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Abstract

Brain function relies on the coordination of activity across multiple, recurrently connected,

brain areas. For instance, sensory information encoded in early sensory areas is relayed to,

and further processed by, higher cortical areas and then fed back. However, the way in

which feedforward and feedback signaling interact with one another is incompletely

understood. Here we investigate this question by leveraging simultaneous neuronal

population recordings in early and midlevel visual areas (V1-V2 and V1-V4). Using a

dimensionality reduction approach, we find that population interactions are

feedforward-dominated shortly after stimulus onset and feedback-dominated during

spontaneous activity. The population activity patterns most correlated across areas were

distinct during feedforward- and feedback-dominated periods. These results suggest that

feedforward and feedback signaling rely on separate “channels”, such that feedback

signaling does not directly affect activity that is fed forward.
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Most brain functions rely on the coordination of activity across multiple areas1,2. Activity1

does not follow a purely feedforward path between brain areas: areas are often2

reciprocally connected, and signals passed from one area to the next are often processed3

and fed back3–6. Understanding when feedforward and feedback signaling between areas4

is most dominant, and how these forms of signaling interact, is crucial for improving our5

understanding of computation in the brain.6

Previous studies have attempted to infer feedforward or feedback interactions between7

areas. One approach for identifying feedforward signaling is to present a stimulus and8

then compare the timing of neuronal response onsets across areas7–10. Similarly, feedback9

signaling can be inferred by studying time differences in the emergence of some forms of10

selectivity across areas11–15. Other studies have studied feedforward or feedback signaling11

by measuring activity simultaneously in two areas, and comparing temporal delays in12

pairwise spiking correlations16–21 or phase delays in local field potentials (LFP)22–25. Most13

of these studies focused on the activity of pairs of neurons across areas, or aggregate14

measures of neural activity such as local field potentials.15

To understand inter-areal interactions more deeply, it is now possible to record activity16

from large neuronal populations simultaneously in different cortical areas, and17

characterize what patterns of population activity are most related across those areas19,26–33.18

This approach has led to new proposals about how activity can be flexibly routed across19

brain areas (see ref. 34 for a review). In particular, simultaneous multi-area recordings20

have revealed properties of population activity patterns that are most related across areas21

in the context of sensory processing29, attention30, learning31, and motor control32,33.22

However, it is unknown how these population activity patterns relate to feedforward or23

feedback signaling between areas.24
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Here, we leverage simultaneous recordings of neuronal populations in early and midlevel25

visual areas (V1-V2 and V1-V4) to examine the temporal dynamics of inter-areal26

interactions, as well as the population activity patterns involved in those interactions27

(Fig. 1a). We correlated the population activity across areas at different time delays to infer28

feedforward and feedback signaling. Interactions were feedforward-dominated (V129

leading V2, and V1 leading V4) shortly after stimulus onset and gradually became30

feedback-dominated with persistent stimulus drive, as well as during spontaneous31

activity. Importantly, the population activity patterns involved in feedforward signaling32

were distinct from those involved in feedback signaling. This indicates that activity33

patterns in V1 that most affect downstream activity during feedforward processing are not34

the ones most affected by feedback signaling, suggesting both forms of signaling can35

co-exist without interference. Our results reveal both the dominant direction of signal flow36

between areas on a moment-by-moment basis and the population activity patterns37

involved in feedforward and feedback interactions.38

Results39

We simultaneously recorded from neuronal populations in V1 (88 to 159 neurons; mean:40

112.8± 12.3 SEM) and V2 (24 to 37 neurons; mean: 29.4± 2.4 SEM) in three anesthetized41

monkeys (Fig. 1b; five recording sessions), as well as in V1 (34 to 128 neurons; mean:42

66.6± 16.2 SEM) and V4 (12 to 84 neurons; mean: 58.8± 12.4 SEM) in two awake fixating43

monkeys (Fig. 1c; five recording sessions). Animals were shown drifting gratings of44

different orientations (1280 ms stimulus duration for V1-V2; 200 ms for V1-V4), followed45

by a blank screen (1500 ms for V1-V2; 150 ms for V1-V4). Recording sites were chosen so46

that the spatial receptive fields of the V1 and V2/V4 populations overlapped (see ref. 1947

and Supplementary Fig. 1).48
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Temporal structure of inter-areal interactions49

We first characterized the temporal dynamics of the interaction between neuronal50

population spiking responses in V1 and V2. To do so, we asked: (1) how the interaction51

evolved during stimulus presentation and the subsequent period of spontaneous activity52

(which together constitute a trial); and (2) how the interaction depended on the time delay53

considered between the two areas. Given that these areas are reciprocally connected, with54

activity flowing in both directions, it is possible that there are periods during which V155

leads V2 activity, and other periods where it lags behind.56

To measure interactions between areas, we employed Canonical Correlation Analysis57

(CCA). Consider representing the activity in two neuronal populations using two activity58

spaces, one for each area. In each space, each coordinate axis corresponds to the activity of59

a recorded neuron (Fig. 2a). Within a given time window, the spike counts of the neurons60

(in the two populations) define a point in each space. For each point in V1 activity space61

(Fig. 2a, left panel), there is a corresponding, simultaneously recorded point in V2 activity62

space (Fig. 2a, right panel). CCA seeks dimensions of activity in each area, such that63

activity along those dimensions is maximally correlated across the two areas (Fig. 2a,64

bottom panel). For this analysis, we focused on the most correlated dimensions across the65

two areas (i.e., the first canonical pair; correlations associated with the second canonical66

pair were on average 60% lower and close to chance level). We used the correlation value67

for the first canonical pair as a measure of inter-areal interaction strength, which we refer68

to as population correlation.69

Interactions between areas likely involve time delays due to signal conduction, as well as70

network processing. This implies that the activity across areas might not be most related71

for matched (simultaneous) time windows, but for time windows shifted forward or72
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backward in time. Thus, we used CCA to relate activity recorded in V1 with activity in V273

at different time delays (Fig. 2b; Methods) to produce a population correlation function74

(Fig. 2c). This population correlation function can be computed at different epochs in a75

trial.76

We found that V1-V2 population correlations were lowest just after stimulus onset,77

increased steadily during stimulus presentation, and were highest for spontaneous78

activity (Fig. 3a). Focusing on the activity shortly after stimulus onset (“Early Evoked”;79

160 ms after stimulus onset), population correlations were larger for positive delays than80

for negative delays (red trace in Fig. 3b, with peak correlation occuring for a lag of 3 ms),81

meaning V1 activity was most correlated with V2 activity occurring later in time82

–consistent with a feedforward interaction. The feedforward interaction became less83

evident later during the evoked activity period (“Late Evoked”; 1120 ms after stimulus84

onset; yellow trace in Fig. 3b). After stimulus offset, population correlations were larger85

for negative delays, so that V2 led V1, suggesting a feedback-dominated interaction86

(“Spontaneous”, purple trace in Fig. 3b, with a broad peak centered at approximately -1587

ms; 2240 ms after stimulus onset). For a more complete characterization, we show in88

Fig. 3c how population correlations vary as a function of time delay between areas89

(horizontal axis) and the time relative to stimulus onset (vertical axis; note that the90

population correlation functions in Fig. 3b represent horizontal slices of this91

representation).92

To quantify the shift from feedforward- to feedback-dominated interactions, we calculated93

a feedforward ratio, defined as the difference between the feedforward (positive delay)94

and feedback (negative delay) sides of the population correlation function, divided by95

their sum. In every recording session, we found that V1-V2 interactions were more96

feedback-dominated during the spontaneous period than during the evoked period97

(Fig. 3d, left; average feedforward ratio, computed in the -80 to 80 ms delay range:98
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�0.005± 0.008 SEM for late evoked activity; �0.040± 0.011 SEM for spontaneous activity;99

one-sided paired Wilcoxon signed-rank test, p = 0.03 for difference between late evoked100

and spontaneous activity across all 5 recording sessions; t-test for feedforward ratio,101

p = 0.57 for late evoked activity, p = 0.02 for spontaneous activity).102

The population correlation functions contain both slow- and fast-timescale features. To103

isolate the fast-timescale features, particularly evident early in the evoked period (Fig. 3b,104

red), we computed jitter-corrected population correlation functions for responses105

measured after stimulus onset35,36 and computed their peak location and height106

(Supplementary Fig. 2). Clear feedforward peaks will have large heights whereas the107

absence of a peak will result in a small peak height with highly variable peak times (i.e.,108

reflecting “noise” in the correlation function). We found a clear, early feedforward peak in109

all recording sessions for which the V1 and V2 receptive fields were aligned (Fig. 3e, open110

circles; average peak height: 0.008± 0.002 SEM; average peak delay: 2.2ms ±0.37 SEM).111

If the effects shown in Fig. 3 truly reflect feedforward and feedback interactions, they112

should display appropriate retinotopic specificity. Feedforward connections are more113

retinotopically precise than feedback connections37–41. As a result, feedforward114

interactions should require retinotopic alignment, whereas feedback interactions might be115

more tolerant of retinotopic misalignment between the neurons sampled in the two areas.116

To test this prediction, we performed additional recordings for which the spatial receptive117

fields of the V1 and V2 populations were misaligned by several degrees (mean118

center-to-center population spatial receptive field distance was 3.73 deg for misaligned119

sessions and 0.58 deg for aligned sessions).120

Population correlations were lower for these recordings than for those from populations121

with aligned receptive fields (Fig. 3a, dotted line). The fast time-scale correlation peaks122

observed shortly after stimulus onset for aligned populations (Fig. 3e, circles) were absent123

7
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in responses from populations with misaligned receptive fields, evident as small peak124

heights and inconsistent peak delays (Fig. 3e, triangles; average peak height:125

0.0025± 0.0001 SEM; one-sided permutation test, p = 0.004 for difference between126

sessions with aligned vs. misaligned receptive fields). Despite the absence of a clear127

feedforward peak, the V1-V2 interaction for the misaligned populations was still128

feedback-dominated during spontaneous activity (Fig. 3d, purple; average feedforward129

ratio: �0.003± 0.019 SEM for late evoked activity; �0.027± 0.013 SEM for spontaneous130

activity; one-sided paired Wilcoxon signed-rank test, p = 0.03 for difference between late131

evoked and spontaneous activity across all 5 recording sessions). Thus, the feedforward132

and feedback interactions identified by CCA have properties consistent with the133

underlying anatomical specificity.134

To test whether the dynamics of V1-V2 interactions might reflect in part changes in the135

activity within each area, rather than the interaction between areas, we devised two136

controls. First, we split each V1 and V2 population randomly into two groups, and137

measured within-area correlations as we had done when analyzing inter-areal interactions.138

The features described for inter-areal interactions were absent when identical analyses139

were performed on neurons recorded in the same area (Supplementary Fig. 3). Specifically,140

within-area interactions showed no evidence of a feedforward peak and were symmetric141

with respect to the time lag during late evoked and spontaneous activity. Thus, the142

changes in temporal structure shown in Fig. 3 are specific to inter-areal interactions.143

Second, we tested whether the dynamics of inter-areal interactions might be related to144

differences in neuronal onset latency in the two areas, or to changes in the firing rates over145

time within each population. To assess this possibility, we performed CCA after shuffling146

the correspondence of trials in the two areas, while keeping the temporal correspondence147

within each area intact (see Methods). This shuffling procedure maintained the firing rate148

time courses and correlation structure within each area, but broke the trial-by-trial149

