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Abstract—Thermal control is crucial to real-time systems as
excessive processor temperature can cause system failure or
unacceptable performance degradation due to hardware throt-
tling. Real-time systems face significant challenges in thermal
management as they must avoid processor overheating while still
delivering desired real-time performance. Furthermore, many
real-time systems must handle a broad range of uncertainties
in system and environmental conditions. To address these chal-
lenges, this paper presentsThermal Control under Utilization
Bound (TCUB), a novel thermal control algorithm specifically
designed for real-time systems. TCUB employs a nested feedback
loop that dynamically controls both processor temperature and
CPU utilization through task rate adaptation. Rigorously mod-
eled and designed based on control theory, TCUB can maintain
both desired processor temperature and CPU utilization, thereby
avoiding processor overheating and maintaining desired soft real-
time performance. A salient feature of TCUB lies on its capability
to handle a broad range of uncertainties in terms of processor
power consumption, task execution times, ambient temperature,
and unexpected thermal faults. The robustness of TCUB makes
it particularly suitable for real-time embedded systems that must
operate in highly unpredictable environments. The advantages of
TCUB are demonstrated through extensive simulations under a
broad range of system and environmental uncertainties.

I. I NTRODUCTION

Real-time embedded systems face significant challenges
in thermal management as they adopt modern processors
with increasing power density and compact architecture. Such
systems must avoid processor overheating while still maintain-
ing desired real-time performance. While modern processors
usually rely on hardware throttling mechanisms to prevent
overheating, such mechanisms cause performance degradation
unacceptable for real-time applications.

Moreover, real-time embedded systems must deal with a
broad range of uncertainties in system characteristics and
environmental conditions:

• Power consumption: The power consumption of a proces-
sor may vary significantly when running different tasks,
and can be influenced by the instructions executed [1].

• Ambient temperature: In contrast to servers operating in
air-conditioned environments, real-time embedded sys-
tems may operate in diverse environments under a wide
range of ambient temperature.

• Thermal faults: Due to their harsh operating conditions
embedded systems can be particularly susceptible to
failures of cooling subsystems [2].

• Task execution times: The execution times of many real-
time applications are unknown a priory because their

executions are strongly influenced by the operating en-
vironment and sensor inputs.

To meet these challenges, we presentThermal Control under
Utilization Bound (TCUB), a novel dynamic thermal manage-
ment algorithm specifically designed for real-time embedded
systems. TCUB employs feedback control loops to control
both the processor temperature and CPU utilization by ad-
justing task rates. In contrast to earlier research on feedback
control real-time scheduling that ignores thermal issues [3],
TCUB can maintainboth desired processor temperature and
CPU utilization bound, thereby avoiding processor overheating
and maintaining desired real-time performance. TCUB has the
following salient features.

• TCUB features a nested feedback control structure con-
sisting of (1) a low-rate thermal controller dealing with
the slower thermal dynamics, and (2) a high-rate uti-
lization controller handling the faster CPU utilization
dynamics caused by uncertainties in task execution times.
The thermal controller outputs a set-point for the CPU
utilization that accounts for the thermal dynamics and is
consistent with the schedulability bounds of the real-time
system. This set-point is, in turn, used by the utilization
controller to adjust the task rates. The modular control
structure allows separate control designs optimized for
thermal-protection and utilization-regulation.

• In contrast to earlier research on thermal-ware real-
time scheduling that relies on accurate system and task
models [4]–[8], TCUB is a highlyrobust algorithm
that can handle a broad range of uncertainties in terms
of processor power consumption, task execution times,
thermal faults, and ambient temperature. The robustness
of TCUB makes it particularly suitable for real-time
embedded systems that operate in highly unpredictable
environments.

• In contrast to model predictive control adopted by earlier
research [9] that results in complex robustness analy-
sis, conservative design, and incurs high computational
overhead, TCUB feathers a simple and efficient ther-
mal controller that integrates a discrete-time-proportional-
integral-controller and atraditional anti-windup con-
troller designed to enforce the desired CPU utilization
bound, which hasO(1) time complexity. The anti-
windup controller is necessary to handle the schedula-
bility bounds that impose hard saturation constraints on



the output of the thermal controller (utilization set-point).
Moreover, the control approach allows rigorous analysis
of stability and robustness under uncertainties.

• Extensive simulation results demonstrate the stability and
robustness of TCUB under awide range of uncertainty
and operating conditions including varying power con-
sumption and ambient temperature, as well as thermal
faults.

The rest of the paper is organized as follows. Section II-A
presents a difference equation model that characterizes the
thermal dynamics of real-time systems. Section IV details the
design and stability analysis of TCUB. Section V provides
simulation results. Section VI introduces related work. Sec-
tion VII concludes the paper.

II. PROBLEM FORMULATION

In this section we first present the system model adopted in
this work , and then we discuss the goals of thermal control
for real-time systems.

A. System Models

A key feature of our system model is that it characterizes the
uncertainties in real-time systems in terms of task execution
time, power consumption, ambient temperature, and thermal
faults. We assume a single processor real-time system running
n independent, periodic real-time tasks,{Ti|1 ≤ i ≤ n}. Each
task Ti has a periodpi. The task rateri of the taskTi is
defined asri = 1

pi

. Each task has a soft dealine related to its
period and an estimated execution timeci known at design
time. However, the actual execution timeai at run time is
unknown and may deviate fromci.

The rate ri of the taskTi can be dynamically adjusted
within a range[Rmin,i, Rmax,i]. Earlier work had shown that
task rates in many real-time applications (e.g., digital feedback
control [10] and multimedia [11]) can be adjusted in certain
ranges without causing system failure. A task running at a
higher rate contributes a higher value to the application atthe
cost of higher CPU utilization.

