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This paper concerns general MlMO nonlinear processes, whose 
dynamic behavior is described by a standard state-space model of 
arbitrary order, including measurable disturbances. The concept of 
relative order of an output with respect to an input, extended to include 
disturbance as well as manipulated inputs, is generalized in a MlMO 
context and it is used to obtain a characterization of the dynamic 
interactions among the input and the output variables. A synthesis 
formula is calculated for a feedforwardlstate feedback control law that 
completely eliminates the effect of the measurable disturbances on the 
process outputs and induces a linear behavior in the closed-loop 
system between the outputs and a set of reference inputs. The 
input/output stability and the degree of coupling in the closed-loop 
system are determined by appropriate choice of adjustable para- 
meters. A MIMO linear controller with integral action completes the 
feedforward /feedback control structure. The developed control method- 
ology is applied to a continuous polymerization reactor and its perfor- 
mance is evaluated through simulations. 
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Introduction 
Chemical processes, multivariable in nature, exhibit as a rule 

a highly nonlinear and highly interacting behavior. Efficient 
control of such processes is necessary, especially under the 
recently increasing environmental, operational and energy restric- 
tions. In fact, rnultivariable control has emerged as a major 
research area during the last 20 years. The huge existing 
literature (for a survey see Ray, 1983) offers a variety of 
methodologies, both from a state-space and from an input/ 
output perspective. The majority of these methodologies, how- 
ever, is based on a linear approximation of the nonlinear process, 
which is valid only in a small neighborhood around the operating 
steady state. For this reason, the presence of severe nonlineari- 
ties translates into large robustness margins in the linear 
controller design, leading therefore to conservatism and, in some 
cases, to extremely poor performance. On the other hand, the 
inherent complexity of MIMO nonlinear systems makes it 
almost impossible to use empirical methods to synthesize nonlin- 
ear controllers of acceptable generality for set point tracking 
and disturbance rejection. 

On the nonlinear systems theory front, transparent solutions 
for typical multivariable control problems were obtained only 
recently which include: invertibility (Hirschorn, 1979); decou- 
pling via state feedback (Freund, 1975; Ha and Gilbert, 1986); 
noninteracting control and disturbance decoupling (Hirschorn, 
I98 1 ; Isidori et al., 198 1); exact state equation linearization 

(Hunt et al., 1983); input/output linearization (Kravaris and 
Soroush, 1990). It was the differential geometric framework 
that allowed an elegant formulation and geometric interpreta- 
tion of these problems and their solutions. Research in this area 
has reached such a point that the synthesis of nonlinear compensa- 
tors for stabilization, set point tracking, and disturbance rejection 
can and must be addressed in a unified framework. At the same time, 
recent advances in model development from first principles and 
increasing computational capabilities encourage the development of 
such a framework in this direction. 

In this work, we present a unified methodological framework 
for the feedforward/state feedback control of a large class of 
multivariable nonlinear processes, with the main emphasis on 
the regulatory aspect of the problem. While the main result is a 
generalization of a previous result for SISO systems (Daoutidis 
and Kravaris, 1989a), the proposed methodology naturally 
identifies the fundamental nature of the multivariable control 
problem and provides a synthesis framework to address it. 

In particular, we consider general MIMO nonlinear processes 
with a state-space description of the form: 

yi = hi(x) ,  i = 1 , .  . . , rn 
wheref, gj, w, are smooth vector fields on [w", hi are smooth 
scalar fields on [w", and 
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x =  

- 
Yl 

Y2 

Y m ,  

E W , d =  E R m  

are the vectors of the states, the disturbance inputs, the 
manipulated inputs and the outputs (to be controlled), respec- 
tively, with m 5 n. For simplicity, we assume equal number of 
manipulated inputs and controlled outputs. 

The general servo and regulatory control problem for such 
processes will be addressed and solved in two steps, in analogy 
with the SISO case (Daoutidis and Kravaris, 1989a) and the 
disturbance-free MIMO case (Kravaris and Soroush, 1990). At 
the first step, which is the main synthesis problem, all the 
available process information (i.e., model structure and parame- 
ters, measurements of the states and the disturbances) will be 
used to synthesize a feedforward/state feedback control law 
which: 

Eliminates the effect of measurable disturbances on the 
process outputs y , k  

Induces a prespecified linear behavior between the outputs 
and a set of reference inputs u;s. 
Once this synthesis problem is solved, the second step involves 
using linear control theory to design a linear MIMO controller 
with integral action around the linear v - y system. This will 
ensure satisfactory servo and regulatory behavior, despite the 
presence of unmeasured disturbances and/or model uncer- 
tainty. The overall control configuration is shown in Figure 1 
and it clearly depicts the resulting two-step control methodol- 
ogy. 