8
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correspondence of activity across the two areas. After shuffling, inter-areal correlations no150

longer increased throughout the trial (Fig. 3a, light trace). Furthermore, there was no151

evidence of a feedforward interaction early in the trial, nor was there a shift to a152

feedback-dominated interaction during spontaneous activity (Fig. 3b, light traces). Thus,153

the dynamics of inter-areal interactions cannot be attributed to different onset latencies or154

response dynamics in the two areas.155

We then asked whether inter-areal interactions showed similar dynamics in responses156

measured in awake animals as in the responses measured in anesthetized animals157

considered thus far. We recorded V1 and V4 population activity, in two animals158

performing a passive fixation task in which drifting gratings were presented (Methods).159

As with V1-V2 responses, V1-V4 population correlation increased throughout the evoked160

period (Fig. 4a; compare with Fig. 3a). Just after stimulus onset, V1-V4 interactions were161

feedforward-dominated (Fig. 4b, red curve; 75 ms after stimulus onset). Notably, the162

feedforward peak was located at approximately 25 ms delay, longer than the delay of the163

feedforward peak for the V1-V2 interaction and with a broader profile (compare with164

Fig. 3b). Over time, the initial feedforward interaction was replaced by a165

feedback-dominated interaction (Fig. 4b, yellow curve; compare with Fig. 3b; 125 ms after166

stimulus onset). Figure 4c shows the V1-V4 population correlation functions at all epochs167

during the trial. The shift from a feedforward- to a feedback-dominated interaction was168

present for all recording sessions (Fig. 4d; average feedforward ratio, computed in the -50169

to 50 ms delay range: 0.088± 0.014 SEM for early evoked activity; �0.038± 0.008 SEM for170

late evoked activity; one-sided paired Wilcoxon signed-rank test, p = 0.03 for difference171

between early evoked and late evoked activity across all 5 recording sessions; t-test for172

feedforward ratio, p = 0.020 for early evoked activity, p = 0.003 for late evoked activity).173

Importantly, this temporal structure was absent in interactions between subpopulations174
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within each cortical area (Supplementary Fig. 4), and when we shuffled responses to175

remove the trial-by-trial correspondence between areas (Fig. 4a,b, faded traces).176

Population structure of inter-areal interactions177

Past work has suggested that inter-areal interactions are selective, in terms of which178

population activity patterns are related across areas29,42. That is, not all activity179

fluctuations in one area are reflected in the activity of its downstream targets: some180

fluctuations remain private to the source area. In our analysis thus far, we have focused181

solely on the strength and directionality of inter-areal interactions.182

Given the observed dynamics of inter-areal interactions, we wondered whether the183

patterns of activity relayed across areas might be different between feedforward- and184

feedback-dominated periods. One possibility is that the patterns of activity most related185

across the two areas are similar during these two periods. Since feedback signaling is186

hypothesized to alter, or correct, visual representations upstream43–45, one might expect187

that the dimensions most affected by feedback are the same dimensions that are involved188

in feedforward interactions. This would suggest feedforward and feedback interactions189

“read from” and “write to” the same population activity patterns, sharing the same190

communication channel. Alternatively, feedforward and feedback interactions might191

unfold through separate channels involving distinct population activity patterns, and thus192

perhaps minimizing how much they directly interact. This would suggest that feedback193

processing affects dimensions of upstream activity that are not directly involved in194

relaying visual information downstream.195

To distinguish between these possibilities, we divided the trial in epochs and measured196

how the canonical dimensions identified during one epoch generalized to another. For197

10
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example, we asked whether the canonical dimensions identified during the198

feedforward-dominated period (Fig. 5a) captured inter-areal correlations during the199

feedback-dominated period as well as the canonical dimensions identified during that200

feedback-dominated period (Fig. 5b). Good generalization would imply that the same201

patterns of activity were related across areas during periods of feedforward- and202

feeback-dominated interactions. If, however, the patterns of activity most related across203

areas differed, the canonical dimensions found during the feedforward-dominated204

periods would not capture inter-areal correlations during the feedback-dominated periods205

(Fig. 5c).206

We found that dimensions identified early in the evoked activity period, when V1-V2207

interactions were feedforward-dominated, did not generalize well to later epochs (Fig. 6a;208

average normalized correlation, for which a value of 1 indicates perfect generalization:209

0.56± 0.05 for mid evoked, 0.59± 0.04 for late evoked, 0.36± 0.04 for late spontaneous;210

one-sided paired Wilcoxon signed-rank test, p = 0.03 for difference between correlation211

captured using early evoked vs mid evoked, late evoked or late spontaneous dimensions212

in the corresponding epochs, across all recording sessions). The failure of dimensions213

identified during the feedforward-dominated period to generalize to the dimensions214

identified during spontaneous activity suggests that epochs in the215

feedforward-dominated period involve distinct patterns of population activity compared216

to epochs in the feedback-dominated period. The generalization was better between217

epochs later after stimulus onset, when the correlation functions were more symmetric218

(Fig. 6b; average normalized correlation: 0.64± 0.04 for early evoked, 0.94± 0.03 for mid219

evoked, 0.45± 0.03 for late spontaneous; one-sided paired Wilcoxon signed-rank test,220

p = 0.03 for difference between correlation captured using early evoked vs mid evoked,221

late evoked or late spontaneous dimensions in the corresponding epochs, across all222

recording sessions), indicating that the patterns of activity related between areas are stable223
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for mid and late evoked activity. Dimensions identified during epochs of224

feedback-dominated interaction, during spontaneous activity, failed to generalize to225

evoked activity (Fig. 6c; average normalized correlation: 0.47± 0.06 for early evoked,226

0.50± 0.03 for mid evoked, 0.52± 0.02 for late evoked; paired one-sided Wilcoxon227

signed-rank test, p = 0.03 for difference between correlation captured using early evoked228

vs mid evoked, late evoked or late spontaneous dimensions in the corresponding epochs,229

across all recording sessions). These analyses were carefully designed to focus exclusively230

on changes in the across-area interaction structure, and to be insensitive to changes in the231

structure of population activity within each area (see Supplementary Fig. 5, Methods, and232

Supplementary Information).233

To gain a more complete picture, we assessed generalization performance between each234

possible pairing of epochs for defining canonical dimensions (Fig. 6d, vertical axis), and235

for testing their relevance (horizontal axis). Each row corresponds to a set of canonical236

dimensions, identified at a particular epoch, and applied to activity at each of the other237

epochs. The patterns of generalization performance mirror the changes we observed in the238

temporal profile of the interaction. As the feedforward interaction weakened after239

stimulus onset (Fig. 3b, compare red and yellow curves), the patterns of activity most240

related across the two areas changed as well (Fig. 6d, straight arrow, bottom left).241

Furthermore, the spontaneous activity period, which was more feedback-dominated than242

the evoked activity period (Fig. 3d), involved different patterns of activity from those243

involved in the evoked period (Fig. 6d, curved arrow, top right).244

We obtained similar results when analyzing V1-V4 activity. V1-V4 interactions transitioned245

from a feedforward- to a feedback-dominated interaction (Fig. 4), and the dimensions246

mediating these interactions changed between these epochs as well (Fig. 6e; the number of247

epochs is smaller here due to the shorter trial duration; one-sided paired Wilcoxon248

signed-rank test, p = 0.03 for difference between correlation captured using late evoked vs249

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2021. ; https://doi.org/10.1101/2021.02.08.430346doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.08.430346
http://creativecommons.org/licenses/by-nc-nd/4.0/


early evoked or late spontaneous dimensions in the corresponding epochs, across all250

recording sessions). Specifically, the V1-V4 interaction became feedback-dominated at the251

end of the evoked period (Fig. 4d, yellow circles), and this was accompanied by poor252

generalization between early and late evoked dimensions (Fig. 6e, straight arrow; average253

normalized correlation for second epoch of evoked activity for V1-V4: 0.27± 0.02). In254

contrast, the V1-V2 interactions shifted more slowly away from a feedforward-dominated255

interaction after stimulus onset (Fig. 3d, yellow circles). Consistent with this slower256

transition, V1-V2 dimensions identified soon after stimulus onset generalized better for257

nearby epochs of evoked activity, compared to V1-V4 (Fig. 6f, straight arrow; averaged258

normalized correlation for second epoch of evoked activity for V1-V2: 0.62± 0.05).259

Taken together, our findings suggest feedforward and feedback inter-areal interactions260

involve different patterns of population activity. In turn, this implies that the aspects of V1261

population activity that are relayed downstream are not necessarily the aspects of activity262

that are most influenced by feedback. Feedforward and feedback processing might thus263

occur in separate subspaces of population activity, concurrently and through different264

“channels”.265

Discussion266

We leveraged multi-area recordings to understand the interactions between neuronal267

population spiking responses in V1 and downstream areas V2 and V4. We found that268

interactions are feedforward-dominated shortly after stimulus onset, and become269

feedback-dominated later in the stimulus period and during spontaneous activity. Thus,270

when a stimulus persists, or when no stimulus is presented, the role of top-down inputs271

from areas such as V2 and V4 to V1 is more prominent. Furthermore, we found that the272
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population activity patterns most related across areas during feedforward-dominated273

periods were distinct from those most related during feedback-dominated periods (Fig. 7).274

This suggests that feedforward and feedback signals involve distinct axes in population275

activity space, which might allow them to be relayed with minimal direct interference.276

In this study, we measured population correlations in activity across areas at different time277

lags, and we refer to the identified interactions as feedforward or feedback, based on the278

lags at which population correlations were maximal. The feedforward interactions that we279

identified from V1 to V2 are likely to reflect direct (i.e., monosynaptic) input for the280

following reasons. First, our recordings were performed in the output layers of V1 and281

input layers of V219. Second, the V1-V2 feedforward peak was sharp, and centered at a282

delay of 2-3 ms (cf. Fig. 3b,e), consistent with the propagation delay between these283

areas46,47. Third, the feedforward peaks identified for the V1-V2 interactions were absent284

in recording from neuronal populations with poorly aligned receptive fields (cf. Fig. 3e),285

consistent with specificity of feedforward connections between these areas37,38. In contrast,286

feedback interactions were less temporally precise than the feedforward interactions,287

suggestive of a longer signaling loop from V2 back to V1 that may involve polysynaptic288

paths or shared feedback from more distant areas. These feedback interactions were289

evident both in recordings from populations with aligned or misaligned receptive fields290

(cf. Fig. 3d), consistent with the broader visuotopic extent of feedback connections39–41. For291

V1-V4 interactions, both the feedforward and feedback interactions were relatively broad292