When tasks are running on the processor, the active power
consumed by the processor fluctuates significantly. Earlier
work refers to such significant power variation during run time
as power phase behavior [1]. At the instruction level, different
instruction types, inter-instruction overhead, memory system
state, and pipeline related effects cause power fluctuation[12].
Therefore, while theestimated active power of the processor,
Pa, is known, the actual active power of the processor may
deviate from the estimate at run time. When the processor is
idle, the processor consumes idle powerPidle.

We adopt the well known thermal RC model to characterize
the thermal dynamics of the processor [2], [13]:

dT (t)

dt
= −b2(T (t) − T0) + b1P (t) (1)

whereT (t) is the temperature of the processor,T0 is ambi-
ent temperature,P (t) is the actual power consumed by the
processor,b1 = 1

Cth

and b2 = 1
RthCth

, where Cth is heat

capacity andRth is heat resistance. As embedded systems
may operate in diverse environments, the ambient temperature
T0 may change. Moreover, thermal faults (e.g., fan failure)
may cause significant change to the thermal resistance [2]. A
thermal control algorithm designed for real-time systems must
handle these uncertainties at run time.

B. Design Goals

Our thermal control algorithm is designed to meet two
primary requirements: (1) to prevent processor overheating,
and (2) to maintain desired soft real-time performance. Due
to the uncertainties faced by real-time systems, TCUB adopts
a feedback control approach that dynamically controls the
processor temperature and real-time performance. It allows
users to specify a temperature set-pointTR, and a utilization
boundUmax. For processors support hardware throttling, the
temperature set-point is below the temperature threshold for
hardware throttling so as to avoid the unpredictable perfor-
mance degradation caused by throttling. For processors that
do not support throttling, the temperature set-point should be
below the maximum temperature acceptable to the processor.
The CPU utilization boundUmax should be below the schedu-
lable utilization bound of the real-time scheduling policy(e.g.,
[14]).

TCUB is designed to prevent processor overheating by keep-
ing the temperature below or close to the temperature set-point
TR, and to maintain desired software real-time performance by
enforcing the CPU utilization boundUmax.1 Moreover, TCUB
must handle uncertainties in terms of power consumption,
task execution times, ambient temperature, and thermal fault.
Finally, the control algorithm should be simple and efficient
to provide a practical solution for resource-limited embedded
systems.

III. OVERVIEW OF TCUB

We propose a multi-rate nested feedback-loop control ap-
proach to manage both the temperature and the utilization. As
shown in Fig. 1, there are two control loops in TCUB that
operate at different time scales. The outer loop is responsible
for thermal control and runs at a lower rate than the inner
loop responsible for utilization control. In the outer loopthe
thermal controller aims to enforce the specified temperature
set-pointTR. At the end of thekth sampling period of the
outer loop, the thermal controller computes the utilization set-
point Us(k) for the utilization controller of the inner loop
based on the measured temperatureT (k) provided by the
thermal monitor. The inner-loop utilization controller ensures
that the utilization converges to the set-pointUs(k) computed
by the thermal controller by adjusting the task rates. At the
k′

th sampling period of the inner loop, the utilization controller
output the task rate change∆r(k′) based on the measured
utilization U(k′). The rate actuator adjusts tasks rate based on
the output of the utilization controller. Our multi-rate nested
control approach has several important advantages.

1As TCUB only controls the average CPU utilization dynamically, it is not
suitable for hard real-time systems.



1) The thermal dynamics are typically significantly slower
than the utilization dynamics, which motivates a multi-
rate control approach. The processor thermal-control
problem usually involves alarge thermal time-constant
(τth = RthCth ≈ 150 seconds) whereas existing utiliza-
tion controllers (which we incorporate into our design)
typically have dynamic responses within a few seconds
(e.g., less than4 seconds [3]).

2) Unlike computationally intensive model predictive con-
trol adopted by earlier work on thermal control [9], our
proposed nested control architecture greatly simplifies the
control algorithms. It requiring neither complicated gain-
scheduling tables nor complicated on-line optimization
algorithms. The lower rate thermal-control loop further
reduces computational burden.

3) We provide a stability and robustness analysis for the
thermal-controller, based on the necessary and sufficient
Nyquist Stability criterion which allows us todirectly re-
late uncertain physical properties of our thermal-dynamic
control problem, whereas the model predictive control
approach [9] has to rely on aconservative small gain
assumption and offers little insight into the physical
parameter uncertainties which directly affect stability and
performance.
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Fig. 1. TCUB structure

Specifically, the nested control loops work as follows. The
thermal and utilization controller employ two sampling peri-
ods:Ts, which denotes the sampling period of the processor’s
temperature; andTu, which is the sampling period of the
utilization (Tu < Ts). At the end of thekth temperature
sampling period, the feedback loop is invoked and executes
the following steps:

1) The temperature monitor sends the processor’s tempera-
tureT (k) to the thermal controller over the last sampling
period.

2) The thermal controller calculates the CPU utilizationset-
point of the processor,Us(k), based onT (k) and tem-
perature reference. It then sendsUs(k) to the utilization
controller. NoteUs(k) is effectively held form samples
in which m is a positive integer which relates the outer-
loop sample timeTs to the inner-loop sample timeTu

such thatTs = mTu.
3) The utilization controller adjusts the task rates through

rate actuator at eachTu sampling period so as to track
the utilization set-pointUs(k). In TCUB, we employ
FC-U [3] as the utilization controller. FC-U uses a
Proportional controller to ensure the utilization set-point;
its effectiveness in single processor real-time systems has
been validated in past studies.

