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Feedback Theory-Further Properties of Signal
Flow Graphs*

SAMUEL J. MASONt

Summary-A way to enhance
Writing gain at a glance.
Dr. Tustin extended
Proof appended.
Examples illustrative
Pray not frustrative.

BACKGROUNDT HERE ARE many different paths to the solution
of a set of linear equations. The formal method
involves inversion of a matrix. We know, how-

ever, that there are many different ways of inverting a
matrix: determinantal expansion in minors, systematic
reduction of a matrix to diagonal form, partitioning
into submatrices, and so forth, each of which has its
particular interpretation as a sequence of algebraic
manipulations within the original equations. A deter-
minantal expansion of special interest is

a linear system analysis problem should be interpretable
as a search for all possible combinations of something
or other, and that the solution should take the form of
a sum of products of the somethings, whatever they are,
divided by another such sum of products. Hence, in-
stead of undertaking a sequence of operations, we can
find the solution by looking for certain combinations
of things. The method will be especially useful if these
combinations have a simple interpretation in the con-
text of the problem.

3 2

D = alia2ja3k ''' an (1)

where amp is the element in the mth row and pth
column of a determinant having n rows, and the sum-
mation is taken over all possible permutations of the
column subscripts. (The sign of each term is positive
or negative in accord with an even or odd number of
successive adjacent column-subscript interchanges re-
quired to produce a given permutation.) Since the solu-
tion of a set of linear equations involves ratios of deter-
minantal quantities, (1) suggests the general idea that

* Original manuscript received by the IRE, August 16, 1955;
revised manuscript received, February 27, 1956. This work was sup-
ported in part by the Army (Signal Corps), the Air Force (Office of
Scientific Research, Air Research and Development Command),
and the Navy (Office of Naval Research).
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Fig. 1-An electrical
j 

network graph.

As a concrete illustration of the idea, consider the
electrical network graph shown in Fig. 1. For simplicity,
let the branch admittances be denoted by letters a, b,
c, d, and e. This particular graph has three independent
node-pairs. First locate all possible sets of three branches
which do not contain closed loops and write the sum of
their branch admittance products as the denominator
of (2).

Z1 2 =

ab + ac + bc + bd

abd + abe + acd + dace + ade + bcd + bce + bde
(2)

Now locate all sets of two branches which do not form

- -- ---
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Mason: Further Properties of Signal Flow Graphs

closed loops and which also do not contain any paths from
node 1 to ground or from node 2 to ground. Write the sum
of their branch admittance products as the numerator of
expression (2). The result is the transfer impedance
between nodes 1 and 2, that is, the voltage at node 2
when a unit current is injected at node 1. Any imped-
ance of a branch network can be found by this process.l

So much for electrical network graphs. Our main
concern in this paper is with signal flow graphs,2 whose
branches are directed. Tustin 3 has suggested that the
feedback factor for a flow graph of the form shown in
Fig. 2 can be formulated by combining the feedback loop

The purposes of this paper are: to extend the method
to a general form applicable to any flow graph; to
present a proof of the general result; and to illustrate
the usefulness of such flow graph techniques by applica-
tion to practical linear analysis problems. The proof
will be given last. It is tempting to add, at this point,
that a better understanding of linear analysis is a great
aid in problems of nonlinear analysis and linear or non-
linear design.

A BRIEF STATEMENT OF SOME ELEMENTARY

PROPERTIES OF LINEAR SIGNAL

FLOW GRAPHS

a b c d e f

h I

Fig. 2-The flow graph of an automatic control system.

gains in a certain way. The three loop gains are

T = bch

T = cdi

T3 = fj

and the forward path gain is

Go = abcdefg.

The gain of the complete system is found to be

Go
G=

A signal flow graph is a network of directed branches
which connect at nodes. Branch jk originates at node j
and terminates upon node k, the direction from j to k
being indicated by an arrowhead on the branch. Each
branch jk has associated with it a quantity called the
branch gain gik and each node j has an associated quan-
tity called the node signal xj. The various node signals

(3a) are related by the associated equations

(3b) L xjgik = xk, k = 1, 2, 3,... (7)

(3c) i

The graph shown in Fig. 3, for example, has equations

(4)
ax, + dx3 = X2

bx 2 + fx 4 = X3

ex 2 + CX3 = x4

gx 3 + hx 4 = x6.
[1 -(T + T2) ](1 - T)

and expansion of the denominator yields

G= * (6)
1 - (T1 + T2 + T) + (T1T3 + T2T3)

Tustin recognized the denominator as unity plus the
sum of all possible products of loop gains taken one at
a time (T,+T 2 +T3 ), two at a time, (TT 3 +T2 T3),
three at a time, and so.forth, excluding products of
loops that touch or partially coincide. The products
T1T2 and TT 2T3 are properly and accordingly missing
in this particular example. The algebraic sign alter-
nates, as shown, with each succeeding group of products.

