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Abstract We discuss the suppression of collective synchrony in a system of two interacting

oscillatory networks. It is assumed that the first network can be affected by the stimulation,

whereas the activity of the second one can be monitored. The study is motivated by ongoing

attempts to develop efficient techniques for the manipulation of pathological brain rhythms.

The suppression mechanism we consider is related to the classical problem of interaction

of active and passive systems. The main idea is to connect a specially designed linear

oscillator to the active system to be controlled. We demonstrate that the feedback loop,

organized in this way, provides an efficient suppression. We support the discussion of our

approach by a theoretical treatment of model equations for the collective modes of both

networks, as well as by the numerical simulation of two coupled populations of neurons.

The main advantage of our approach is that it provides a vanishing-stimulation control, i.e.,

the stimulation reduces to the noise level as soon as the goal is achieved.

Keywords Neuronal synchrony · Global coupling · Hopf bifurcation

1 Introduction

Synchronization is believed to play a key role in the pathogenesis of several neurological

diseases, such as Parkinson’s disease and essential tremor (see, e.g., [1–3] and references

therein). For example, it is hypothesized that Parkinsonian symptoms result from a

synchronized pacemaker-like activity of a population of many thousands of neurons in

the basal ganglia, whereas normal functioning of the basal ganglia is characterized by an

uncorrelated firing of neurons. This hypothesis is supported by several experimental studies

[4–7]. Thus, suppression of the abnormal neural activity, or, in physical terms, destruction
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of an undesired synchrony in neural populations, constitutes an important clinical problem.

In severe cases, when the disease cannot be treated by a standard medication, this problem

is currently being solved with the help of a neurosurgical procedure, called deep brain
stimulation (DBS) [8–10]. DBS implies permanent electrical stimulation of the brain tissue

via implanted microelectrodes. The electrodes deliver current pulses with frequency greater

than 100 Hz from a subcutaneously implanted controller. As a result, the amplitude of the

Parkinsonian tremor essentially decreases. In spite of the efficiency of such a stimulation, its

usage is complicated by several side-effects like speech problems (dysarthria, dysphasia);

abnormal, involuntary muscle contractions (dystonia, dyskinesia); facial and limb muscle

weakness or partial paralysis (paresis); etc. For example, permanent stimulation requires

frequent (about every 3 years) exchange of the battery of the implanted controller, which

means another minor surgery. Next, it is important to note that the mechanisms of DBS are

still being debated and the parameters of stimulation are being chosen empirically.

Recently, several methods for suppression of neural synchrony were introduced in

theoretical studies, with the ultimate goal of substituting the standard DBS with a more

mild and efficient technique. These methods can be roughly classified into two groups:

nonfeedback (see [1, 11] and references therein) and feedback techniques [12–15]. A simple

and efficient technique, which restores asynchronous dynamics in a network of oscillatory

neurons, was presented in our previous publication [16]. The main idea of this approach is

related to the classical problem of oscillation theory, namely to the problem of interaction

of an active system (or medium) with a passive one.
1

Classical oscillation theory treats

interaction between an active, self-sustained oscillator and a passive load (resonator). It

is known (see, e.g., [17]) that, for certain parameters, the passive system, coupled to the

active one, can quench the oscillations of the latter. In a more complex setting, one can

analyze the dynamics of an ensemble of (infinitely) many interacting units for the case when

some units exhibit self-sustained oscillations, whereas the other units are passive. Thus, one

can speak of interaction between active and passive subpopulations. The dynamics of such

mixed populations of oscillators has been investigated in [18, 19]. It was reported that the

collective dynamics of the ensemble (mean field) depend on the ratio between the numbers

of active and passive oscillators. In particular, for certain ratios and parameters, the mean

field oscillation vanished.

In our approach, we exploit this idea by designing a passive unit and coupling it to

the neuronal population to be controlled. From the control theory viewpoint, it means

designing a linear feedback loop with a built-in, second-order filter. The destruction

of an undesirable synchronous oscillation is accomplished as follows: the activity of a

neural population is permanently measured and fed back after linear processing. The main

advantage of the suggested technique is that the administered control input vanishes as soon

as a desynchronized state is achieved. This feature is extremely important for therapeutic

applications since it means significant reduction of intervention into a living tissue.