One benefit of our nested control structure is modular
design, that is, we can design the two control loops separately.
For utilization control loop we reuse the well studied feedback
control utilization controller FC-U [3]. The effectiveness of
FC-U is justified by the simulations and experiments. In the
following sections, we only focus on the thermal controller
design and stability analysis.

IV. T HERMAL CONTROL DESIGN AND ANALYSIS

The principal challenge for the thermal controller design
is to guarantee that a maximum allowable temperatureTR

is not exceeded while the thermal-control outputUs(k) is
subject to actuator-saturation which is governed by a set of
utilization bounds{Umin, Umax}(0 ≤ Umin < Umax ≤ 1). The
maximum utilization boundUmax is the scheduler-dependent
utilization bound beyond which tasks may miss a deadline.
The minimum utilization boundUmin can be determined by
taking the sum of the product of eachminimum achievable task
execution time with each correspondingminimum allowable
task rate for a given system. The thermal controller is required
to regulate the temperature of the processor to trackTR subject
to the constraints of utilization by its outputUs(k). Therefore,
a proportional-integrator (PI) controller with an integrator-
anti-windup controller is proposed to determineUs(k) while
addressing actuator limitations in order to guarantee stability.
This simple yet elegant outer-thermal control loop can be run
at a significantly lower-rate without any noticeable perfor-
mance loss due to the systems high thermal time constant.

In this section we describe the control design and analysis
of TCUB. In the following sections we present the design of
thermal controller and the stability analysis.

A. Dynamic Model for Thermal Control

As a foundation for the design of the thermal controller, we
derive a discrete-time, difference-equation model that charac-
terizes the dynamic relationship between the CPU utilization
U(k) (the control input) and the processor temperatureT (k)
(the controlled variable). We first characterize the relationship
between the power consumption and the CPU utilization and
then derive a discrete-time model based on the thermal RC
model .

First, we characterize the relationship between the power
consumption of the processor and its CPU utilization. CPU
utilization is the fraction of the time when CPU is active in
a time interval. LetU(k) denote the CPU utilization in the
kth sampling period. The average power of the processor in
kth sampling period,̄P (k), has the following relationship with
U(k):

P̄ (k) = GpPaU(k) + Pidle(1 − U(k)) (2)

= (GpPa − Pidle)U(k) + Pidle

whereGp represents the ratio between the actual active power
at run time and the estimated active powerPa. In (2) GpPa

is the actual power when the CPU is active, andU(k) is the
fraction of time when the CPU is active.Pidle is the power
when the CPU is idle, and1 − U(k) is the fraction time



when the CPU is idle. The same power model is also used
in temperature simulation of server systems [15].

Next, we transform the thermal RC model (1) to a discrete-
time model. Denote the Laplace transform ofT (t) as T (s)
andP (t) asP (s) from (1) we have the following model

T (s) =
Rth

RthCths + 1
P (s) +

1

RthCths + 1
T0. (3)

For the thermal control analysis we need to derive a discrete-
time model to approximate this system. The thermal con-
troller issues a fixed-periodic utilization set-point which the
inner-loop utilization controller closely and quickly regulates
to. This utilization set-point is proportional to the average
power consumed by the processor, as previously mentioned
the thermal-time constant is large, therefore the effects of
transients arenegligible. Therefore, a ZOH-equivalent model
is appropriate to approximate a discrete-time model of the
thermal dynamics of the system. It is straightforward to derive
the linear ZOH-equivalent discrete time model from (3) as
follows [16] :

T (k + 1) = ΦT (k) + (1 − Φ)T0 + Rth(1 − Φ)P (k) (4)

wherek representskth sampling period,Φ = exp(− Ts

RthCth

)
andTs is the sampling period.

Then we combine the thermal RC model (1) and the
relationship between power and utilization (2), specifically,
by substitutingP (k) for P̄ (k), we could derive the model
employed in thermal control:

T (k + 1) = ΦT (k) + Rth(1 − Φ)(GaPa − Pidle)U(k)

+ Rth(1 − Φ)Pidle + (1 − Φ)T0 (5)

B. Thermal Controller Design

The structure of thermal controller we proposed is illustrated
in Fig. 2. It consists of a proportional-integral (PI) controller
(denoted asK(z)), an anti-windup controller (denoted as
Ĥ(z)) which is determined from the model̂H(z) and a
saturation block. The PI controller’s output is limited by the
saturated block and then the utilization set-point output by
the thermal controller cannot surpass the utilization bound
assigned by the users. Essentially anti-windup controllertrans-
forms nonlinear behavior of the real-time systems induced
by the utilization bounds to linear behavior so that normal
linear control design could be exploited. The input of the PI

Fig. 2. Proposed Thermal Control Structure.

controller is the error between the reference trajectory and
linearized temperature∆Tlin(k). The control output of the PI
controller,u(k), is limited to enforce utilization bounds by the

saturated block,Us(k) = sat(u(k), Umin, Umax), in which

sat(x, xmin, xmax) =











xmin, if x < xmin

xmax, if x > xmax

x, otherwise.

In the normal case, the maximum utilizationUmax is or less
than the schedulable utilization bound of the tasks set,UB .
The error betweenU(k) andu(k), denoted as̄U(k), is passed
through a thermal model of the processor (denotedĤ(z))
which generates a compensation term∆T̂ (k), when combined
with the actual processor temperature difference∆T (k), a lin-
earized temperature difference (∆Tlin(k) = ∆T̂ (k)+∆T (k))
is fed-back to the controllerK(z) in order to guarantee
stability. This compensation is also known asanti-windup
control. It is noted that we use the thermal model of the
processor as the transfer function of the processor here but
without considering dynamic of the utilization controller. This
is one of the benefits of nested control structure, that is, we
can design the thermal and utilization controller separately. In
order to describe our implementation of the thermal controller,
as presented in Algorithm 1, we denoteT̂idle as an estimate of
the idle temperatureTidle(t) and T̂o as either an estimate or
measurement (if available) of environmental temperatureTo.

