(z1) of ~F .
Let b1(z1; z2; z3); � � � ; b�(z1; z2; z3) be the reduced minors of
F = [DT NT ]T . If b1(z1; z2; z3); � � � ; b�(z1; z2; z3) have no
common zeros inU3 and all the unstable zeros ofg(z1) and ~g(z1)
are simple, thenP (z1; z2; z3) has a DCF.

Proof: Let g(z1) = N

n=1(z1 � z1n) g0(z1), where jz1nj �
1 (n = 1; � � � ; N 0) and g0(z1) is a stable polynomial. Since
b1(z1; z2; z3); � � � ; b�(z1; z2; z3) have no common zeros inU3 and
z11 is a simple unstable zero ofg(z1), by Theorem 1 there exists
W1 2 C

l�l[z2; z3], with w1(z2; z3) = det W1(z2; z3) 6= 0 in U2,
such that

F W1 = F1 E1 (8)

where F1 2 C
k�l[z1; z2; z3], and E1 = diagf(z1 �

z11); 1; � � � ; 1g.
Rewrite (8) as

F1 = F W1E
�1
1 : (9)

Let a11(z1; z2; z3); � � � ; a1�(z1; z2; z3) denote thel � l minors
of F1(z1; z2; z3). From (9), we have

a1i(z1; z2; z3) = ai(z1; z2; z3)w1(z2; z3) (z1 � z11)
�1
;

i = 1; � � � ; � (10)

or

a1i(z1; z2; z3) = g1(z1) bi(z1; z2; z3)w1(z2; z3);

i = 1; � � � ; � (11)

where g1(z1) = N

n=2(z1 � z1n) g0(z1). Notice that the unstable
1-D polynomial (z1 � z11) has been replaced by the stable 2-D
polynomial w1(z2; z3).

Let b1i(z1; z2; z3) = bi(z1; z2; z3)w1(z2; z3) for i = 1; � � � ; �.
Clearly, b11(z1; z2; z3); � � � ; b1�(z1; z2; z3) have no common
zeros in U3. Since w1(z2; z3) is independent of z1,
b11(z1; z2; z3); � � � ; b1�(z1; z2; z3) have no common divisors
of the form (z1 � z10) for any z10 2 C. Hence, Theorem 1 can
be again applied toF1(z1; z2; z3).

Repeating the above procedureN 0 times, we finally obtain the
desired factorization

FN = F

N

n=1

WnE
�1
n (12)

where FN 2 C
k�l[z1; z2; z3], Wn 2 C

l�l[z2; z3], with
wn(z2; z3) = det Wn(z2; z3) 6= 0 in U2 andEn = diagf(z1 �

8See [5] and [10] for the definition of causality ofn-D systems.
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z1n); 1; � � � ; 1g. Let aN 1(z1; z2; z3); � � � ; aN �(z1; z2; z3) de-
note thel � l minors of FN (z1; z2; z3). It can be easily shown
that

aN i(z1; z2; z3) = g0(z1) bi(z1; z2; z3)

N

n=1

wn(z2; z3);

i = 1; � � � ; � (13)

where N

n=1
wn(z2; z3) is a stable 2-D polynomial. Sinceg0(z1) is

also a stable polynomial andb1(z1; z2; z3); � � � ; b�(z1; z2; z3)
have no common zeros inU3, it follows immediately that
aN 1(z1; z2; z3); � � � ; aN �(z1; z2; z3) have no common zeros in
U3, i.e., FN (z1; z2; z3) is of full rank in U3.

Let FN = [DT
s NT

s ]T , where Ds 2 C
l�l[z1; z2; z3] and

Ns 2 C
m�l[z1; z2; z3]. We next show thatP = NsD

�1

s . Let
E = N

n=1
WnE

�1

n . Clearly, det E 6� 0. From (12), we have
FN = FE, or Ds = DE; Ns = NE. SinceP = ND�1, it
follows thatP = NEE�1D�1 = fNEgfDEg�1 = NsD

�1

s .
It can be similarly shown thatP = ~D�1s

~Ns for some
~Ds 2 C

m�m[z1; z2; z3] and ~Ns 2 C
m�l[z1; z2; z3] such that

[� ~Ns
~Ds ] is of full rank in U3.