In the present paper, we extend our previous work on nondelayed feedback suppression

[16] to treat a more complicated case of two interacting populations of neurons. This

is motivated by the fact that stimulation and measurement electrodes can be implanted

into two nonoverlapping, though interacting, populations: the first one is affected by the

stimulation, while the collective activity is registered from the second one. Generally

speaking, the second population can be, by itself, both active and passive; below, we

1
By active system, we mean a self-sustained oscillator capable of producing stable oscillations without

external forces. On the contrary, a passive system oscillates only in response to external driving.
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consider both cases. Next, we demonstrate that feedback loop parameters can be easily

determined by a test stimulation.

1.1 Synchrony in Neural Populations

The most frequently used model, describing the collective dynamics in a large population of

self-sustained oscillators, is the model of globally (all-to-all) coupled units. It is well known

that if the coupling strength exceeds some threshold, which depends on the frequency

distribution of elements, such a population becomes synchronized via the Kuramoto
transition [20–22]. Synchronization is manifested by the appearance of nonzero mean field

oscillation.

We illustrate the Kuramoto transition by considering an ensemble of N Bonhoeffer–van

der Pol oscillators, coupled via the mean field in the x variable:

ẋi = xi − x3

i /3 − yi + Ii + εX,

ẏi = 0.1(xi + 0.7 − 0.8yi).
(1)

Each unit is driven by the force εX, where ε quantifies the strength of the mean field

coupling and X = N−1
∑N

i=1
xi is the mean field. Parameter Ii has the meaning of the

external current and directly influences the spiking frequency of elements of the ensemble.

The elements are not identical: parameter Ii is taken as Ii = 0.6 + σ , where σ is a Gaussian

distributed number with zero mean and 0.1 rms value. For coupling strength below the

critical value, ε < εcr ≈ 0.015, one observes small irregular fluctuations of the mean field

X around X0 ≈ −0.25 (see the bold line in Fig. 1a for an example computed for N = 500

and ε = 0.01); these fluctuations are due to the finite size of the ensemble. With the increase

of ε beyond the critical value ε > εcr ≈ 0.015, the oscillators of the ensemble synchronize

(see the solid line in Fig. 1a computed for ε = 0.03).

1.2 Desynchronization from the Control Theory Viewpoint

Desynchronization can be viewed as stabilization of an unstable asynchronous state of

the population. For low-dimensional systems, stabilization is a standard problem of control

theory [23]. A basic method used for this purpose is a feedback control. Typically, the

feedback signal is proportional to the deviation of a coordinate of the system from the
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Fig. 1 a The evolution of the mean field of a population of 500 Bonhoeffer–van der Pol neurons (1) for

subcritical coupling ε = 0.01 (bold line) and supercritical coupling ε = 0.03 (solid line). b Transition to the

macroscopic mean field in the model (1)
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desired state (proportional control), to the derivative of the coordinate (proportional-

derivative control), to the integral of the coordinate over the past (proportional-integral

control), or to a combination of these three values [23].

We remind the reader that, in view of a possible neuroscience application, it is important

to provide a vanishing-stimulation control. Clearly, the control proportional to the deviation

of a state variable x from the equilibrium state (or operating point) x0, i.e., C∼ − (x − x0),

vanishes only if the equilibrium point of the system is accurately known. However, in many

experimental situations, the locations of the operating point and the model equations are

generally uncertain. This problem can be overcome by using a first-order filter (washout

filter) in the feedback loop (see [24–26] and references therein) or a time-delayed feedback

(see, e.g., [27–30] and references therein): C∼ f (x(t − τ)), where f is a feedback function

and τ > 0 is the delay.

Stabilization of an unstable asynchronous state of a high-dimensional system, i.e., in

an ensemble of globally coupled units by means of linear time-delayed feedback, was

treated numerically and analytically in [13–15]. It has been demonstrated that feedback

of the form C∼(X(t − τ) − X(t)), where X(t) is the mean field of the population, provides

a reliable suppression of collective synchrony, i.e., var(X) → 0, with vanishing stimulation,

C → 0. Simulations show that this technique does not influence the activity of the individual

units. On the other hand, if the feedback is proportional to the delayed mean field,

C ∼ X(t − τ) [13, 14] or to its power [12, 28, 29], then the stimulation is generally non-

vanishing; i.e., a permanent stimulation with C = const is required for the maintenance of

the suppressed state, var(X) → 0. Note that, in the context of chaos control, vanishing-

stimulation techniques are called noninvasive. We do not use this expression here since,

from the viewpoint of neuroscience, a technique using implanted electrodes is invasive.