For thermal controller design, we rewrite the model (5)
in a more compact form. Note that the temperatureT (k)
depends ultimately on the environmental temperatureT0, the
idle temperature componentTidle which depends on the idle
power componentPidle such thatTidle(t) = RthPidle, and the
active power component∆T (k), that is,

T (t) = ∆T (t) + T0 + Tidle.

Then the model (5) could be rewritten as

∆T (k + 1) = Φ∆T (k) + ΓU(k) (6)

where Γ = kpRth(1 − Φ) and kp = (GaPa − Pidle). In
model (6) uncertainty inGp can be expressed in terms of
the following bounds on theactual power gain kp such that

kp min ≤ kp ≤ kp max.

In Z-domain the model (6) can be written as follows

H(z) =
∆T (z)

U(z)
=

Γ

z − Φ
. (7)

To design the thermal controller with the proposed structure
we follow two steps. First a nominal linear controllerK(z)
ignoring the saturating limit is designed. In this work the
nominal linear controller is a PI-controller

K(s) = KP + KI
s + ωI

s

The discrete time controllerK(z) is synthesized using the
IPESH-transform from the continuous time controller model
K(s). The IPESH-transform, like the bilinear-transform, is
both a passivity and stability preserving transform which can
be applied to any linear-time invariant modelK(s) except that
it will not suffer from warping effects and therefore closely



matches the magnitude response up to the Nyquist frequency
π
Ts

[17], [18].

Definition 1. [17] Let Hp(s) and Hp(z) denote the respective
continuous and discrete time transfer functions which describe
a plant. Furthermore, let Ts denote the respective sample and
hold time. Finally, denote Z{F (s)} as the z-transform of the
sampled time series whose Laplace transform is the expression
of F (s), given on the same line in [19, Table 8.1 p.600]. Hp(z)
is generated using the following IPESH-transform

Hp(z) =
(z − 1)2

Tsz
Z

{

Hp(s)

s2

}

.

The result discrete time controller is:

K(z) = KP + KI

(

1 +
ωITs

2

)

z − 2−ωITs

2+ωITs

z − 1
.

Secondly, a anti-windup controller̂H(z) is designed to limit
performance deterioration in the event of a control constraints
being encountered.

From aforementioned thermal control design, we can
present the algorithm of the thermal controller as follows:The

Algorithm 1 Thermal Controller
Require: Temperature set-point,TR; Utilization bounds,Umin, Umax

1: while At the end of sampling perioddo
2: The temperature difference set-point,∆TR(k) is computed by

∆TR(k) = TR −
(

T̂0 + T̂idle

)

3: The linearized temperature∆Tlin(k) is computed by
∆Tlin(k) = ∆Tfb(k) + ∆T̂ (k) in which
∆Tfb(k) = T (k) −

(

T̂0 + T̂idle

)

4: e(k) = (∆TR(k) − ∆Tlin(k))
5: u(k) = u(k − 1) + KP (e(k) − e(k − 1)) +

KI

(

1 + ωITs

2

)

(e(k) − 2−ωITs

2+ωITs
e(k − 1)) {PI controller}

6: if Umin ≤ u(k) ≤ Umax then
7: Us(k) = u(k)
8: else
9: if U(k) < Umin then {EnforceUs(k) bound}

10: Us(k) = Umin

11: else{U(k) > Umax}
12: Us(k) = Umax

13: end if
14: end if
15: Ū(k) = u(k) − Us(k)
16: ∆T̂ (k + 1) = Φ̂∆T̂ (k) + Γ̂Ū(k). {Anti-windup controller}
17: end while

thermal controller related parameters used in the algorithm are
explained in Section IV-C.

C. Stability Analysis

We analyze the condition of stability of the proposed control
structure in this section. For a real-time system under thermal
control, stability ensures that the processor temperaturecon-
verges to the temperature set-point. In order to discuss stability,
we recall the following definition and the Nyquist stability
theorem.

Definition 2. A stablediscrete-time linear time invariant (LTI)
system is one in which all poles are inside the unit circle.

Fig. 3. Resulting feedback-structure whenH(z) = Ĥ(z).

Theorem 1. [20, p.857] Consider the closed loop consisting
of K(z) and H(z) only depicted in Fig. 3. In order for this
loop to be stable the net number of counterclockwiseencir-
clements of the point −1 by the Nyquist plot of K(ejω)H(ejω)
as ω varies from 0 to 2π must equal the number of poles of
K(z)H(z) outside the unit circle.

Note that Fig. 3 can be derived from Fig. 2 whenH(z) =
Ĥ(z). Therefore, from Theorem 1 and Fig. 3 we obtain
Lemma 1 in order to verify stability of the our proposed
control structure (Fig. 2).

Lemma 1. The closed-loop system depicted in Fig. 2, in which
∆TR is the input and ∆Tlin is the output, is stable if:

i. K(z)H(z) satisfy Theorem 1
ii. Ĥ(z) = H(z).

In addition, if the output ∆T (k) is to reach a steady-state
output for a given input ∆TR, then Ĥ(z) should be stable.