(cf. Fig. 4b), which might be explained by the reduced laminar specificity of our recordings293

in V4 (chronically implanted arrays, compared to movable tetrodes used in V2), and by a294

larger number of possible paths by which activity can propagate between these two295

areas48,49.296

In both sets of experiments (V1-V2 in anesthetized animals and V1-V4 recordings in297

awake animals), we observed that interactions were feedforward-dominated shortly after298
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stimulus onset, but this feedforward component subsided, giving way to299

feedback-dominated interactions. However, there was one notable difference: V1-V2300

interactions became feedback-dominated only after the stimulus offset, whereas V1-V4301

became feedback-dominated during the late evoked period. This difference could reflect a302

stronger influence of feedback signaling in the awake state, a difference in the areas303

involved (V2 vs. V4), or the layers in which the neuronal populations were recorded. That304

we saw a feedback-dominated interaction at all in the anesthetized recordings might seem305

surprising, since activity in higher cortical areas, and therefore top-down inputs, might be306

expected to be diminished by anesthesia. Although it is unclear whether the307

feedback-dominated interaction we observed is the same as that in an awake animal, we308

note that V2 is a major source of feedback to V148 and it remains highly responsive under309

sufentanil anesthesia12,18,19.310

The transition from feedforward- to feedback-dominated interactions during stimulus311

drive is broadly consistent with inferences drawn from latency measurements. Because V2312

depends on input from V150, one would expect interactions between the areas to be313

feedforward-dominated immediately after stimulus onset. Spatial contextual effects in V1,314

which are thought to arise in part from feedback from higher visual areas4, are evident315

50-100 ms after response onset11,51,52, consistent with our observation of a shift away from316

a feedforward-dominated interaction immediately after response onset to a more balanced317

(V1-V2) or even feedback-dominated (V1-V4) interaction later in the response. While318

broadly consistent, our observations significantly extend this prior work. In particular,319

while measurements of onset may provide information about when feedforward and320

feedback influences begin, they provide little information about their relative influence321

once both have been engaged. By using population spiking responses, we are able to see322

network wide changes in the direction of signaling, as a function of stimulus drive.323
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Our claim that inter-areal interactions switch between being feedforward- or324

feedback-dominated was not based solely on differences in the time lags at which325

inter-areal correlations were strongest. It is also supported by our finding that the326

structure of the population activity that was most correlated between areas was distinct in327

these different periods. Specifically, we found that the dimensions of population activity328

that were most related across areas during feedforward signaling periods were distinct329

from those that were most related during feedback periods. The relevant activity patterns330

were highly reliable: during spontaneous activity or the sustained epochs of evoked331

activity, the dimensions of activity that were most correlated across areas were consistent332

in time. Yet, when networks switched from feedforward to feedback signaling (or333

vice-versa), the relevant activity patterns changed abruptly.334

Determining the population structure of inter-areal interactions requires great care. In335

particular, it is important to ensure that apparent changes in inter-areal interactions do not336

arise solely from changes in the structure of activity within each area (see ref. 53, in press).337

For instance, a change in activity structure within one area might cause the canonical338

dimensions identified to change, even if the manner in which activity in the two areas is339

related is unchanged (see Supplementary Information for an extended discussion). To340

avoid such confounds, we defined interaction structure using across-area covariance, and341

measured changes in this structure so as to only reflect changes in the activity subspaces342

in each area spanned by the across-area covariance. In addition, we confirmed that our343

approach did not detect interaction changes when the across-area covariance was held344

fixed (Supplementary Fig. 5).345

In previous work, we reported that V1 interactions with V2 occur through a346

communication subspace, which defines which population activity patterns are related347

across areas29. The communication subspace was identified using reduced rank regression348

(RRR), a dimensionality reduction technique related to CCA but different in its technical349
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details (for a review, see ref. 53, in press). Here we chose to use CCA because it treats the350

population activity of each area symmetrically. This allows us to study feedforward and351

feedback influences using the same analysis. In contrast, RRR treats each population352

differently – one area is labeled the “source” (the independent variable in linear353

regression) and the other area is labeled the “target” (the dependent variable). Although354

RRR and CCA need not identify the same dimensions, we found that a communication355

subspace was also evident when employing CCA. Namely, a smaller number of canonical356

dimensions was required to capture across area correlations compared to within-area357

correlations (Supplementary Fig. 6).358

How do our observations of feedforward and feedback interactions inform our359

understanding of how these forms of signaling contribute to cortical function? While the360

computational role of feedforward signaling has been extensively investigated, the role of361

feedback is more enigmatic. Feedback signals have been proposed to improve or correct362

feedforward signals, e.g., by providing prior information about the sensory input43–45, by363

providing a prediction of that input (in predictive coding)54–56, or by signaling deviations364

from some higher-order “teaching” signal (in biologically plausible backpropagation)57–59.365

We find that inter-areal interactions just after stimulus onset are feedforward. This might366

be explained by the abrupt transition from one visual environment to another when a367

stimulus suddenly appears. Assuming the trial structure is not learned by the visual368

cortex, stimulus onset is unpredicted or unexpected; according to predictive coding369

principles, such input should give rise to potent feedforward signaling. As the stimulus370

persists, inter-areal interactions become feedback-dominated. This transition might371

indicate that higher cortex is providing signals that attempt to ‘explain away’ the constant,372

persistent visual input, and thereby reduce responsivity in lower cortex. Interactions are373

also feedback-dominated during spontaneous activity. This finding is consistent with374

proposals that sensory representations combine prior information from higher cortex with375
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sensory drive from the periphery. In the absence of overt visual input (i.e., during376

spontaneous activity), one would expect responses to reflect more strongly the prior,377

which would be evident as a top-down dominant interaction.378

Our finding that feedforward and feedback interactions involve different patterns of379

population activity may offer a solution to a central enigma in proposals of how feedback380

contributes to sensory processing: feedback that is too weak may fail to properly modify381

representations of the sensory stimulus, but feedback that is too strong may contaminate382

the representation and lead to hallucinations. One solution for providing robust feedback383

but allowing some flexibility in how it interacts with the bottom-up sensory representation384

could be to have these occupy different dimensions of V1 population activity, as we find.385

The presence of the feedback signal in a target area can then be decoupled from the386

strength of its influence. This would suggest that the balance between feedforward and387

feedback signaling in sensory cortex might be achieved using the same principles used by388

motor cortex to generate preparatory signals without causing muscle contractions42, by389

prefrontal networks that host competing sensory inputs but can flexibly switch which one390

drives the local activity60, or by visual cortical areas to selectively communicate29.391
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Figure 1 Studying feedforward and feedback interactions using neuronal population

activity. (a) Each circle represents a neuron in each area, with the shading representing the

activity level of the neuron. The population activity patterns involved in feedforward

signaling (top) might be distinct from those involved in feedback interactions (bottom). (b)

Schematic showing a sagittal section of occipital cortex and the recording setup for the

V1-V2 recordings. We simultaneously recorded V1 population activity using a 96-channel

array and V2 population activity using a set of movable electrodes and tetrodes. (c)

Schematic showing an overhead view of the recording setup for the V1-V4 awake

recordings. We simultaneously recorded V1 and V4 population activity using one

96-channel and one 48-channel array in V1 and a 48-channel array in V4 in the first animal,

and two 96-channel arrays in V1 and two 48-channel array in V4 in the second animal.
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Figure 2 Using Canonical Correlation Analysis (CCA) to capture population interactions.

(a) Relating activity across two neuronal populations. Each circle represents the

population activity recorded on a given trial. For each activity point observed in the V1

population (left panel; gray dots), there is a corresponding, simultaneously recorded

activity point observed in V2 (right panel, gray dots). The red axes represent the first pair

of canonical dimensions, identified using CCA. Neuronal activity projected onto the first

pair of canonical dimensions (red dots) is highly correlated across the two areas (bottom

panel). (b) Spike counts across the recorded neurons are taken in specified time windows
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(gray boxes), which may either be positioned at the same time in both areas (i.e., t1 = t2) or

with a delay between areas (t1 6= t2). The activity in each gray box is represented by a

circle in panel (a). (c) The population correlation function corresponds to the correlation

between areas returned by CCA (the correlation associated with the first pair of canonical

dimensions), as a function of the time delay between areas (t2 � t1).
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Figure 3 V1-V2 interaction transitions from feedforward-dominated shortly after

stimulus onset to feedback-dominated during the spontaneous period. (a) Inter-areal

zero-delay population correlation increased throughout the trial, and was higher for

spontaneous activity than for evoked activity. Zero-delay refers to spike counts taken in

the same time window in the two areas (t1 = t2 in Fig. 2b). Black line shows the average

across all recording sessions for which the V1 and V2 populations have aligned receptive

fields. Shading indicates S.E.M. Dotted line shows average across all recording sessions

where the the V1 and V2 receptive fields are misaligned. Gray line shows average

population correlation after shuffling trial correspondence between the two areas. (b)

Population correlation functions for an example session (red: early evoked, yellow: late

evoked; purple: spontaneous). Faded lines show population correlation functions after

shuffling trial correspondence between the two areas (note that there are multiple

superimposed lines). (c) Population correlations at all times during the trial. The

horizontal axis represents the time delay between areas (t1 � t2), and the vertical axis
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represents time relative to stimulus onset (t1). Horizontal lines (red, yellow, and purple)

indicate epochs used in panel (b). Dashed vertical line indicates zero-delay population

correlations shown in panel (a). White area denotes times for which population

correlations could not be computed: the V2 activity window had reached either the

beginning or the end of the trial. Same session as in panel (b). (d) Feedforward ratio for

different epochs of evoked and spontaneous activity. Left panel shows sessions for which

the V1 and V2 populations have aligned receptive fields; right panel shows sessions where

the the V1 and V2 receptive fields are misaligned. Solid symbols show the average across

all recording sessions, whereas open symbols correspond to each recording session. (e) An

early feedforward peak is only present in recording sessions where the V1 and V2

populations have aligned receptive fields. Peak height is measured after performing a

jitter-correction to isolate fast timescale interactions (see Methods). Circles correspond to

recording sessions for which the V1 and V2 populations have aligned receptive fields.

Triangles correspond to sessions in which the V1 and V2 receptive fields are misaligned.
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Figure 4 V1-V4 interaction transitions from feedforward- to feedback-dominated during

the evoked period. (a) Inter-areal zero-delay population correlation increased throughout

the evoked period. Black line shows average across all recording sessions. Shading

indicates S.E.M. Gray line shows average population correlations after shuffling trial

correspondence between the two areas. (b) Population correlation functions for an

example session, for early (red) and late evoked (yellow) activity. Due to the short

duration of the inter-stimulus period, we could not compute a population correlation

function for spontaneous activity. Faded lines show population correlation functions after

shuffling trial correspondence between the two areas (note that there are multiple

superimposed lines). (c) Population correlations at all times during the trial. The

horizontal axis represents the time delay between areas (t1 � t2), and the vertical axis

represents time relative to stimulus onset (t1). Horizontal lines (red and yellow) indicate

epochs used in panel (b). Dashed vertical line indicates zero-delay population correlations
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shown in panel (a). White area denotes times for which population correlations could not

be computed: the V4 activity window had reached either the beginning or the end of the

trial. Same session as in panel (b). (d) Feedforward ratio for early and late evoked activity.

Solid circles show the average across all recording sessions, whereas open circles

correspond to each recording session.
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Figure 5 Assessing whether feedforward- and feedback-dominated interactions involve

the same population activity patterns. (a) Canonical dimensions identified during a

feedforward-dominated period in the trial (red dimensions). These are putative

“Feedforward” (FF) canonical dimensions. Open red circles denote activity during the

feedforward-dominated period. Solid red circles denote the projection onto the FF

canonical dimensions. (b) We can then ask whether these FF canonical dimensions

generalize to a feedback-dominated period. One possibility is that the interaction structure

(defined using the canonical dimensions) remains stable across the two periods. In this

case, the FF canonical dimensions (red dimensions) capture a similar level of correlation

during the feedback-dominated period as the canonical dimensions identified during this

period, the putative “Feedback” (FB) canonical dimensions (blue dimensions). As a result,
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the normalized correlation, the ratio of the population correlation for the FF canonical

dimensions to that for the FB canonical dimensions (both computed in a cross validated

manner; see Methods), is close to 1. Open blue circles denote activity during the

feedback-dominated period. Solid purple circles denote the projection of activity during

the feedback-dominated period onto the FF canonical dimensions. Solid blue circles

denote the projection onto the FB canonical dimensions. (c) Alternatively, the interaction

structure might change across the two periods. In this case, the FF dimensions capture

only a small fraction of the population correlation during the feedback-dominated period.