In summary, the delayed feedback scheme can provide suppression with a vanishing

stimulation property. However, the delay term can bring a new, undesirable instability into

the system, and thus, the scheme requires a careful parameter tuning. Below, we show that

efficient suppression can be achieved by a feedback circuit without delay. The scheme we

discuss is very simple and can be easily implemented in hardware.

1.3 Linear Feedback Control Scheme: Assumptions and Requirements

As already mentioned, in our previous publication [16], we introduced an efficient technique

for control of collective synchrony in a large population of globally coupled elements; we

suggested that this technique can be used for the suppression of pathological brain rhythms

with the help of DBS. Our approach is based on several assumptions and requirements.

We proceed with the assumption that the collective activity of many neurons is represented

in the local field potential (LFP), which can be continuously monitored in an experiment

and, subsequently, after a certain processing, used for stimulation of the brain tissue via a

feedback loop. We also assumed that the signal from the whole network can be registered

and that the whole network can be stimulated. However, for practical applications, it is

important to consider the situation when the measurement and stimulation electrodes are

implanted into different, but interacting, neural populations.

For this reason, in this paper, we treat a model of two interacting globally coupled ensem-

bles (cf. [15, 31–33]), where one population is supposed to be affected by the stimulation

derived from collective activity (LFP) of the second one (see Fig. 2). Next, we require that,

as soon as the desired asynchronous state is achieved, the control signal should vanish,

or, strictly speaking, should decrease to the noise level (vanishing-stimulation control).
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Fig. 2 Suggested suppression scheme. The LFP of the population B is measured by the recording electrode

and is fed back via the field application electrode to the population A. The feedback loop contains a passive

oscillator playing the role of a band pass filter, an integrator, a summator, and two amplifiers

Furthermore, the control scheme should be able to compensate an a priori unknown phase

shift, inherent to stimulation. This phase shift β is determined by the way the stimulation is

incorporated into the model equations (note that the exact electrophysiological mechanism

by which stimulation improves motor symptoms is unknown) and by organization of

internal coupling in the ensemble (see discussion in [14]).

The control technique should also be able to compensate for latency in measurements.

Another requirement is that the controller should be able to extract the relevant signal from

its mixture with the rhythms produced by neighboring neuronal populations and with the

measurement noise.

2 Stability Analysis of Two Interacting Neuronal Ensembles

In this section, we analyze the controlled dynamics of two interacting ensembles of neurons.

It is assumed that the elements within each population are globally coupled and the

interaction between these populations is of the mean field type, i.e., the mean field A of

one ensemble acts on all elements of the second ensemble B and, vice versa, the mean field

B of the second influences all elements A.

2.1 Model Equations

First, we consider the stabilization problem at a macroscopic level, taking into account only

the collective dynamics. Assuming that the collective oscillating mode is close to a Hopf

bifurcation, we write two symmetrically coupled equations for the complex amplitudes

A, B:

Ȧ = (ξ1 + iω1)A− |A|2 A+ ε(B − A) + Ceiβ,

Ḃ = (ξ2 + iω2)B − |B|2 B + ε(A− B).
(2)
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Here, C is the control signal (stimulation) and the phase shift β describes the uncertainty

of our action on the active oscillator. Let us include in the control loop a linear damped

oscillator driven by the measured signal:

ü + αu̇ + ω2

0
u = X(t) = Re(B). (3)

We set the oscillator frequency ω0 equal to the frequency ω of uncontrolled mean

field oscillations; this frequency can be easily determined by a standard technique (see,

e.g., [21]). Thus, the driven oscillator (3) is in resonance with the forcing (for a moment, we

can consider it as a harmonic one with the frequency ω = ω0). This means that the phase

of the output u is shifted by π/2 with respect to the phase of the input X(t), whereas the

phase shift of the derivative of the output signal u̇ with respect to the input X(t) is zero.