This leads us to the following theorem:

Theorem 2. The closed-loop system with controller

K(z) = KP + KI

(

1 +
ωITs

2

)

z − 2−ωITs

2+ωITs

z − 1

depicted in Fig. 2 in which ∆TR is the input, and ∆Tlin is
the output is stable if:

i. Ĥ(z) = Γ̂
z−Φ̂

, Γ̂ ≤ Γmax, Φ̂ ≤ Φmax

ii. KP = KI = kGM
1+Φmax

2Γmax

in which kGM = 10−
GM
20 , Φmax = exp(− Ts

Rth maxCth

), Γmax =

kp maxRth max(1−Φmax) and ωI = 2(1−Φmax)
Ts(1+Φmax) . where GM is

the desired worst-case gain margin and , 0 ≤ GM < ∞.

Proof: We show a brief proof of Theorem 2. Let us first
consider the case of the closed loop only withK(z) andH(z).
The plant-controller loop-product can now be written in the
following form:

K(z)H(z) =
KPΓ

z − Φ
+KI

(

1 +
ωITs

2

)

z − Φmax

z − Φ

Γ

z − 1
. (8)

The models of (8) and (5) indicate that no poles exist outside
the unit circle for allTs < ∞; therefore, Lemma 1 will always
be satisfied if

|K(ejπ)H(ejπ)| ≤ 1, and

Φmax = exp(−
Ts

Rth maxCth

) ≥ Φ.

These two conditions are sufficient that the phase margin will
be greater than zero whenω = π. In particular we note that if



we assume thatωI = 2(1−Φmax)
Ts(1+Φmax) then by cross multiplication

Φmax =
2 − ωITs

2 + ωITs

.

Therefore, our proposed controller has the following form

K(z) = KP + KI
2

1 + Φmax

(

z − Φmax

z − 1

)

so that

K(z)H(z) =
KPΓ

z − Φ
+

2KI

1 + Φmax

(z − Φmax)Γ

(z − Φ)(z − 1)

=

(

Γ

1 + Φmax

)

z − KP(1+Φmax)+Φmax2KI

KP(1+Φmax)+2KI

(z − 1)(z − Φ)

from the corresponding pole-zero plot, it is evident that the
magnitude|K(ejω)H(ejω)| is a smoothly decreasing function
in which the phase∠K(ejω)H(ejω) > −π for ω ∈ [0, π) if

Φ <
KP(1 + Φmax) + Φmax2KI

KP(1 + Φmax) + 2KI
< 1 holds.

Indeed, the above inequality will be shown to hold if
Φmax > Φ. It is therefore sufficient to let the magnitude
of |K(ejπ)H(ejπ)| < 1 or the magnitude of the respective
proportional term (involvingKP) and integral term (involving
KI) to each be less than one-half whenω = π and can
indeed be readily verified from our first expression given for
K(z)H(z), and carefully noting the relationship between the
ratio involving Φ andΓ in which

KP

kGM
<

|ejπ − Φ|

2Γ
≤

1 + Φmax

2Γmax

KI

kGM
<

1 + Φmax

4Γ

|(ejπ − Φ)(ejπ − 1)|

|ejπ − Φmax|
≤

1 + Φmax

2Γmax
.

For our control structure, it should be intuitive from viewing
Fig. 2 that there are only two cases to maintain stability. The
first case, when the control inputUmin ≤ u(k) ≤ Umax (which
implies that Ū(k) = 0) we want to enforce stability of the
active closed-loop system consisting ofK(z) andH(z), and
stability of Ĥ(z). For the second case, when the control input
saturatesu(k) < Umin or u(k) > Umax, we want to enforce
stability of theactive closed-loop system consisting ofK(z)
and Ĥ(z), and stability ofH(z).

• Case 1:
As is assumed in [22], [23], stability of this system
will first be considered for the special case in which
Ĥ(z) = H(z). In such case it is straightforward to
show that Fig. 2 can be drawn in the equivalent form
as depicted in Fig. 3. The functiondead(u,Umin, Umax)
is implemented as follows:

dead(u,Umin, Umax) =











(u − Umin), if u ≤ Umin

0, if Umin < u < Umax

(u − Umax), otherwise.

• Case 2:
In this case, to avoid introducing additional terms and
complexity, we simply note that when:

Ĥ(z) = H(z)(1 + ∆(z))

Fig. 2 can be shown to be in the equivalent form depicted
in Fig. 4. Therefore, when checking for stability, one
should verify whetherK(z)Ĥ(z) also satisfy the Nyquist
stability criteria.

Fig. 4. Equivalent control structure given that̂H(z) = (1 + ∆(z))H(z).

We will always know whatUmax will be as it is dictated by
the scheduler chosen, however, some uncertainty may remain
on choosing the lower-limitUmin due to task execution time.
Therefore even choosing the ultimate lower-boundUmin = 0
can always be a safe choice even ifUmin > 0 in that
it will result in a slight sub-optimal lag in allowing the
controller to increase the utilization levels due to a decrease
in environmental temperature for example. Considering that
environmental temperature changes are fairly slow, this slight
lag is typically unnoticeable. For a more detailed discussion
on anti-windup control, we refer the reader to [22], [23].

The Theorem 2 reveals the appealing feature of our thermal
controller, that is, its robustness under power change and
thermal fault can be guaranteed analytically. Sincekp involves
uncertainty of power change represented byGp according its
definition, kp = (GpPa − Pidle), kp max corresponds to the
maximum actual power changes that TCUB can cancel. For
example, ifkp max = 510, Pa = 51.9w and Pidle = 13.3w,
we can calculate that the upper limit ofGp is 10.11, that is,
even if the actual power is10.11 times by the estimated power,
the thermal controller still can stabilize the system. Similarly,
the capability of TCUB to handle thermal fault (modeled by
increased thermal resistance) is represented byRth max.

