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Abstract—Piezoelectric, magnetostrictive, and shape memory
alloy actuators are gaining importance in high-frequency preci-
sion applications constrained by space. Their intrinsic hysteretic
behavior makes control difficult. The Prandtl–Ishlinskii (PI) op-
erator can model hysteresis well, albeit a major inadequacy: the
inverse operator does not exist when the hysteretic curve gradient is
not positive definite, i.e., ill condition occurs when slope is negative.
An inevitable tradeoff between modeling accuracy and inversion
stability exists. The hysteretic modeling improves with increasing
number of play operators. But as the piecewise continuous interval
of each operator reduces, the model tends to be ill-conditioned,
especially at the turning points. Similar ill-conditioned situation
arises when these actuators move heavy loads or operate at high
frequency. This paper proposes an extended PI operator to map
hysteresis to a domain where inversion is well behaved. The in-
verse weights are then evaluated to determine the inverse hystere-
sis model for the feedforward controller. For illustration purpose,
a piezoelectric actuator is used.

Index Terms—Actuators, hysteresis, piezoelectric ceramics.

I. INTRODUCTION

P IEZOELECTRIC actuators are gaining an increasing im-
portance in high-speed precision applications due to their

high force, rapid response, compactness, and nonexistence of
magnetic fields. The absence of backlash also allows nanometer
positioning precision. Garmon et al. [1] utilized piezoelectric
actuators in microsurgical tool, while Chang et al. [2] applied it
in vibration compensation. However, the existence of nonlinear
hysteresis complicates tracking control.

Current hysteresis modeling and compensation work can be
categorized as: 1) microscopic theories; 2) electric charge con-
trol; 3) phase control; 4) closed-loop displacement control; and
5) linear control with feedforward inverse hysteresis model. Re-
cent methods comprise a hybrid of the said methods.

Category (1) relates understanding of the microscopic struc-
ture to displacement. Landauer et al. [3] discussed the depen-
dence of polarization, in barium titanate, on the field cycle rate.
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Fig. 1. Linearization of a hysteretic plant using the inverse feedforward
controller.

Category (2) utilizes the knowledge that actuator displacement
hysteresis to the applied voltage is about 15% while the dis-
placement to induced charge is 2%. This motivated Furutani
et al. [4] to combine induced charge feedback with inverse
transfer function compensation. Category (3) includes Cruz-
Hernandez and Hayward [5], [6] proposing phase control ap-
proach to design a compensator to reduce hysteresis. Category
(4) comprises many different approaches. Some incorporated
the inverse hysteresis model with a controller, while others
proposed advance controllers utilizing neural network [7], [8],
fuzzy logic [9], sliding mode [10], and H∞ control [11].

Category (5), a phenomenological approach, obtains a
mathematical model describing the hysteretic motion. This is
commonly used as the study of the underlying physics of
piezoelectric actuators requires expensive equipment. There are
many attempts to derive various mathematical models that best
describe the complex hysteretic motion. The inverse model is
then used as a feedforward controller to linearize the hysteresis
response (Fig. 1). The key idea of the inverse feedforward
controller is to cascade the inverse hysteresis operator Γ−1 with
the actual plant’s hysteresis Γ to achieve an identity mapping
between the desired actuator output and the actual actuator
response.

The simplest method utilizes two sets of polynomials to model
the forward and backward paths. However, this method will not
work when the turning point location changes as the polyno-
mials will not be continuous. Sun et al. [12] proposed a new
mathematical model by modifying the polynomials.

Hu and Ben-Mrad [13], [14] and Song et al. [15] employed
the popular Preisach model, while Goldfarb and Celanovic [16]
used Maxwells model. Tao [17] used the hysteron model. The
rest are variations from the classical models.
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Fig. 2. Ill-conditioned hysteresis.