We will begin by introducing a generalization of the concept 
of relative order in a MIMO setting to incorporate disturbance 
as well as manipulated inputs. The fundamental nature of the 
regulatory control problem will then be discussed, using the 
relative order as a structural analysis tool. In the following 
section, the main theoretical result will be developed, i.e., a 
feedforward/state feedback control law that solves the posed 
synthesis problem. This will lead to the development of a 

E R",Y = 

feedforward/state feedback control structure. An alternative 
feedforward/output feedback control structure will be proposed 
for the case of unavailable state measurements. A discussion will 
follow, in which specific design objectives in the closed-loop 
system will be associated with the choice of some adjustable pa- 
rameters. Finally, the developed feedforward/feedback method- 
ology will be applied to a continuous polymerization reactor and 
its performance will be evaluated through simulations. 

Relative Order and the Fundamental Nature of the 
Control Problem 

An extension of the concept of relative order to include 
disturbance inputs as well as manipulated inputs was recently 
introduced in the context of SISO systems (Daoutidis and 
Kravaris, 1989a); it was proven to be a very useful tool in 
analyzing the dynamic structure of a SISO nonlinear system 
and developing a feedforward/feedback control methodology. A 
similar extension will now be introduced in the context of 
MIMO systems and will be used to characterize the nature of 
the regulatory control problem, based on a structural analysis of 
the system. The definitions that follow refer to MIMO systems 
in the form of Eq. 1. 

We will start by reviewing the definition of the relative order 
of an output variable with respect to the manipulated input 
vector. 

Definition 1. The relative order of the output y i  with respect to 
the manipulated input vector u, ri, is defined as the smallest 
integer for which there exists a j E [ 1, m] such that: 
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Equivalently, ri is the smallest integer for which: 

The above concept has been extensively used in multivariable 
systems theory, with a variety of names depending on the 
context (e.g., Hirschorn, 1979; Ha and Gilbert, 1986). It can be 
easily shown (Kravaris and Soroush, 1990) that ri is the smallest 
order of derivative of the output y i  that explicitly depends on the 
vector u.  In this sense, the above concept of relative order 
characterizes the dynamic effect of the manipulated input vector 
on each process output. It is therefore extremely meaningful in a 
multivariable control context, where we are interested in the 
effect of the manipulated input vector, rather than the effect of 
each individual manipulated input, on the process outputs. 
Clearly, in any well-formulated control problem, a finite relative 
order r, must exist for every output yi .  

We now generalize the concept of relative order of an output 
variable with respect to a disturbance input variable, originally 
introduced for SISO systems by Daoutidis and Kravaris (1989a), 
in a multivariable setting: 

DeJinition 2. The relative order of the output y i  with respect to 
the disturbance input d,, piK, is defined as the smallest integer for 
which: 

(3) 

Note that each disturbance input is treated individually in 
definition 2. The reason for this is that in a multivariable control 
context we are concerned with the effect of each individual 
disturbance on each individual output. It can be easily shown 
that a finite relative order pi, represents the smallest order of 
derivative of the output yi  that explicitly depends on the 
disturbance d,. In this sense, the above concept of relative order 
characterizes the dynamic effect between disturbance and 
output variables; small relative orders imply a direct effect of the 
disturbances on the outputs, rendering thus the regulation of the 
process an important control issue. 

The above assertion can be made more precise through the 
following structural characterization of disturbances: 

Referring to the nonlinear process described by Eq. 1, we 
introduce the following partition of the set of disturbance inputs 
into the classes .Ai, B, and ei, associated with the output yi: 

(4) 

Note that for each output, a different partition of the set of the 
disturbances will be obtained in general. The above partition 
captures the relative dynamic interactions between the manipu- 

lated input vector and the individual disturbance inputs for a 
particular output. More specifically, 

Disturbances that belong to class Ai have a less direct effect 
on the output yi than the manipulated input vector. 

Disturbances that belong to class 48, have the same effect on 
the output y i  as the manipulated input vector. 

*Disturbances that belong to class ei have a more direct 
effect on the output y ,  than the manipulated input vector. 
Based on the intuition that has been obtained from the SISO 
treatment of the subject (Daoutidis and Kravaris, 1989a), the 
following properties are expected to hold concerning the nature 
of the regulatory control problem: 

Bi = ei = 0 :  pure feedback compensation will suffice to 
eliminate the effect of the disturbances on the output yi. 

Bi # 0 ,  ei = 0 :  static feedforward/state feedback 
compensation will be necessary to eliminate the effect of the 
disturbances on the output yi. 

ei # 0 : dynamic feedforward/state feedback compensa- 
tion will be necessary to eliminate the effect of the disturbances 
on the output yi .  
The overall control action must compensate for each class of 
disturbances and for each output in an appropriate way. 