In addition, it is obvious that for thesteady-state case when
the u(k) = Us(k) that ∆TR(k) = ∆Tlin(k) = ∆Tfb(k)
due to the integrator term inK(z). Therefore, as claimed,
even when we use estimates of the idle temperatureT̂idle

and environmental temperaturêTo, it is from the following
equation:

∆TR = TR − (T̂o + T̂idle) = T (k) − (T̂o + T̂idle) = ∆Tfb(k)

that we haveTR = T (k), that is, the processor’s temperature
converges to the temperature set point.

It is noted that due to the minimum task rate constraints,
there exists a lower bound for the feasible utilization, which in
turn results in a lower bound for the feasible temperature. The
lower bounds for the utilization and temperature are related to
the rate constraints, the actual execution times, and the actual
power consumption. TCUB can achieve satisfactory thermal



and real-time performance only if both the given temperature
set-point and the utilization bound are feasible under the task
rate constraints.

V. EVALUATION

The simulation environment consists of two components: an
event driven simulator implemented in C++ and a Simulinkc©

model implemented in MATLAB (R2008a). The simulator
simulates a single processor real-time system controlled by
TCUB and implements a utilization monitor, a rate actuator
and a utilization controller. The Simulinkc© component imple-
ments the thermal controller and models thermal dynamics of
the processor. The simulator and the Simulinkc© component
communicate with each other through a TCP connection.

In our simulation the task set running on the proces-
sor consists of10 periodic soft real-time tasks. The Rate
Monotonic (RM) scheduling algorithm [14] is employed to
schedule all these tasks. Initially, the period of each taskTi is
randomly generated in the range[100ms, 200ms]. Based on
the initial tasks rate, the execution time of tasks are chosen to
generate nearly equal utilization for each task and schedulable
utilization bound collectively. The minimum rate of one task
equals its execution time while the maximum rate equals 10
times of initial tasks rate. The deadline of each task equalsits
period.

The processor simulated in our work is a2.6GHz Pentium
4 (P4) processor with130nm Northwood core. All thermal
related parameters except thermal capacitance shown in Table
I are based on Intel technical specification [24]. The thermal
capacitance is acquired by simulating P4 on Hotspot [25], an
architecture level simulator.

TABLE I
POWER AND THERMAL PARAMETERS

Parameter Notation Value
Ambient temperature T0 45◦C
Max case temperature Tc 75◦C
Estimated Active power Pa 51.9W
Idle power∗ Pi 13.3W
Thermal Capacitance Cth 295.7J/K
Thermal Resistance Rth 0.467K/W
Thermal Fault Resistance R′

th 2Rth
∗ Enhanced Halt Mode is available [26]

In the following simulations, we choose70◦C as the set-
point of the processor’s temperature. The set-point is lower
than the maximum case temperature to avoid surpassing the
maximum case temperature during dynamic regulation. The
thermal fault resistance,R′

th
, is based on the estimated thermal

RC model presented in [2].
Table II shows the controller parameters of TCUB which

are calculated using the methods discussed in Section IV.
We compare TCUB against three baseline algorithms2,

OPEN, TC and FC-U. OPEN statically set task rates based

2While several thermal-aware real-time scheduling algorithms exist in the
literature [4]–[6], [27], they rely on Dynamic Voltage and Frequency Scaling
(DVFS) which is not required by TCUB. The only existing feedback control
algorithm for thermal control [9] also require on DVFS and hence will not
provide a fair comparison with TCUB. We discuss the related work in detail
in Section VI.

TABLE II
TCUB CONTROLLER PARAMETERS

Controllers Parameters Value
Thermal Controller Kp 0.0523

Ki 0.0523
ωi 0.0036

kp max 510
Rth max 0.934
Umax 0.67
TR 70◦C
Ts 10s

Utilization Controller Kp 0.37
Tu 1s

on the estimated execution times to achieve the schedulable
utilization bound (which is higher than the utilization bound
Umax adopted by TCUB. OPEN represents a static approach
commonly used in practice. TC has the same thermal con-
troller as TCUB, but does not include the utilization controller.
After the thermal controller outputs the utilization set-point, it
sets the task rates based on theestimated execution times. FC-
U [27] is the same utilization control algorithm used in TCUB,
but does not has the thermal controller to manage temperature.
As subsets of TCUB, TC and FC-U allow us to evaluate the
effectiveness of theintegrated control approach of TCUB for
both temperature and utilization.

A. Experiment I: Power Deviation

This set of simulations is designed to evaluate TCUB
when the processor’s active power deviate from the estimate,
which represent the phase change in the processor observed in
previous empirical studies [1]. We use differentpower ratios,
i.e., the ratio between the actual active power to the estimate,
in different runs. In the first run the power ratio is 2, i.e.,
the actual active power is twice the estimate; in the second
run, the power ratio is 0.5, i.e., the actual power is half of
the estimate. The task execution times are the same as their
estimate in this set of experiments.

Fig. 5 show the the power ratio is 2. As shown in Fig. 5(a),
the temperature under TCUB converges to the temperature set-
point 70◦C , while its utilization remain below the utilization
bound. Note that TCUB forces the CPU utilization to remain
lower than its utilization bound , which is needed in order
to maintain the temperature set-point due to the high active
processor power when the power ratio is 2. In contrast, FC-U
(see Figure 5(c)) reaches the utilization bound but itviolates
the temperature set-point. OPEN behaves similarly to FC-U
except its achieves slightly higher utilization and temperature
because the task rates are configured for the schedulable
utilization bound which is higher than the utilization bound
adopted by FC-U. TC performs similarly to TCUB. This is
because the execution times are the same as their estimate in
this experiment, and hence utilization control is not necessary.
There is no deadline miss under all algorithms in this experi-
ment.