Another model is the Prandtl–Ishlinskii (PI) model. Kuhnen
[18] and Kuhnen and Janocha [19] demonstrated that the PI op-
erator (mathematically less complex with its inverse computed
analytically) is suited for real-time applications. But the operat-
ing frequency must not be too high as the hysteresis nonlinearity
will become severe. Similarly, the PI model cannot function as a
feedforward controller when the largest displacement does not
occur at the highest input signal (Fig. 2) as singularity occurs
in the inverse. Most systems can be explained using a spring–
mass–damper system. At high velocity, the actuator has a high
momentum at the turning point, especially if a rapid change
is made. The large momentum keeps the system in motion re-
sulting in the convex curve. This is also applicable for large
loads. The PI model cannot be used as a feedforward controller
for such cases as the inverse operator does not exist when the
hysteretic curve gradient is not positive definite, i.e., singularity
occurs. Thus, the author proposed to model the hysteresis in a
different domain when such situations are encountered.

This paper (an in-depth version of [20]) presents a solution
to overcome the ill-conditioned problem. Section II reviews the
PI hysteresis model. Section III presents the proposed transfor-
mation of the ill-conditioned hysteresis onto another domain.
Section IV gives the experimental results. Sections V and VI
cover the discussion and conclusions, respectively.

II. HYSTERESIS MATHEMATICAL MODEL

This section briefly introduces the PI model proposed by
Kuhnen [18] and Kuhnen and Janocha [19], with a solution by
Ang et al. [21] to account for the one-sided characteristic as
piezoelectric actuators usually operate on the positive region.

A. Prandtl–Ishlinskii

The play operator in the PI hysteresis model, commonly used
to model the backlash between gears, is defined by

y(t) = Hr [x, y0 ](t)

= max{x(t) − r, min[x(t) + r, y(t − T )]} (1)

where x is the control input, y is the actuator response, r is the
control input threshold value or the magnitude of the backlash,
and T is the sampling period. Initial condition of (1) is given by

y(0) = max{x(0) − r, min[x(0) + r, y0 ]} (2)

where y0 is a real number that is usually initialized to 0. To
change the gradient, a weight wh is premultiplied to Hr . By
summing a number of such operators with different threshold
values and weights, a hysteresis model is obtained

y(t) = �wT
h

�Hr [x, �y0 ](t) (3)

where weight vector �wT
h = [wh0 · · ·whn

] and �Hr [x(t), �y0 ] =
[Hr0 [x(t), y00 ] · · · Hrn

[x(t), y0n
]]T with the threshold vector

�r = [r0 · · · rn ]T , where rn > · · · > r0 , r0 = 0, and the initial
state vector �y0 = [y00 · · · y0n

]T . Unlike the Preisach model,
which behaves like a number of steps, the PI operator is mathe-
matically simpler and also a better mathematical model as it is a
first-order gradient. To account for the one-sided characteristics
of the actuators, Ang et al. [21] proposed setting the value of rn

to half of the maximum control input.
The nature of PI operator is symmetrical about the center

of the loop, but this is not true in the phenomena observation.
To overcome this restriction, Ang et al. [21] and Kuhnen [18]
proposed using a one-sided dead zone operator

Sd [y](t) =
{

max{y(t) − d, 0}, d > 0

y(t), d = 0
(4)

z(t) = �wT
s

�Sd [y(t)] (5)

where weight vector �wT
s = [ws0 · · ·wsm

], �Sd [y(t)] =
[Sd0 [y(t)] · · ·Sdm

[y(t)]]T , d is the threshold value in the
dead zone operator, and z is the actuator’s displacement
response. The general idea of the one-sided dead zone operators
is to bend the graph and make it not symmetrical.

B. Parameter Identification

A phenomenological approach is like memorizing the path.
Experimental values are gathered to obtain the hysteresis model.
After obtaining the experimental data, least-square minimiza-
tion of the error function E [x, y] is performed to the weights
�wh and �ws using

E [x, y] (�wh, t) = �wT
h

�Hr [x, �y0 ] (t) − �wT
s ′ �Sd ′ [z(t)] (6)

where �wT
h ′ and �wT

s ′ are the inverse parameters of �wT
h and �wT

s ,
respectively, and �Hr ′ and �Sd ′ are the �Hr and �Sd operators with
the inverse of �r and �d as the input, respectively. The inverse
parameters can be obtained by (9). This error function, obtained
from [18], is recommended over position error because the error
will be linearly dependent on the weights.