Hence, stimulation proportional to −u̇ is in antiphase with the collective mode X(t), to be

suppressed, and therefore, this stimulation will reduce collective synchrony. It is important

to note that the variable u̇ does not contain a constant component, 〈u̇〉 = 0, even if the

observed field does. Thus, a stimulation proportional to u̇ vanishes as soon as the goal of

the control is achieved, and, hence, the main requirement to the control strategy is satisfied.

It is of importance that the unit (3) offers an advantage of a band pass filter: it filters out

noise and other components outside of the vicinity of the main oscillation mode.

Now, we recall that the stimulation is characterized by an unknown phase shift β that

should be compensated to ensure the required phase relations between the measured signal

and the stimulation. For this purpose, we include in the feedback loop a phase-shifting unit,

described by

μḋ + d = u̇. (4)

For μω � 1, this unit operates as an integrator, with an additional multiplication by the

factor 1/μ, whereas for μω → 0, its transfer function is 1. Hence, the output of system (4)

has the same average as the input, i.e., 〈d〉 = 0. We take the control signal C to be

proportional to the weighted sum of u̇ and d: C ∼ ε f (u̇ + γ d), where the parameter γ

determines the desired phase shift. The units performing this summation and the integration

according to (4) form the phase shifter. It is easy to show that the phase difference θ between

the output u̇ + γ d of the phase shifter and its input u̇ is

θ = − arctan

(
γ

ωμ

)

, (5)

and, therefore, can be arbitrarily varied in the interval −π/2 < θ < π/2. The phase shift in

the interval π/2 < θ < 3π/2 can be obtained by sign inversion: ε f → −ε f . Summarizing,

the control input C to the system reads

C = ± ε f
√

1 + γ 2/ω2μ2
(u̇ + γ d ) = ε f cos θ · (u̇ − ωμd tan θ), (6)

where

√
1 + γ 2/ω2μ2 = 1/ cos θ is the normalization coefficient. It ensures an indepen-

dence of the amplification in the feedback loop from the phase shift θ , so that this

amplification is completely determined by ε f. At the points θ = ±π/2, the control term

is calculated as C = ε f ωμd.
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Finally, we write the equations for the controlled system as

Ȧ = (ξ1 + iω1)A− |A|2 A+ ε(B − A) + Ceiβ,

Ḃ = (ξ2 + iω2)B − |B|2 B + ε(A− B),
ü + αu̇ + ω2

0
u = Re(B),

μḋ + d = u̇.

(7)

Choosing appropriate values of parameters (frequencies ω1,2 and increments ξ1,2), we

can implement different regimes. To analyze the stability of the asynchronous solution

A = B = 0, we consider only the linear terms in (2) and substitute A = a1 + ia2, B =
b1 + ib2, u̇ = v in (7). Writing separately the real and imaginary parts, we obtain:

ȧ1 = ξ1a1 − ω1a2 + ε(b1 − a1) + E(v + γ d) cos β,

ȧ2 = ξ1a2 + ω1a1 + ε(b2 − a2) + E(v + γ d) sin β,

ḃ1 = ξ2b1 − ω2b2 + ε(a1 − b1),

ḃ2 = ξ2b2 + ω2b1 + ε(a2 − b2), (8)

u̇ = v,

v̇ + αv + ω2

0
u = b1,

μḋ + d = u̇.

Here, we denote E = ε f/

√
1 + γ 2/μ2ω2

0
= ε f cos θ . Seeking the solution in the form a1 =

A1eλt
, a2 = A2eλt

, b1 = B1eλt
, b2 = B2eλt

, u = Ueλt
, v = Veλt

, and d = Deλt
, we obtain

the algebraic system of seven linear equations. This system has a nontrivial solution if its

determinant is equal to 0; this condition provides the equation f(λ, E, γ ) = 0. The border

of the stability domain is determined by the condition Re(λ) = 0. Therefore, taking λ = i
on the stability border and separating real and imaginary parts, we obtain two real equations:

fr (, E, γ ) = 0,
fi (, E, γ ) = 0.

