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Abstract: This study derives a learning algorithm for a quaternion neural network using the steepest
descent method extended to quaternion numbers. This applies the generalised Hamiltonian–Real
calculus to obtain derivatives of a real–valued cost function concerning quaternion variables and
designs a feedback–feedforward controller as a control system application using such a network.
The quaternion neural network is trained in real-time by introducing a feedback error learning
framework to the controller. Thus, the quaternion neural network-based controller functions as an
adaptive-type controller. The designed controller is applied to the control problem of a three-link
robot manipulator, with the control task of making the robot manipulator’s end effector follow a
desired trajectory in the Cartesian space. Computational experiments are conducted to investigate
the learning capability and the characteristics of the quaternion neural network used in the controller.
The experimental results confirm the feasibility of using the derived learning algorithm based on the
generalised Hamiltonian–Real calculus to train the quaternion neural network and the availability of
such a network for a control systems application.

Keywords: hypercomplex numbers; quaternion neural network; generalised Hamiltonian–Real
calculus; feedforward–feedback controller; robot manipulator

1. Introduction

Recently, artificial intelligence, including machine learning, has been frequently used
to find solutions for intractable problems in science and engineering and other fields, such
as social science, economics and finance. Their ability to learn by example makes them ca-
pable of applicable solutions in real-world problems [1]. For instance, artificial intelligence
could offer approaches for resolving robotics issues in control engineering, especially for
autonomous robotics [2]. Neural networks (NNs) have been applied to solve numerous
engineering problems over the last half-century due to their flexibility, learning capability
and highly complex mappings [3]. Additionally, NNs incorporating deep-learning tech-
niques and reinforcement learning integrating deep NNs are currently being used to handle
challenging problems in the real world. They have demonstrated successful applications
in many engineering fields [4,5]. Although deep learning is commonly utilised to deal
with such problems, high-dimensional NNs, where all the network parameters and signals
are based on complex and hypercomplex numbers including quaternion and octonion,
have become an attractive alternative for handling such difficulties more efficiently and
easily. Since the high-dimensional representation using such numbers can easily address
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multi-dimensional correlated data as a single entity and has many advantages, including
parameter and computational efficiency [6], high-dimensional NNs have been explored to
solve multi-dimensional and complicated problems [7–12].

A servo-level controller using a high-dimensional NN based on quaternion num-
bers was proposed in our previous work. Its characteristics for controlling nonlinear
dynamical systems were investigated as a control system application of quaternion NNs
(QNNs) [13–15]. Moreover, we found that the QNN outperformed the other networks in the
learning and control of a three-link robot manipulator [16], such as real- and hypercomplex-
valued NNs. It applies the steepest descent against the real-valued cost function defined by
the error between the desired and system output to train the QNN. Since the cost function’s
derivative to the quaternion variables representing the network parameters was required
to derive the QNN’s learning algorithm, the derivative was calculated using the pseudo-
derivative that calculates component-wise real derivatives concerning the real variables
of the quaternion number. The pseudo-derivative is often used to derive the learning
algorithm in many QNN applications, e.g., time-series signal processing, image process-
ing, speech processing and pattern classification [10,17]. However, the formal derivatives
of a real-valued function for the quaternion variables, including their involution, have
been proposed using Hamiltonian–Real (HR) calculus, which is similar to the Wirtinger
calculus relating complex numbers to quaternion numbers, to develop learning algorithms
for signal processing using quaternion numbers [18]. Furthermore, a generalised form of
the HR calculus called generalised HR (GHR) calculus has been proposed to develop a
more suitable learning algorithm [19]. Despite an increasing interest in learning algorithms
based on the GHR calculus [20–23], its applicability on QNNs has not been adequately
investigated. Moreover, practical, real-world applications using QNNs trained by such
algorithms have not been fully explored, although such a QNN has been applied to control
of a robot manipulator in a previous study [24].

Considering the aforementioned research gap, the main aim of this study is to de-
termine how the specific properties of the learning algorithm based on the GHR calculus
affect the QNN in control systems. In this study, the learning algorithm of a multi-layer
QNN based on the GHR calculus is derived, and the possibility of using such a QNN in
control system applications is explored. A servo controller based on the QNN is presented,
where the input to the QNN consists of several input–output sets of the plant to handle
plant dynamics and the output from the QNN is used to synthesise the control input to the
plant. A feedback error learning (FEL) [25] framework extended to the quaternion numbers
is employed to train the QNN-based controller. We used the QNN-based controller to
perform computational experiments on the trajectory-tracking control of a three-link robot
manipulator. We evaluated the feasibility and characteristics of the QNN trained by the
learning algorithm based on the GHR calculus.