Applying a result in [23], we can find~X1 2 Cs

l�l(z1; z2; z3),
Xs 2 Cs

m�m(z1; z2; z3); and ~Y1; Ys 2 Cs

l�m(z1; z2; z3) such
that

~X1Ds + ~Y1Ns = Il (14)
~NsYs + ~DsXs = Im: (15)

Let � = � ~X1Ys + ~Y1Xs, and ~Xs = ~X1 +� ~Ns, ~Ys = ~Y1 �� ~Ds.
It can be easily checked that the following identity holds:

~Xs
~Ys

� ~Ns
~Ds

Ds �Ys
Ns Xs

=
Il 0l;m

0m; l Im
: (16)

We have shown thatDs and ~Ds are nonsingular. It remains to show
that Xs and ~Xs are nonsingular. SinceP is causal by assumption,
using a technique similar to the one in [7] and [11], it is easy to show
that det ~Xs(0; 0; 0) 6= 0 and det Xs(0; 0; 0) 6= 0, implying that
~Xs andXs are nonsingular.

III. PARAMETERIZATION OF STABILIZING COMPENSATORS

There are apparently two methods for characterizing all stabilizing
compensators for a given stabilizablen-D plant. The first method is
the celebratedQ-parameterization formula [1]–[5], while the second
method is the characterization formula proposed recently by Sule [9].
We briefly review these two methods.

1) First Method: For a stabilizablen-D plant P 2 C
m�l(z),

we first obtain a DCF given in Definition 1. Then all stabilizing
compensators forP are parameterized as

C =( ~Xs �Q ~Ns)
�1(~Ys +Q ~Ds) :

Q 2 Cs

l�m(z) and det ( ~Xs �Q ~Ns) 6= 0: (17)

The beauty of the aboveQ-parameterization formula is that we only
need to obtain a particular solution for the DCF problem and then
derive all stabilizing compensators according to (17). This method
is constructive as one can obtain all stabilizing compensators by
varyingQ freely inCs

l�m(z) (with the constraint that( ~Xs�Q ~Ns)
is nonsingular). A limitation of this method is that it requiresP to
have a DCF.

2) Second Method:Consider an MFDP = Nsd
�1

s for a stabi-
lizable P , whereNs 2 Cs

m�l(z) andds 2 Cs(z). Then solve the

following equation:

XsNs =Usds

YsNs =Wsds

NsYs =(Im �Xs)ds (18)

where Xs 2 Cs

m�m(z), Ys 2 Cs

l�m(z), Us 2 Cs

m�l(z),
Ws 2 Cs

l�l(z). It was shown in [9] that all stabilizing compensators
for P are given byC = YsX

�1

s whereXs andYs satisfy (18). The
advantage of this method is that it does not requireP to have a DCF.
However, unlike theQ-parameterization, such a characterization is
not constructive since there are no free parameters to choose in (18)!
In fact, even when a particular stabilizing compensator is available,
we still have to resolve (18) in order to obtain another stabilizing
compensator.

From the above discussion, it is clear that theQ-parameterization
(17) is preferred ifP has a DCF. We have shown in the previous
section that a MIMO 3-D plant has a DCF when all the unstable zeros
of its associated contentsg(z1) and ~g(z1) are simple. Therefore,
following [2]–[5], we are able to give aQ-parameterization of all
stabilizing compensators for a large class of MIMO 3-D systems as
follows.

Theorem 3: Let P (z1; z2; z3) be given as in Theorem 2. Then all
stabilizing compensators forP are parameterized by

C =( ~Xs �Q ~Ns)
�1(~Ys +Q ~Ds) : Q 2 Cs

l�m(z1; z2; z3)

and det( ~Xs �Q ~Ns) 6= 0: (19)

IV. EXAMPLE

Consider a causal unstable 3-D system represented by

P (z1; z2; z3) =
1

�p

z1 + 0:5 0
z2 z3 + 2

(20)

where�p = z1 + 0:5. Applying Lemma 1, we can decomposeP
into MFD’s P = ~D�1 ~N = ND�1, where

D = ~D =
z1 + 0:5 0

0 z1 + 0:5

N = ~N =
z1 + 0:5 0

z2 z3 + 2
:

Let F = [DT NT ]T , ~F = [� ~N ~D ], and let a1(z1; z2; z3);
� � � ; a6(z1; z2; z3) denote the 2� 2 minors of F . We have
ai(z1; z2; z3) = g(z1)bi(z1; z2; z3), for i = 1; � � � ; 6, where
g(z1) = ~g(z1) = z1 + 0:5, and b1(z1; z2; z3); � � � ; b6(z1; z2; z3)
are the reduced minors ofF given by

z1+0:5; 0; z3+2; �(z1+0:5); �z2; z3+2:

