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Feedforward Carrier Recovery for
Coherent Optical Communications

Ezra Ip and Joseph M. Kahn, Fellow, IEEE

Abstract—We study a carrier-synchronization scheme for co-
herent optical communications that uses a feedforward archi-
tecture that can be implemented in digital hardware without
a phase-locked loop. We derive the equations for maximum
a posteriori joint detection of the transmitted symbols and the car-
rier phase. The result is a multidimensional optimization problem
that we approximate with a two-stage iterative algorithm: The
first stage is a symbol-by-symbol soft detector of the carrier phase,
and the second stage is a hard-decision phase estimator that uses
prior and subsequent soft-phase decisions to obtain a minimum
mean-square-error phase estimate by exploiting the temporal cor-
relation in the phase-noise process. The received symbols are then
derotated by the hard-decision phase estimates, and maximum-
likelihood sequence detection of the symbols follows. As each com-
ponent in the carrier-recovery unit can be separately optimized,
the resulting system is highly flexible. We show that the optimum
hard-decision phase estimator is a linear filter whose impulse re-
sponse consists of a causal and an anticausal exponential sequence,
which we can truncate and implement as an finite-impulse-
response filter. We derive equations for the phase-error variance
and the system bit-error ratio (BER). Our results show that 4,
8, and 16 quadrature-amplitude-modulation (QAM) transmis-
sions at 1 dB above sensitivity for BER = 10

−3 is possible with
laser beat linewidths of ∆νTb = 1.3 × 10

−4, 1.3 × 10
−4, and

1.5 × 10
−5 when a decision-directed soft-decision phase estima-

tor is employed.

Index Terms—Carrier synchronization, coherent detection,
digital signal processing, feedforward, optical communications,
phase locked loop.

I. INTRODUCTION

PHASE NOISE is a major impairment in coherent optical

communications. The traditional method of demodulating

coherent optical signals is to use an optical or electrical phase-

locked loop (PLL) that synchronizes the frequency and phase

of the local oscillator (LO) with the transmitter laser. Owing to

high data throughput, PLLs have generally been implemented

with analog components. The performance of PLL-based re-

ceivers for the detection of optical phase-shift keying (PSK)

and quadrature-amplitude modulation (QAM) has been studied

in [1] and [2]. PLLs are sensitive to propagation delay inside
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the loop. For 10-Gb/s transmission, it has been shown that

delays greater than a few tens of nanoseconds will lead to loop

instability. Even if careful circuit design reduces propagation

delay to no more than a few symbol periods, coherent detection

with a PLL still has stringent linewidth requirements. In [1] and

[2], it was found that the maximum tolerable linewidth-to-bit-

rate ratio (∆νTb) for 4-, 8-, and 16-QAMs are 3.5 × 10−5,

1.8 × 10−5, and 1.3 × 10−6, respectively, if a bit-error ratio

(BER) of 10−9 is to be achieved with less than 0.5-dB power

penalty. Since current-generation external-cavity tunable lasers

(ECLs) have linewidths on the order of tens to hundreds of

kilohertz [3], 8-QAM transmission at 10 Gb/s is only barely

feasible, while 16-QAM transmission at 10 Gb/s is beyond the

scope of current lasers.

Advances in high-speed very large-scale integration (VLSI)

technology promise to change the paradigm of coherent op-

tical receivers. By converting the in-phase (I) and quadrature

(Q) outputs of a homodyne receiver to the digital domain

using high-speed analog-to-digital converters (ADCs), digital-

signal-processing (DSP) algorithms can be used to compensate

channel impairments. Provided that the ADC sampling rate

satisfies Nyquist’s criterion, the digitized signals contain all the

information in the received electric field. DSP compensation of

linear impairments, such as chromatic dispersion (CD) [4]–[6]

and polarization-mode dispersion (PMD) [7], [8], is possible. In

addition, a digital coherent receiver also allows new techniques

for carrier synchronization. PLLs are no longer required, as fre-

quency mismatch between the transmitter and the LO laser only

results in a constant rotation of the received constellation, which

can be tracked by DSP and compensated in a feedforward

architecture. Recent experiments have shown that feedforward

carrier-recovery schemes are more tolerant to laser phase noise

than PLL-based receivers. Coherent detection of optical binary

PSK that yielded a Q factor of 8.5 dB at a laser linewidth of

∆νTb = 0.032 was reported in [9], while coherent detection of

4-PSK that yielded a 1.5-dB power penalty at a BER of 10−9

with ∆νTb = 10−4 was reported in [10]. Feedforward carrier

recovery for optical 8-PSK was studied in [11].

It is noted that the above experimental results were obtained

for constant-amplitude M -PSK constellations. While various

carrier-recovery schemes have been proposed for QAM in

digital subscriber lines [12]–[14], the proposed algorithms take

thousands of symbols to estimate the carrier phase, which is

too slow for the linewidth–bit-rate ratios typically encountered

in optical transmission. To our knowledge, no comprehensive

study has been undertaken to determine the optimum receiver

structures for optical QAM. Even for optical PSK, no theo-

retical analysis of system performance has been carried out.

0733-8724/$25.00 © 2007 IEEE
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Fig. 1. Polarization-diversity homodyne receiver.

The objective of this paper is to provide a theoretical basis for

feedforward carrier recovery in coherent optical communica-

tions. We will approach the problem in a systematic manner,

starting with a derivation of the maximum a posteriori proba-

bility (MAP) detector. We will propose a two-stage phase esti-

mator that is computationally simple enough to be implemented

at gigabits-per-second data rates.

Our paper is organized as follows. In Section II, we derive

formulas for MAP detection of the transmitted symbols and

the carrier phases. We will show that MAP detection is a joint

optimization problem that is numerically too complicated to

solve. In Section III, we propose an approximate procedure con-

sisting of two iterative stages: A soft-decision phase-estimator

stage, followed by a hard-decision phase-estimator and symbol

detector. We will show that the hard-decision phase estimator

can be implemented as a finite-impulse-response (FIR) filter.

We will analyze system performance in terms of the phase-

error standard deviation and the system BER. We will also

investigate the impact of nonzero frequency offset between the

signal and LO lasers. Simulation results will be presented in

Section IV, and implementation issues will be discussed in

Section V.

II. MAP SYMBOL/PHASE DETECTOR

A. Receiver Model

In this paper, we shall assume the use of a polarization

diversity homodyne receiver shown in Fig. 1. The received

optical signal Ein(t) is combined with a LO laser using two 90◦

hybrids and a polarization beam splitter [4], [15]. The outputs of

the balanced photodetectors are the baseband electrical signals

corresponding to the I and Q signals in the two reference polar-

izations of the LO laser. These signals are low-pass filtered and

sampled using high-speed ADC. The I and Q of the transmitted

polarizations may then be recovered by a complex-valued ma-

trix multiplication [16]. Provided that sampling is performed

above the Nyquist rate, linear channel impairments, such as

CD and PMD, may be compensated using a linear equalizer

with low power penalty [8]. In this paper, we shall assume that

the equalizer outputs have no ISI and no nonlinear distortion.

We shall further assume that symbol synchronization has been

achieved and that the equalizer correctly rotates the reference

LO polarizations into the polarizations of the transmitted signal

so that y1,k and y2,k have low-polarization crosstalk and are at

one sample per symbol.

We assume that carrier recovery is performed separately

for each channel.1 All the quantities expressed, including the

transmitted power, noise variance, and bit rate, are therefore

referenced for the one polarization considered. The input signal

to the carrier-recovery unit, then, has the form

yk = xke
jθk + nk (1)

where xk is a complex-valued symbol transmitted at the kth

symbol period, θk is the carrier phase, and nk is the additive

white Gaussian noise2 (AWGN) with a circular Gaussian dis-

tribution with zero mean and variance N0/2 per dimension.

The goal of this paper is to find an algorithm that can estimate

θk, which will allow derotation of yk by multiplying it with

e−jθk . Maximum-likelihood (ML) detection can then follow to

estimate the transmitted sequence x̂k.

We will initially assume that the frequencies of signal and

LO lasers are synchronized so that the time variation in θk is

due to phase noise only, which can be modeled as a Wiener

process. In Section III-D, we will investigate the impact of

a small frequency difference δf between the carrier and LO

lasers, where we will propose algorithms for estimating and

compensating δf .

B. MAP Symbol-by-Symbol Detection

The conditional probability density function (pdf) of the

received signal yk is given by

p(yk|xk, θk) =
1

πN0
exp

(
−
∣∣yk − xke

jθk

∣∣2

N0

)
. (2)

Since xk and θk are independent, the MAP estimates of the

transmitted symbol and the carrier phase are

(x̂k, θ̂k) = max
xk,θk

p(yk|xk, θk)p(xk)p(θk). (3)

In general, this joint maximization problem does not yield

a closed-form solution. One method of evaluating (3) is to

discretize phase to a set of values [θ] and then compute the

cost function (3) for different pairs of (xm, [θ]); the pair that

maximizes (3) will be the MAP estimate. This approach is

computationally expensive as θk needs to be known accurately

(particularly for dense modulation formats like 16-QAM) to

avoid large power penalties. It is, thus, unsuitable for high-bit-

rate systems. In data-assisted (DA) phase estimation, training

symbols are transmitted. Provided θk is nearly static and its

a priori pdf is uniform, the MAP estimate has a simple ana-

lytical formula

θ̂k = max
θk

p(yk|xk, θk) = arg{yk} − arg{xk}. (4)

1It is possible to generalize our results for two polarizations by employing
separate soft-decision phase estimators for each polarization channel and, then,
using a hard-decision phase estimator that combines the soft-phase estimates
from the two channels.