Tustin did not take up the general case but gave a
hint that a graph having several different forward paths
could be handled by considering each path separately
and superposing the effects. Detailed examination of the
general problem shows, in fact, that the form of (6)
must be modified to include possible feedback factors in
the numerator. Otherwise (6) applies only to those
graphs in which each loop touches all forward paths.

I Y. H. Ku, "Resume of Maxewll's and Kirchoff's rules for net-
work analysis," J. Frank. nst., vol. 253, pp. 211-224; AMarch,
1952.

2 S. J. Mason, "Feedback theory-some properties of signal flow
graphs," PROC. IRE, vol. 41, pp. 1144-1156; September, 1953.

3 A. Tustin, "Direct Current Machines for Control Systems,"
The Macmillan Company, New York, pp. 45-46, 1952.

(8a)

(8b)

(8c)

(8d)

We shall need certain definitions. A source is a node
having only outgoing branches (node 1 in Fig. 3). A
sink is a node having only incoming branches. A path
is any continuous succession of branches traversed in
the indicated branch directions. A forward path is a
path from source to sink along which no node is encoun-
tered more than once (abch, aeh, aefg, abg, in Fig. 3).

d f

2\ b 3 \ / 

e g

Fig. 3-A simple signal flow graph.

A feedback loop is a path that forms a closed cycle along
which each node is encountered once per cycle (bd, cf,
def, but not bcfd, in Fig. 3). A path gain is the product of
the branch gains along that path. The loop gain of a
feedback loop is the product of the gains of the branches
forming that loop. The gain of a flow graph is the signal
appearing at the sink per unit signal applied at the
source. Only one source and one sink need be considered,
since sources are superposable and sinks are independ-
ent of each other.

Additional terminology will be introduced as needed.

* b b 

v
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PROCEEDINGS OF THE IRE

GENERAL FORMULATION OF FLOW GRAPH GAIN

To begin with an example, consider the graph shown
in Fig. 4. This graph exhibits three feedback loops,
whose gains are

(9a)

(9b)

(9c)

T= h

T2 = fg

T3 = de

and two forward paths, whose gains are

G1 = ab

G2 = ceb.

(10a)

(10b)

ef g
(a) G

d

6

(b) · :?:::¥::-, ... r--

f

g_ _

(d) --. ::--2'--- - -- ....
_ _ _ _

oe

=bf

cg

h
e f 9

(e --- T== dgfe

d
e 9

(f) --- - ----- --- T 3 ecgf

C

e

a
b

Fig. 4-A flow graph with three feedback loops.

To find the graph gain, first locate all possible sets of
nontouching loops and write the algebraic sum of their
gain products as the denominator of (11).

G,(1 T, - T) + G2(1- T)
G =1( 2)2(1 (11)

1 - Ti - T- T + T1T3

Each term of the denominator is the gain product of
a set of nontouching loops. The algebraic sign of the
term is plus (or minus) for an even (or odd) number of
loops in the set. The graph of Fig. 4 has no sets of three
or more nontouching loops. Taking the loops two at a
time we find only one permissible set, TT 3 . When the
loops are taken one at a time the question of touching
does not arise, so that each loop in the graph is itself
an admissible "set." For completeness of form we may
also consider the set of loops taken "none at a time" and,
by analogy with the zeroth power of a number, interpret
its gain product as the unity term in the denominator
of (11). The numerator contains the sum of all forward
path gains, each multiplied by a factor. The factor for
a given forward path is made up of all possible sets of
loops which do not touch each other and which also do
not touch that forward path. The first forward path
(G1 =ab) touches the third loop, and T3 is therefore
absent from the first numerator factor. Since the second
path (G2 =ceb) touches both T2 and T3, only T enters
the second factor.

The general expression for graph gain may be writ-
ten as

(g) : / ".a b -, | * -Ga=obc,A
= II ,a b -c. I

(h) - G2=d,A2=l-bf

d

Fig. 5-Identification of paths and loop sets.

E GkAk

A

wherein

Gk = gain of the kth forward path

A = 1 - X Pm 1 + L Pm2 - > Pm3 +±- '
m m m

Pmr = gain product of the mth possible combina-
tion of r nontouching loops

Ak = the value of A for that part of the graph

(12a)

(12b)

(12c)

(12d)

not touching the kth forward path. (12e)

The form of (12a) suggests that we call A the determi-
nant of the graph, and call Ak the cofactor of forward
path k.