C. Inverse Model

The inverse PI model is commonly expressed by stop op-
erators. Kuhnen [18] showed that the inverse model can be
expressed by play operators too. Thus, the inverse model is
expressed as

Γ−1 [z(t)] = �wT
h ′ �Hr ′

[
�wT

s ′ �Sd ′ [z] , �y′
0

]
(t). (7)

The graphical representation of finding the inverse is to find the
mathematical model that describes the hysteresis path after a
reflection along the 45◦ line. Using the inverse as a feedforward
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Fig. 3. Signal flow of the inverse feedforward controller.

controller gives a linear response, as shown in Fig. 1. Mathe-
matically speaking,

z(t) = Γ
[
Γ−1 [x(t)]

]
= x(t). (8)

The inverse model parameters can be calculated by

w′
h0

=
1

wh0

, w′
hi

=
−whi(∑i

j=0 whj

) (∑i−1
j=0 whj

) ,

i = 1, . . . , n

r′i =
i∑

j=0

whj
(ri − rj ) , y′

0i
=

i∑
j=0

whj
y0i

+
n∑

j=i+1

whj
y0j

r0 = 0, i = 0, . . . , n

w′
s0

=
1

ws0

, w′
si

=
−wsi(∑i

j=0 wsj

)(∑i−1
j=0 wsj

) ,

i = 1, . . . ,m

d′i =
i∑

j=0

wsj
(di − dj ) , i = 0, . . . ,m. (9)

Fig. 3 shows the signal flow diagram of the inverse feed-
forward controller. The desired displacement z(t) is first passed
through the inverse dead zone operators, followed by the inverse
play operators to obtain the required voltage. This voltage is then
passed through the hysteretic plant, which is modeled as by the
play operators followed by dead zone operators. However, there
is a limitation when finding the inverse parameters of the play
operators. Linearization of the boxed area in Fig. 3 will fail. The
equations to find the inverse parameters of the play operators (9)
fail when negative gradient is encountered. The inverse param-
eters of the play operators were derived by Kuhnen [18] under
the consideration of the following linear inequality constraints
[18, eq. (8)]:

UH · �wh − uH ≤ 0 (10)

where

UH =




−1 0 · · · 0
0 −1 · · · 0
...

...
...

...
0 0 · · · −1


 , uH =




−ε
0
...
0


 (11)

and ε is a very small positive number. This linear inequal-
ity assumes the slope to be positive, and the inverse equa-
tion is not applicable when negative slope is encountered.
An example is illustrated here. Given the weights wT

h =
[−0.2 0.1 0.2 0.2 0.2 0.2] and �r = [0 1 2 3 4 5] for an appli-
cation where the amplitude of the periodic input voltage is
10 V, the loading curve obtained is shown in Fig. 4.

Fig. 4. Loading curve of an ill-conditioned hysteresis involving negative
gradient.

Fig. 5. Inverse loading curve of an ill-conditioned hysteresis to illustrate fail-
ure of the PI inverse operator when negative gradient is encountered.

Applying (9) to get the inverse PI parameters, the pa-
rameters obtained are �w′T

h = [−5 − 520 − 6.6667 − 1.333 −
0.5714] and �r ′ = [0 − 0.2 − 0.3 − 0.20.10.6]. Fig. 5 illustrates
the inverse curve that is obtained using (9). It can be seen that
the inverse curve obtained is not a reflection of the loading curve
along the 45◦ line. This simple example clearly illustrates that
(9) fail to find the correct inverse weights when negative gra-
dient is encountered. Zero gradient is not demonstrated as it is
clear that the reciprocal of 0 is a singular point.