Remark 1 .  In general, definitions 1 and 2 are valid locally, in a 
region around a point of interest in state space. Singular points 
may exist throughout the state space. 

Remark 2. The concept of relative order concerns the input/ 
output behavior of the system; therefore, it is invariant under 
coordinate change and in a linear setting it is associated with the 
transfer function description of the system and not with the 
specific state-space realization. 

Synthesis of the FeedforwardIState Feedback 
Control Law and Development of the Control 
Structure 

The main result of this section, which generalizes a previous 
result for SISO systems (Daoutidis and Kravaris, 1989a), is 
summarized in the following theorem. 

Theorem 1. Consider the MIMO nonlinear process described 
by Eq. 1. Let r;s be the relative orders of each output yi  with 
respect to the manipulated input vector and p,'s be the relative 
orders of each output with respect to each disturbance input. 
Also, consider the partitions of the set of disturbances according 
to Eq. 4 and assume that the characteristic matrix 

is nonsingular. Then, the control law: 

I I I. m 
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Completely eliminates the effect of the disturbances on the 

Induces the linear v - y closed-loop response: 
process outputs. 

(7) 

where Pik = 
constant parameters with 

/$k - . @$IT E R" are vectors of adjustable 

and v = [vI v2 - - + v,] ' E R"' is a vector of reference inputs. 
We are going to omit the detailed proof of the above theorem, 

because it involves a notationally complicated, but conceptually 
straightforward, procedure. The procedure of the proof goes 
through the following steps: 

a. Derive explicit expressions for the derivatives of each 
output yi up to rith order, in terms of x, u and d,'s. 

b. Using these expressions, calculate the sum 

in terms of x,  u and d,'s. 
c. Calculate the expression for the manipulated input vector 

u that makes the above sum equal to v. 
The interested reader may refer to the SISO case (Daoutidis 
and Kravaris, 1989a) for the expressions of the derivatives of the 
outputs that are used in the calculations. It is worth noting that 
the whole development of the control law is carried out in an 
algebraic context, with the differential geometric character 
being implicitly present through the concept of relative order 
and the Lie derivative notation. 

Remark 3. The nonsingularity assumption for the characteris- 
tic matrix C ( x )  and the condition given by Eq. 8 guarantee that 
the inverse 

F m  m 1 - 1  

and consequently the control law are well-defined. The nonsingu- 
larity assumption for the matrix C ( x )  is somewhat restrictive, in 
the sense that it imposes a structural restriction on the nonlinear 
system. On the other hand, the majority of practical applications 
conforms with the above assumption. More sophisticated tech- 
niques than the ones presented here have to be employed for 
those that don't. 

Despite the apparent complexity of the control law, a simple 
structure is present. In particular, it is composed of three 
distinct parts: 

* A  pure static state feedback part, which accounts for 
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input/output linearity and eliminates, for each i ,  the effect of 
the disturbances in .Ai on the output yi:  

A static feedforward/state feedback part which eliminates, 
for each i ,  the effect of the disturbances in Bi on the output y,: 

m 

A dynamic feedforward/state feedback part which elimi- 
nates, for each i, the effect of the disturbances in ei on the output 
Yi: 

The dynamic element in the above part can be implemented 
using a lead-lag type of approximation of appropriate order. 

In each one of the above parts of the control law, the control 
action results by superimposing explicit compensation terms for 
each output and for each disturbance, depending on the corre- 
sponding partition of the set of disturbances. It is exactly this 
explicit character of the control law that results in its rather 
complicated form. More compact expressions can be written, by 
adopting a more compact vector notation. 

At this point, let us summarize the basic characteristics of the 
proposed control law. By 

Calculating the relative orders r, and p,, for every output y, 
*Implementing the control law given by Eq. 6 for an 

appropriate choice of the adjustable parameters fi{k's 
we use all the available process information so that: 

The input/output behavior of the closed-loop system for 
changes in the reference inputs is linear 

The regulatory behavior of the closed-loop system is perfect 
with respect to the measurable disturbances 
under the assumption, of course, of a perfect model and perfect 
implementation of the controller. In the next section, we will 
associate the choice of the adjustable parameters p:k's with the 
stability characteristics and the degree of coupling in the 
closed-loop system. It should be mentioned that an implicit 
assumption in the previous development is that measurements of 
the system's states are available. In fact, this assumption is a key 
one in obtaining the perfect disturbance rejection property on 
the output y, for the disturbances that belong to the class A,, 
without using measurements of these disturbances. The measure- 
ments of the states completely capture the effect of these 
disturbances and since the manipulated input vector has a more 
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direct effect on the output yi  than these disturbances, it 
completely compensates for their effect. 