Same conventions as in panel (b).
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Figure 6 Interaction structure is distinct for the feedforward- and feedback-dominated

periods. (a) The dimensions found by fitting CCA shortly after stimulus onset (80 ms after

stimulus onset) do not generalize well to later epochs in the evoked period, and worse still

during the spontaneous period. Grey lines correspond to each of the 5 recording sessions.

We report the normalized correlation, defined as the total correlation captured at the test

epoch by the dimensions fit to some other epoch over the total correlation captured by the

dimensions fit to the test epoch (both computed in a cross-validated manner; see Methods).

(b) Dimensions identified late in the evoked period (1180 ms after stimulus onset) do not
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generalize well to early evoked epochs and to epochs in the spontaneous period, but

generalize well to mid-evoked activity. Same conventions as in panel (a). (c) Dimensions

identified during the spontaneous period do not generalize well to the evoked period.

Same conventions as in panel (a). (d) Assessing changes in interaction structure across the

entire trial. The trial was divided into 100 ms segments, and CCA was applied separately

to the activity in each time window. The top two canonical pairs associated with each

window were then used to capture inter-areal correlations in the other time windows (see

Methods). Each row corresponds to the time during the trial during which the canonical

dimensions were identified. Each column corresponds to the time during the trial where

the population correlation is assessed. Each entry shows the average across all recording

sessions. Straight arrow highlights the comparison of the interaction structure within the

evoked period. Curved arrow highlights the comparison of the interactions structure

between the spontaneous and the evoked periods. Dashed white boxes indicate epochs

reproduced in panel (f). (e) Comparing identified dimensions across epochs for the awake

V1-V4 recordings. The trial was divided into 100 ms segments, and CCA was applied

separately to the activity in each time window. The top canonical pair associated with each

window was then used to capture inter-areal correlations in the other time windows (see

Methods). Arrow highlights the comparison of the interaction structure within the evoked

period. Same conventions as in panel (d). (f) Detailed view of the V1-V2 generalization

performance for the comparable epochs between the V1-V2 and V1-V4 recordings. Epochs

are indicated by the dashed white boxes in panel (d).
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V2/V4V1

FF
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FB
FB

V1 V2/V4

FF
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FB
FB

Evoked Spontaneous

Figure 7 Summary of results. During the early evoked period, interactions between areas

tend to be feedforward-dominated. Later during the evoked period and during the

spontaneous period, interactions between areas become feedback-dominated.

Furthermore, feedforward- and feedback-dominated interactions involve different

population activity patterns. Larger ellipses represent the set of all activity patterns one

might observe in either the V1 or the V2/V4 populations. The smaller ellipses represent

the activity patterns most related across the two areas.
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11. Supèr, H., Spekreijse, H. & Lamme, V. A. F. Two distinct modes of sensory processing

observed in monkey primary visual cortex (V1). Nature Neuroscience 4, 304–310 (2001).

12. Freeman, J., Ziemba, C. M., Heeger, D. J., Simoncelli, E. P. & Movshon, J. A. A

functional and perceptual signature of the second visual area in primates. Nature

Neuroscience 16, 974–981 (2013).

13. Chen, M. et al. Incremental Integration of Global Contours through Interplay between

Visual Cortical Areas. Neuron 82, 682–694 (2014).

14. Schwiedrzik, C. M. & Freiwald, W. A. High-Level Prediction Signals in a Low-Level

Area of the Macaque Face-Processing Hierarchy. Neuron 96, 89–97.e4 (2017).

15. Issa, E. B., Cadieu, C. F. & DiCarlo, J. J. Neural dynamics at successive stages of the

ventral visual stream are consistent with hierarchical error signals. eLife 7, e42870

(2018).

16. Roe, A. W. & Ts’o, D. Y. Specificity of Color Connectivity Between Primate V1 and V2.

Journal of Neurophysiology 82, 2719–2730 (1999).

17. Nowak, L. G., Munk, M. H. J., James, A. C., Girard, P. & Bullier, J. Cross-Correlation

Study of the Temporal Interactions Between Areas V1 and V2 of the Macaque Monkey.

Journal of Neurophysiology 81, 1057–1074 (1999).

18. Jia, X., Tanabe, S. & Kohn, A. Gamma and the Coordination of Spiking Activity in

Early Visual Cortex. Neuron 77, 762–774 (2013).

32

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2021. ; https://doi.org/10.1101/2021.02.08.430346doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.08.430346
http://creativecommons.org/licenses/by-nc-nd/4.0/


19. Zandvakili, A. & Kohn, A. Coordinated Neuronal Activity Enhances Corticocortical

Communication. Neuron 87, 827–839 (2015).

20. Campo, A. T. et al. Task-driven intra- and interarea communications in primate

cerebral cortex. Proceedings of the National Academy of Sciences 112, 4761–4766 (2015).

21. Campo, A. T. et al. Feed-forward information and zero-lag synchronization in the

sensory thalamocortical circuit are modulated during stimulus perception. Proceedings

of the National Academy of Sciences 116, 7513–7522 (2019).

22. Gregoriou, G. G., Gotts, S. J., Zhou, H. & Desimone, R. High-Frequency, Long-Range

Coupling Between Prefrontal and Visual Cortex During Attention. Science 324,

1207–1210 (2009).

23. Salazar, R. F., Dotson, N. M., Bressler, S. L. & Gray, C. M. Content-Specific

Fronto-Parietal Synchronization During Visual Working Memory. Science 338,

1097–1100 (2012).

24. van Kerkoerle, T. et al. Alpha and gamma oscillations characterize feedback and

feedforward processing in monkey visual cortex. Proceedings of the National Academy of

Sciences of the United States of America 111, 14332–14341 (2014).

25. Bastos, A. M., Vezoli, J. & Fries, P. Communication through coherence with inter-areal

delays. Current Opinion in Neurobiology 31, 173–180 (2015).

26. Truccolo, W., Hochberg, L. R. & Donoghue, J. P. Collective dynamics in human and

monkey sensorimotor cortex: predicting single neuron spikes. Nature Neuroscience 13,

105–111 (2010).

27. Chen, J. L., Voigt, F. F., Javadzadeh, M., Krueppel, R. & Helmchen, F. Long-range

population dynamics of anatomically defined neocortical networks. eLife 5, e14679

(2016).

33

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2021. ; https://doi.org/10.1101/2021.02.08.430346doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.08.430346
http://creativecommons.org/licenses/by-nc-nd/4.0/


28. Li, N., Daie, K., Svoboda, K. & Druckmann, S. Robust neuronal dynamics in premotor

cortex during motor planning. Nature 532, 459–464 (2016).

29. Semedo, J. D., Zandvakili, A., Machens, C. K., Yu, B. M. & Kohn, A. Cortical Areas

Interact through a Communication Subspace. Neuron 102, 249–259.e4 (2019).

30. Ruff, D. A. & Cohen, M. R. Simultaneous multi-area recordings suggest that attention

improves performance by reshaping stimulus representations. Nature Neuroscience 22,

1669–1676 (2019).

31. Perich, M. G., Gallego, J. A. & Miller, L. E. A Neural Population Mechanism for Rapid

Learning. Neuron 100, 964–976.e7 (2018).

32. Ames, K. C. & Churchland, M. M. Motor cortex signals for each arm are mixed across

hemispheres and neurons yet partitioned within the population response. eLife 8

(2019).

33. Veuthey, T. L., Derosier, K., Kondapavulur, S. & Ganguly, K. Single-trial cross-area

neural population dynamics during long-term skill learning. Nature Communications

11, 4057 (2020).

34. Kohn, A. et al. Principles of Corticocortical Communication: Proposed Schemes and

Design Considerations. Trends in Neurosciences (2020).

35. Harrison, M. T. & Geman, S. A Rate and History-Preserving Resampling Algorithm

for Neural Spike Trains. Neural Computation 21, 1244–1258 (2008).

36. Smith, M. A. & Kohn, A. Spatial and Temporal Scales of Neuronal Correlation in

Primary Visual Cortex. The Journal of Neuroscience 28, 12591–12603 (2008).

37. Rockland, K. S. & Pandya, D. N. Cortical connections of the occipital lobe in the

rhesus monkey: Interconnections between areas 17, 18, 19 and the superior temporal

sulcus. Brain Research 212, 249–270 (1981).

34

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2021. ; https://doi.org/10.1101/2021.02.08.430346doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.08.430346
http://creativecommons.org/licenses/by-nc-nd/4.0/


38. Salin, P. A. & Bullier, J. Corticocortical connections in the visual system: structure and

function. Physiological Reviews 75, 107–154 (1995).

39. Rockland, K. S. & Virga, A. Terminal arbors of individual Feedback axons projecting

from area V2 to V1 in the macaque monkey: A study using immunohistochemistry of

anterogradely transported Phaseolus vulgaris-leucoagglutinin. Journal of Comparative

Neurology 285, 54–72 (1989).

40. Angelucci, A. et al. Circuits for Local and Global Signal Integration in Primary Visual

Cortex. Journal of Neuroscience 22, 8633–8646 (2002).

41. Shmuel, A. et al. Retinotopic Axis Specificity and Selective Clustering of Feedback

Projections from V2 to V1 in the Owl Monkey. Journal of Neuroscience 25, 2117–2131

(2005).

42. Kaufman, M. T., Churchland, M. M., Ryu, S. I. & Shenoy, K. V. Cortical activity in the

null space: permitting preparation without movement. Nature Neuroscience 17,

440–448 (2014).

43. Haefner, R., Berkes, P. & Fiser, J. Perceptual Decision-Making as Probabilistic Inference

by Neural Sampling. Neuron 90, 649–660 (2016).

44. Orban, G., Berkes, P., Fiser, J. & Lengyel, M. Neural Variability and Sampling-Based

Probabilistic Representations in the Visual Cortex. Neuron 92, 530–543 (2016).

45. Aitchison, L. & Lengyel, M. With or without you: predictive coding and Bayesian

inference in the brain. Current Opinion in Neurobiology 46, 219–227 (2017).

46. Girard, P., Hup, J. M. & Bullier, J. Feedforward and Feedback Connections Between

Areas V1 and V2 of the Monkey Have Similar Rapid Conduction Velocities. Journal of

Neurophysiology 85, 1328–1331 (2001).

35

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2021. ; https://doi.org/10.1101/2021.02.08.430346doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.08.430346
http://creativecommons.org/licenses/by-nc-nd/4.0/


47. El-Shamayleh, Y., Kumbhani, R. D., Dhruv, N. T. & Movshon, J. A. Visual Response

Properties of V1 Neurons Projecting to V2 in Macaque. Journal of Neuroscience 33,

16594–16605 (2013).

48. Felleman, D. J. & Essen, D. C. V. Distributed Hierarchical Processing in the Primate

Cerebral Cortex. Cerebral Cortex 1, 1–47 (1991).