2This includes LO spontaneous beat noise in a long-haul transmission system
with inline optical amplifiers, as well as shot and thermal noises produced by
the receiver.
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During data transmission, we can approximate the DA al-

gorithm by replacing the known symbols xk with the output

of a decision device, which we denote as x̂k. This approach

approximates (3) by first maximizing the cost function over x̂k

and, then, over θ̂k

max
xk,θk

p(yk|xk, θk) ≈ max
θk

max
xk

p(yk|xk, θk). (5)

Provided that the system is operating at low BER, xk equals x̂k

with high probability, and it has been shown that this algorithm,

known as decision-directed (DD) carrier recovery, is asymptot-

ically optimal for high signal-to-noise ratio (SNR) [17].

Another approach is to reverse the order of the approxima-

tions used in evaluating (3)

max
xk,θk

p(yk|xk, θk) ≈ max
xk

max
θk

p(yk|xk, θk). (6)

This approach leads to the nondecision-aided (NDA) algorithm,

which first computes θ̂k that maximizes the average of the cost

function over all possible transmitted symbols {xm : 0 ≤ m ≤
M − 1}

p(yk|θk) =

M−1∑

m=0

p(yk|xk = xm, θk)p(xk = xm). (7)

The NDA algorithm is especially well suited to M -ary PSK

transmission since raising the received signal to the M th power

removes the data modulation, allowing θk to be estimated

without any symbol decisions. The received signal yk can then

be derotated by θ̂k, and x̂k may be found by a decision device.

It has been shown that the NDA algorithm is asymptotically

optimal for low SNR [17].

C. MAP Sequence Detection

In sequence detection, the receiver takes a vector y =
(yk, yk−1, . . . , yk−L+1) and computes the best estimates of

the transmitted symbols x = (xk, xk−1, . . . , xk−L+1) and the

carrier phases θ = (θk, θk−1, . . . , θk−L+1). In most semicon-

ductor lasers, phase noise can be modeled as a Wiener process

θk =

k∑

m=−∞
νm (8)

where the νm’s are independently identically distributed (i.i.d.)

Gaussian random variables with zero mean and variance σ2
p =

2π∆νT , ∆ν is the sum of the 3-dB linewidths of the signal

and LO lasers (also known as the beat linewidth), and T is the

symbol period.

The MAP estimation procedure is given by

(x̂, θ̂) = max
x,θ

p(y|x,θ)p(x)p(θ) (9)

where

p(y|x,θ) =

L−1∏

l=0

1

πN0
exp

(
−
∣∣yk−l − xk−le

jθk−l

∣∣2

N0

)
(10)

Fig. 2. Iterative procedure for estimating x and θ.

and p(x) and p(θ) are the a priori probabilities of the trans-

mitted sequences x and carrier phases θ. Since phase noise is a

Wiener process, we have

p(θ) =
p(θk−L+1)
(
2πσ2

p

)L
2

L−2∏

l=0

exp

(
− (θk−l − θk−l−1)2

2σ2
p

)
. (11)

We note that the evolution of the carrier phase as a Wiener

process performs a similar function to coding in communi-

cation systems. In coding, the transmitter imposes temporal

correlation in the transmitted signal that permits the receiver

to correct symbol-detection errors. Here, temporal correlation

in the carrier phase is introduced by the Wiener process, as the

phase at any symbol period is likely to have a value similar to

the phases at adjacent symbols. In (9), the temporal correlation

in the transmitted symbols and carrier phases is represented

by the Lth order joint pdfs p(x) and p(θ). MAP sequence

detection yields performance superior to the MAP symbol-by-

symbol detection discussed in Section II-B.

It is possible to approximate (9) using a DD approach

(x̂, θ̂) ≈ max
θ

max
x

p(y|x,θ)p(x)p(θ) (12)

or an NDA approach

(x̂, θ̂) ≈ max
x

max
θ

p(y|x,θ)p(x)p(θ). (13)

In both of these approximations, however, each maximiza-

tion is over an L-dimensional space so a simple closed-form

solution like (5) does not exist. It is possible to approximate (9)

with the approach shown in Fig. 2, where the parameters are

optimized one at a time. Such a solution is clearly suboptimal.

However, if we iterate the algorithm enough times, subse-

quent passes can correct decision errors made earlier, and the
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Fig. 3. Two-stage iterative carrier-phase estimator.

algorithm may converge to an optimal solution (or possibly a

local minimum).

III. PRACTICAL IMPLEMENTATION

A. Two-Stage Iterative Carrier-Phase Estimator

In this paper, we propose an algorithm, based on Fig. 3,

which employs a two-stage iteration process for finding x̂ and

θ̂. The first-stage (soft-decision) phase estimator is shown in

the upper branch. It computes soft estimates of the carrier

phase (ψk) for each symbol period without taking temporal

correlation in θk into account. The details of its operation are

explained in Section III-B. In the second stage of phase esti-

mation, ψk is passed through a linear filter W (z) whose output

is the minimum mean-square-error (mmse) estimate of θk. We

denote this output by θ̂k−∆, where ∆ is the delay of the filter.

The selection of its coefficients and the resulting performance

is analyzed in Section III-C. Finally, the received signal is

delayed by ∆ and multiplied with e−jθ̂k−∆ to produce derotated

symbols sk−∆ that are then detected. The output sequence

x̂k−∆ is the receiver’s estimate of the transmitted symbols.

Our structure is highly flexible, as each functional block

in Fig. 3 can be separately designed for tradeoff between

implementation complexity and performance. For example,

the soft-decision phase estimator may employ a DD or NDA

design; W (z) may be a FIR filter, an infinite-impulse-response

(IIR) filter, or a combination thereof; and the output stage can

be as simple as a symbol-by-symbol detector, or it may be an

ML-sequence detector.

B. Soft-Decision Phase Estimator

A block diagram of the soft-decision phase estimator is

shown in Fig. 4(a) and (b) for NDA and DD designs, respec-

tively. Both take yk as their input, and both produce a soft

estimate ψk of the carrier phase θk.

NDA Soft-Decision Phase Estimator: The NDA soft-

decision phase estimator exploits the M -fold rotational sym-

metry of an M -PSK constellation. We can write the set of

transmitted signals as: xm =
√
Ptxe

j2mπ/M , m = 1, . . . ,M .

Raising the received signal (1) to the M -th power, we get

yM
k =

(
xke

jθk + nk

)M
= P

M/2
tx ejMθk + mk (14)

where xM
k = P

M/2
tx ejMθk is the desired term depending on θk,

and mk =
∑M

p=1

(
M
p

)
(xke

jθk)M−pnp
k is a sum of the unwanted

cross terms between the signal and AWGN. Fig. 5(a) shows

the impact of mk, which adds a noise vector to P
M/2
tx ejMθk .

Fig. 4. Soft-decision phase-estimator structures for (a) NDA algorithm and
(b) DD algorithm.

Fig. 5. Signal models of the soft-decision phase estimator. (a) NDA algorithm.
(b) DD algorithm.

Consequently, when we take the argument of yM
k and scale the

result by 1/M , we get

ψk =
1

M
arg

{
yM

k

}
≈ θk + n′

k (15)

where Mn′
k is the angular projection of mk, which is corrupting

our estimate of θk. At high SNR, it can be shown that n′
k is

approximately i.i.d. Gaussian with zero mean and variance

σ2
n′ = η(M,γ)

1

γ
(16)
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where γ is the SNR per symbol,3 and η(M,γ) is a function

derived in Appendix A.

DD Soft-Decision Phase Estimator: When a non-PSK con-

stellation is transmitted, the carrier phase can be estimated with

a DD soft-decision phase estimator, as shown in Fig. 4(b). A

key difference between the NDA and the DD phase estimator is

that an initial estimate of the phase (denoted as θ̃k) is required to

find ψk.4 The principle of the DD phase estimator is as follows:

The received signal yk is first derotated by θ̃k, and the result is

passed through a decision device

x̂k =
[
yke

−jθ̃k

]
D

(17)

where [·]D denotes the output of the decision device. At high

SNR, x̂k = xk with high probability, so our soft estimate of the

received phase is

ψk = arg{yk} − arg{x̂k}. (18)

Fig. 5(b) shows (17) and (18) graphically. The received signal

yk is the sum of xk rotated by θk plus a noise vector nk (1). The

angular projection of nk in the direction orthogonal to xke
jθk

is the phase-estimation noise n′
k. We can, therefore, write

ψk = θk + n′
k. (19)

At high SNR, n′
k is approximately i.i.d. Gaussian with zero

mean and variance

σ2
n′ = η

1

γ
(20)

where η = (1/2)E[|x|2]E[1/|x|2] is equal to half the “constel-

lation penalty,” which is a function of the modulation format

[2], and γ is the SNR per symbol.