Simplifications and generalizations 

following two cases: 
The control law given by Eq. 6 simplifies greatly in the 

@, = 0 for every i: 

which is a static feedforward/state feedback control law. 

3, = ei = 0 for every i: 

which is a pure state feedback control law, exactly the same as if 
no disturbances were present (Kravaris and Soroush, 1990). 

The above results conform with the intuitive arguments of the 
previous section concerning the nature of the control law, 
depending on the nonvoid classes of disturbances present in each 
partition. 

In the case of m = 1 (SISO system), the control law reduces 
to: 

which, as expected, is exactly the same with our previous result 
for SISO systems (Daoutidis and Kravaris, 1989a). 

The nonsingularity of the characteristic matrix C(x)  (Eiq. 5 )  
is a sufficient condition for a static state feedback input/output 
linearizing control law to exist. It has been shown (Kravaris and 
Soroush, 1990). however, that input/output linearization can be 
achieved for a larger class of disturbance-free systems than 
those satisfying this assumption. Generalization of theorem 1 
for this class of systems is possible, but it would require 
complicated notation and several technicalities that would dilute 
the focus of the present paper. 

The proposed methodology can also be trivially generalized to 
achieve any nonlinear input/output closed-loop response of the 
form: 

Finally, consider the more general class of nonlinear processes 
with a state-space description of the form: 

where 4,(x, u,, d:) is a scalar function solvable for u,, and d: is a 
vector of additional measurable disturbances. The above class 
incorporates cases where some manipulated inputs appear in the 
state equations coupled with some measurable disturbances. In 
this case, the proposed methodology can be applied by simply 
letting U, = +,(x, u,, d: ), calculating the control law (Eq. 6) for 
the new manipulated inputs U, and then solving for the original 
manipulated inputs u,. 

Remark 4 .  The relation of the feedforward/feedback problem 
to the classical disturbance decoupling problem was discussed 
for SISO systems in Daoutidis and Kravaris (1989b). It was 
shown that our proposed feedforward/feedback formulation 
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applies to a much more general class of systems than distur- 
bance decoupling and gives as a byproduct a much simpler and 
more transparent necessary and sufficient condition for solvabil- 
ity of the disturbance decoupling problem. 

In the context of MIMO systems of the form given by Eq. 1 
and assuming that the characteristic matrix C(x)  is nonsingular, 
the necessary and sufficient condition found in the literature 
(e.g., Isidori et al., 1981) for solvability of the disturbance 
decoupling problem is: 

W A X )  E ,b [ker {dhi(x)j n ker {dL/hj(x)I 
I -  

n . . . (7 ker{dLj'-'h,(x)}] (9) 

for every x E R" and every K .  

above condition can be easily shown to be equivalent to: 
Within our proposed feedforward/feedback formulation, the 

for every i and K ,  which is much simpler and easier to verify than 
Eq. 9. 

Clearly, the above condition is extremely restrictive and is 
rarely met in real systems. On the other hand, our proposed 
methodology provides a systematic way of treating measurable 
disturbances, allowing for them to be incorporated in the control 
law in an appropriate way. 

Remark 5. The disturbance rejection capability of the pro- 
posed methodology with respect to the disturbances in class 34, 
can find an interesting robustness interpretation. In particular, 
consider a localized perturbation (model uncertainty and/or 
unmeasured disturbance) of arbitrary magnitude which enters 
the system dynamic structure in an additive way at a certain 
location (i.e., a certain state equation). Such a perturbation can 
be viewed as an unmeasurable disturbance and can be assigned 
an "equivalent relative order." The particular perturbation 
can then be included in one of the classes of disturbances defined 
by Eq. 4. In case it belongs to the class .Ai, it will not have any 
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Figure 2. Feedforward/output feedback control structure. 

effect on the output y i  in the closed-loop system. The above 
inherent robustness feature of our methodology is extremely 
meaningful in chemical systems, where a model uncertainty can 
often be identified with errors in certain system parameters, e.g., 
kinetic rate constants and heat transfer coefficients. 

Feedforwardl feedback control structures 
Theorem 1 provides an explicit solution to the synthesis 

problem posed in the introduction. In general, as was discussed, 
the control structure has to be completed by a linear MIMO 
controller with integral action, designed appropriately to ac- 
count for unmeasured disturbances and/or model uncertainty. 
The resulting overall feedforward/state feedback control struc- 
ture is depicted in Figure 1. In the case where the disturbances 
are not modeled explicitly and therefore are not used in the 
control law, the above control structure reduces to the MIMO 
GLC control structure (Kravaris and Soroush, 1990). 