2. Feedforward–Feedback Controller Based on a Quaternion Neural Network
2.1. Generalised HR Calculus

Suppose the algebra of the quaternion numbers is H = {q | q = q0 + q1ı + q2  +
q3κ, q0, q1, q2, q3 ∈ R} using four real numbers and the basis {1, ı, , κ}, where the units ı,
 and κ satisfy Hamilton’s rules: ı2 = 2 = κ2 = ıκ = −1, ı = −ı = κ, κ = −κ = ı and
κı = −ıκ = . It forms a four-dimensional noncommutative, associative normed division
algebra over real numbers.

Some basics of the HR calculus [18] are summarised first. Let the transformation
for any quaternion number q be denoted as qµ = µqµ−1 where µ is any nonzero quater-
nion number. The real variables of the quaternion number qi (i = 0, 1, 2, 3) can be ex-

pressed using the quaternion involutions: q0 =
1
4
(q + qı + q + qκ), q1 =

1
4ı
(q + qı −

q − qκ), q2 =
1
4
(q− qı + q − qκ) and q3 =

1
4κ

(q− qı − q + qκ). Let f : H → H be the

quaternion-valued function f (q) = f0(q0, q1, q2, q3) + f1(q0, q1, q2, q3)ı + f1(q0, q1, q2, q3) +
f3(q0, q1, q2, q3)κ, the function f is real differentiable when the components fi (i = 0, 1, 2, 3)
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are differentiable as functions of real variables qi (i = 0, 1, 2, 3). If the function f is real
differentiable, the HR derivatives of the function f to the involution are defined as follows:

∂ f
∂q

=
1
4

(
∂ f
∂q0
− ∂ f

∂q1
ı− ∂ f

∂q2
− ∂ f

∂q3
κ

)
∂ f
∂qı =

1
4

(
∂ f
∂q0
− ∂ f

∂q1
ı +

∂ f
∂q2

 +
∂ f
∂q3

κ

)
∂ f
∂q =

1
4

(
∂ f
∂q0

+
∂ f
∂q1

ı− ∂ f
∂q2

 +
∂ f
∂q3

κ

)
∂ f
∂qκ

=
1
4

(
∂ f
∂q0

+
∂ f
∂q1

ı +
∂ f
∂q2

− ∂ f
∂q3

κ

)
, (1)

and its conjugates are as follows:

∂ f
∂q∗

=
1
4

(
∂ f
∂q0

+
∂ f
∂q1

ı +
∂ f
∂q2

 +
∂ f
∂q3

κ

)
∂ f

∂qı∗ =
1
4

(
∂ f
∂q0

+
∂ f
∂q1

ı− ∂ f
∂q2

− ∂ f
∂q3

κ

)
∂ f

∂q∗ =
1
4

(
∂ f
∂q0
− ∂ f

∂q1
ı +

∂ f
∂q2

− ∂ f
∂q3

κ

)
∂ f

∂qκ∗ =
1
4

(
∂ f
∂q0
− ∂ f

∂q1
ı− ∂ f

∂q2
 +

∂ f
∂q3

κ

)
. (2)

Consequently, the GHR derivatives of the function f with respect to qµ and qµ∗ (µ 6= 0,
µ ∈ H) are defined as follows [19]:

∂ f
∂qµ =

1
4

(
∂ f
∂q0
− ∂ f

∂q1
ıµ − ∂ f

∂q2
µ − ∂ f

∂q3
κµ

)
∂ f

∂qµ∗ =
1
4

(
∂ f
∂q0

+
∂ f
∂q1

ıµ +
∂ f
∂q2

µ +
∂ f
∂q3

κµ

) , (3)

where {1, ıµ, µ, κµ} is the the generalised basis. Some properties of the GHR derivatives
are given as follows:

product rule:
∂( f g)

∂q
=

∂ f
∂qg g + f

∂g
∂q

,
∂( f g)

∂q∗
=

∂ f
∂qg∗ g + f

∂g
∂q∗

, (4)

rotation rule:
(

∂ f
∂q

)µ

=
∂ f µ

∂qµ ,
(

∂ f
∂q∗

)µ

=
∂ f µ

∂qµ∗ , (5)

chain rule:
∂ f (g(q))

∂q
= ∑

µ∈{1,ı,,κ}

∂ f
∂gµ

∂gµ

∂q
,

∂ f (g(q))
∂q∗

= ∑
µ∈{1,ı,,κ}

∂ f
∂gµ

∂gµ

∂q∗
. (6)

where the functions f : H→ H and g : H→ H are real differentiable.
Using the GHR derivatives, Taylor’s theorem for quaternion-valued functions of

quaternion variables can be formulated as a useful tool in calculus. The first-order Taylor
series expansion of the function f (q) ∈ H is derived as follows:

f (q + dq) = f (q) + ∑
µ∈{1,ı,,κ}

∂ f (q)
∂qµ dqµ + O(dq2). (7)
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If and only if the direction of the steepest descent dq is set to dq = −η

(
∂ f
∂q

)∗
= −η

∂ f
∂q∗

with the learning factor η ∈ R+, the following relationship can be obtained:

f (q + dq)− f (q) ≈ ∑
µ∈{1,ı,,κ}

∂ f (q)
∂qµ dqµ

= Re
(

4 ∂ f
∂q

)
dq ≤ −4η

∥∥∥ ∂ f
∂q

∥∥∥2
< 0.