Phase Unwrapping: Both the NDA and DD phase estima-

tors require phase unwrapping. This is because the arg{·}
function only returns values between −π and π, as angles

that differ by integer multiples of 2π are indistinguishable. In

the absence of the phase unwrapper, the NDA phase-estimator

output is constrained between −π/M and π/M , whereas the

DD output is constrained between −π and π.5 Our carrier-phase

model in (8) assumes θk to be a Wiener process whose value

is unconstrained. Phase unwrapping has been studied in [9]. Its

purpose is to add an integer multiple of 2π/M to ensure that the

magnitude of the phase difference between adjacent symbols is

always less than π/M . Let ψ̃k be the carrier phase prior to the

unwrapper. We compute

ψk = ψ̃k+1 + p 2π/M. (21)

3Since carrier recovery is performed symbol by symbol, it is more convenient
to use the SNR per symbol γ in our theoretical treatment. If the transmission
format encodes b bits per symbol, the SNR per bit is given by γb = γ/b.

4In Section III-B3, we will show how θ̃k can be obtained.
5For convenience, we may treat the DD phase estimator as an NDA with

M = 1.

Fig. 6. Carrier-phase-estimator signal model.

It can be shown that the required p is6

p =

⌊
1

2
+

ψk−1 − ψ̃k

2π/M

⌋
. (22)

Phase unwrapping can cause cycle slips, which is a highly

nonlinear phenomenon [17]. We shall discuss how this impacts

the system’s performance in Section III-D.

C. Hard-Decision Phase Estimator

Wiener Filter: Using (15) and (19), we have the linear-

phase-estimator model shown in Fig. 6. The input frequency

noise νk is a white Gaussian process whose running sum is

the phase noise θk. At the output of the soft-decision phase

estimator, θk is corrupted by noise n′
k to produce ψk. We can

pass ψk through a Wiener filter W (z) whose output is the mmse

estimate θ̂k of the actual carrier phase θk. We will refer to

this filter as the hard-decision phase estimator. Writing all the

quantities in Fig. 6 in terms of their two-sided z-transforms,

we have

X(z) = lim
K→∞

+K∑

n=−K

xnz
−n. (23)

It can be shown that the Wiener solution W (z) is given by

W (z) =
E
[
θ(z)ψ(z−1)

]

E [ψ(z)ψ(z−1)]
=

rz−1

−1 + (2 + r)z−1 − z−2
(24)

where r = σ2
p/σ

2
n′ > 0. This filter has two poles at

z1, z2 =
(

1 +
r

2

)
±
√(

1 +
r

2

)2

− 1 (25)

that are inverses of each other, with z1 inside the unit circle

mapping to a causal sequence and z2 outside the unit circle

mapping to an anticausal sequence. The inverse z-transform of

(24) is

wn =

{
αr

1−α2α
n, n ≥ 0

αr
1−α2α

−n, n < 0
(26)

6At low SNR or high phase noise, it is possible that an inaccurate value
of ψk−1 may lead to the wrong value of p being computed. Consequently, a
more robust algorithm can use several prior phases to compute p. In our sim-
ulations in Section V, we found that p = ⌊(1/2) + ((1/3)(ψk−1 + ψk−2 +

ψk−3) − ψ̃k/2π/M)⌋ yields reliable performance.
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where α = (1 + r/2) −
√

(1 + r/2)2 − 1. The mmse hard-

decision phase estimator, thus, computes

θ̂k =

+∞∑

l=−∞
wlψk−l. (27)

We note that the Wiener-filter coefficients in (26) consist of

two exponentially decaying sequences that are symmetric about

n = 0. This result is intuitively satisfying: First, the hard-

decision phase estimator gives decreasing emphasis to soft deci-

sions that are far away from symbol k whose phase is estimated

in (27), as phase noise makes far away symbols inaccurate esti-

mators of θk. Second, the symmetry of the filter means that the

causal and anticausal soft-phase estimates are weighted equally,

which is expected, since the accuracy of ψk−l, as an estimator

of θk, depends only on |l|. Finally, the decay rate of the Wiener

coefficients depends only on the ratio between the intensity of

phase noise and AWGN. In the limit of low phase noise (σ2
p ≪

σ2
n′), α → 1 and the decay rate is slow because of the long co-

herence time of the phase-noise process. Conversely, in the limit

of high phase noise (σ2
p ≫ σ2

n′), soft-decision phase estimates

at symbols far from period k are poor estimators of θk, so α →
0 and the Wiener coefficients rapidly decay. It can be shown

that
∑∞

n=−∞ wn = 1, so (27) is an unbiased estimator of θk.

FIR Approximation7: Since the coefficients of the Wiener

filter are nonzero over −∞ to +∞, it is not possible to

implement (27) unless the system has infinite delay. However,

the exponentially decaying coefficients become negligible for

sufficiently large |n|, so we can truncate (27) without significant

performance degradation. For example, if we neglect the coef-

ficients that are less than a fraction f of the value of the largest

coefficient w0. We can approximate (26) with a FIR filter of

length

L =

⌈
2

log(f)

log(1/α)

⌉
. (28)

Let WFIR(z) be the filter that takes as its input ψ =

(ψk, ψk−1, . . . , ψk−L+1) and produces θ̂k−∆ that is the best

estimate of the carrier phase at symbol k − ∆ (Fig. 5)

θ̂k−∆ =

L−1∑

l=0

wlψk−l. (29)

It can be shown that the conditional pdf of ψ, given θk−∆, is

p(ψ|θk−∆) =
1

(2π)L/2|K|1/2

· exp

(
−1

2
(ψ − θk−∆1)TK−1(ψ − θk−∆1)

)
(30)

7It is possible to approximate (26) with other filter structures. For instance, if
a zero-delay filter is desired (e.g., for Wsd(z) in Section III-D), we can discard
the noncausal Wiener filter coefficients. The remaining causal coefficients can
then be implemented as an IIR filter with a single feedback tap of α. We can also
use an FIR–IIR hybrid for (26), where the causal coefficients are implemented
as an IIR filter, and L/2 noncausal coefficients (L given by (28) with f = 0.05)
are implemented as an FIR filter optimized for delay ∆ = L/2. The IIR output
can then be delayed by ∆, and the signals in the two branches are optimally
combined with splitting ratios equal to the inverse of their respective phase-
error variances.

where 1 = (1, . . . , 1)T is a vector of L ones, and K is an

autocorrelation matrix, which is a sum of two components

K= Kp + Kn (31)

Kp =σ2
p ·




∆ · · · 3 2 1 0 0 0 0 · · · 0
...

. . .
...

...
...

...
...

...
... . .

. ...

3 · · · 3 2 1 0 0 0 0 · · · 0
2 · · · 2 2 1 0 0 0 0 · · · 0
1 · · · 1 1 1 0 0 0 0 · · · 0
0 · · · 0 0 0 0 0 0 0 · · · 0
0 · · · 0 0 0 0 1 1 1 · · · 1
0 · · · 0 0 0 0 1 2 2 · · · 2
0 · · · 0 0 0 0 1 2 3 · · · 3
... . .

. ...
...

...
...

...
...

...
. . .

...

0 · · · 0 0 0 0 1 2 3 · · · L−∆−1




(32)

and

Kn = σ2
n′ · IL×L. (33)

IL×L is the L× L identity matrix. The terms Kp and Kn arise

from the autocorrelations of θk and n′
k, respectively. The upper

right and lower left corners of Kp are zeros because of the

conditional independence between the carrier phases before and

after symbol k − ∆, given θk−∆.

We can find the ML estimator (which also happens to be

the mmse estimator) for θk−∆ by minimizing the argument

in the exponential in (30). Since K−1 is symmetric, it can be

shown that

WFIR =
K−11

1TK−11
. (34)

The coefficients in (34), again, sum to one, so (29) is an

unbiased estimator of θk−∆.

There are a number of alternative settings for W (z) that

are commonly used in practice. For instance, W = (1/L) ·
[1, . . . , 1] is a uniform filter that gives equal weighting to all

soft decisions in the computation of θ̂k−∆ and was used in

[10]. This strategy is asymptotically optimal for low phase

noise (σ2
p ≪ σ2

n′). Alternatively, a one-shot estimator W =
[0, . . . , 0, 1, 0, . . . , 0] with a single tap of one at w∆ is asymp-

totically optimal for high phase noise (σ2
p ≫ σ2

n′). As in the

case of the infinite-length Wiener filter in (26), the coefficients

in (34) converge to these two limiting cases for low and high

phase noise, respectively. In Fig. 7, the coefficients of WFIR

are shown for different values of r = σ2
p/σ

2
n′ .

MSE Performance: In a system where AWGN and phase

noise are the only channel impairments, the mean and variance

of the phase error εk = θ̂k−∆ − θk−∆ determine the system

power penalty at a given BER [18]. Consider the error signal

εk =

L−1∑

l=0

wlψk−l − θk−∆. (35)

Regardless of whether a DD or NDA soft-decision phase esti-

mator is used, from (15) or (19), ψk−l can be written as

ψk−l = θk−∆ + (θk−l − θk−∆) + n′
k−l. (36)
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Fig. 7. Wiener filter coefficients for (a) L = 11, ∆ = 5, σ2
p/σ2

n′
= 0.1;

(b) L = 11, ∆ = 5, σ2
p/σ2

n′
= 1; (c) L = 11, ∆ = 5, σ2

p/σ2
n′

= 10; and

(d) L = 11, ∆ = 2, σ2
p/σ2

n′
= 1.