In many practical situations, on-line measurements of the 
states are not available or economically justified. In this case and 
for an open-loop asymptotically stable system, a simple method 
of reconstructing the states is the use of an open-loop state 
observer. In particular, given estimates of the initial states 
k(0) = ko, and driven by on-line measurements of the process 
inputs (manipulated and disturbance), a replica of the process 
model 

will converge to the correct estimates of the states for large t ;  
any initialization error will eventually die out. The resulting 
control structure after incorporating the open-loop state ob- 
server becomes a feedforward/output feedback control struc- 
ture, as it is shown in Figure 2. Obviously, in such a control 
structure one has to use measurements of all the disturbances, 
even the ones that belong to the classes .Ai, since there is some 
lost information from the states that are not measured. 

Closed-Loop Design Considerations 
As indicated by the control structure, the proposed control 

methodology is a two-step procedure that involves: a) the design 
of the inner feedforward/feedback loop (v - y system); and 
b) the design of a multivariable external linear controller to 
ensure satisfactory regulatory behavior of the closed-loop sys- 
tem in the presence of unmeasurable disturbances and model 
uncertainty. 

Design of the feedforward/ feedback inner loop 

y system is governed by: 
Under the control law given by Eq. 6, the dynamics of the u - 

BlOY, + ' * * + P l r , d t "  d'lY1) + . . . ( 

or expanding the @-column notation: 
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or in the Laplace domain and using a matrix fraction descrip- 
tion: 

The order of the closed-loop system is rl + r2 + - - - + rm. In 
analogy with the SISO case, the closed-loop system does not 
possess any finite zeros. On the other hand, the poles of the 
closed-loop system are the roots of the characteristic equation: 

det [ (2 k = O  B I k s k )  (2 k-0  BZks*)  - . (5 k=O Bmksk)]  = 0. 

Consequently, the BIB0 stability characteristics of the closed- 
loop system depend on the values of the m(r, + - - - + rm) + 
m2 adjustable parameters f i j k ' s .  

The issue of closed-loop asymptotic stability of the states 
under no external inputs is not going to be addressed in detail in 
this work, for brevity. The procedure to be followed in order to 
obtain a precise characterization for this issue is conceptually 
similar to the one followed in the SISO case (Daoutidis and 
Kravaris, 1989a), but the treatment must be done in a MIMO 
setting using a multivariable notion of nonlinear zeros. In 
particular, one can generalize the disturbance-free concept of 
MIMO zero dynamics and obtain a concept of zero dynamics for 
MIMO nonlinear systems with disturbances; then, appropriate 
stability conditions on the zero dynamics will guarantee the 
asymptotic stability of the unforced closed-loop system. 

In some cases, it may be desirable to achieve input/output 
decoupling in the closed-loop system, i.e., to have each reference 
input u, affect only the output yi. In this case, the postulated 
closed-loop response is: 

dt 

and one simply sets 

a;, = 0,i  # j 

in the control law. 
Any kind of partially decoupled closed-loop response can also 

be achieved by appropriate choice of the adjustable parameters 
P j k ' S ,  as long as the nonsingularity condition of Eq. 8 is satis- 
fied. By requesting any kind of input/output decoupling, we 
may impose an additional structural constraint on the closed- 
loop system which may cause deterioration in its perfor- 
mance characteristics. On the other hand, several advan- 
tages are present, such as fewer adjustable parameters 

[ ( r l  + - - + rm + m), in the case of full decoupling] and the 
use of SISO controllers in the external loop, in which case their 
tuning is straightforward. Physical constraints on the manipu- 
lated inputs and/or physical importance of the controlled 
outputs may often dictate whether decoupling is realistic and/or 
desirable. In general, despite the extensive research effort in this 
area, there is a lack of systematic methods of fundamental rigor 
for assessing when decoupling is favorable, even in the case of 
linear systems. It should be noted that, within our proposed 
synthesis framework, any degree of coupling can be. achieved by 
simply an appropriate choice of the adjustable parameters 
(without any modification in the actual synthesis procedure). 
This fact allows a significant degree of flexibility to the designer, 
who can incorporate his/her own intuition and experience in the 
tuning procedure and test the resulting performance characteris- 
tics. 

Design of the external linear controller 
The design of a multivariable linear controller for the linear 

v - y system can be performed using techniques from linear 
control theory. Of course, if the v - y system is decoupled, the 
designer has a much simpler task of synthesizing and tuning of 
the corresponding SISO linear controllers. In any case, the 
external linear controller must be designed to ensure 

Stability of the overall closed-loop systemyp - y 
*Satisfactory tracking of set points and rejection of the 

That the magnitude of the manipulated inputs uis does not 
unmeasurable disturbances 

exceed the bounds imposed by practical constraints. 