A subsidiary result of some interest has to do with
graphs whose feedback loops form nontouching sub-
graphs. To find the loop subgraph of any flow graph,
simply remove all of those branches not lying in feed-
back loops, leaving all of the feedback loops, and noth-
ing but the feedback loops. In general, the loop sub-
graph may have a number of nontouching parts.
The useful fact is that the determinant of a complete
flow graph is equal to the product of the determinants of
each of the nontouching parts in its loop subgraph.

obc+d(I - bf)
I-oe-hf-cg-dgfe +oecg

A = I-T 2-T 3 -T4 +TIT 3

922 July
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Mason: Further Properties of Signal Flow Graphs

d(I-be) +abc

I-be

a + be
I-ad-be-cf- bcd-afe

c +ob

flow graph are in cause-and-effect form, each variable
expressed explicitly in terms of others, and since physi-
cal problems are often very conveniently formulated in
just this form, the study of flow graphs assumes practi-
cal significance.

il 5

I-od- be- abf- cod-cf

(a)

I a b g(I- hi-jc-hbcd+hijc)+aie(l-jc)+ abcde

(e) f g hIi j c '-fg-hi-jc-faie-hbcd-fabcde
+ fghi+fgjc+hijc +foiejc+fghbcd

e d -fghijc

Fig. 6-Sample flow graphs and their gain expressions.

ILLUSTRATIVE EXAMPLES OF GAIN EVALUATION

BY INSPECTION OF PATHS AND LOOP SETS

Eq. (12) is formidable at first sight but the idea is
simple. More examples will help illustrate its simplicity.
Fig. 5 (on the previous page) shows the first of these dis-
played in minute detail: (a) the graph to be solved; (b)-
(f) the loop sets contributing to A; (g) and (h) the for-

eI i2 e2 i3 e3

Z "2l Y y4 ,

-ZI -Y2 -Z3 -Y4

(b)

I eI i2 2 3 e3

YI \ z2 j\ Y3 ntZ4 y5

(C)

Fig. 7-The transfer impedance of a ladder.

Consider the ladder network shown in Fig. 7(a). The
problem is to find the transfer impedance e3/il. One pos-
sible formulation of the problem is indicated by the flow
graph Fig. 7(b). The associated equations state that
el=z(il-i 2), i2=y2 (el-e 2), and so forth. By inspection
of the graph,

e3 Zly2Z3Y4ZB

il 1 + Zly2 + y2Z3 + Z3Y4 + y4Z5 + Zly2Z3y4 + Zly2y4ZS + y2Z3y 4 Z5

(13a)

or, with numerator and denominator multiplied by
yly3ys = 1 /ZlZ3 Z5,

e3 y2y4

il Yly3Y5 + Y2Y3Y6 + yly2y5 + yly4y5 + yly3Y4 + Y2y4y5 + 2Y3y4 + yly2Y4
(13b)

ward paths and their cofactors. Fig. 6 gives several ad-
ditional examples on which you may wish to practice
evaluating gains by inspection.

ILLUSTRATIVE APPLICATIONS OF FLOW GRAPH

TECHNIQUES TO PRACTICAL

ANALYSIS PROBLEMS

The study of flow graphs is a fascinating topological
game and therefore, from one viewpoint, worthwhile in
its own right. Since the associated equations of a linear

This result can be checked by the branch-combination
method mentioned at the beginning of this paper.

A different formulation of the problem is indicated by
the graph of Fig. 7(c), whose equations state that
i3=yse3, e2 =e3 +z4i3, 'i2 =i3+y3 e2, and so forth. In the
physical problem i is the primary cause and e3 the
final effect. We may, however, choose a value of e3 and
then calculate the value of i required to produce that
e3. The resulting equations will, from the analysis view-
point, treat e3 as a primary cause (source) and i as

C

(d). i (I-g-h-cd+gh)+ae(I-h)+ bf (l-g)+ad f +bce
I -g-h- cd +gh

__. _______llll__�lp___________II·-- . ·-- I - -I_
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PROCEEDINGS OF THE IRE

the final effect (sink) produced by the chain of calcu-
lations. This does not in any way alter the physical role
of i. The new graph (c) may appear simpler to solve
than that of (b). Since graph (c) contains no feedback
loops, the determinant and path cofactors are all equal
to unity. There are many forward paths, however, and
careful inspection is required to identify the sum of
their gains as

1 5 
= yl2y 3e4y + ylz2y3 + ylZ2Y5 + ylZ4 y5e3

+ y3Z4y5 + yl + 3 + y5 (13c)

(a) (b)

e,

which proves to be, as it should, the reciprocal of (13b).
Incidentally, graph (c) is obtainable directly from graph
(b), as are all other possible cause-and-effect formula-
tions involving the same variables, by the process of
path inversion discussed in a previous paper.2 This
example points out the two very important facts: 1)
the primary physical source does not necessarily appear

.as a source node in the graph, and 2) of two possible
flow graph formulations of a problem, the one having
fewer feedback loops is not necessarily simpler to solve
by inspection, since it may also have a much more com-
plicated set of forward paths.