Since the carrier phase is a Wiener process given by (8)

θk−l − θk−∆ =





k−l∑
m=k−∆+1

νm, l < ∆

k−∆∑
m=k−l+1

(−νm), l > ∆.

(37)

Substituting (36) and (37) into (29), the hard-decision phase

estimate θ̂k−∆ is given by

θ̂k−∆ =

[
θk−∆ ·

L−1∑

l=0

wl

]

+

[
∆−1∑

m′=0

νk−m′

(
m′∑

l′=0

wl′

)

+

L−1∑

m′=∆+1

(−νk−m′+1)

(
L−1∑

l′=m′

wl′

)]

+

[
L−1∑

l=0

wln
′
k−l

]
. (38)

The three terms enclosed in square brackets are as follows:

1) the carrier phase being estimated, weighted by the sum of

the filter coefficients, 2) a weighted sum of the frequency noises

before and after symbol period k − ∆, and 3) a weighted sum

of AWGN. In an unbiased estimator,
∑L−1

l=0 wl = 1 [this is the

case with the coefficients in (34)], so εk has zero mean, and its

variance is given by

σ2
ε(W,∆)=σ2

p ·




∆−1∑

m′=0

(
m′∑

l′=0

wl′

)2

+

L−1∑

m′=∆+1

(
L−1∑

l′=m′

wl′

)2



+ σ2
n′ ·

[
L−1∑

l=0

w2
l

]
. (39)

Fig. 8. Phase-error standard deviation of the hard-decision phase estimator
versus filter delay for L = 70, σ2

n′
= 10−3, and σ2

p = 10−4.

For any given L, ∆, σ2
p, and σ2

n′ , the phase-error variance is

minimized when the coefficients in (34) are used.

We intuitively expect that the lowest mse is obtained when

the delay is equal to half the filter length, i.e., ∆ = ⌊L− 1/2⌋.

If ∆ = 0, for example, the soft decisions ψk−l for large l will

be poor estimators of θk−∆ due to phase noise. A similar

argument holds for ∆ = L− 1. Setting ∆ = ⌊L− 1/2⌋ results

in the same number of soft phases used from either side of

symbol period k − ∆ for estimating θk−∆. A plot of phase-

error standard deviation versus delay is shown in Fig. 8 for

a fixed filter length of 70. As expected, the FIR Wiener filter

has the best performance for all delay values. The one-shot

estimator’s performance is independent of ∆, since it always

considers only one soft-phase sample at the desired symbol

period. The uniform filter has poor performance when the delay

∆ is either too small or too large.

In Fig. 9, we set the filter delay to its optimal value of

∆ = ⌊L− 1/2⌋ and plot the phase-error standard deviation

versus L for 4-, 8-, and 16-QAMs when the receiver optical

SNR (OSNR) is 1 dB above sensitivity. In Fig. 9(a)–(c), a target

BER of 10−3 is used, while in Fig. 9(d)–(f), the target BER is

10−9. We assume the use of a DD soft-decision phase estimator

in all plots [σ2
n′ given by (20)].Column three of Table I shows

the OSNRs needed to achieve these target BERs when there is

no phase error.

To see how the results in Fig. 9 compare with a PLL, the

maximum tolerable phase-error standard deviations to ensure

less than 0.5-dB power penalty at the target BER are listed in

columns four and five of Table I.8 These results assume that

phase error has a Tikhonov distribution in the case of a PLL [18]

and a Gaussian distribution in the case of feedforward carrier-

phase estimation. The maximum tolerable laser linewidth for a

PLL is shown in column six.9

8See [2, Fig. 11] for the BER curves for 8- and 16-QAM when phase error
has a Tikhonov distribution. The maximum tolerable σε at BER = 10−9 for
Tikhonov-distributed phase error were shown in [2, Table 1]. To obtain σε

for BER = 10−3, we extended our numerical results to low SNR. To obtain
σε for Gaussian-distributed phase error (column five of Table I), we used (69)
as the pdf of the received signal instead [2, eq. (7)].

9Using the values of σε shown in column four in Table I, we invoke (46) to
compute the maximum tolerable linewidth.
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Fig. 9. Phase-error standard deviation σε versus filter length L for the hard-
decision phase estimator whose delay is assumed to be ∆ = ⌊L − 1/2⌋. The
cases shown are as follows: (a) 4-QAM at γb = 7.79 dB, ∆νTb = 6.0 ×
10−4, (b) 8-QAM at γb = 10.03 dB, ∆νTb = 3.0 × 10−4, (c) 16-QAM
at γb = 11.52 dB, ∆νTb = 4.0 × 10−5, (d) 4-QAM at γb = 13.55 dB,
∆νTb = 1.5 × 10−4, (e) 8-QAM at γb = 15.60 dB, ∆νTb = 7.0 × 10−5,
and (f) 16-QAM at γb = 17.46 dB, ∆νTb = 6.0 × 10−6. The solid line “-,”
the dashed line “- -,” and the dotted–dashed line “-.-” in each plot are the results
for W (z) being a Wiener filter, a uniform filter, and a one-shot estimator.

TABLE I
SENSITIVITY AND PHASE-ERROR REQUIREMENTS

FOR 4-, 8-, AND 16-QAMs

In each of the plots in Fig. 9(a)–(f), if we substitute the

value of L, then we would obtain for the Wiener filter length

using (28) with f = 0.05; the achievable σε is less than the

values shown in column five of Table I. Thus, feedforward

carrier-phase estimation allows the linewidths shown in the

caption of Fig. 9. In comparison with the PLL’s linewidths

shown in column six, feedforward carrier-phase estimation

appears to be five to six times more phase-noise tolerant than

a PLL. In particular, the results in Fig. 9(a)–(c) suggests that

4-, 8-, and 16-QAMs transmissions at 10 Gbps at a BER

of 10−3 is possible with laser beat linewidths as large as

6 MHz, 3 MHz, and 400 kHz, respectively. These numbers

are well within the capabilities of current ECLs [3]. How-

ever, our results have not taken soft-decision error propagation

into account. We shall outline the procedure in estimating

the system BER in Section III-E after discussion of soft-

decision errors.

D. Soft-Decision Phase-Estimator Input Phase

It was noted in Section III-B that the DD soft-decision phase

estimator10 requires an input θ̃k. If we assume that phase noise

is sufficiently low so that the carrier phase drifts slowly, we

may take θ̃k to be the hard-decision phase-estimator output

from a recent symbol. One solution is shown in Fig. 10(a),

where θ̃k+1 = θ̂k−∆. There is an inherent tradeoff in selecting

∆ in this setup. Although it was shown in Fig. 8 that the mse

for θ̂k−∆ is minimized by setting ∆ = ⌊L− 1/2⌋, the benefit

gained with having an accurate θ̂k−∆ is compromised by the

fact that, if ∆ is large, θ̂k−∆ will not be an accurate initial phase

for the soft-decision phase estimator.

We can improve system performance by using a two-filter

structure, as shown in Fig. 10(b). A dedicated hard-decision

filter Whd is optimized for delay ∆ = ⌊L− 1/2⌋, while for

the feedback path, we use a second filter Wsd that is optimized

for ∆ = 0 for the prediction of θk+1.

When an inaccurate θ̃k causes the decision device in Fig. 5(b)

to make an error, the soft-decision estimate ψk will acquire

an offset equal to the angular difference between the detected

symbol and the actual transmitted symbol (Fig. 11). From (29),

we see that a soft-decision phase error of ∆ε at symbol k − l
will cause θ̂k−∆ to acquire a mean offset of wl∆ε if we assume

that there are no further errors in the block {ψm}k
m=k−L+1.

Thus, εk−∆ will be distributed as N(wl∆ε, σ2
ε), where σ2

ε is

given by (39).

Soft-decision errors can potentially cause catastrophic fail-

ure, as the mean phase shift in θ̂k−∆ degrades future soft

decisions through the feedback θ̃k+1 (Fig. 10): The derotated

constellation sk in Fig. 4(b) will be misaligned by wl∆ε.

Consider an example where ∆ε = π/2. If the coefficient wl,

which is multiplying ∆ε in (29), is 0.1, wl∆ε = 9◦. A phase

offset as large as this will likely cause severe degradation to the

performance of the decision device. Subsequent soft-decision

errors will be more likely, leading to catastrophic failure. It

is, thus, necessary to take error propagation into account when

computing the system BER.11

10The NDA soft-decision phase estimator does not require an initial phase
estimate [Fig. 5(a)].

11It will turn out that catastrophic failure actually leads to cycle slip, where
differential bit encoding can be employed to avert catastrophic bit errors. This
is discussed in Section III-F.
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Fig. 10. Carrier-phase-estimator structure employing a DD soft-decision phase estimator. (a) One-filter approach. (b) Two-filter approach.