It is easy to see thatb1; � � � ; b6 have no common zeros inU3.
Hence,P (z1; z2; z3) is feedback stabilizable [9], [10]. However,
since g(z1) has a zero atz1 = �0:5 inside the unit discU1, F
is not of full rank inU3. Applying a criterion for the existence of
primitive factorizations for 3-D polynomial matrices [17], it can be
easily tested thatF is already FRP. Thus, unlike the 2-D case [20],
we cannot extract a right divisor with determinant equal tog(z1)
from F . As a result, a DCF ofP is not readily available. Since the
only unstable zero ofg(z1) (~g(z1)) is simple, by Theorem 2,P has
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a DCF. Forz1 = �0:5, we have

F (�0:5; z2; z3) =

0 0
0 0
0 0
z2 z3 + 2

F (�0:5; z2; z3)W1(z2; z3) =

0 0
0 0
0 0
z2 z3 + 2

z3 + 2 0
�z2 1

=

0 0
0 0
0 0
0 z3 + 2

:

This implies

F (z1; z2; z3)W1(z2; z3) =Fs(z1; z2; z3)E1(z1)

Fs(z1; z2; z3) =

z3 + 2 0
�z2 z1 + 0:5
z3 + 2 0

0 z3 + 2

E1(z1) =
z1 + 0:5 0

0 1
:

It can be easily tested thatFs is of full rank in U3. Similarly, we
can obtain

~Fs(z1; z2; z3) =
�1 0 1 0
�z2 �(z3 + 2) 0 z1 + 0:5

with ~Fs(z1; z2; z3) being of full rank inU3. PartitionFs and ~Fs as
Fs = [DT

s NT

s ]T and ~Fs = [� ~Ns
~Ds ]

~Ds =
1 0
0 z1 + 0:5

; ~Ns =
1 0
z2 z3 + 2

Ds =
z3 + 2 0
�z2 z1 + 0:5

; Ns =
z3 + 2 0

0 z3 + 2
:

We next construct

~Xs =
�1 0
0 �1

; ~Ys =
1

�s

z3 + 3 0
�z2 z1 + 1:5

Xs =
�(z3 + 2) 0

z2 �1

Ys =
1

�s

(z3 + 3)(z3 + 2) 0
�z2(z3 + z1 + 3:5) z1 + 1:5

where�s = z3 + 2, such that

~Xs
~Ys

�

~Ns
~Ds

Ds �Ys
Ns Xs

=
I2 02
02 I2

: (21)

Notice that ~Ds, Ds, ~Ns, Ns, ~Xs, Xs, ~Ys, Ys are all in
Rs

2�2(z1; z2; z3), Ds, ~Ds, Xs, ~Xs are all nonsingular, and
det ~Xs(0; 0; 0) 6= 0, det Xs(0; 0; 0) 6= 0. Finally, all stabilizing
compensators for the given unstable 3-D plantP (z1; z2; z3) are
parameterized by

C =( ~Xs �Q ~Ns)
�1(~Ys +Q ~Ds) : Q 2 Cs

2�2(z1; z2; z3)

and det( ~Xs �Q ~Ns) 6= 0: (22)

If real stabilizing compensators are desired, we can restrictQ 2

Rs

2�2(z1; z2; z3) in (22). For this simple example, the details for
obtainingXs, Ys, ~Xs, ~Ys are just routine algebra, but rather lengthy,
and hence are omitted here to save space.

V. CONCLUSIONS

In this paper, we have solved the open problem of the existence of
DCF’s for a large class of MIMO 3-D linear systems. We have proven
that if all the unstable zeros of the associated contentsg(z1) and~g(z1)
of a feedback stabilizable causal MIMO 3-D plantP (z1; z2; z3)
are simple, thenP (z1; z2; z3) has a DCF, thus proving in part a
conjecture raised in [10]. We have also given a parameterization of
all stabilizing compensators for an MIMO 3-D system in this class.
We hope our results stimulate further research in this direction.

The key result developed in this paper is a novel and constructive
technique of “replacing” an unstable polynomial with a stable one, as
presented in Theorem 1. This technique is in some sense similar to
the technique presented in [7] but is much more complicated, since
we have to deal with 3-D polynomial matrices here instead of 2-D
ones in [7]. The main contribution is that we are able to construct a
DCF for a given MIMO 3-D plant in the class discussed in a finite
number of steps. However, it is nontrivial to extend the proposed
technique to the generaln-D (n > 3) case, as in general we are not
able to decompose a give MIMOn-D (n > 3) linear systemP (z)
into MFD’s P = ~D�1 ~N = ND�1 such as the g.c.d.d(z) of thel�l
minors of[DT NT ]T is equal to its contentg(z1). The problem of
the existence of a DCF for a general stabilizable MIMOn-D (n > 3)
linear system remains open at this stage.