49. Markov, N. T. et al. Cortical High-Density Counterstream Architectures. Science 342

(2013).

50. Girard, P. & Bullier, J. Visual activity in area V2 during reversible inactivation of area

17 in the macaque monkey. Journal of Neurophysiology 62, 1287–1302 (1989).

51. Bair, W., Cavanaugh, J. R. & Movshon, J. A. Time Course and Time-Distance

Relationships for Surround Suppression in Macaque V1 Neurons. Journal of

Neuroscience 23, 7690–7701 (2003).

52. Smith, M. A., Bair, W. & Movshon, J. A. Dynamics of Suppression in Macaque Primary

Visual Cortex. Journal of Neuroscience 26, 4826–4834 (2006).

53. Semedo, J. D., Gokcen, E., Machens, C. K., Kohn, A. & Yu, B. M. Statistical methods for

dissecting interactions between brain areas. Current Opinion in Neurobiology (2020).

54. Rao, R. P. N. & Ballard, D. H. Predictive coding in the visual cortex: a functional

interpretation of some extra-classical receptive-field effects. Nature Neuroscience 2,

79–87 (1999).

55. Friston, K. A theory of cortical responses. Philosophical Transactions of the Royal Society

B: Biological Sciences 360, 815–836 (2005).

56. Keller, G. B. & Mrsic-Flogel, T. D. Predictive Processing: A Canonical Cortical

Computation. Neuron 100, 424–435 (2018).

36

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2021. ; https://doi.org/10.1101/2021.02.08.430346doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.08.430346
http://creativecommons.org/licenses/by-nc-nd/4.0/


57. Sacramento, J., Ponte Costa, R., Bengio, Y. & Senn, W. Dendritic cortical microcircuits

approximate the backpropagation algorithm. In Bengio, S. et al. (eds.) Advances in

Neural Information Processing Systems 31, 8721–8732 (Curran Associates, Inc., 2018).

58. Whittington, J. C. R. & Bogacz, R. Theories of Error Back-Propagation in the Brain.

Trends in Cognitive Sciences 23, 235–250 (2019).

59. Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J. & Hinton, G. Backpropagation

and the brain. Nature Reviews Neuroscience 21, 335–346 (2020).

60. Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent

computation by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).

37

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2021. ; https://doi.org/10.1101/2021.02.08.430346doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.08.430346
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgements We thank E. Gokcen and A. Motiwala for invaluable
discussions and for providing feedback on the manuscript. This work was supported by
the Fundação para a Ciência e a Tecnologia graduate scholarship SFRH/BD/52069/2012
(J.D.S.), John and Claire Bertucci Graduate Fellowship (J.D.S.), NIH U01 NS094288
(C.K.M.), Simons Collaboration on the Global Brain 364994 (B.M.Y., A.K.), 543009 (C.K.M.),
543065 (B.M.Y.), 542999 (A.K.), NIH R01 HD071686 (B.M.Y.), NIH CRCNS R01 NS105318
(B.M.Y.), NIH CRCNS R01 MH118929 (B.M.Y.), NIH R01 EB026953 (B.M.Y.), NSF NCS BCS
1533672 and 1734916 (B.M.Y.), NIH EY016774 (A.K.).

Author Contributions J.D.S., C.K.M., A.K. and B.M.Y. designed the analyses. J.D.S.
performed all the analyses. A.I.J., A.Z., A.A. and A.K. designed and performed the
experiments. J.D.S., C.K.M., A.K. and B.M.Y. wrote the manuscript. C.K.M., A.K. and
B.M.Y. contributed equally to this work.

38

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2021. ; https://doi.org/10.1101/2021.02.08.430346doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.08.430346
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods

Recordings and visual stimulation

Anesthetized V1-V2

Animal procedures and recording details have been described in previous work19,36.

Briefly, animals (macaca fascicularis, male, 2-3 years old) were anesthetized with ketamine

(10 mg/kg) and maintained on isoflurane (1%-2%) during surgery. Recordings were

performed under sufentanil (typically 6-18 mg/kg/hr) anesthesia. Vecuronium bromide

(150 mg/kg/hr) was used to prevent eye movements. The duration of each experiment

(which comprised multiple recording sessions) varied from 5 to 7 days. All procedures

were approved by the IACUC of the Albert Einstein College of Medicine.

The data analyzed here are those reported in ref. 29, and a subset of recording sessions

reported in ref. 19. Activity in V1 was recorded using a 96 channel Utah array (400 micron

inter-electrode spacing, 1 mm length, inserted to a nominal depth of 600 microns;

Blackrock, UT). We recorded V2 activity using a set of electrodes/tetrodes (interelectrode

spacing 300 microns) whose depth could be controlled independently (Thomas Recording,

Germany). These electrodes were lowered through V1, the underlying white matter, and

then into V2. Within V2, we targeted neurons in the input layers. We verified the

recordings were performed in the input layers using measurements of the depth in V2

cortex, histological confirmation (in a subset of recordings), and correlation measurements.

For complete details see ref. 19. Voltage snippets that exceeded a user-defined threshold

were digitized and sorted offline. The sampled neurons had spatial receptive fields within

2-4 deg of the fovea, in the lower visual field.

We measured responses evoked by drifting sinusoidal gratings (1 cyc/deg ; drift rate of

3-6.25 Hz; 2.6-4.9 deg in diameter; full contrast, defined as Michelson contrast,

(Lmax � Lmin)/(Lmax + Lmin), where Lmin is 0 cd/m2 and Lmax is 80 cd/m2) at 8 different

orientations (22.5 deg steps), on a calibrated CRT monitor placed 110 cm from the animal

(1024 x 768 pixel resolution at a 100 Hz refresh rate; EXPO). Each stimulus was presented

400 times for 1.28 s. Each presentation was followed by an interval of 1.5 s during which a

gray screen was presented.
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We recorded neuronal activity in three animals. In two of the animals, we recorded in two

different but nearby locations in V2, providing distinct middle-layer populations, yielding

a total of five recording sessions.

Awake V1-V4

Animal procedures and methods have been reported previously in previous work61. In

brief, animals (two male, adult cynomolgus macaques) were trained to maintain fixation

on a small spot (0.2 x 0.2 deg, 80 cd/m2) on a gray background (40 cd/m2) within a

1.08-1.4 degree diameter fixation window. Eye-position was monitored using a video

tracking system (Eyelink II, SR research, ON, Canada) with a sampling rate of 500 Hz.

Stimuli were presented on a calibrated monitor 64 cm away from the animal (1024 x 768

resolution for monkey 1, 1400x1050 for monkey 2; 100 Hz refresh rate). After training,

Utah arrays (0.4 mm spacing; 1 mm electrode length, Blackrock, UT) were implanted in V1

and V4. For monkey 1 we implanted one 96 channel and one 48 channel array in V1 and

one 48 channel array in V4. Monkey 2 had two 96 channel arrays in V1 and two 48 channel

arrays in V4 (see Fig. 1c). We targeted the arrays to have matching retinotopic locations in

V1 and V4 by relying on anatomical markers and previous mapping studies. Receptive

fields were in the lower right visual hemifield and largely overlapping for V1 and V4

populations in both monkeys (Supplementary Fig. 1). All procedures were approved by

the IACUC of the Albert Einstein College of Medicine.

Extracellular voltage signals were amplified and band-pass filtered between 250 and 7.5

kHz using commercial acquisition software (Blackrock Microsystems, UT and Grapevine,

Ripple, UT). Voltage snippets that exceeded a user-defined threshold were digitized and

sorted offline.

Visual stimuli and task contingencies were presented using custom openGL software

(EXPO). We used full-contrast sinusoidal drifting gratings (spatial frequency 2 cyc/deg;

drift rate: 5 Hz). Stimulus position and diameter were chosen to maximize visual

responses. Stimulus diameter was set to 2.5 deg for monkey 1 and 7 deg for monkey 2.

Each recording session involved four grating orientations, chosen such that there were two

pairs of orientations 5 deg apart, and 90 deg between the two pairs (e.g., 0, 5, 90, 95 deg).

Trials began with the animal fixating on a small spot in the center of the screen. After a

delay of 100 ms we presented a random series of gratings (three for monkey 1, four for

monkey 2). Each stimulus presentation lasted for 200 ms and was followed by an
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inter-stimulus interval of 150 ms (grey screen). Animals were positively reinforced with a

liquid reward if fixation was maintained throughout the trial. Animals performed on

average 1080± 255 trials, resulting in 3721± 1081 stimulus presentations per session. We

recorded neural activity for three sessions in monkey 1 and two sessions in monkey 2.

Data preprocessing

Anesthetized V1-V2

In order to capture how moment-to-moment fluctuations in spiking activity were related

across the two areas, we subtracted the corresponding peri-stimulus time histogram

(PSTH) from each spike train, which was computed separately for each neuron and

grating orientation (after z-scoring the activity of each neuron separately for each of the 8

grating orientations). The PSTH was computed across the entire trial period, including the

stimulus presentation period and the subsequent inter-trial period. The resulting residual

activity was then pooled across all 8 grating orientations for each recording session. These

residual fluctuations can be interpreted as perturbations of the “signal”, or mean activity

across trials. By focusing on perturbations of the signal, we can then use linear methods

such as CCA (see below) as a local linear approximation to what is likely a globally

non-linear relationship of activity across areas29,62. For all analyses, we excluded neurons

that fired less than 0.5 spikes/s on average across all trials.

Awake V1-V4

To minimize the influence of adaptation effects, we analyzed activity across only the

second and third grating presentations, for which V1-V4 responses were qualitatively

similar (and smaller than the response to the first stimulus presentation). Activity for each

neuron was z-scored separately for the second and third grating presentations, and for

each of the 4 grating orientations. As with the V1-V2 recordings, we subtracted the

corresponding PSTH from each trial, which was computed separately for each neuron and

stimulus condition (i.e., combination of grating orientations). The PSTH was computed

across the entire trial period, including the stimulus presentation period and the

subsequent inter-trial period. The resulting residual activity was then pooled across all

stimulus conditions for each recording session. We observed cross-talk between a small

proportion of electrode pairs (average across recording sessions: 1.3%± 0.8% SEM),

evident as a surfeit (> 0.025 coincidences/spike) of precise (0.1 ms) synchronous events.
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We addressed this by removing one of the electrodes in each affected pair. For all analyses,

we excluded neurons that fired less than 0.5 spikes/s on average, across all trials.

Population correlation functions

When computing the population correlation functions for the anesthetized V1-V2

recordings (Fig. 3), we sought to focus on fast time-scale interaction effects. For this reason,

we counted spikes in 1 ms non-overlapping bins. For the awake V1-V4 recordings (Fig. 4),

due to the smaller number of trials per recording session and the longer conduction delay

between V1 and V47 we counted spikes in non-overlapping 25 ms bins.

Interaction structure analysis

For the interaction structure analysis (Fig. 6), for which we were interested in estimating

the activity patterns most correlated across areas, we counted spikes in 100 ms

non-overlapping bins. Activity was binned starting 50 ms after stimulus onset and

extending until the end of the stimulus presentation period (1.2 s of evoked activity) and

then starting 50 ms after stimulus offset and extending until the end of the inter-trial

period (1.45s of spontaneous activity). We used larger time bins than for computing

population correlation functions to increase the reliability of the estimated population

activity patterns, in exchange for less temporal resolution. Likewise, for the awake V1-V4

recordings we counted spikes in 100 ms non-overlapping bins, starting 50 ms after

stimulus onset and extending until the end of the trial (150 ms of evoked activity and 150

ms of spontaneous activity, for a total of 300 ms).