Fig. 11. Effect of a soft-decision phase error. The received signal yk is

derotated by θ̃k to produce sk . Due to large phase noise and AWGN, sk is in
the wrong decision region, causing the output of the decision device to produce
[sk]D �= xk . The phase estimator returns ψk + ∆ε, where ∆ε is the angular
difference between [sk]d and xk .

We note that catastrophic error propagation can only occur

when a DD soft-decision phase estimator is used, since the

NDA phase estimator has no feedback. Instead, the NDA phase

estimator may suffer from cycle slips due to phase unwrapping

(Section III-B).12 To appreciate its impact, suppose a cycle-

slip event occurred at symbol k. If another cycle slip does not

occur within the next L− 1 symbols, the soft phases from ψk+1

onwards will have a constant error of ∆ε = ±2π/M , depend-

ing on the sign of the cycle-slip event. Substituting this result

into (29), we observe that the hard-decision phase-estimator

outputs {θ̂k−∆+m}L−1
m=0 will be shifted by ∆ε

∑m
l=0 wl; while

outputs {θ̂k−∆+m}∞m=L will have an error of ∆ε since the filter

coefficients sum to one. A cycle slip thus causes the dero-

tated constellation sk−∆ (Fig. 3) to have large misalignment

12The DD phase estimator can also suffer from cycle slip.

from symbol periods k − ∆ to k − ∆ + L− 1, so symbol-

detection errors in this period are likely. For subsequent sym-

bols, however, the phase error will be ±2π/M . Since an

M -PSK constellation is rotationally invariant to phase shifts

of ±2π/M , low probability of symbol error can still be

achieved, provided that differential-bit coding is used [17].13

A cycle-slip event will result in a finite number of bit er-

rors between symbols k − ∆ and k − ∆ + L− 1. Catastrophic

failure will not occur because the NDA phase estimator

has no feedback.

E. System Probability of Error

To compute the overall system BER, we first need to evaluate

the probabilities of symbol error for the two decision devices

1) inside the soft-decision phase estimator [Fig. 4(b)] and

2) at the output-symbol detector (Fig. 3).The parameters that

determine these error probabilities are the AWGN variance and

the mean and variance of phase error. In the setup shown in

Fig. 10(b), the phase-error variances are

σ2
ε,sd =E

[
(θ̃k+1 − θk+1)2

]
= σ2

ε(Wsd, 0) + σ2
p (40)

σ2
ε,hd =E

[
(θ̂k−∆ − θk+∆)2

]
= σ2

ε(Whd,∆). (41)

For the special case where the setup of Fig. 10(a) is used, we

have Wsd = Whd = W.

To obtain the probability of symbol error, we define two

quantities whose closed-form expressions will be given in

Appendix B: 1) Pe(N0, µε, σ
2
ε): The probability of symbol

13Note that this increases the BER, as discussed in Section III-F.
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error when AWGN and carrier-phase error are distributed as

N(0, N0) and N(µε, σ
2
ε), respectively. 2) P (∆ε|N0, µε, σ

2
ε):

The probability that the soft-decision phase estimator makes an

error of ∆ε when AWGN and carrier-phase error are distributed

as N(0, N0) and N(µε, σ
2
ε).

The probability of symbol error for the system may be

written as

Pe =Pe

(
N0, 0, σ

2
ε,hd

)
×

L−1∏

j=0

P
(
0|N0, 0, σ

2
ε,sd

)

+

L−1∑

l=0

∑

∆ε

Pe

(
N0, whd,l∆ε, σ2

ε,hd

)

×






L−1∏

j=l+1

P
(
0|N0, 0, σ

2
ε,sd

)

× P

(
∆ε|N0, 0, σ

2
ε,sd

)

×




l−1∏

j=0

P
(
0|N0, wsd,l∆ε, σ2

ε,sd

)





+ higher order terms. (42)

The first term in (42) is the probability that the output-symbol

detector makes an error when there are no soft-decision errors

in {ψm}k
m=k−L+1.

The second term is the probability of the output-symbol

detector making an error when there is one soft-decision error

in {ψm}k
m=k−L+1. Suppose the soft-decision error occurred at

symbol k − l and its magnitude is ∆ε. The hard-decision phase-

estimator output will have a mean offset of µε̂k−∆
= whd,l∆ε,

and its probability of symbol error is Pe(N0, whd,l∆ε, σ2
ε,hd),

where σ2
ε,hd is given by (41). This error probability is then

multiplied by the likelihood of a soft-decision phase error of

∆ε occurring at symbol k − l, which requires:

1) correct estimation of ψm from symbols k − L + 1 to

k − l − 1;

2) a decision error at symbol k − l causing a phase-

estimation error of ∆ε; and

3) correct estimation of ψm from symbols k − l + 1 to k.

The probabilities 1)–3) are the quantities inside the square

brackets in (42).

Finally, the “higher order terms” represent the probability

that the output-symbol detector makes an error when there are

two or more soft-decision errors in {ψm}k
m=k−L+1. It is pos-

sible to enumerate these terms exactly by using an exhaustive

approach as in the previous paragraph. However, the resulting

expression becomes unwieldy. If we assume that the higher

order terms are negligible at sufficiently high BER, we can

write the upper and lower bounds. First, the higher order terms

will always sum to a value greater than zero. Second, the

occurrence of two or more soft-decision errors will, at most,

cause all subsequent symbols to be in error, so we have an upper

bound of 1 − P (nsd = 0) − P (nsd = 1), where P (nsd = i) is

TABLE II
AVERAGE NUMBER OF BIT ERRORS TO SYMBOL ERRORS (nb) FOR

GRAY-CODED AND DIFFERENTIAL-BIT-ENCODED QAM

the probability of i soft-decision errors in {ψm}k
m=k−L+1. It

can be shown that

P (nsd = 0) =

L−1∏

j=0

P
(
0|N0, 0, σ

2
ε,sd

)
(43)

P (nsd = 1) =

L−1∑

l=0

∑

∆ε




L−1∏

j=l+1

P
(
0|N0, 0, σ

2
ε,sd

)



× P
(
∆ε|N0, 0, σ

2
ε,sd

)

×




l−1∏

j=0

P
(
0|N0, wsd,j∆ε, σ2

ε,sd

)

 . (44)

The BER of the system can then be found using (45) in

conjunction with the average nearest neighbor counts listed in

Table II.

In Fig. 12(a), we plot BER versus ∆ for 16-QAM for

the single-filter carrier-recovery structure shown in Fig. 10(a),

assuming an OSNR of 17.46 dB/b (1 dB above sensitivity at

a BER of 10−9) and a laser beat linewidth of ∆νTb = 7.5 ×
10−6. A filter length of L = 50 was selected. The two curves

shown are the upper and lower bounds for BER. As expected,

there is a tradeoff in ∆ with this carrier-recovery setup. For

∆ greater than eight, θ̂k−∆ becomes an increasingly worse

estimator of θk+1, so the higher order terms in (42) become sig-

nificant, and the lower and upper bounds for Pb diverges. Using

the BER upper bound as a conservative assumption, a delay of

∆ = 8 is optimum, and the resulting BER is 2.0 × 10−10. The

phase-error standard deviations at the soft- and hard-decision

phase-estimator outputs [(40) and (41)] are shown in Fig. 12(b).

As expected, ∆ = ⌊L− 1/2⌋ optimizes the performance of

the hard-decision phase estimator while ∆ = 0 optimizes the

performance of the soft-decision phase estimator.

In Fig. 13, we plot the performances of 4-, 8-, and 16-QAMs

versus linewidth assuming the use of the two-filter carrier-

receiver structure, as shown in Fig. 10(b). The length of the

filter was determined as per (28) with f = 0.05. Fig. 13(a)

assumes a receiver OSNR of 1 dB above sensitivity at a target

BER of 10−9, while Fig. 13(b) assumes an OSNR of 1 dB above

sensitivity at a target BER of 10−3 (see column three of Table I).

In each plot, the dotted and solid curves are the lower and upper

bounds for BER. We observe that while the BER upper bound in

Fig. 13(a) can be made smaller than the target value of 10−9 for

small enough linewidth, the same is not true for a high target

BER, such as in Fig. 13(b). This is because, at low OSNR,

soft-decision errors occur so frequently that error propagation

cannot be neglected. Catastrophic failure of the soft-decision

phase estimator causes the theoretical BER upper bound to lie
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Fig. 12. (a) Probability of bit-error and (b) phase-error standard deviation at
the soft- and hard-decision phase-estimator outputs for 16-QAM at OSNR =
17.46 dB/b and ∆νTb = 7.5 × 10−6. A single-filter structure is assumed, and
W (z) is a FIR filter of length L = 50.

above the target value for all linewidths. It is also observed in

Fig. 13(b) that the BER upper bound actually increases at low

linewidths. This is because, according to (28), a longer filter

length L is used. The consequence is that multiple soft-decision

errors within the observation window becomes more likely, and

the “higher order terms” in (42) actually increases.