(9)

Both equations are linear with respect to E and γ . Therefore, this system can be solved with

respect to γ and E and, taking into account of (5) and ε f cos θ = E , rewritten as

θ = θ(),
ε f = ε f ().

(10)

These are the equations of the stability border in the parameter plane (θ, ε f) in parametric

form; these expressions are very lengthy and, therefore, not presented here.

Different regimes can be implemented by choosing appropriate values of frequencies

ω1,2 and increments ξ1,2. Let us consider first the case of two interacting identical

subsystems (ω1 = ω2 = ω0 = 1.0, ξ1 = ξ2 = 0.02). The stability domain in the parameter

plane (θ, ε), i.e., the region where the control is efficient for this case, is presented in Fig. 3a.

Second, we take two nonidentical populations, ω1 = 1.0, ω2 = 1.04, ω0 = 1.0. The results

show (see Fig. 3b) that suppression can be achieved in this case as well. Finally, we model

a situation when the population, from which LFP is measured, is, by itself, passive. This

may reflect the case when the recording electrode is placed rather far from the region of

pathological activity, e.g., on the surface of the scalp. We illustrate this case in Fig. 3c.
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Fig. 3 Stability domains (areas

inside closed curves) for the

controlled model system (7) for

the case of identical (a) and

nonidentical (b) subpopulations.

c The case when the population

B, where the measurement is

performed, is stable

(ξ2 = −0.02). The other

parameters are: ε = 0.05,

α = 0.3ω0, μ = 500, and β = 0.

Note that stability of the fixed

point A = B = 0 corresponds to

the asynchronous dynamics of

the oscillator ensemble.

Instability of the fixed point

corresponds to synchronous

ensemble dynamics with nonzero

mean field
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2.2 Numerical Example: Two Coupled Bonhoeffer–van der Pol Populations

To compare the above obtained results of theoretical analysis with results of numerical

simulation, we consider two interacting ensembles of N globally coupled Bonhoeffer–van

der Pol oscillators:

ẋAi = xAi − x3

Ai/3 − yAi + IAi + εAXA + K(XB − XA) + C cos ψ,

ẏAi = 0.1(xAi + 0.7 − 0.8yAi) + C sin ψ,

ẋBi = xBi − x3

Bi/3 − yBi + IBi + εBXB + K(XA − XB),

(11)
ẏBi = 0.1(xBi + 0.7 − 0.8yBi),

ü + αu̇ + ω2

0
u = XB,

μḋ + d = u̇,

where the two last equations describe the feedback loop, namely, the linear damped

oscillator and integrator. Here, x and y correspond to the axon’s membrane potential

and refractivity, respectively. The oscillators within each ensemble are globally coupled

via the mean fields XA,B = N−1
∑

i xAi,Bi, with the internal coupling strengths εA and εB;

i = 1, . . . , N is the index of the neuron. Parameters IAi,Bi represent the external current

and directly influence the spiking frequency of elements of both ensembles. In our case,

the oscillators are not identical: IAi = 0.6 + σ , IBi = 0.62 + σ , where σ is a Gaussian

distributed number with zero mean and 0.1 rms value.
2

The external stimulus administered

2
The following conclusions hold also for identical oscillators in the presence of noise.
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to all elements of the first population is modeled by including an additional term on the

right-hand side of the Bonhoeffer–van der Pol equations and has the same form as in (6).

The parameter ψ describes the uncertainty of how the stimulation enters the equations, i.e.,

how the external force is distributed between the two equations. Note that the parameter ψ

is related, but not equal, to the parameter β in (2).

The results of the simulation for N = 10000 oscillators in each population are shown in

Fig. 4 for the following set of parameters: internal coupling εA = εB = 0.03, K = 0.1, and

ψ = 0, θ = 0.03. The parameters of the band pass filter and integrator are: ω0 = 2π/32.5

and μ = 500. The damping factor α of the oscillator (3) determines the width of the band

pass, � f = α/2π . Having in mind the application to Parkinsonian brain rhythms with

realistic values for the band pass from 10 to 13 Hz (see, e.g., power spectrum of an MEG

signal of a Parkinsonian patient in [34]), we choose � f/ f ≈ 0.3, which gives α = 0.3ω0.