III. MODELING IN A DIFFERENT DOMAIN

This section proposes a method for dealing with situations
when negative gradient is encountered and the inverse of the PI
operator cannot be evaluated properly. This section begins with
the intuition, followed by the method and simulation.

A. Intuition

With the singularity problem, the idea to model the hysteresis
in an alternative domain, which is always well conditioned, is
proposed. A transformation is used to map y to y1 , which has no
singular points, as shown in Fig. 6. The inverse model can now
be obtained in the new domain. If the relationship between y
and y1 is known, the appropriate input voltages can be obtained
using the inverse model found in the new domain, as shown in
Fig. 7.

The desired value displacement y is first passed through the
transformation function to obtain the corresponding new domain
y1 value. This y1 value is then passed through the inverse model
obtained in the new domain to get the appropriate input voltages.
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Fig. 6. Transformation.

Fig. 7. Method to obtain appropriate input voltage.

Fig. 8. Graph of an ill-conditioned hysteresis with points x0 to x8 labeled.

B. Solution

Although the inverse fails, the PI model can still describe the
phenomena path like Fig. 2. The weights of the play operators
for the ill-conditioned hysteresis can be obtained as shown in
Section II by performing least-square error to (6). To obtain the
relationship between the two domains (y and y1), nine points
(x0–x8) are identified, as labeled in Fig. 8.

The region between x0 and x1 is for the negative gradient
while 0 gradient is between x1 and x2 . In the hysteresis loop,
region between x3 to x4 and x6 to x7 has negative gradient,
while x4 to x5 and x7 to x8 contain gradient value 0. The
labeled points x0 to x8 can be calculated using

x0 = 0

If
i∑

j=1

whj
= 0 exists, x1 = ri, x2 = ri+1

otherwise x1 = x2 = rmax, where
max∑
j=1

whj
> 0

Fig. 9. Relationship between y1 (new domain) and y.

x3 = 2rmax

x4 = x3 − 2x1

x5 = x3 − 2x2

x6 = 0

x7 = x6 + 2x1

x8 = x6 + 2x2 . (12)

Next, a transformation function to map y domain onto a new
domain y1 , which has no singular point, has to be proposed. The
transformation function should be the one that is able to obtain
the relationship between y and y1 easily. This paper proposed
to keep the slope’s amplitude of y1 against voltage to be the
same as y against voltage, except for region where the gradient
is near 0. Negative slopes are reflected along the horizontal axis
to obtain a positive, but equal amplitude slope. In this way, the
gradient of the relationship between y1 versus y is either 1,
−1, or infinite. This makes the formation of the relationship
between the two domains easy to establish. Thus, the following
transformation function to obtain the new weights is proposed

w2hi
=




−
∑

i
j=1whj

−
∑i−1

j=1 w2hj
,

∑i
j=1 whj

< 0

c −
∑i−1

j=1 w2hj
,

∑i
j=1 whj

= 0∑
i
j=1whj

−
∑i−1

j=1 w2hj
,

∑i
j=1 whj

> 0

(13)

where c is a positive nonzero constant. The objective of this
transformation is to ensure that the gradient of the hysteresis
in the new domain is positive throughout. The first expression
will reflect all the negative gradients to become positive. The
second expression will force a 0 gradient to become a positive
nonzero number. The third expression will allow the positive
gradient to remain the same value. In addition, the new domain
is of a PI type.

Note that with this transformation, the amplitude of the gra-
dient at all points is maintained. This makes the relationship
between y and y1 easy to express. Fig. 9 shows the relation-
ship between the two domains. The constants ai and bi are the
corresponding y and y1 values, respectively, to input voltage xi .
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TABLE I
RELATION BETWEEN THE TWO DOMAINS

As the amplitude of the slope is maintained, all the gradients
of the lines relating y1 and y are 1, −1, or infinite. Points b0 to
b8 can be obtained using

b0 = 0

b1 = −a1

b2 = b1 + c × [x2 − x1 ]

b3 = b2 + [a3 − a2 ]

b4 = b3 − [a4 − a3 ]

b5 = b4 − 2c × [x2 − x1 ]

b6 = b5 + [a6 − a5 ]

b7 = b6 − [a7 − a6 ]

b8 = b7 + 2c × [x2 − x1 ] . (14)

With these points, the relation between y1 and y can be expressed
as in Table I.