To confirm the occurrence of catastrophic failure of the soft-

decision phase estimator, we performed Monte Carlo simula-

tions for our carrier-recovery scheme (see Section IV). The

results are shown as the “x,” “∆,” and “o” in Fig. 13(b) for

4-, 8-, and 16-QAMs. One million symbols were used in each

of these simulations. When the BER gets above ∼3 × 10−4,

catastrophic failure occurred, causing all subsequent bits in the

simulation to be in error. We were, therefore, unable to obtain

data points for larger linewidths. Our theoretical BER model

outlined in (42), thus, fails at this point.

F. Catastrophic Failure of the Soft-Decision Phase Estimator

In our simulations, we found that, whenever catastrophic

failure occurred, θ̂ always locked onto a new phase that is

an integer multiple of π/2 from the correct phase. Although

this result is difficult to prove, it is intuitively sensible since

Fig. 13. BER versus linewidth for 4-, 8-, and 16-QAM. The dotted and solid
curves are the theoretical lower and upper bounds of the BER. An OSNR of
1 dB above sensitivity is assumed for a target BER of (a) 10−9 and (b) 10−3.
In (b), the “x,” “∆,” and “o” are the simulated BER for 4-, 8-, and 16-QAM.

4-, 8-, and 16-QAMs are invariant to rotation by angles that

are integer multiples of π/2. Thus, phase offsets of these

values are stable operating points for our system. Catastrophic

failure of the soft-decision phase estimator thus manifests as

cycle slips. We can avert the problem of catastrophic bit errors

if we employ differential-bit encoding. Consider the bits-to-

symbols mappings shown in Fig. 14. We divide the constella-

tion into four quadrants. All symbols in the same quadrant are

assigned the same most significant bits (MSB) b0 and b1. To

uniquely identify each symbol within a quadrant, we employ a

Gray-code map for the least significant bits (LSB)—e.g., for

16-QAM, the four points are labeled in a counterclockwise

fashion starting from the innermost point. Provided that the

LSB labels are properly rotated for the four quadrants, cycle

slips will not affect the correct detection of the LSB. To prevent

error propagation for the MSB, we can differentially encode

b0 and b1.

Cycle slipping not only affects feedforward carrier recovery

but also for PLLs at low OSNR. Differential-bit encoding can

also be used in PLL-based systems to mitigate catastrophic

failure. An unintended consequence of the bits-to-symbols

mappings used in Fig. 14 is that they increase the ratio between

bit errors and symbol errors (when no cycle slip occurs). In the
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Fig. 14. Differential-bit encoding for (a) 8- and (b) 16-QAM.

16-QAM constellation, as shown in Fig. 14(b) for instance,

there are four pairs of neighbors (shown shaded) whose bit

labels differ by three bits. This occurs because our bit-labeling

scheme is no longer a Gray code when we force the LSB to

exhibit rotational invariance. In addition, differential encoding

of the MSB also doubles the effective BER for b0 and b1

whenever a symbol-detection error occurs that does not produce

a cycle slip. Provided that cycle slips occur infrequently as

compared to single-detection errors, we can count only the

latter in our estimation of BER. Thus, for both Gray-coded and

differential-bit-encoded QAM, we have

Pb = nbPe (45)

where Pb and Pe are the probabilities of bit error and symbol

error, respectively. The values of nb for different-modulation

formats are shown in Table II. The price of employing

differential-bit encoding to mitigate catastrophic failure is

higher BER compared to Gray coding with no cycle slips. At

a BER of 10−3, the power penalties for differential bit-encoded

4-, 8-, and 16-QAM are 0.57, 0.27, and 0.39 dB, respectively.

In Fig. 15, we simulated the achievable BER versus linewidth

for 4-, 8-, and 16-QAM using the differential-bit-encoding

scheme discussed. Catastrophic bit-error propagation was suc-

cessfully averted. We were able to detect the transmitted bits

at BERs well above 10−2 over a simulation period of one

million symbols. The OSNR for this simulation was 1 dB

above the receiver sensitivity for BER = 10−3 assuming no

differential-bit encoding (column two of Table III). The target

BER is indeed achieved for small enough linewidth. If the

1-dB power penalty was fully allocated to phase-noise mit-

igation, linewidths of ∆νTb = 1.3 × 10−4, 1.3 × 10−4, and

1.5 × 10−5 can be tolerated for 4-, 8-, and 16-QAMs using

a DD soft-decision phase estimator, and ∆νTb = 8 × 10−5

Fig. 15. BER versus linewidth for differential-bit-encoded QAM. “x,” “∆,”
and “o” are the simulated BER for 4-, 8-, and 16-QAM when a DD soft-decision
phase estimator is used. “+” is the simulated BER for 4-QAM when an NDA
soft-decision phase estimator is used.

TABLE III
COMPARISON OF THE LINEWIDTH REQUIREMENT FOR

FEEDFORWARD CARRIER RECOVERY AND FOR A PLL

is acceptable for 4-QAM using an NDA soft-decision phase

estimator.

We compare the phase-noise tolerance of feedforward carrier

recovery with a PLL in Table III. Column two lists the OSNRs

used in the simulations of Fig. 15. We make the optimistic

assumption for the PLL that symbol errors occur independently.

By ignoring burst errors caused by cycle slips, we can compute

the value of σε,max that yields the target BER of 10−3, and the

results are shown in column three.14 The maximum tolerable

linewidth for the PLL is then given by [1]

(∆νTb)max =
σ4

ε,max4ζ2γb

(1 + 4ζ2)2πη
(46)

where γb is the OSNR per bit, ζ is the damping factor of the

second-order PLL, η is the quantity defined in (16) or (20),

and (∆νTb)max is the maximum tolerable linewidth-to-bit-

rate ratio listed in column four. The corresponding linewidths

found for feedforward carrier recovery in Fig. 15 are shown

in column five. Even with our optimistic assumptions for the

PLL, the realistic linewidth requirement of feedforward carrier

recovery is still 50%–100% better for a target BER of 10−3. If,

on the other hand, we use phase-error variance as our criteria

for evaluation (Fig. 9 and Table I), then feedforward is up to

five times better.

14This requires solving Pb,target = nbPe(N0, 0, σ2
ε,max), where

Pe(N0, 0, σ2
ε,max) is given by (70).
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G. Frequency Mismatch

In the previous sections, frequency lock was assumed be-

tween the signal and LO lasers. This allowed θk to be modeled

as a Wiener process in (8). If we allow a frequency offset

δf = fTX − fLO between the two lasers, θk becomes a biased

random walk with a mean phase change of 2πδfT per symbol.

We can write the soft-decision phase estimates as

ψk = (2πδfkT + ξ) + θ′k + n′
k (47)

where θ′k is the Wiener process previously considered. The car-

rier phase to be tracked is then θk = (2πδfkT + ξ) + θ′k, and

n′
k is the impact of AWGN corrupting our phase measurement,

whose variance is given by (16) or (20).

We can use the same analysis as Section III-C to find the

Wiener filter W (z) that minimizes phase mse, assuming that δf
is known. For the FIR approximation, it can be shown that the

conditional pdf of Ψ, given θk−∆, is the Gaussian distribution

given by (30), and its autocorrelation matrix has the form

K = Kδf + Kp + Kn. (48)

The matrices Kp and Kn are the same as (32) and (33), while

the frequency-offset matrix has elements:

(Kδf )mn = (2πδfT )2(∆ −m)(∆ − n). (49)

Using this adjusted form of K, the FIR Wiener filter coefficients

can again be found using (34). The phase-error variance at the

hard-decision phase-estimator output can similarly be derived

by taking δf into account

σ2
ε(W,∆)=


(2πδfT )2

(
L−1∑

l=0

wl(∆−l)

)2



+ σ2
p ·




∆−1∑

m′=0

(
m′∑

l′=0

wl′

)2

+

L−1∑

m′=∆+1

(
L−1∑

l′=m′

wl′

)2



+ σ2
n′ ·
[

L−1∑

l=0

w2
l

]
. (50)

In comparison with (39), the additional first term is caused by

frequency offset. The extra phase-error variance is proportional

to δf2; thus, a nonzero value δf degrades performance in gen-

eral unless ∆ = (L− 1)/2. This special case arises because the

frequency-offset term is proportional to the square of the first

moment of the filter coefficients about ∆. In a symmetric filter,

the extra phase of 2πδfT (∆ − l) at symbol k − l is exactly

cancelled by a phase of 2πδfT (l − ∆) at symbol k − 2∆ + l.
Hence, when a two-filter carrier-recovery structure [Fig. 10(b)]

is used, frequency offset will not impact the performance of

the hard-decision phase estimator. For the soft-decision phase

estimator, however, where the optimal ∆ is zero, frequency

offset will degrade performance.

Consider Fig. 16 where we plot phase-error standard devia-

tion versus δf for 16-QAM at an OSNR of 17.46 dB/b (1 dB

above sensitivity at a BER of 10−9) and a laser beat linewidth of

Fig. 16. Phase-error standard deviation versus frequency offset for 16-QAM
at γb = 17.46 dB and ∆νTb = 5 × 10−6. The filter length is 15, and the
coefficients are optimized for a delay (∆) of zero.