Population correlation analysis

In order to capture population correlations between cortical areas, we used Canonical

Correlation Analysis (CCA)63. CCA finds pairs of dimensions, one in each area, such that

the correlation between the projected activity onto these dimensions is maximally

correlated:

argmax
a,b

corr(Xa,Yb)

where X is a n⇥ px matrix containing the residual activity in the V1 population, Y is a

n⇥ py matrix containing the residual activity in the V2 (or V4) population, n represents

the number of data points, and px and py are the number of recorded neurons in each of

the two areas, respectively. The vectors a and b have dimensions px ⇥ 1 and py ⇥ 1,
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respectively defining dimensions in the population activity space of each area. CCA can

find additional pairs of dimensions, by requiring that subsequent pairs are uncorrelated

with those previously identified.

In order to measure population correlations at different epochs in the trial, and at different

time delays between the areas, we defined two windows of activity, one in each area.

Window length was 80 ms for the V1-V2 recordings, and 75 ms for the V1-V4 recordings.

Activity was then binned inside each window using 1 ms bins for the V1-V2 recordings

(80 data points per window), and 25 ms for the V1-V4 recordings (3 data points per

window). The reported results were robust to the specific binning and window length

chosen, over a reasonable range.

CCA was then applied to the residual activity taken from all trials within these windows.

Given two windows of activity starting at times t1 and t2 (relative to the start of the trial),

Xt1 and Yt2 , the population correlation between the two areas is given by:

P (t1, t2) = max
a,b

corr(Xt1a,Yt2b)

Defining the time within the trial as t = t1 and the delay between the activity in the two

areas as d = t2 � t1, each entry in the population correlation function is given by:

C(t, d) = P (t, t+ d) = max
a,b

corr(Xta,Yt+db)

CCA tended to identify only one pair of dimensions with highly significant population

correlations: correlations associated with the second canonical pair were on average 60%

lower than for the first pair and close to chance level. As such, we constructed the

population correlation functions using the first pair of canonical dimensions.

To isolate fast-timescale features in the early evoked activity (Fig. 3e), we computed

jitter-corrected population correlation functions. To do so, we jittered the spike times (25

ms jitter window) following the procedure in ref. 36. We then computed population

correlation functions using 1 ms binning and a window length of 480 ms, starting 80 ms

after stimulus onset, for both the residual activity and the jittered activity. Finally, we

subtracted the jittered population correlation function from the population correlation

function based on the residual activity, obtaining the jitter-corrected population
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correlation function. Corrected peak height and delay was computed by finding the

maximum of the jitter-corrected population correlation function, as well as the

corresponding delay. Supplementary Fig. 2 illustrates this process.

Comparing interaction structure across time

To determine whether the population activity patterns involved in inter-areal interactions

changed during the trial, we leveraged the probabilistic extension of CCA (pCCA)64.

pCCA is closely related to CCA in that both methods identify the same canonical

dimensions. The advantage of pCCA is that it defines an explicit generative model, which

we can leverage for model comparison and selection (see Supplementary Information).

Note that the population correlation functions described above could have been computed

using pCCA instead of CCA, which would have yielded the same results. We focused

there on the first canonical dimension, and did not need the model comparison and

selection procedures described below. Thus, solely for clarity of presentation, we opted to

introduce the population correlation functions using CCA.

pCCA is defined by the following generative model:

z ⇠ N (0, Iq)

x|z ⇠ N (Wxz,Ψx)

y|z ⇠ N (Wyz,Ψy)

where z is a q ⇥ 1 latent variable, x and y correspond to the neuronal activity recorded in

each of two cortical areas, with dimensionalities px ⇥ 1 and py ⇥ 1, respectively, px and py

are the number of neurons recorded in each area, and q  min(px, py). The identity matrix

Iq has dimensions q ⇥ q. The mapping matrices Wx and Wy have dimensions px ⇥ q and

py ⇥ q, respectively. The covariance matrices Ψx and Ψy have dimensions px ⇥ px and

py ⇥ py, respectively. We assume, without loss of generality, that x and y are

mean-centered. To fit pCCA, we first applied CCA and used the canonical dimensions and

associated canonical correlations to compute the parameters of the pCCA model (see

Supplementary Information).
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Under the pCCA model, the inter-areal covariance is fully determined by the matrices Wx

and Wy (see Supplementary Information for an extended discussion of pCCA and its

relation to classical CCA). In particular, the column spaces of these matrices define the

activity patterns, in each area, along which activity covaries across the two populations.

We used pCCA to compute the Wx and Wy matrices at different epochs and compared

these matrices, across epochs, to assess whether similar population activity patterns were

involved in the inter-areal interaction (Fig. 6). We computed the population activity

patterns related across areas (i.e., Wx and Wy) at one epoch in the trial, and asked how

much inter-areal correlation these population activity patterns explained at a different

epoch.

Specifically, we first fit a pCCA model with dimensionality q (see procedure below for

selecting q) separately for each epoch t, yielding parameters θt = {Wt
x,W

t
y,Ψ

t
x,Ψ

t
y}. We

then asked: given the observed (sample) within-area covariance matrices at time t, Σt
xx

and Σ
t
yy, how correlated would the activity across the two areas be if instead of the

estimated matrices Wt
x and Wt

y, the interaction was instead described by the matrices Wt0

x

and Wt0

y , obtained from a different epoch t0? In other words, how much does the across

area correlation change if we compute across-area correlations using population activity

patterns defined by Wt0

x and Wt0

y , instead of Wt
x and Wt

y? To quantify the change in

correlation, we computed normalized correlations, defined as the total correlation

captured at epoch t by the dimensions fit to epoch t0 over the total correlation captured by

the dimensions fit to epoch t (both computed in a cross-validated manner; see Methods).

Misalignment between the column spaces will lead to decreased correlations, and low

normalized correlation. On the other hand, if the mapping matrices Wt
x (Wt

y) and Wt0

x

(resp. Wt0

y ) share the same column space (i.e., if the across-area correlations at epochs t and

t0 involve the same population activity patterns), the resulting correlations should remain

the same, and normalized correlation will close to 1. Algorithm (1) describes this

procedure in detail (Supplementary Information).

In order to combine results across recording sessions, in Fig. 6 we used a single value for

the latent dimensionality q for all sessions. To select the value of the latent dimensionality

q, we first determined the value qt that maximized the cross-validated data likelihood for

each epoch t, in each recording session. For the anesthetized V1-V2 recordings, the

average dimensionality across all recording sessions was 3.30± 0.09 SEM across epochs in

the evoked period and 2.09± 0.14 SEM across epochs in the spontaneous period (averages
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taken across epochs and recording sessions). To avoid comparing spurious canonical

dimensions, we choose q to be no greater than both these estimated dimensionalities.

Thus, we choose q = 2 for these recordings. For the awake V1-V4 recordings the average

dimensionality across all recording sessions was 1.8± 0.29 SEM across epochs in the

evoked period and 2.40± 0.24 SEM across epochs in the spontaneous period (averages

taken across epochs and recording sessions). Thus, we choose q = 1 for these recordings.

For both sets of recordings, results were robust to different choices of q, over a reasonable

range.

Data availability

V1-V2 data are available at the CRCNS data sharing web site, at

https://doi.org/10.6080/K0B27SHN. V1-V4 data will be made available upon

reasonable request.

Code availability

MATLAB code that supports the data analyses will be made publicly available upon

publication.
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Supplementary Figure 1 Spatial receptive fields for the V1-V4-awake recordings. Lines

indicate 60% contour lines of a 2-dimensional Gaussian fit to the receptive fields.

Receptive fields were fitted to unsorted multi-unit activity recorded on each channel.
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Supplementary Figure 2 Isolanting feedforward peaks using a jitter-corrected population

correlation function. (a) If a feedforward peak is caused by precise spiking coordination

across the two areas, it should still be present after the slow-timescale component of the

population correlation function is removed. To remove the slow-timescale component,

thereby isolating fast-timescale features in the early evoked activity, we computed a

jitter-corrected population function36. We first computed a jittered population correlation

function (Jittered PCF; 25 ms jitter window), as described in ref. 36. We then obtained a

jitter-corrected PCF by subtracting the jittered PCF from the PCF based on residual activity

(Raw PCF). (b) We computed the peak height by finding the maximum value of the

jitter-corrected PCF, as well as the corresponding time delay. In this session, a clear peak

can be observed at 3 ms. Results across all recording sessions are shown in Fig. 3e.
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Supplementary Figure 3 Feedforward peak is absent, and feedback-dominated

interactions are not evident between subpopulations within V1 or V2. To test whether the

effects in Fig. 3 were specific to inter-areal interactions, we randomly divided the neurons

in each area into two subpopulations and computed population correlation functions

between the subpopulations for each area. (a) V1-V1 zero-delay population correlation

increases throughout the trial, and is higher for spontaneous activity than for evoked

activity. Solid line shows average across all recording sessions. Shading indicates S.E.M.

(b) V1-V1 population correlation functions for an example session (taken as the average

across 10 random divisions into two V1 subpopulations). Same conventions as in Fig. 3b.

(c) V2-V2 zero-delay population correlation increases throughout the trial, and is higher

for spontaneous activity than for evoked activity. Solid line shows average across all

recording sessions. Shading indicates S.E.M. (d) V2-V2 population correlation function for
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an example session (taken as the average across 10 random divisions into two V2

subpopulations). Same conventions as in Fig. 3b. (e) There are two key features of

inter-areal interactions revealed in Fig. 3 which are not present for within-area interactions.

First, the feedforward peaks of the population correlation functions for within-area

interactions are centered at 0 ms delay (see panels b and d). This is in contrast to the

across-area (V1-V2) case, where there is a feedforward peak shortly after stimulus onset

(Fig. 3b,e). Second, within-area interactions (V1-V1, left panel; V2-V2, right panel) were

neither feedforward- nor feedback-dominated during spontaneous activity (average

spontaneous activity feedforward ratio, computed in the -80 to 80 ms delay range:

0.002± 0.004 SEM for V1-V1; −0.007± 0.003 SEM for V2-V2; t-test for spontaneous

activity feedforward ratio, p = 0.71 for V1-V1; p = 0.09 for V2-V2. This is in contrast to the

across-area (V1-V2) case, where interactions were feedback-dominated during

spontaneous activity (Fig. 3d). Note that the feedforward ratio is slightly positive for the

early evoked period, although the population correlation functions peak at 0 ms time

delay throughout the whole trial. This reflects the slightly greater area under the right half

compared to the left half of the population correlation function (panels b and d), likely

due to the strong change in correlations at stimulus onset (panels a and c). This effect

occurs on a slow timescale and motivates our use of jitter-corrected responses reported in

the main text (Fig. 3e). Solid symbols show average across all recording sessions, empty

symbols correspond to each recording session. Same conventions as in Fig. 3d.
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Supplementary Figure 4 Interactions between subpopulations within V1 or V4 recorded

in awake animals were neither feedforward- nor feedback-dominated. To test whether the

effects in Fig. 4 were specific to inter-areal interactions, we randomly divided the neurons

in each area into two subpopulations and computed population correlation functions

between the subpopulations for each area. (a) V1-V1 zero-delay population correlation is

constant throughout the trial. Shading indicates S.E.M. (b) V1-V1 population correlation

functions for an example session (taken as the average across 25 random divisions into

two V1 subpopulations). Same conventions as in Fig. 4b. (c) V4-V4 zero-delay population

correlation is constant throughout the trial. Solid line shows average across all recording

sessions. Shading indicates S.E.M. (d) V4-V4 population correlation functions for an

example session (taken as the average across 25 random divisions into two V4

subpopulations). Same conventions as in Fig. 4b. (e) There are two key features of
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inter-areal interactions revealed in Fig. 4 which are not present for within-area interactions.