C. Generation of the Inverse Model

This section demonstrates that the inverse model obtained
is indeed the reflection along the 45◦ line. The y value is first
obtained from the desired displacement z by passing it through
the inverse dead zone operator. The corresponding y1 value is
then obtained from y using Table I. The y1 value is then passed
through the inverse model obtained in the new domain to get the
appropriate input voltage. The final inverse graph is plotted with
the ill-conditioned hysteresis in Fig. 10. As shown in Fig. 10, the
final inverse graph (dotted) is a reflection of the hysteresis graph
along the 45◦ line. This section has clearly illustrated the ability
of the transformation function to obtain the inverse of the ill-
conditioned hysteresis curve. The transformation function has
no effect on well-conditioned hysteresis as x2 = x1 = x0 = 0.

D. Simulation

Next, a feedforward linearization simulation is performed on
an ill-conditioned hysteretic plant with the following param-
eters: �r = [0 0.05 0.1 0.2 0.4 0.8 1.2 1.6 2.4 3.2 45], �wT

h =
[−1.6030 2.1478 4.3923 − 3.2764 0.7664 0.1845 0.2283

Fig. 10. Simulation to show that inverse after mapping is the reflection along
the 45◦ line.

Fig. 11. Simulation result of the feedforward linearization (output result).

Fig. 12. Simulation result of the feedforward linearization (input–output lin-
earization effect).

0.3222 0.3515 0.2176 0.1358 − 0.3989], �d = [0 8 12], and
�wT

s = [0.48538 − 0.02548 − 0.01384]. The simulation is
performed with and without the proposed method, and the
results are compared. Fig. 11 shows the output result, while
Fig. 12 shows the input–output linearization effect. Residual
error can be clearly seen if mapping is not used.
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Fig. 13. Experimental architecture.

IV. EXPERIMENTAL RESULTS

In this section, the behavior of the PICMA P885.50 (a multi-
layered piezoceramic with a stroke length of 15 µm at 100 V)
from Physik Instrumente is modeled using the rate-dependent
model proposed by Ang et al. [21]. The rate-dependent model
in [21] basically calculates the weights according to velocity.
With these weights, the inverse model is then obtained via the
method discussed. A brief description of the experiment set
is first given, followed by several experiments to show the im-
provements. The first set of experiments is 8 Hz triangular wave,
followed by varying-amplitude linear motion with varying ve-
locity to demonstrate the capability to model the rate-dependent
model. The last experiment is a varying frequency with varying
amplitude sinusoidal wave.

A. Experimental Setup

As seen from Fig. 13, a 16-bit D/A card is used to generate
the voltage, which is then passed through the amplifier (gain is
10). Given the voltage, the actuator will deform and the interfer-
ometer (Philtec RC12 with a resolution of 0.08 µm) will detect
the displacement and convert to analog voltage signal that is
read in via a 16-bit A/D card.

B. Experimental Result

The actuator is first modeled. The same model is being used
for both with and without mapping. The first experiment’s de-
sired displacement is a triangular wave with the velocity high
enough for the first weight to enter into the negative region,
while the second experiment’s desired displacement is nonperi-
odic linear motion. Figs. 14–16 show the results of the triangular
wave, while Figs. 17 and 18 show the outcome of the nonperi-
odic motion. Table II summarizes the result.