Throughout this paper, we have assumed the ground field to
be C. It is natural to ask ifP 2 R

m�l(z1; z2; z3), and is it
possible to decomposeP into MFD’s P = ~D�1s ~Ns = NsD

�1

s ,
with ~Ds 2 R

m�m[z1; z2; z3], Ds 2 R
l�l[z1; z2; z3], and

~Ns; Ns 2 R
m�l[z1; z2; z3], such that the matrices[DT

s NT

s ]T

and [ ~Ns
~Ds ] are of full rank inU3? The answer is affirmative

if all the unstable zeros ofg(z1) and ~g(z1) are simple and real,
since in this case the ground field of all the definitions, lemmas,
and theorems can be restricted toR. However, if g(z1) or ~g(z1)
has some unstable complex zeros, we cannot guarantee thatP has
a DCF with coefficients overR. More research is required before
an answer could be given. Another unresolved open problem arising
from this paper is to investigate whether or notP (z1; z2; z3) has a
DCF wheng(z1) or ~g(z1) has a multiple zero.
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[21] M. Morf, B. C. Lévy, and S. Y. Kung, “New results in 2-D systems the-
ory—Part I: 2-D polynomial matrices, factorization and coprimeness,”
Proc. IEEE,vol. 65, pp. 861–872, 1977.

[22] F. R. Gantmacher,Theory of Matrices. New York: Chelsea, 1959, vol.
I/II.

[23] C. A. Berenstein and D. C. Struppa, “1-Inverses for polynomial matrices
of nonconstant rank,”Syst. Contr. Lett.,vol. 6, pp. 309–314, 1986.

On the Mortensen Equation for Maximum
Likelihood State Estimation

Shin Ichi Aihara and Arunabha Bagchi

Abstract—The main purpose of the present paper is to formulate
the maximum likelihood state estimation problem correctly for a
continuous-time nonlinear stochastic dynamical system. By using the
Onsager–Machlup functional, a modified likelihood is introduced. The
basic equation for the maximum likelihood state estimate is derived
with the aid of a dynamic programming approach. The numerical
procedure for realizing the recursive filtering is also proposed with
some numerical results.

Index Terms—Finitely additive white noise, HJB-equation, maximum
likelihood estimate, Onsager–Machlup functional.

I. INTRODUCTION

Consider the following noisy plant:

dx(t) = f(x(t))dt+Gdw(t); 0 < t � T (1)

with x(0) = xo 2 Rn, where w is a standardn-dimensional
Brownian motion process andG is an n � n constant matrix.
Corresponding to (1), the noisy observation mechanism is modeled by

y(t) = h(x(t)) + e(t) (2)

where e is a finitely additive white noise inL2(0; T ; Rd) inde-
pendent ofw. (See Kallianpur and Karandikar [1] for a general
introduction to the finitely additive white noise theory.) The minimum
variance nonlinear filtering problem for the above setting has been
studied and the related Zakai equation has also been derived in [1].

Here we shall consider the maximum likelihood state estimation
problem instead. If the observation mechanism (2) is modeled by an
Ito equation, the existence of a maximuma posterioriestimator has
already been proposed by Dembo and Zeitouni [2]. Intuitively, this
procedure computes the most probable state trajectory in function
space that maximizes some “likelihood functional” of the data (ob-
servation process)y(t) in some time interval, say0 � t � T . This
gives us a nonlinear maximum likelihood smoother. The fundamental
difficulty here is a suitable notion of some likelihood functional of the
observation process in continuous time. This was resolved in [2] by
using the Onsager–Machlup functional which gives a sort of density
of a stochastic process with respect to another standard process (like
a Brownian motion). This is achieved by calculating the ratio of the
probability of a stochastic process lying inside an� tube of some
deterministic trajectory and the probability of the standard process
lying inside an�-ball and letting� go to zero. This can be visualized
as a large deviation-type argument.

Our objective of this paper is twofold. We first reformulate the
maximum likelihood state estimation problem as introduced in [2]
in the finitely additive white noise setup. The other and the main
contribution of the paper is to obtain, instead of the MAP estimator,
the nonlinear maximum likelihood filter. This is accomplished as
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