Application of the Feedforward /Feedback Control 
Methodology to a Continuous Polymerization 
Reactor 

Consider the CSTR shown in Figure 3, where free-radical 
polymerization of methyl methacrylate (MMA) takes place, 
with azo-bis-isobutyronitrile (AIBN) as initiator and toluene as 
solvent. The reaction is exothermic and a cooling jacket allows 
the heat removal. The standard mechanism of free-radical 
polymerization is assumed, together with the resulting rate laws 
(Ray, 1972; Ray et al., 1971; Congalidis et al., 1989; Schmidt 
and Ray, 1981; Tsoukas et al., 1982). We also make the 
following assumptions: 

Perfect mixing in the reactor 

n 
I n i t i a t o r  Monorner+Solvent 

F Gin Tin  r 
Figure 3. Simulated continuous polymerlzatlon reactor. 
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Constant density of the reacting mixture (no volume shrink- 

Constant heat capacity of the reacting mixture 
Uniform coolant temperature in the jacket 
Insulated reactor and cooling system 
Constant density and heat capacity of the coolant 
No polymer in the inlet streams 
No gel effect (because of low monomer conversion) 

age) 
0 Constant reactor volume (constant volumetric flow rate of 

Negligible flow rate of the initiator solution compared to 

Negligible inhibition and chain transfer to solvent reactions 
Quasisteady state and long-chain hypothesis. 

The dynamic behavior of the process is then described by the 

the monomer stream) 

that of the monomer stream 

following mass and energy balances: 

where 

Control of the temperature Tand the number average molecular 
weight Dl/Do of the polymer product is considered, by manipu- 
lating the volumetric flow rate of the initiator F, and the 
volumetric flow rate of the cooling water F,. The concentration 
of monomer in the inlet stream Cmin and the temperature of the 
inlet stream Tin are the major measurable disturbances. Thus, 

/ ( x )  = 

1478 

following the standard procedure and letting 

and 

the dynamic equations of the process are put in the form of Eq. 
1, where n = 6, m = 2 , p  = 2 and 



- 
0 

0 

0 

0 

0 

Tw* - .I 
VO - 

Based on definitions 1 and 2, the relative orders are easily 
found to take the following values: 

.Outputy,:r, = 2,p, ,  = 2,p,, = 2 
~ O u t p u t y , :  r2 = 2,pz, = 2,p2, = 1 

A, = a,%, = {d,, dz}, el = 0 
34, = 0,3, = {d,], eZ = {d,} 

Consequently, the set of disturbances is partitioned as follows: 

Clearly, as a result of the dynamic structure of the particular 
process, we will need static feedforward/feedback compensation 
to eliminate the effect of d, and d, on y ,  and the effect of d, on y,, 
while dynamic feedforward/feedback compensation will be 
necessary to eliminate the effect of dz on y,. 

The characteristic matrix C(x) of this system defined by Eq. 5 
becomes: 

, w2(x) = 

where 

It can be easily checked that C(x) is generically nonsingular; the 
feedforward/state feedback control law given by Eq. 6 can 
therefore be applied in a straightforward fashion, yielding: 

where 
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The control law given by Eq. 16 has a static feedforward/state 
feedback component and a dynamic feedforward/state feedback 
component; this agrees with the intuitive arguments made 
earlier. In order to obtain full input/output decoupling of the 
form 

we simply let 

d2Y2 + p:, - = 212 Y2 + p:, I dt2 

in the control law (Eq. 16), which takes the form 

The kinetic and physical parameters and the operating steady 
state conditions for the particular process are given in Tables 1 
and 2. Integration of the system dynamic equations was per- 
formed (after appropriate dedimensionalization) by using the 
subroutine LSODA from the ODEBACK Library, on the 
Apollo network of The University of Michigan. The values for 
the adjustable parameters in the FF/FB control law (Eq. 17) 
were chosen as 

to place the closed-loop poles a t  -2.5 and -25.0 for the two 
decoupled v I  - y I  and v2 - y 2  systems. The location of the 
closed-loop poles was chosen so that the constraints on the magni- 

tude of the manipulated input variables (F,  2 0 and F,, z 0) be 
satisfied. The external linear controllers in the FF/FB control 
structure were chosen as two PI controllers with settings K,  = 
15 and 7, = 0.4 h. A number of simulation runs verified the 
stability of the open-loop system around the operating steady 
state and the internal stability of the closed-loop system. 

The performance of the proposed feedforward/feedback con- 
trol methodology was tested in terms of rejection of step changes 
at  the two measurable disturbances. The process was initially 
assumed to be at  steady state. At time t = 1 h a step change a t  
the inlet monomer concentration Cm,, was applied, from 6 to 5 
kmol/m3. The process was allowed to reach a new steady state, 
and at  time t = 6 h a step change at  the inlet temperature Tin 
was applied, from 350 to 345 K. 