First, the feedforward-dominated interaction shortly after stimulus onset (Fig. 4b,e) is

absent here, and the correlation functions are centered at 0 ms delay (see panels b and d).

Second, the transition from feedforward- to feedback-dominated interactions in the late

evoked period (Fig. 4d) is also absent (average late evoked feedforward ratio, computed in

the -50 to 50 ms delay range: 0.027± 0.008 SEM for V1-V1; 0.031± 0.011 SEM for V4-V4;

one-sided paired Wilcoxon signed-rank test for difference between early evoked and late

evoked activity across all 5 recording sessions, p = 0.41 for V1-V1; p = 0.97 for V4-V4).
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Supplementary Figure 5 Ensuring that changes in activity patterns most related across

areas cannot be ascribed to changes in the within-area population covariance structure. (a)

We generated V1-V2 surrogate data that had approximately the same within-area

covariance structure as the recorded data for each epoch, but for which the inter-areal

interaction structure was held fixed (see Methods and Supplementary Information). For

this synthetic data, our analysis identified a stable interaction structure (right, compare to

left reproduced from Fig. 6d which is based on recorded activity). Same conventions as in

Fig. 6d. (b) The same was true for the V1-V4 interactions (right, compare to left reproduced

from Fig. 6e which is based on recorded activity). Same conventions as in Fig. 6e.

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2021. ; https://doi.org/10.1101/2021.02.08.430346doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.08.430346
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 3 5 7 9

1

3

5

7

9

N
u
m

b
e
r 

o
f 

In
te

r-
a
re

a
l 
D

im
e
n
s
io

n
s

Target Population Dimensionality

V1-V1

V1-V2

Supplementary Figure 6 A communication subspace is evident when using Canonical

Correlation Analysis (CCA) to characterize inter-areal interactions. We previously

reported that the interaction between V1 and V2 was low dimensional (termed a

communication subspace) using Reduced-Rank Regression (RRR)29. RRR is closely related

to Canonical Correlation Analysis (CCA), which we employed in this work (for a review,

see ref. 53, in press). One might wonder whether CCA also identifies a communication

subspace between V1 and V2. We repeated the analysis in our previous work, using the

same data that was analyzed there29, but using CCA instead of RRR to relate the activity

across areas. To determine the number of dimensions involved in inter-areal interactions,

we first evaluated the cross-validated log-likelihood curve for a probabilistic CCA model

(pCCA), and picked the number of canonical dimensions that yielded the highest data

likelihood. We then fit a pCCA model with the corresponding dimensionality using all

trials, and computed the associated inter-areal covariance matrix. Finally, we used

Singular Value Decomposition (SVD) to determine the smallest number of dimensions

that captured 95% of the inter-areal covariance, and used that number as our estimate of

the number inter-areal dimensions.

As in our previous work29, we found that fewer dimensions were required to characterize

inter-areal interactions (V1-V2; red triangle on vertical axis) than within-area interactions
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(V1-V1; blue triangle on vertical axis). In contrast to Fig. 3, where we identified a single

significant canonical pair for each epoch and time delay, here we identify on average close

to 3. This is largely due to the larger binning windows used here (100 ms vs. 1 ms in

Fig. 3). Importantly, the lower number of dimensions required to account for inter-areal

interactions, compared to within-area interactions, was not a result of lower dimensional

activity in the V2 population, as the population activity dimensionality was higher in V2

than in the held-out V1 populations (compare blue and red triangles on horizontal axis).

Moreover, the number of predictive dimensions identified by RRR was highly correlated

with the number of canonical dimensions identified by CCA (Pearson correlation

coefficient r2 = 0.89 across all datasets; not shown). Open circles corresponds to each

dataset, filled circles denote mean across datasets for each recording session. Triangles

denote mean across all recording sessions.
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Supplementary Information

Characterizing changes in the interaction structure

What constitutes a change in the interaction structure? In other words, how can we

evaluate whether or not different activity patterns are involved in inter-areal interactions

during different trial epochs? Using Canonical Correlation Analysis (CCA, see Methods)

to characterize inter-areal interactions, one might wonder whether changes in the

canonical dimensions across two epochs are a good indication of a change in the

interaction structure. Here, we show that directly levering the canonical dimensions to test

for changes in the interaction structure can be misleading, and propose an alternative

approach based on the probabilistic CCA (pCCA) model64.

Suppose we identify q pairs of canonical dimensions, and represent them as the columns

of matrices Aq and Bq, which have dimensions px × q and py × q, respectively, where px

and py are the number of recorded neurons in each of the two areas. The column space of

each matrix defines a subspace in each area within which activity is most correlated across

areas. If one seeks to compare the canonical dimensions identified during two trial epochs,

one possibility is to compare the column spaces of matrices Aq and Bq for two different

epochs.

There is, however, a potential problem with using this approach to ask whether there was

a meaningful change in the inter-areal interaction structure. We can illustrate this issue by

considering data generated from a pCCA model. pCCA is defined by the following

equations:
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z ∼ N (0, Iq) (1)

x|z ∼ N (Wxz,Ψx) (2)

y|z ∼ N (Wyz,Ψy) (3)

where z is a q × 1 latent variable, x and y correspond to the neuronal activity recorded in

each of two cortical areas, with dimensionalities px × 1 and py × 1, respectively, px and py

are the number of neurons recorded in each area, and q ≤ min(px, py). The identity matrix

Iq has dimensions q × q. The mapping matrices Wx and Wy have dimensions px × q and

py × q, respectively. The covariance matrices Ψx and Ψy have dimensions px × px and

py × py, respectively. We assume, without loss of generality, that x and y are mean-centered.

CCA and pCCA return the same correlation values, so both methods result in the same

population correlation functions. The advantage of pCCA here is that it provides us with a

more complete description of the fitted model and its underlying assumptions.

According to pCCA’s graphical model (Fig. S1a), we can describe the observed activity in

each area as having an “across-area” component and a “within-area” component. The

across-area component emerges via the linear mapping between the shared latent variable

z and each observed variable, x and y. This mapping is defined by the matrices Wx and

Wy. The within-area components are defined to be Gaussian with unconstrained

covariance matrices Ψx and Ψy.

The relationship between the column spaces of the matrices Aq and Bq computed by

classical CCA and the parameters of the pCCA model is given by:
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Āq = Σ
�1

xxWx (4)

=
�

WxWx
T +Ψx

�

�1

Wx (5)

B̄q = Σ
�1

yy Wy (6)

=
�

WyWy
T +Ψy

�

�1

Wy (7)

where Āq and B̄q have the same column space as Aq and Bq, respectively (see the

“Relationship between CCA and pCCA” section below). This shows that the subspaces

spanned by the canonical dimensions in each area depend on the within-area noise

parameters Ψx and Ψy. Thus, changes to the within-area components lead to changes in

the subspaces spanned by the canonical dimensions, even if the across-area components

remain fixed. Measuring changes in the interaction structure by measuring to what extent

the subspaces spanned by the canonical dimensions differ would thus lead us to conclude

that across-area interaction structure had changed, even though only the within-area

components were altered.

We can gain further intuition into the pCCA model by inspecting the joint covariance

matrix (Fig. S1b) The covariance for each area, Σxx (Σyy), is composed of an across-area

component, WxWx
T (resp. WyWy

T ) and within-area component, Ψx (resp. Ψy). Figure

S1c illustrates this covariance decomposition for one of the areas (ellipses represent each

covariance component). For the across area covariance, however, we have

Σxy = WxWy
T = Σ

T
yx. Thus, the across-area covariance structure is solely determined by

the linear mapping matrices Wx and Wy.

Given that the across-area component in the pCCA model is solely determined by the

mapping matrices Wx and Wy, we can quantify changes in the interaction structure by

comparing those matrices for different trial epochs. We will take this approach, and use a
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pCCA model to estimate the Wx and Wy matrices, and in turn use changes in these

matrices to detect changes in the interaction structure. We need to first define how to

measure differences between the Wx and Wy matrices estimated at different times during

the trial. As mentioned above, Wx and Wy are underdetermined, so an element by

element comparison (e.g., the Frobenius norm of the difference between two Wx matrices

fit at different epochs in the trial) is not suitable. We defined our difference metric to be

based on differences between the column spaces of Wx and Wy, i.e., our measure of how

much the interaction structure changes across different epochs is only sensitive to changes

in the subspaces spanned by the dimensions along which activity is related across areas.

To be conservative, we will not consider scaling and affine transformations of these

dimensions (which do not change the subspace spanned by these dimensions) as changes

to the interaction structure, although they might reflect interesting changes for other

analysis goals.

Specifically, we will measure differences between the column spaces of Wx and Wy by

comparing the inter-area correlation these subspaces account for. To compare the

interaction structure identified during two epochs in the trial, indexed by t and t0, we first

fit a pCCA model at each epoch, yielding parameters θt = {Wt
x,W

t
y,Ψ

t
x,Ψ

t
y} and

θt
0

= {Wt0

x ,W
t0

y ,Ψ
t0

x ,Ψ
t0

y }. We then ask: given the observed (sample) within-area

covariance matrices at time t0, Σt0

xx and Σ
t0

yy, how correlated would the activity across areas

be if instead of the estimated matrices Wt0

x and Wt0

y , the interaction was instead described

by matrices Wt
x and Wt

y? More specifically, how much do across-area correlations change

if we replace the column space of Wt0

x and Wt0

y by the column space of Wt
x and Wt

y? We

can use equations 4 and 6 to compute the subspace spanned by the canonical dimensions

4
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induced by Wt
x and Wt

y (see the “Relationship between CCA and pCCA” section below):

Āt0,t
q = Σ

t0

xx

�1

Wt
x (8)

B̄t0,t
q = Σ

t0

yy

�1

Wt
y (9)

and measure the amount of across-area correlation captured by Āt0,t
q and B̄t0,t

q . We then

compare that amount of across-area correlation to the correlation that would have resulted

from using Wt
x and Wt

y (i.e., the across-area correlation captured by Āt0,t0

q and B̄t0,t0

q ). The

results of this analysis are shown in Fig. 6. Note that both Āt0,t
q and Āt0,t0

q (resp. B̄t0,t
q and

B̄t0,t0

q ) are computed using the same covariance matrix Σ
t0

xx (resp. Σt0

yy). Thus, any

differences between Āt0,t
q and Āt0,t0

q (resp. B̄t0,t
q and B̄t0,t0

q ) are the result of differences

between Wt
x and Wt0

x (resp. Wt
y and Wt0

y ). Specifically, differences between the column

spaces of Āt0,t
q and Āt0,t0

q (resp. B̄t0,t
q and B̄t0,t0

q ) are the result of differences between the

column spaces if Wt
x and Wt0

x (resp. Wt
y and Wt0

y ; see “Relationship between CCA and

pCCA” section below). Algorithm (1) describes this process in detail.
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Algorithm 1: Comparing inter-area interaction structure across time