Fig. 6 illustrate the simulation results when power ratio
is 0.5. TCUB undershoot the temperature set-point, while



0 1000 2000 3000 4000

50

60

70

80

90

Time(s)

 

 

Temperature
Temp Setpoint

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

Time(s)

 

 

Miss Ratio
Utilization
Util Setpoint

(a) TCUB

0 1000 2000 3000 4000

50

60

70

80

90

Time(s)

 

 

Temperature
Temp Setpoint

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

Time(s)

 

 

Miss Ratio
Utilization
Util Setpoint

(b) OPEN

0 1000 2000 3000 4000

50

60

70

80

90

Time(s)

 

 

Temperature
Temp Setpoint

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

Time(s)

 

 

Miss Ratio
Utilization
Util Setpoint

(c) TC

0 1000 2000 3000 4000

50

60

70

80

90

Time(s)

 

 

Temperature
Temp Setpoint

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

Time(s)

 

 

Miss Ratio
Utilization
Util Setpoint

(d) FC-U
Fig. 5. Performance Comparison (Power Ratio = 2)

reaching the utilization bound in this experiment. Due to
the low processor power, the utilization bound constraint is
activated before the temperature reaches the set-point. Asa
result, TCUB stops increasing the utilization to enforce the
utilization bound. TC behaves similarly to TCUB because the
task execution times conform to the estimation. FC-U enforces
the utilization bound, which results in a temperature lowerthan
the set-point. OPEN behaves similarly to FC-U.

In summary, this set of experiments demonstrate our thermal
controller can effectively handle uncertainties in power con-
sumption, including the cases when either the temperature set-
point or the utilization bound dominate the system dynamics.

B. Experiment II: Execution Time Variation

This set of experiments is designed to evaluate TCUB
under uncertainties in task execution times. We useexecution-
time factor (etf) to denote the ratio between the actual and
the estimated execution times. For example, whenetf = 2,
the actual execution time is twice the estimate. We simulate
two cases in two different experiments withetf = 2 and
etf = 0.5, respectively. In this set of experiments, the power
ratio is 1, i.e., the processor’s active powers is the same asthe
estimate.
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Fig. 6. Performance Comparison (Power Ratio = 0.5)

The results withetf = 2 are shown in Fig. 7. Under TCUB
the temperature remain below the set-point, while the utiliza-
tion reaches the utilization bound. Under a power ratio of 1,the
utilization bound constraint is activated before the processor
temperature reaches the set-point. Notably, TCUB successfully
enforces the utilization bound despite the fact that the actual
execution times exceed their estimate by100%. No deadline
miss is observed under TCUB. This result demonstrates that
TCUB effectively handles uncertainties in task execution times
through the utilization controller. Similarly, FC-U enforces the
utilization bound. In contrast, TC caused the utilization to
reach100% and a significant number of deadline misses as
it adjusts task rates based on theirestimated execution times.
Similarly, OPEN also resulted in deadline misses due to the
deviation of task execution times from the estimate.

The results withetf = 0.5 are shown in Fig. 8. TCUB again
successfully enforces the utilization bound, while the processor
temperature remains below the set-point. FC-U also maintains
the utilization bound. In contrast, TC significantly undershoots
the utilization bound, while its temperature also remains
significantly lower than the set-point. This is caused by the
fact that the task execution times are only half of the estimate.
Note such CPU underutilization is related to unnecessarilylow
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(d) FC-U
Fig. 7. Performance Comparison (etf = 2)

task rates, which are undesirable to applications. OPEN again
behaves similarly to TC.

Collectively, the first two sets of experiments demonstrate
TCUB is the only algorithm in our study that can consistently
maintain both acceptable temperature and soft real-time per-
formance under uncertainties in power consumption and task
execution times.

C. Experiment III: Robustness of TCUB

This set of experiments is designed to stress-test the ro-
bustness of TCUB under uncertainties in both execution times
and power consumption. For all the experiments we plot the
average temperature and utilization over the last300 sampling
period to exclude the transient effect response in the beginning
of the experiments.

Fig. 9 demonstrates the robustness of TCUB when both
the execution time factor and the power ratio vary in a
wide region. The circles labeledempirical represent the
simulations in which TCUB maintains satisfactory average
temperature (≤ 1.01TR = 70.7◦C) and average utilization
(≤ 1.01Umax = 67.7%). The theoretical bound for the
execution time factor is the maximum execution time factor
below which the utilization controller maintains stability based
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Fig. 8. Comparison between TCUB, OPEN, TC and FC-U with ETF is 0.5

on the analysis presented in [28]. The theoretical bound for
the power ratio is the maximum power ratio below which our
thermal controller maintains stability based on Theorem 2.
The feasible bound is determined based the minimum task
rates of our workload as discussed in Section IV-C. The
area surrounded by the combined theoretical bounds and the
feasible bounds is the area within which our system remains
stable based on our analysis. As we can see from Fig. 9,
the empirical area includes the analytical area. There results
demonstrate that TCUB can maintain desirable temperature
and utilization under considerable uncertainties in termsof
both power consumption and execution times. Furthermore,
the close match of the analytical stable region and the em-
pirical one demonstrate the efficacy of our control model and
analysis.