∆νTb = 5 × 10−6. The length of the soft-decision filter is L =
15 [half the value of (28)] and the delay ∆ is zero. The solid

curve is the phase-error standard deviation that results when

the filter coefficients are optimized without taking frequency

offset into account [assumes δf = 0 when invoking (48) and

(34)]. The dotted curve results when the filter coefficients are

optimized for the correct δf . We observe that the increase in σε

is much slower for the dotted curve.

Since uncompensated frequency offset leads to poorer per-

formance, we can measure δf and take its value into account

when computing the filter coefficients (dotted curve of Fig. 16).

Alternatively, we can use the modified receiver shown in

Fig. 17. The latter approach is superior since, according to (50)

and the dotted curve shown in Fig. 16, a nonzero δf always

leads to a higher σε. In addition, removing frequency offset

prior to carrier recovery allows us to use fixed coefficients

for W (z). The numerical oscillator in Fig. 17 multiplies the

incoming symbols by e−j2πδf̂kT , where δf̂ is the receiver’s

estimate of the instantaneous frequency offset. Although the

feedback structure looks like a PLL, its operating principles are

different as the numerical oscillator only needs to track slow

frequency drifts associated with temperature or mechanical

variations. The rapid fluctuations in frequency caused by phase

noise are tracked by the feedforward carrier-recovery structure.

The design of the frequency-offset compensator is, therefore,

much less stringent than in a PLL.

Estimating Frequency Offset: Consider the difference be-

tween soft estimates of the carrier phase separated by L′ sym-

bols. We have

ψk+L′ − ψk = 2πδfL′T +
L′∑

m=1

νm +
(
n′

k+L′ − n′
k

)
. (51)

The first term in (51) is a deterministic phase rotation propor-

tional to δf . The remaining terms are related to phase noise and

AWGN, both having zero mean. We may therefore construct

the estimator

δf̂ =
ψk+L′ − ψk

2πL′T
. (52)
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Fig. 17. Coherent receiver with frequency offset compensator (only one polarization is shown).

The frequency estimator in (52) has a mean of δf , and its

variance is

〈(
δf̂ − 〈δf̂〉

)2
〉

=
L′σ2

p + 2σ2
n′

(2πL′T )2
. (53)

For large L′, the variance of δf̂ decreases as 1/L′: This occurs

because phase noise is a sluggish process. By lengthening the

duration between measurements, the AWGN and phase-noise

terms in (51) become negligible in comparison with the linear

growth in ψk due to frequency offset. Although it appears

beneficial to make L′ arbitrarily large, in practice, the benefit

of doing so is offset by the time-varying nature of δf due to

temperature or mechanical fluctuations. There exists a tradeoff

between tracking ability and accurate estimation of δf . Opti-

mization of L′ will depend on the rate at which δf evolves.

However, it is possible to establish benchmarks for L′.
Suppose the magnitude of the frequency-offset term in (50)

is to be no more than 1/10th the value of σ2
ε when δf = 0,

there is a maximum frequency estimation error δfe,max that

the receiver can tolerate. In the example shown in Fig. 16, σε

at δf = 0 is 1.49◦. If we allow frequency offset to increase

the phase-error variance by 10%, we can tolerate σε = 1.56◦.

From the solid curve in Fig. 16, this occurs at δfe,maxTb =

7.0 × 10−5. Suppose we establish the criterion that δf̂ must be

within δfe,max of the true frequency offset 99% of the time.

This requires the variance of δf̂ to satisfy

√
〈(δf̂ − 〈δf̂〉)2〉 <

δfe,max/2.45. For our example, this leads to 〈(δf̂ − 〈δf̂〉)2〉 <
8.2 × 10−10/T 2

b = 1.3 × 10−8/T 2. Substituting this into (53)

and using values of σ2
p and σ2

n′ corresponding to ∆νTb = 5 ×
10−6 and SNR = 17.46 dB/b, we get L′ = 299 symbol periods.

This corresponds to an update period of 119 ns at 10 Gb/s,

which is significantly shorter than the kilohertz fluctuations

expected for mechanical vibrations.

IV. SIMULATION RESULTS

In Fig. 18, we simulated 16-QAM transmission at an OSNR

of 11.52 dB/b (1 dB above sensitivity at a BER of 10−3) at a

laser beat linewidth of ∆νTb = 1.5 × 10−5. We employed the

two-filter phase-estimator structure in Fig. 10(b) with Wsd(z)
and Whd(z), both are FIR filters. The lengths of these filters

were chosen as per (28) with f = 0.05, resulting in Lhd =
40 and ∆hd = 19, and Lsd = 20 and ∆sd = 0, respectively.

Fig. 18(a) shows the simulated carrier phase, and Fig. 18(b)

shows the received symbols yk. It is clear that the received

symbols cannot be detected at low BER without carrier dero-

tation. After employing our carrier-recovery algorithm, the

hard-decision phase estimate θ̂k and the derotated symbols sk

are shown in Fig. 18(c) and (d). Using the differential-bit-

encoding scheme discussed in Section III-G, a BER of 1.0 ×
10−3 was recorded over a simulation period of 50 000 symbols

(200 000 b). The phase-error standard deviation measured at

the hard-decision phase-estimator output was 2.10◦, which is

in agreement with the theoretical value of 2.03◦ predicted by

(41). The phase-error standard deviations measured for θ̃k and

ψk (3.07◦ and 7.51◦) were also in agreement with theoretical

values (2.98◦ and 7.39◦).

In Fig. 19, we simulated 4-QAM transmission at an OSNR

of 7.79 dB/b (1 dB above sensitivity at a BER of 10−3) at

a laser beat linewidth of ∆νTb = 8 × 10−5. An NDA soft-

decision phase estimator was used so only one filter W (z) was

required [see Fig. 10(a)]. We chose a FIR filter with L = 37
[(28) with f = 0.05] and ∆ = 18. Fig. 19(a)–(d) shows the

simulated carrier phase, the received symbols, the hard-decision

phases, and the derotated symbols, respectively. The difference

between Fig. 19(a) and (c) is due to cycle slips. Our differential-

bit-encoding scheme successfully prevented catastrophic bit-

error propagation, and a BER of 1.0 × 10−3 was obtained

over the simulation period of 50 000 symbols (100 000 b). The

tight clustering of points observed in the derotated constella-

tion shows that the feedforward carrier-phase estimator always

reacquired lock after a cycle-slip event. To measure the phase-

error standard deviation at the hard-decision phase-estimator

output, we take the difference between θ̂k and θk modulo

π/2. The measured value of 3.71◦ agrees with the theoretical

value of 3.56◦.

V. DISCUSSION

Two major implementation issues for feedforward carrier

recovery are the number of bits required for the ADC and

the system complexity. In practical systems, the use of for-

ward error correction allows the uncoded BER to be around

10−3. From Table I, the OSNR requirement for 16-QAM is

11.52 dB/b (16.54 dB/symbol). Suppose that after allowances

are made for CD/PMD compensation, nonlinear effects, and

carrier recovery, the OSNR becomes 20 dB. In the example pro-

vided in [8], 8-b resolution for the ADC is sufficient to ensure
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Fig. 18. Simulation of 16-QAM transmission at OSNR = 11.52 dB/b
and a linewidth of ∆νTb = 1.5 × 10−5. (a) Simulated carrier phase θk .

(b) Received symbols yk . (c) Recovered carrier phase θ̂k . (d) Symbols after
carrier derotation sk .

Fig. 19. Simulation of 4-QAM transmission at OSNR=7.79 dB/b and a line-
width of ∆νTb =8×10−5. (a) Simulated carrier phase θk . (b) Received sym-

bols yk . (c) Recovered carrier phase θ̂k . (d) Symbols after carrier derotation sk .
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the quantization noise variance is less than 10% of the AWGN

variance per sample, even when we consider the modulation

scheme with the largest dynamic range: 33%-return-to-zero

16-QAM.

System complexity can be determined by counting the num-

ber of operations required to implement Figs. 4 and 10. If

an NDA soft-decision phase estimator is used in conjunction

with 4-QAM, the input quadrupler in Fig. 4(a) requires three

complex multiplications (CMs). If a DD soft-decision phase

estimator is used, regardless of the modulation format, the

symbol derotation takes one CM. Both the decision device

and the arg(·) operations can be implemented using lookup

tables. The phase-unwrapping formula given by (22) requires

one real multiplication (RM). Counting each CM as four RMs,

the complexity of the soft-decision phase estimator is 13 RMs

for the NDA design and five RMs for the DD design. The

most numerically intensive operation in Fig. 10 are the two

filters Wsd(z) and Whd(z). In the example given in Fig. 18 for

16-QAM, Lhd and Lsd needed to be 40 and 20, respectively,

yielding a complexity of 60 RMs per symbol. The carrier

derotation operation at the output of Fig. 10 requires one further

CM. Hence, the total complexity of the 16-QAM example is

5 + 60 + 4 = 69 RMs per-symbol per polarization. This is ap-

proximately half the number of operations needed for CD/PMD

compensation, where in [8], we showed that 60 CMs (240 RMs)

are sufficient to compensate 2000 km of single-mode fiber at

10-GHz symbol rate for two polarizations, yielding 120 RMs

per symbol. Achieving such performance would require a VLSI

circuit with extensive pipelining and parallelization.