Result: Normalized correlations ζt
0,t
q for all t0 and t, and for all choices of q

Given sets of observations {Xt,Yt}train and {Xt,Yt}test, for each trial epoch t

for q = 1, ...,min(px, py) do

for ∀t do

Fit pCCA with latent dimensionality q to the training set {Xt,Yt}train

yielding: θt = {Wt
x,W

t
y,Ψ

t
x,Ψ

t
y}

for ∀t0 do

Compute across-area correlation in the test set {Xt0 ,Yt0}test:

1. Compute correlation subspaces Āt0,t and B̄t0,t:

Āt0,t = Σ
t0

xx

�1

Wt
x and B̄t0,t = Σ

t0

yy

�1

Wt
y

where Σ
t0

xx and Σ
t0

yy are computed using {Xt0 ,Yt0}test

2. Project the {Xt0 ,Yt0}test onto Āt0,t and B̄t0,t:

X̂t0 = Xt0Āt0,t and Ŷt0 = Yt0B̄t0,t

3. Apply CCA to {X̂t0 , Ŷt0} and sum all q canonical correlations,

obtaining rt
0,t
q

end

end

for ∀t, t0 do

Compute normalized correlations ζt
0,t
q = rt

0,t
q /rt

0,t0

q

end

end

Algorithm (1) describes a simple train/test split, but it is easy to generalize this procedure

to run within a k-fold cross-validation scheme (and then average the normalized

correlations across test folds). In the current study, we employed 10-fold cross-validation.
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Fixed interaction structure control

The analysis described in Algorithm (1) was designed to be sensitive only to the column

spaces of the Wx and Wy matrices. To empirically test that our analysis is insensitive to

changes in the remaining pCCA model parameters (i.e., that the changes reported in Fig. 6

are solely due to changes to Wx and Wy), we devised a control based on the following

intuition: if we analyze data where the across-area component is held fixed while the

within-area component changes, our method (if it works as we expect it to) should

indicate that there is no change in interaction between areas. In other words, if we keep

the column spaces constant across epochs, we should find that all normalized correlations

will be close to 1 (i.e., we identify the same column spaces throughout the trial). To carry

out this control analysis, we generated surrogate data that was as similar as possible to the

observed activity (in terms of the first and second order statistics, number of trials and

number of observed neurons), but with fixed column spaces for the mapping matrices Wx

and Wy.

To achieve this, we first fit a pCCA model to the recorded neural activity, across all epochs,

obtaining matrices Wx and Wy. We then choose matrices Ψ̂t
x and Ψ̂

t
y for each epoch such

that WxWx
T + Ψ̂

t
x ≈ Σ

t
xx and WyWy

T + Ψ̂
t
y ≈ Σ

t
yy for each epoch t. Note that Wx and

Wy are the same for all epochs. Figure S2 illustrates this for two epochs t and t0.

For Ψ̂t
x = Σ

t
xx −WxWx

T to be a proper covariance matrix, it must be positive definite,

which is not guaranteed to be the case (similarly for Ψ̂t
y). A simple way to ensure that Ψ is

positive definite is to scale Wx and Wy appropriately for each time step, as this operation

does not change their column spaces. Algorithm (2) describes the surrogate data

generation process in detail.
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We found that fixing the column spaces of the Wx and Wy in this way led pCCA to

identify fixed columns spaces across all epochs (Supplementary Fig. 5a,b), indicating the

results in Fig. 6 are not driven by changes in the within-area components but rather by

changes in the inter-areal interaction structure.

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2021. ; https://doi.org/10.1101/2021.02.08.430346doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.08.430346
http://creativecommons.org/licenses/by-nc-nd/4.0/


Algorithm 2: Creating surrogate data with a fixed interaction structure

Result: Surrogate data {X̂t, Ŷt}, for each epoch t and for all choices of q

Given the sets of observations, {Xt,Yt}, for each trial epoch t

for q = 1, ...,min(px, py) do
Fit pCCA with latent dim. q jointly to all sets of observations,

yielding Wx and Wy

for ∀t do

1. Fit pCCA with latent dim. q to {Xt,Yt}, yielding θt = {Wt
x,W

t
y,Ψ

t
x,Ψ

t
y}

2. Compute minimum within-area variances σmin
2

x and σmin
2

y, given by the

smallest eigenvalues of Ψt
x and Ψ

t
y, respectively

3. Compute across-area variance ratio, defined as the total across-area

variance divided by the total variance in each area1:

νt
x = trace

⇣

Wt
xW

t
x
T
⌘

/ trace
⇣

Wt
xW

t
x
T
+Ψ

t
x

⌘

and

νt
y = trace

⇣

Wt
yW

t
y
T
⌘

/ trace
⇣

Wt
yW

t
y
T
+Ψ

t
y

⌘

4. Scale Wx and Wy such that the across-area variance ratios for epoch t

are νx and νy, i.e., choose αt
x and αt

y such that:

trace
⇣

αt
x
2
WxWx

T
⌘

/ trace
⇣

αt
x
2
WxWx

T +Ψ
t
x

⌘

= νt
x and

trace
⇣

αt
y
2
WyWy

T
⌘

/ trace
⇣

αt
y
2
WyWy

T +Ψ
t
y

⌘

= νt
y

5. Compute Ψ̂
t
x = Σ

t
xx − αt

x
2
WxWx

T and Ψ̂
t
y = Σ

t
yy − αt

y
2
WyWy

T

6. Using the eigenvalue decompositions of Ψ̂t
x and Ψ̂

t
y, set their minimum

variance to σmin
2

x and σmin
2

y, respectively2

7. Generate surrogate data {X̂t, Ŷt} from a pCCA model with parameters

θt = {αt
x
2
Wx,α

t
y
2
Wy, Ψ̂

t
x, Ψ̂

t
y}, with the same number of samples as in

the entire set of observations, {Xt,Yt}

end

end

2The scale of the estimated mapping matrices is underdetermined (see “Relationship between CCA and
pCCA” section below), so this ratio is underdetermined as well. As an example, scaling Wx by c and Wy

by 1/c (thereby changing νx and νy) results in an equivalent model, from a data likelihood perspective
(provided Ψx and Ψy remain positive definite). Although we found that keeping the ratio fixed led to good
approximations to the covariance matrices Σt

xx and Σ
t
yy , this ratio should not be over-interpreted.

2This step is required to ensure that Ψ̂t
x and Ψ̂

t
y are positive definite matrices.

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2021. ; https://doi.org/10.1101/2021.02.08.430346doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.08.430346
http://creativecommons.org/licenses/by-nc-nd/4.0/


Relationship between CCA and pCCA

The correspondence between the classical formulation and the probabilistic variant of

CCA was developed by Bach and Jordan64. Specifically, they showed that any maximum

likelihood solution derived using the probabilistic model (equations 1-3) corresponds to

the same set of canonical dimensions identified using classical CCA. In other words, the

data likelihood function for pCCA has infinitely many global optima, where all local

optima are also global optima, and all global optima correspond to the same set of

canonical dimensions. In particular, if we define the top q canonical dimensions identified

for each area by classical CCA as Aq (a px × q matrix) and Bq (a py × q matrix), the

relationship between the canonical dimensions and the linear mapping matrices from

pCCA is given by:

Wx = ΣxxAqMx (10)

Wy = ΣyyBqMy (11)

where Mx and My are arbitrary q × q matrices such that MxMy
T = Pq and the spectral

norms of Mx and My are smaller than one. Pq is a diagonal matrix containing the first q

canonical correlations. As an example, Mx = My = P
1/2
q satisfies these constraints. Any

suitable choice of Mx and My corresponds to a global maximum of the data likelihood.

The link between CCA and pCCA is similar to that between PCA and pPCA, and the

derivation of this connection largely follows that originally developed for PCA and

pPCA65,66.

In particular, the fact that Mx and My are underdetermined means that Wx and Wy are

not uniquely defined when fitting pCCA, i.e., there are many choices of Wx and Wy that

result in the same canonical dimensions, and maximizing the data likelihood can return
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any such choices. Importantly, these Wx (Wy) matrices all have the same column space,

i.e., multiplication by Mx (resp. My) does not change the column space of Wx (resp. Wy).

Given two matrices Wx and Wy found by maximizing the data likelihood, we cannot

directly compute Aq and Bq from these matrices alone, since we don’t know which Mx

and My the particular solution we found corresponds to. However, since all the consistent

Wx (Wy) matrices have the same column space, we can find the column spaces of Aq and

Bq by computing matrices Āq and B̄q (equations 4 and 6), since the column space of Āq

(B̄q) is the same as the column space of Aq (resp. Bq) (see Lemma 1 below). Note that the

column space of Aq (resp. Bq) is the subspace of x (y) spanned by the canonical

dimensions found by classical CCA. The relationship above indicates that the subspace

spanned by the canonical dimensions in Aq (Bq) depends on the column space of Wx

(resp. Wy) and on Σxx (resp. Σyy). In particular, if Σxx (Σyy) is held fixed, the column

space of Aq (resp. Bq) is solely determined by the column space of Wx (resp. Wy; see

Lemma 2 below). This observation forms the basis for Algorithm 1, where we ask how

well a pCCA model fit to epoch t (yielding Wt
x and Wt

y) captures correlations at epoch t0.

Lemma 1. Āq (B̄q) and Aq (resp. Bq) have the same column space.

Proof. We will show that Āq and Aq have the same column space. The proof for B̄q and Bq

is identical. Starting with equation 10:

Wx = ΣxxAqMx

⇔Σ
�1

xxWx = AqMx

⇔ Āq = AqMx
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where we used the fact that Σxx is a square positive definite matrix. So long as Mx is a full

rank matrix (i.e., the first q canonical correlations are non-zero), Āq = AqMx and Aq have

the same column space.

Lemma 2. If Σxx (Σyy) is held fixed, the column space of Aq (resp. Bq) is solely determined by the

column space of Wx (resp. Wy).

Proof. We will show that the column space of Aq depends solely on the column space of

Wx if Σxx is held fixed. The proof for Bq is identical. Using the compact singular value

decomposition Wx = UDVT , and inserting it into equation 10:

ΣxxAqMx = Wx

⇔ΣxxAqMx = UDVT

⇔AqMx = Σ
�1

xxUDVT

⇔AqMxVD�1 = Σ
�1

xxU

where we used the fact that Σxx is a square positive definite matrix. As long as Mx is a full

rank matrix (i.e., the first q canonical correlations are non-zero), MxVD�1 is a square full

rank matrix, and thus AqMxVD�1 and Aq have the same column space. So as long as Σxx

is held fixed, the column space of Aq only depends on U, which is a basis for the column

space of Wx. In other words, if we change Wx, only the changes to U (its column space),

and not changes to D or V, affect the column space of Aq.
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Figure S1 Probabilistic canonical correlation analysis (pCCA) (a) pCCA’s probabilistic

graphical model. (b) Summary of the relationship between the data covariance matrices

and the pCCA model parameters. (c) Graphical representation of the covariance

decomposition under a pCCA model for one of the two populations. Red ellipse

represents the across-area component; blue ellipse represents the within-area component;

pink ellipse represents the total covariance in this area.
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Figure S2 Changing the total covariance in one of the areas while keeping the across-area

component fixed. Same conventions as in Fig. S1c.
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