From Figs. 14 and 16, it can be clearly seen that the error
has a general shape of a square wave. It has a general offset
of overshoot when the desired displacement is increasing and
undershoot when decreasing. With mapping, these overshoots
or undershoots are removed. It can be clearly seen that the error
in Fig. 14 (without mapping) is higher than the error in Fig. 15
(with mapping), and the rms error is greatly reduced by 40.1%.
This also proved that the error is due to the ill condition and not
the hysteresis model.

Similar findings were obtained with nonperiodic linear mo-
tion. Figs. 17 and 18 show the result of without and with map-
ping, respectively. As seen from Fig. 17, like Fig. 14, there is

Fig. 14. Triangular wave without mapping.

Fig. 15. Triangular wave with mapping.

Fig. 16. Exploded view of error of triangular wave without and with mapping,
respectively.

also a constant overshoot or undershoot in the error depending
on the direction of actuation. With mapping, the offsets are re-
moved and the rms error for this particular motion (calculated
over the 200 ms) is reduced by 41.4%.

Fig. 19 is an experiment to show that the model is also valid for
nonperiodic varying sinusoidal waves and the rms error obtained
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Fig. 17. Nonperiodic linear motion without mapping.

Fig. 18. Nonperiodic linear motion with mapping.

TABLE II
EXPERIMENTAL RESULTS

Fig. 19. Superposition of a few different frequencies of sinusoidal waves.

is 0.14436 µm. These figures demonstrate that the model is able
to handle nonperiodic motion.

V. DISCUSSION

The PI model is the proposed method because models like
Preisach can model only continuously increasing gradient, while
PI is able to model hysteresis like Fig. 2. In addition, PI is
the preferred method because the gradient of each segment can
be obtained easily without any numerical differentiation needed.
The inverse PI model can be computed easily too.

In this singularity-free PI model, the formulas formed are
based on one assumption. The assumption made is the existence
of only one maximum and one minimum turning point. Some
modifications will have to be made if there are two or more max-
imum or minimum turning points. However, there is not much
need to bother about this factor as very few systems have such
irregular hysteresis. Even if such situation arises, the reader can
use the proposed method with similar modification to account
for the ill-shaped hysteresis.

Although the PI model is being used in this paper, the idea of
transformation can be extended to other models, and the authors
intend to do that in the near future because there are different
advantages in each model to suit different situations.

From Fig. 16, it can be clearly seen that the error has a general
shape of a square wave. It has a general offset of overshoot
when the desired displacement is increasing and an offset of
undershoot when the displacement is decreasing. The cause of
this error is the singularity problem in the inverse PI hysteresis
model. By mapping the hysteresis model onto a singularity-free
domain, the rms error was decreased by 40.1% (from 0.2580 to
0.1544 µm).

There is, however, one negative factor. When the de-
sired motion is a varying-frequency sinusoidal wave (not ill-
conditioned), the method will actually increase the rms error
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by approximately 0.03–0.05 µm. The small error is due to the
constantly changing relationship between y and y1 . This error
surfaces when the rate of change of velocity is high. This is due
to the rate-dependent model used. A change of velocity in the
model results in change in the weights of the play operators. As
seen in Fig. 19, the error is highest at the turning point as this
is also where the highest acceleration is. One possible method
to reduce the error is to increase the sampling rate to make the
change in weights between samples smaller. Nevertheless, it is
more desirable to achieve a singularity-free model and inquire
0.05 µm of error than to have a controller that will be unstable
when the singularity situation is met.

Although the application here is with piezoelectric actuators,
the singularity-free hysteresis model that the authors came out
with is a general model and is applicable to any hysteresis
materials (applicable to most smart materials) or systems.

VI. CONCLUSION

The main contribution of this paper was to extend the PI
model to include ill-conditioned hysteresis in the feedforward
controller. The classical PI model is unable to find the inverse
of the hysteresis phenomenon when the largest displacement
does not occur at the highest input signal. Thus, a transforma-
tion to map the ill-conditioned hysteresis graph onto a better-
conditioned domain was demonstrated in this paper. Simulations
and experiments were also conducted.
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