Figure 4a presents the mean field dynamics of the subsystems Aand B. The control signal

is switched on at t0 = 400, i.e., ε f = 0 for t < t0 and ε f = −0.012 for t � t0 (see Fig. 4b).

Switching the stimulation on leads to the desynchronization in both subpopulations. We

quantify the suppression of the mean field oscillation by introducing the suppression

coefficient

SA,B = rms(XA,B)

rms(XAf,Bf)
,

where XA,B and XAf,Bf are the mean fields in the absence and presence of the feedback,

respectively. For this particular example, we get SA = 149, SB = 143. Figure 4 demonstrates

two main properties of our feedback scheme: (1) as soon as desired suppression is achieved,

the measured mean field XB tends to zero, and thus, the feedback signal practically vanishes,

i.e., 〈C〉 = 1.3 · 10
−7

and rms(C) = 0.001, and (2) the stimulation does not affect the natural

oscillatory dynamics of individual neurons. This is seen in Fig. 4, where dynamics of

two neurons are presented in the absence (Fig. 4c) and in the presence (Fig. 4d) of the

Fig. 4 Suppression of synchrony

in two coupled Bonhoeffer–van

der Pol subpopulations (11).

a The mean fields of these

subpopulations (XA, XB) without

(t < 500) and with (t > 500) an

external feedback. b The control

signal C vs time.

Synchronous (c) and

asynchronous (d) dynamics of

two neurons in the absence and

in the presence of the

stimulation, respectively
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Fig. 5 Domains of suppression

for two coupled Bonhoeffer–van

der Pol ensembles (11). Each

population consists of N = 500

oscillators. The suppression

factor is shown in a color scale

coding: for population A
(a) and B (b)

 

 

−π /2 0   π/2 π    
θ   θ   

−0.04

−0.02

0

0.02

0.04

0

10

20

30

40

−π/2 0   π/2 π

(a) (b)

fε

control. Individual neurons continue oscillating as before, but not coherently. In biological

terms, this would mean the suppression of the tremor-related brain activity
3

with a minimal

intervention into the neural tissue that does not destroy individual units.

For a quantitative comparison of the theoretical description within the framework of

the model equation (2) with the numerics, we simulate N = 500 Bonhoeffer–van der

Pol oscillators (11) in each population and plot, in a color scale coding, the suppression

coefficients SA (Fig. 5a) and SB (Fig. 5b) as a function of the phase shift θ and the

feedback strength ε f. In this case, each ensemble in the absence of control produces a

macroscopic mean field (εAf,Bf > εcr), or in other words, both ensembles are active. The

parameters of ensembles and feedback control are chosen as in the previous example

(Fig. 4). These domains of suppression have to be compared with theoretically obtained

stability regions in the case of two nonidentical populations (see Fig. 3b). The case where

the stimulated population produces non-zero macroscopic mean field, i.e., the population

is active, εAf > εcr, whereas the monitored population is passive, εBf < εcr, is presented in

Fig. 6. As is seen from this picture, the obtained suppression domains are larger than in the

previous case (Fig. 5), which quantitatively corresponds to the theoretical results illustrated

in Fig. 3c.

Another way to compare the theoretical analysis with the numerics is presented in Figs. 7

and 8. Here, we first compute the variance of the mean field for N = 500 elements in both

subpopulations. Then, we estimate the variance of the mean field for subcritical coupling

to be 0.0075; this value corresponds to the level of noise in the system. We use this value

as a cutoff level: if the variance of the mean field is larger than this value, the system

is considered to be unstable. The obtained stability domains are shown in Fig. 7 for the

case when both systems are active and in Fig. 8 for the case when one system is active

and another one is passive. Comparing the stability domains in Figs. 7 and 8 with the

suppression domains in Figs. 5 and 6, one can see a good correspondence between the

theory and numerics.