D. Experiment IV: Thermal Fault

This set of experiments is designed to examine the capabil-
ity of TCUB to deal with thermal faults based on the empirical
model presented in [2], we simulate the case fan failure by
doubling the thermal resistance,Rth, of the processor. As
shown in Fig. 10, under TCUB the temperature converges to
70◦C while the utilization remain considerably lower than the
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Fig. 9. TCUB Performance with Varying Power Ratio and ETF

utilization bound. Since the thermal resistance doubles inthis
case, the processor generates more heat at the same utilization.
TCUB enforces the temperature set-point by enforcing a lower
level of utilization. TC performs similarly to TCUB as the
utilization bound is not activated when it converges to the
set-point. In contrast, both FC-U and OPEN significantly
overshoot the temperature set point.
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Fig. 10. Performance Comparison with Thermal Fault

E. Experiment V: Ambient Temperature Variation

This set of experiments is designed to evaluate TCUB when
the ambient temperature is higher than the default setting by
10◦C. The power ratio andetf is fixed at1.0 As shown in

0 1000 2000 3000 4000

50

60

70

80

90

Time(s)

 

 

Temperature
Temp Setpoint

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

Time(s)

 

 

Miss Ratio
Utilization
Util Setpoint

(a) TCUB

0 1000 2000 3000 4000

50

60

70

80

90

Time(s)

 

 

Temperature
Temp Setpoint

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

Time(s)

 

 

Miss Ratio
Utilization
Util Setpoint

(b) OPEN

0 1000 2000 3000 4000

50

60

70

80

90

Time(s)

 

 

Temperature
Temp Setpoint

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

Time(s)

 

 

Miss Ratio
Utilization
Util Setpoint

(c) TC

0 1000 2000 3000 4000

50

60

70

80

90

Time(s)

 

 

Temperature
Temp Setpoint

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

Time(s)

 

 

Miss Ratio
Utilization
Util Setpoint

(d) FC-U
Fig. 11. Performance Comparison with Different Ambient Temperature

Fig. 11(a), TCUB tracks the temperature set-point, while the
utilization remains below the set-point. To compensate forthe
increase in the ambient temperature changes TCUB maintains
a lower level of utilization to reduce the amount of heat
generated by the processor. TC behaves similarly to TCUB.
In contrast, both FC-U and OPEN exceed the temperature set
point at higher utilization.

VI. RELATED WORK

Thermal-aware real-time scheduling has received attention
recently. Existing single-processor scheduling algorithms [4]–
[8] exploit DVFS to enforce temperature bounds while meeting
task deadlines. Thermal-aware tasks relocation and scheduling
algorithms have also been proposed for multi-processor or
multi-cores systems [27], [29]. Despite significant research on
thermal-aware real-time scheduling, existing algorithmsrely
on accurate knowledge about the system characteristics such
as task execution times, power consumption, and ambient
temperature, which can vary at run time for real-time systems



operating in unpredictable environments. In sharp contrast,
thanks for its robust feedback control approach TCUB is
specifically designed to handle a broad range of uncertainties
dynamically. In addition, TCUB does not rely on DVFS to
control processor temperature, which makes it a practical
solution even for embedded processors that do not support
DVFS.

The most related to our work is [9] which proposed a
model-predictive control approach for thermal and utilization
control in distributed real-time systems. While it share similar
goals as TCUB, there are several major differences between
that work and TCUB. First, the algorithm proposed in [9]
uses different actuators to control temperature (DVFS) and
utilization (task rate adaptation). Instead, TCUB uses a same
actuator (task rate adaptation) to control both temperature
and utilization. This not only makes TCUB a more general
solution, but also poses unique challenges as temperature and
utilization control are closely coupled in our system due tothe
shared actuator. Second, our control design is fundamentally
different from the model predictive control approach taken
in [9]. we significantly simplified the control problem by
explicitly enforcing the utilization bound by including them
into an integrator-anti-wind-up thermal control strategy. Our
novel control design result in a simple and efficient nested
control algorithm withO(1) run-time overhead. In contrast,
the model predictive controller [9] rely on a least-squares
estimator with polynomial complexity to the product of the
number of tasks and the control and prediction horizons. The
simplicity and efficiency of TCUB make it a practical solution
even for resource-limited embedded processors. Finally, our
simple control approach allows rigorous robustness analysis.
Since our robustness analysis is based on the necessary and
sufficient conditions required of the Nyquist stability criteria,
we prove and demonstrate how our controller can respond
quickly while operating under a wide range of system uncer-
tainties. In contrast, the small-gain conditions [30] required to
satisfy robustness criteria of the proposed model -predictive-
controller presented in [9] tend to be conservative and com-
putationally intensive to verify [31]. Loosening these model
uncertainty constraints for model-predictive controllers is a
daunting task as noted in [32] and currently being addressed
in [33]–[35].

A multitude of feedback real-time scheduling and utilization
control algorithms have been proposed in recent years, [36]–
[42], but they are not cognizant of processor temperature.
In contrast, TCUB is designed to controlboth the real-time
performance and the processor temperature. While TCUB
incorporates a utilization controller, the key contribution of this
work is the nested control architecture and the novel thermal
controller that can handle the utilization bound constraint
needed to enforce desired soft real-time performance.

VII. CONCLUSION

Many embedded systems face the critical challenge of
managing both the processor temperature and software real-
time performance in unpredictable environments. This paper

presents TCUB, a control-theoretic algorithm for managing
both the processor temperature and real-time performance.
Rigorously modeled and designed based on control theory,
TCUB can avoid processor overheating and maintain soft
real-time performance. A salient feature of TCUB lies in its
capability to handle different types of uncertainties in terms of
(1) processor power consumption, (2) task execution times,(3)
ambient temperature, and (4) unexpected thermal faults. The
robustness of TCUB makes it particularly suitable for real-time
embedded systems that must deal with highly unpredictable
environments. Moreover, TCUB features a nested feedback
control structure consisting of (1) a low-rate thermal controller
dealing with the slower thermal dynamics, and (2) a high-
rate utilization controller handling the faster CPU utilization
dynamics caused by uncertainties in task execution times. The
nested control scheme is modular, efficient, and practical for
embedded systems with tight resource constraints. The ad-
vantages of TCUB have been demonstrated through extensive
simulations under a broad range of system and environmental
conditions.
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