Fig. 8(a) offers another sample analysis problem,
determination of the voltage gain of a feedback ampli-
fier. One possible chain of cause-and-effect reasoning,
which leads from the circuit model, Fig. 8(b), to the
flow graph formulation, Fig. 8(c), is the following. First
notice that el is the difference of e and ek. Next express
ii as an effect due to causes e and ek, using superposi-
tion to write the gains of the two branches entering
node i. The dependency of e 2 upon i follows directly.
Now, e2 would be easy to evaluate in terms of either
eg2 or if if the other were zero, so superpose the two
effects as indicated by the two branches entering node
e2. At this point in the formulation ek and if are as yet
not explicitly specified in terms of other variables. It is
a simple matter, however, to visualize ek as the super-
position of the voltages in Rk caused by il and if, and to
identify if as the superposition of two currents in RI
caused by ek and e. This completes the graph.

The path from ek to e to i may be lumped in
parallel with the branch entering i from ek. This simpli-
fication, convenient but not necessary, yields the graph
shown in Fig. 9. We could, of course, have expressed il
in terms of el and ek at the outset and arrived at Fig. 9
directly. All simplifications of a graph are themselves

(C)

Fig. 8-Voltage gain of a feedback amplifier. (a) A feedback ampli-
fier; (b) The midband linear incremental circuit model; (c) A
possible flow graph.

Rf

Rk

Fig. 9-Elimination of superfluous nodes el and e 2.

possible formulations. The better our perception of
the workings of a circuit, the fewer variables will we
need to introduce at the outset and the simpler will be
the resulting flow graph structure.

In discussing the feedback amplifier of Fig. 8(a) it
is common practice to neglect the loading effect of the
feedback resistor Rf in parallel with Rk, the loading
effect of Rf in parallel with R2 , and the leakage trans-
mission from ek to e2 through Ri. Such an approximation
is equivalent to the removal of the branches from ek

to if and if to e2 in Fig. 9. It is sometimes dangerous to
make early approximations, however, and in this case no
appreciable labor is saved, since we can write the exact
answer by inspection of Fig. 9:

I41/2R1R2 al Rk] 1 Rkr2R 2

e2 (r, + Ri) (r 2 + R2) I RI I (r, + R1)(R)(rn + R2)

el (,1 +q 1)Rk Rk r2R 2 (m + 1)l2RRkR 2 i ± )Rkr 2R 2
1 + +-- - + +

r1 + R1 R Rf(rl + Ri)(r + R2) R(rl - R)(r + R2 )

(14)

a I

July924

.. 

-



Mason: Further Properties of Signal Flow Graphs

The two forward paths are elite2 and elilekife2, the first
having a cofactor due to loop ekif. The principal feed-
back loop is ile2ifek and its gain is the fifth term of the
denominator. Physical interpretations of the various
paths and loops could be discussed but our main pur-
pose, to illustrate the formulation of a graph and the
evaluation of its gain by inspection, has been covered.

As a final example, consider the calculation of micro-
wave reflection from a triple-layered dielectric sand-
wich. Fig. 10(a) shows the incident wave A, the re-
flection B, and the four interfaces between adjacent
regions of different material. The first and fourth inter-
faces, of course, are those between air and solid. Let
rl be the reflection coefficient of the first interface,
relating the incident and reflected components of tan-
gential electric field. It follows from the continuity of
tangential E that the interface transmission coefficient
is 1+rl, and from symmetry that the reflection coeffi-
cient from the opposite side of the interface is the nega-
tive of r. A suitable flow graph is sketched in Fig.
10(b). Node signals along the upper row are right-
going waves just to the left or right of each interface,
those on the lower row are left-going waves, and quanti-
ties d are exponential phase shift factors accounting for
the delay in traversing each layer.

Apart from the first branch r, the graph has the
same structure as that of Fig. 6(e). Hence the reflectiv-
ity of the triple layer will be

B
-= r + (1 + r)( -r)G (15)
A

where G is in the same form as the gain of Fig. 6(e). We
shall not expand it in detail. The point is that the
answer can be written by inspection of the paths and
loops in the graph.