VI. CONCLUSION

We have demonstrated the feasibility of feedforward carrier

recovery for coherent optical communications. Our proposed

receiver consists of a soft-decision phase-estimation stage fol-

lowed by hard-decision estimation of the carrier phase and the

transmitted symbols. Two implementations of the soft-decision

phase estimator were proposed—these were the NDA phase

estimator and the DD phase estimator. The former is suitable

for M -PSK transmission formats, while the latter is suitable

for any general constellation. Although the DD algorithm is

more flexible, errors in the soft-decision stage can lead to error

propagation by the presence of feedback. In our simulations, we

showed that the propagation of soft-decision errors lead to cycle

slip. Catastrophic bit-error propagation can be avoided with

an appropriately designed bits-to-symbols encoding scheme in

conjunction with differential-bit encoding.

We modeled phase noise as a Wiener process and showed

that the optimal hard-decision phase estimator is a linear filter,

which can be approximated by a FIR filter with a sufficient

number of taps. We investigated the effect of a nonzero fre-

quency offset between the transmitter and LO lasers and found

that uncompensated frequency offset leads to higher phase-

error variance. To mitigate this, we proposed a numerical oscil-

lator be used to track the slow components of laser frequency

drift caused by temperature fluctuation or mechanical vibra-

tions, while letting the feedforward structure to compensate for

rapidly varying phase noise.

Our simulation results show that feedforward carrier recov-

ery can tolerate at least 1.5–2 times larger linewidth than a PLL

even when we used an optimistic assumption for computing

the maximum tolerable linewidth for a PLL. If the criterion

for comparison is phase-error variance, feedforward carrier

recovery is up to five times better. The increased linewidth

tolerance enables the use of presently available ECLs for

16-QAM transmission at 10 Gb/s.

APPENDIX A

PHASE-ERROR VARIANCE OF SOFT-DECISION

PHASE ESTIMATOR

NDA Phase Estimator

Consider the noise signal mk corrupting the soft-decision

phase estimator’s estimate of θk in (14)

mk =

M∑

p=1

(
M

p

)
(xke

jθk)M−pnp
k. (54)

Although the terms in this summation are not Gaussian in

general except for p = 1, in the limit of high SNR, the first

term dominates. If we assume mk to be circularly Gaussian,

we overestimate the tail probability in its pdf so our predic-

tion for system BER will be slightly pessimistic. It can be

shown that the mk’s are i.i.d. with zero mean, with variance

given by

E
[
|mk|2

]
=

M∑

p=1

M∑

q=1

(
M

p

)(
M

q

)

×E
[
(xejθk)M−p(x∗e−jθk)M−q

]
E [np

k (n∗
k)q] . (55)

Consider the expected value of the signal correlation term

in (55)

E
[
(xejθk)M−p(x∗e−jθk)M−q

]

= P
(2M−p−q)/2
t · E

[
ej(q−p)ϕk

]
· E

[
ej(q−p)θk

]
(56)

where ϕk = 2πm/M , m ∈ {0, . . . ,M − 1} is the phase of the

transmitted signal. Since raising an M -PSK signal to an integer

power produces another zero-mean M -PSK signal unless the

exponent is an integer multiple of M , in our summation, we

have E[ej(q−p)ϕk ] = δpq , and (55) simplifies to

E
[
m2

k

]
=

M∑

p=1

(
M

p

)2

PM−p
t · E

[
|nk|2p

]

=PM
t

M∑

p=1

(
M

p

)2

E
[
|ñk|2p

]
(57)

where ñk = nk/
√
Pt is a circular Gaussian variable with zero

mean and variance 1/γ, where γ is the SNR per symbol. The
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variance of mk is, therefore, a sum of the even moments of a

Gaussian distribution, which is given by

E
[
|nk|2p

]
= (p!)

1

γp
. (58)

Finally, we recall that the soft-phase estimator computes

ψk =
1

M
arg{ejMθk + mk} = θk + n′

k. (59)

Provided that the receiver SNR is sufficiently high, such that

the amplitude of mk is small compared to ejMθk , the phase

uncertainty, according to Fig. 5(a), is

n′
k ≈ 1

M
Im

{ mk

xMejMθk

}
. (60)

The n′
k are, thus, approximately i.i.d. Gaussian variables with

zero mean and variance

σ2
n′ =

1

2M2

M∑

p=1

(
M

p

)2

p!
1

γp
= η(M,γ)

1

γ
(61)

where the multiplicative factor η is a function of M and γ. As

an example, 4-QAM transmission at 1 dB above sensitivity for

BER = 10−9 (γ = 45.3 [1]) has η(M,γ) = 0.552.

DD Phase Estimator

Provided that the decision device in Fig. 4(b) recovers the

correct symbol x̂k, according to Fig. 5(b), the phase uncertainty

in ψk is given by

n
′

k ≈ Im
{ nk

xejθk

}
. (62)

The n′
k are, therefore, approximately i.i.d. Gaussian variables

with zero mean and variance

σ2
n′ =

1

2
E

[ |nk|2
|x|2

]
= η

1

γ
(63)

where γ = E[|x|2]/E[|nk|2] is the SNR per symbol, and η =
(1/2)E[|x|2]E[1/|x|2] = (1/2)ηc is one half of the “constella-

tion penalty” defined in [2]. For constant amplitude-modulation

formats (M -PSK), ηc = 1. It can be shown that, for 8- and

16-QAM, ηc = 1.5 and 1.889, respectively.

APPENDIX B

CONDITIONAL PROBABILITY OF yk IN THE

PRESENCE OF AWGN AND PHASE ERROR

Consider the received signal after carrier derotation

ye−jθ̂ = xej(θ−θ̂) + n′e−jθ̂. (64)

Since n′ has a circular Gaussian distribution, phase rotation

does not change its statistics. In addition, we showed in

Section III-C that phase error ε = θ − θ̂ is Gaussian distributed

with mean µε and variance σ2
ε . The conditional pdf of y is,

therefore

p
(
y|x,N0, µε, σ

2
ε

)
=

+∞∫

−∞

1

πN0
exp

(
−|ye−jε − x|2

N0

)

× 1√
2πσ2

ε

exp

(
− (ε− µε)2

2σ2
ε

)
dε

=
1

πN0

1√
2πσ2

ε

exp

(
−|x|2 + |y|2

N0

)

×
+∞∫

−∞

exp(p cos(ε′))

× exp

(
− (ε′ + θy − θx − µε)2

2σ2
ε

)
dε′

(65)

where p = 2|x||y|/N0, and ε′ = ε− θy + θx. Since

exp(p cos(ε′)) is periodic with period 2π, it can be ex-

pressed as

exp (p cos(ε′)) =
a0

2
+

∞∑

k=1

ak cos(kε′) (66)

where the Fourier coefficients are

ak =
1

π

+π∫

−π

exp (p cos(ε′)) cos(kε′)dε′ = 2Ik(p) (67)

where Ik(p) is the kth-order modified Bessel function of the

first kind. Substituting (66) into (65) and using [19]

+∞∫

−∞

e−(ax2+bx+c) cos(kx)dx

=

√
π

a
exp

(
b2 − ac− k2/4

a

)
cos

(
−bk

a

)
(68)

we can write the conditional pdf for yk in the presence of

AWGN and phase error as an infinite Bessel series

p
(
y|x,N0, µε, σ

2
ε

)
=

1

πN0
exp

(
−|x|2 + |y|2

N0

)

×
[
I0(p) + 2

∞∑

k=1

Ik(p) exp

(
− k2σ2

ε

2

)

× cos (−k(θy − θx − µε))

]
. (69)

To compute the probability of symbol error Pe(N0, µε, σ
2
ε)

and the probability that the decision device at the soft-decision

phase estimator makes an error of ∆ε, i.e., P (∆ε|N0, µε, σ
2
ε),
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Fig. 20. Decision regions for the computation of the probability of symbol
error and the probability that the angle of the detected symbol differs from that
of the transmitted symbol by ∆ε.

we integrate (69) over appropriate decision regions. Let Dx be

the decision region associated with symbol x (Fig. 20). We have

Pe

(
N0, µε, σ

2
ε

)
=

1

M

∑

xm

∫

y �∈Dxm

p
(
y|xm, µε, σ

2
ε

)
dy (70)

where the summation is over all possible transmitted symbols,

where M is the alphabet size (we have assumed that all symbols

are equally likely to be transmitted). We can similarly express

P (∆ε|N0, µε, σ
2
ε) by modifying the region of integration to be

the union of the decision regions of all symbols xp whose angle

differs with that of the transmitted symbol xm by ∆ε. If we

define D∆ε
xm

∈ ⋃xp:arg{xp}−arg{xm}=∆ε Dxp
, we have

P
(
∆ε|N0, µε, σ

2
ε

)
=

1

M

∑

xm

∫

y∈D∆ε
xm

p
(
y|xm, µε, σ

2
ε

)
dy.

(71)

We note that Pe(N0, µε, σ
2
ε) �= P (∆ε = 0|N0, µε, σ

2
ε) in gen-

eral, as there may exist more than one signal point sharing the

same angle, e.g., the innermost and outermost points of the

same quadrant in 16-QAM have the same angle.
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