3
Here, we mean brain activity that manifests itself as a rather narrow spectral peak in the power spectrum of

EEG or MEG signals.
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Fig. 6 Domains of suppression

for two coupled Bonhoeffer–van

der Pol ensembles (11). Each

population consists of N = 500

oscillators. The suppression

factor is shown in color coding:

a the suppression factor SA of the

stimulated population A,

b the suppression factor SB
of the measured population B
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3 Determination of Stimulation Parameters by a Test Stimulation

The presented suppression scheme has two parameters to be determined, namely, the

feedback strength ε f and the phase shift θ . The parameter θ is related to the phase shift

β, which is inherent to stimulation. We recall that the phase shift θ is a free parameter of

our control scheme, and it has been introduced with the purpose of compensating for the

unknown phase shift β inherent to the stimulation. To find the appropriate parameters for

an efficient stimulation, one has to estimate the phase shift β. Here, we introduce a simple

way in which this can be done in an experiment.

Suppose first that we deal with one population only. For the determination of the

unknown parameter β, we make use of a general property of oscillators, namely, of their

ability to be synchronized by a weak external forcing. Considering the population as one

oscillator, we stimulate it by a harmonic force with the same frequency as its collective

Fig. 7 Results of numerical

analysis of the stability domains

of the two coupled

Bonhoeffer–van der Pol

ensembles (11). The case of two

coupled active populations is

presented here: a the stimulated

population A, b the monitored

population B
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Fig. 8 Results of numerical

analysis of the stability domains

of the two coupled

Bonhoeffer–van der Pol

ensembles (11). a The stimulated

population A is active,

b the monitored population

B is passive
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oscillation, i.e., C = ε f cos(ωt), and examine the entrained oscillation. (Note that, in this

setup, we deal with an open loop system.) If the phase shift β were zero, the oscillator and

the force would be in phase. Otherwise, the difference of the oscillator phase and phase of

the force will be φosc − φforce = β. Accordingly, at first, the frequency of the uncontrolled

oscillation ω has to be measured, and then the proper test signal C = ε f cos(ωt) has to be

applied. The unknown parameter β can be calculated by virtue of Fourier transformation

for this frequency, i.e.,

β̃ = − arg

(

T−1

s

∫ Ts

0

X(t)eiωtdt
)

, (12)

where Ts is the time of stimulation.

To validate this method for the case of two coupled ensembles, we simulated (2) and as

an output we took X(t) = Re(B). In order to compare the obtained results with the results of

stability analysis of Section 2, we consider three different cases. First, we take two identical

ensembles (ω1 = ω2 = 1.0, ξ1 = ξ2 = 0.02) with the parameters ε = 0.05, ε f = 0.07, β =
0; as a result, we obtain β̃ = −6 · 10

−5
. In the case of nonidentical ensembles, ω1 = 1.0,

ω2 = 1.04, we obtain β̃ = 0.11. Finally, in the case when one system is active and the

second one is passive, ξ1 = 0.02, ξ2 = −0.02, we obtain β̃ = 0.08. Thus, in all cases, the

estimated values are very close to the true value β = 0 and are in good correspondence with

the optimal value of the phase shift (see Fig. 3).

4 Conclusions

We have extended our nondelayed feedback approach for control of synchrony in a

population of globally coupled elements to a more complex setting of two interacting

populations, where the first one is affected by the stimulation, whereas the measurement

is performed from the second one. The considered situation can model the suppression of

pathological rhythm when recording and stimulation of the brain tissue cannot be carried out

by the same or closely placed electrode(s). We have considered the cases where the second
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population is either active or passive. We have shown that our control technique provides a

vanishing-stimulation suppression and, thus, reduces the invasion into the system. That is

a crucial property for possible applications in neuroscience. The theoretical analysis of

suppression in a system of two interacting ensembles has been done in the framework

of the model amplitude equations, and the results are in good agreement with numerical

simulations.

Important advantages of our linear feedback control are the simplicity of its implemen-

tation, the ability to compensate for the phase shift inherent to stimulation as well as for

latency in measurements, and presence of a built-in band pass filter. The latter allows one

to extract the relevant signal from its mixture with other rhythms and noise; the central

frequency and the bandwidth of the filter are governed by parameters ω0 and α [see (3)].

With this method, we also overcome the main disadvantage of the time-delayed method,

namely, that a new instability can arise if the delay is large enough. The parameters of the

control scheme can be easily tuned by means of a test stimulation by a harmonic force.

We expect that our technique can contribute significantly to the development of mild and

efficient techniques for suppression of pathological brain activity.
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