PROOF OF THE GENERAL GAIN EXPRESSION

In an earlier paper2 a quantity A was defined as

A = (1 - T 1')(l - T2') ... (1 - T,') (16)

for a graph having n nodes, where

Tk' =loop gain of the kth node as computed with all
higher-numbered nodes split.

Splitting a node divides that node into a new source and
a new sink, all branches entering that node going with
the new sink and all branches leaving that node going
with the new source. The loop gain of a node was de-
fined as the gain from the new source to the new sink,
when that node is split. It was also shown that A, as com-
puted according to (16), is independent of the order in
which the nodes are numbered, and that consequently A is
a linear function of each branch gain in the graph. It fol-
lows that A is equal to unity plus the algebraic sum of
various branch-gain products.

We shall first show that each term of A, other than
the unity term, is a product of the gains of nontouching

A

B

i__ I+rl | 

I (2) (3) (4)

(I) (2) (3) (4)

(a)

I +rI d, 2 I +r2 d2 3 I+ r3 d3 4

j rj 7, (r2 r3) r3 4

I-r I d12 I-r 2 d2 3 I-r 3 d3 4

(b)

Fig. 10-A wave reflection problem. (a) Reflection of waves
from a triple-layer; (b) A possible flow graph.

kO 0N

(o)

(C)

(b)

k(d

(d)

Fig. 11-Two touching paths.

feedback loops. This can be done by contradiction. Con-
sider two branches which either enter the same node
or leave the same node, as shown in Fig. 11(a) and (c).
Imagine these branches imbedded in a larger graph, the
remainder of which is not shown. Call the branch gains
ka and kb. Now consider the equivalent replacements
(b) and (d). The new node may be numbered zero,
whence To' =0, the other T' quantities in (16) are un-
changed, and A is therefore unaltered. If both branches
ka and kb appear in a term of the A of graph (a) then
the square of k must appear in a term of the A of graph
(b). This is impossible since A must be a linear function
of branch gain k. Hence no term of A can contain the
gains of two touching paths.

Now suppose that of the several nontouching paths
appearing in a given term of A, some are feedback loops
and some are open paths. Destruction of all other
branches eliminates some terms from A but leaves the
given term unchanged. It follows from (16) and the
definitions of Tk', however, that the A for the subgraph
containing only these nontouching paths is just

(17)

where Tk is the gain of the kth feedback loop in the sub-
graph. Hence the open path gains cannot appear in the
given term and it follows that each term of A is the
product of gains of nontouching feedback loops. More-
over, it is clear from the structure of A that a term in
any subgraph A must also appear as a term in the A of
the complete graph, and conversely, every term of A is a

_ -�^-----l"-�1Y·*··LI1DlllllsU--I--·-·- .._ ---�.��_-.· -·--�---^--Il·I- ------ - ------· --
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PROCEEDINGS OF THE IRE

term of some subgraph A. Hence, to identify all possible
terms in A we must look for all possible subgraphs com-
prising sets of nontouching loops. Eq. (17) also shows
that the algebraic sign of a term is plus or minus in
accord with an even or odd number of loops in that
term. This verifies the form of A as given in (12c) and
(12d).

We shall next establish the general expression for
graph gain (12a). The following notation will prove con-
venient. Consider the graph shown schematically in
Fig. 12, with node n +-1 given special attention. Let

A' = the A for the complete graph of n+1 nodes.

A = the value of A with node n + 1 split or removed.

T = the loop gain of node n +1.

I.RSTn NODES

Fig. 12-A flow graph with one node placed strongly in evidence.

There will in general be several different feedback loops
containing node n + 1. Let

Tk=gain of the kth feedback loop containing node
n+1,

fA =the value of A for that part of the graph not
touching loop Tk.

With the above notation, we have from (16) that

A'
1 - T=--. (18)

A

Remembering that any A is the algebraic sum of gain
products of nontouching loops, we find it possible to write

A' = A - TkAk.
k

(19)

Eq. (19) represents the count of all possible nontouch-
ing loop sets in A'. The addition of node n + 1 creates
new loops Tk but the only new loop sets of A' not al-
ready in A are the nontouching sets TkAk. The negative
sign in (19) suffices to preserve the sign rule, since the
product of Tk and a positive term of Ak will contain an
odd number of loops.

Substitution of (19) into (18) yields the general
result:

Tk/k

T (20)
A

With node n+1 permanently split, T is just the source-
to-sink gain of the graph and Tk is the kth forward path.
This verifies (12a).
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