Table 1. Kinetic Parameters 

Reference i, = I ,  

T,  3.8223 x 10" kmol/ml.h 2.9442 x 101kJ/kmol Schmidt and Ray, 1981 
Td 3.1457 x 10" kmol/m'.h 2.9442 x IO'kJ/kmol Schmidt and Ray, 1981 
I 3.7920 x lo'* h-.' 1.2877 x lo5 kJ/kmol Tobolsky and Baysal, 1953 
P 1.7700 x lo9 kmol/m3.h 1.8283 x lo4 kJ/kmol Mahabadi and O'Driscoll, 1977 
f", 1.0067 x lOI5 kmol/m'. h 7.4478 x lo4 kJ/kmol Stickler and Meyhoff, 1978 
f* = 0.58 Tobolsky and Baysal, 1953 
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Table 2. System Parameters and Steady-State Values 

F = 1.00 m3 F, = 0.01679 m 3 .  h - '  
v =  0.1 m3 R = 8.314 kJ . kmol-' K- '  
p = 866 kg.m-3 M ,  = 100.12 kg. kmol-I 

C,," = 6.0 krnol.m--l C,," = 8.0 kmol. m-3 
- A H p  = 57,800 kJ.  kmol-' cp = 2.0 kJ . kg - I . K- I 

A = 2.0 m2 U = 720 kJ. h-' . K - ' .  m- 
p ,  = 1.000 kg.m-' C, = 4.2 kJ* kg-' * K - '  
v, = 0.02 m3 T,, = 350 K 
y:" = 25,000 kg * h o l -  I y q  = 335 K 
Fcy = 3.26363 m'.h-' Two = 293.2 K 

Figures 4-7 illustrate the profiles of the two controlled outputs 
and the two manipulated inputs, under the assumption of perfect 
model and perfect measurements. The figures provide a compar- 
ison of the output and input responses under 

a) The MIMO FF/FB control structure 
b) The MIMO GLC structure 

c) Two linear SISO PI loops (coolant flow rate/temperature, 
initiator flow rate/number average molecular weight). 

The derivative term in the FF/FB control law (Eq. 17) was 
approximated by a lead-lag element with transfer function 
s/(O.OOls + 1). In the implementation of the GLC structure, 
the same values of &'s were used as in the FF/FB structure, 

028 
In 

Y ' 026 

1 

0 2 2 4 . .  I . .  , . . , . . 
0 3 6 9 

Time, hr 

Figure 4. Number-average molecular weight profiles un- 
der different control methods. 
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i 333 

332 
0 3 6 9 

Tm, h- 

Flgure 5. Reactor temperature profiles under different 
control methods. 
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Figure 6. Initiator flow rate profiles corresponding to 
Figures 4 and 5. 
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Figure 7. Coolant flow rate profiles corresponding to 
Figures 4 and 5. 
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Figure 8. Number-average molecular weight profiles un- 
der FF/FB control: effect of model lmperfec- 
tions. 

while the external linear controllers were chosen as PI  control- 
lers with the same settings as in the FF/FB structure. Finally, 
in the linear control approach, the two SISO PI  controllers 
were tuned through a trial-and-error procedure which resulted 
in the values K, = -1 x lo-’ m3/h, r, = 0.075 h and K, = 
-0.1 m’/h . K, T,  = 0.075 h, respectively for “best” closed-loop 
performance. Due to the severe nonlinearity of the process, the 
response characteristics were found to be very sensitive to the 
values of the PI  controllers’ settings. 

Clearly, as the theory predicts, the FF/FB control law results 
in perfect regulation of the outputs, i.e., an obvious improvement 
of the closed-loop behavior compared with the one under the 
GLC structure (where no measurements of the disturbances are 
used in the control law), or the linear PI  controllers. In another 
set of simulation runs, assuming the same disturbance changes 
as previously, we tested the robustness characteristics of the 
FF/FB method in the face of modeling error and measurement 

Figure 9. Reactor temperature profiles under FF/FB con- 
trol: effect of model imperfections. 

Time, hr 

Figure 10. Number-average molecular weight profiles un- 
der FF/FB control: effect of disturbance mea- 
surement noise. 

noise. In particular we compared the closed-loop behavior of the 
process under 

a) Perfect model and perfect disturbance measurements 
b) 20% error in the frequency factor Z, and the heat of 

reaction AHp 
c) Sinusoidal noise in the measurements of the disturbances 

d, and d,  of amplitudes 0.05 kmol - m-3 and 0.5 K, respectively, 
and period of oscillation of 10 minutes. 

Figures 8 and 9 depict the excellent performance of the 
FF/FB structure in rejecting the applied step changes in the 
disturbances for the case when the above model uncertainties 
exist. As shown in the two figures, even in the presence of the 
modeling errors, the output profiles are very close to the ones 
obtained when a perfect model is available. Figures 10 and 11 
depict the performance of the FF/FB structure in rejecting the 
applied step changes when the disturbance measurements are 
corrupted with the above noise. Clearly, although the output 

Y 35554 I 

334 

Time. hr 

Figure 11. Reactor temperature profiles under FF/FB 
control: effect of disturbance measurement 
noise. 
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regulation is not perfect in the presence of measurement noise, 
the proposed method performs very satisfactorily. 

Conclusions 
A general synthesis methodology for the feedforward/ 

feedback control of a large class of multivariable nonlinear 
processes with measurable disturbances was presented. An 
appropriate formulation of the concept of relative order, to 
include disturbance inputs as well as the manipulated input 
vector, led to a transparent characterization of the regulatory 
aspect of the problem. A feedforward/state feedback control 
law that results in complete elimination of the effect of measur- 
able disturbances on the outputs and a linear input/output 
behavior in the closed-loop system was calculated. The  closed- 
loop stability and design objectives were associated with the 
choice of the adjustable parameters of the control law. The 
proposed methodology was successfully applied to a continuous 
polymerization reactor, for the regulation of the number aver- 
age molecular weight of the product and the reactor tempera- 
ture, in the presence of measurable disturbances at the composi- 
tion and temperature of the inlet stream, modeling error and 
measurement noise. 
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Notation 
A = heat transfer area, m* 

C,,, = molar concentration of the monomer, kmol/m3 
C,,,,” = molar concentration of monomer in the mono- 

C, = molar concentration of the initiator, kmoI/m’ 
C,,” = molar concentration of the initiator in the initia- 

c,, = heat capacity of the reacting mixture, kJ/kg K 
c, = heat capacity of water, kJ/kg - K 
Do = molar concentration of the dead polymer chains, 

D, = mass concentration of the dead polymer chains, 

E/.,. E, ETc, E,, E ,  = activation energies for chain transfer to mono- 
mer, propagation, termination by coupling, ter- 
mination by disproportionation and initiation 
reactions, respectively, kJ/kmol 

F = volumetric flow rate of the monomer stream into 
the reactor, m’/h 

F, = volumetric flow rate of the inlet initiator stream, 
m3/h 

mer inlet stream, kmol/m3 

tor inlet stream, kmol/m3 

kmol/m3 

k g p ’  

F,, = volumetric flow rate of the cooling water, m3/h 
K,  = proportional gain 
M, = molecular weight of the monomer, kg/kmol 

Po = molar concentration of the live polymer chains, 

R = Ideal Gas constant, kJ/kmol . K 
T = reactor temperature, K 
7‘, = jacket temperature, K 

T,, = temperature of the inlet streams in the reactor, 

Two = temperature of the inlet coolant stream, K 

kmol/m’ 

K 

V = overall heat transfer coefficient, kJ/m2 h K 
V = reactor volume, m3 

V, = overall effective volume of the cooling sub- 
system, m3 

Zffl,, 2,. Z,, 2, = frequency factors in Arrhenius equation, for 
chain transfer to monomer, propagation, termi- 

nation by coupling and termination by dispropor- 
tionation reactions, respectively, kmol/m’ . h 

Z, = frequency factor in Arrhenius equation, for the 
initiation reaction, h-’ 

d = vector of disturbance inputs 
f * = initiator efficiency 

h, = output scalar field 
r, = relative order of the output y, with respect to the 

manipulated input vector 
s = the Laplace domain variable 
t = time 
u = vector of manipulated inputs 
v = external input vector 
x = vector of state variables 
y = vector of outputs 

y ’ p  = vector of set points 

J g,, w, = vector fields 

-AHp = heat of propagation reaction, kJ/kmol 
A,, B,, @, = partition of disturbances for the output yi 

Greek letters 
,9ik = parameters of the feedforward/state feedback 

law 
T, = reset time 
p = density of the reacting mixture, kg/m’ 

p ,  = density of water, kg/m’ 
pi, = relative order of the output y, with respect to the 

disturbance dK 

Math symbols 
=. = implies 
0 = is equivalent to 
E = belongs to 
n = intersection 
0 = void set 

det = determinant of a matrix 
ker = kernel of an operator 
dh, = gradient of a scalar field hi 
W = real line 

R“ = n-dimensional Euclidean space 
L/hi =‘Lie derivative of the scalar field hi with respect 

Ljh, = k-th order Lie derivative of the scalar field hi 
to the vector fieldf 

with respect to the vector fieldf 

Acronyms 
BIB0 = bounded input bounded output 
SISO - single input single output 

MIMO = multiple input multiple output 
GLC = globally linearizing control 

FF/FB = feedforward/feedback 
CSTR = continuous stirred tank reactor 
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