(8)

This yields the steepest descent method for quaternion numbers, which could be used as
a learning algorithm for the QNN. Since the learning factor η defines a step size in the
steepest descent, it functions to adjust the learning speed of the QNN.

2.2. Quaternion Neural Network

Considering a three-layer QNN with an input layer, a hidden layer and an output
layer, the network’s input–output relationship can be given as:

σl = ∑
j

ωl jψ(∑
i

wjisi), (9)

where si ∈ H is an external input to the input layer’s i-th unit, wji ∈ H is the connection
weight between the input layer’s i-th unit and the hidden layer’s j-th unit, ωl j ∈ H is the
connection weight between the hidden layer’s j-th unit and the output layer’s l-th unit,
σl ∈ H is the output layer’s l-th output and ψ : H→ H is the unit’s activation function in
the hidden layer. The unit’s threshold in the hidden and output layers can be treated as a
connection weight against a constant input.

Assuming that εl ∈ H is the output error defined as εl = tl − σl , where tl ∈ H is the
teaching signal of the output layer’s l-th unit, the QNN’s connection weights are trained
using the steepest descent method that minimises the following cost function defined using
the norm of the output error:

E =
1
2 ∑

l
‖εl‖2. (10)

Although the cost function is a real-valued function since the norm of the quaternion
number is a real number, it is also a function of the quaternion number and its conjugate
due to the definition of the norm: ‖q‖ =

√
qq∗ where q ∈ H. Calculating the cost func-

tion gradient to the connection weights using the GHR calculus updates the connection
weights according to the steepest descent method extended to quaternion numbers derived
as follows:

ωl j = ωl j − η ∂E
∂ω∗l j

= ωl j − η

[
− 1

2

{
∂σl

∂ω
ε∗l ∗
l j

ε∗l + εl
∂σ∗l
∂ω∗l j

}]
= ωl j +

1
4 ηεlν

∗
j ,

(11)

wji = wji − η ∂E
∂w∗ji

= wji − η

[
− 1

2 ∑
l

{
∂σl

∂w
ε∗l ∗
ji

ε∗l + εl
∂σ∗l
∂w∗ji

}]

= wji +
1
4 η ∑

l

{
Re

[
εl

(
∂νj

∂xj0

)∗
ω∗l j

]
+ Re

[
εl

(
∂νj

∂xj1

)∗
ω∗l j

]
ı

+Re

[
εl

(
∂νj

∂xj2

)∗
ω∗l j

]
 + Re

[
εl

(
∂νj

∂xj3

)∗
ω∗l j

]
κ

}
s∗i .

(12)
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where νj = ψ(xj) is the hidden layer’s j-th output, and xj = ∑
i

wjisi is an internal state

of the hidden layer’s j-th unit. These update rules are the back–propagation algorithm
extended to quaternion numbers.

2.3. Feedforward–Feedback Controller

In this section, the QNN is used to design a controller which makes a plant output
follow a reference signal. The control input to the plant is composed of both the QNN
output and a feedback controller output in this controller because a FEL framework is
introduced to train the controller’s QNN. To simplify designing the controller, the following
discrete-time linear plant is considered:

y(k + d) =
n−1

∑
i=0

αiy(k− i) +
m+d−1

∑
i=0

βiu(k− i), (13)

where y ∈ H is the plant output, u ∈ H is the control input, αi ∈ H and βi ∈ H are the
plant’s coefficients, n and m are the plant orders, d is the dead time and k is the sampling
number. The control input consists of the QNN output σ and the feedback controller output
v, such as u(k) = σ(k) + v(k). In defining the control error between the reference signal r
and the plant output y: e(k) = r(k)− y(k), it can be rewritten using Equation (6) as:

e(k + d) = r(k + d)− y(k + d)

= β0{ξTs(k)− σ(k)},
(14)

where (·)T is the transpose operator,

ξ = β−1
0
[

1 −α0 · · · −αn−1 −β1 · · · βp−1 −β0
]T, (15)

s(k) =
[

r(k + d) y(t) · · · y(k− n + 1) u(k− 1) · · · u(k− p + 1) v(k)
]T, (16)

and p = m + d. Assuming the control error becomes zero, the three-layer QNN is designed
using the vector s(k) as the network’s input:

σ(k) = ωT(k)ψ(W(k)s(k)), (17)

where the component of the matrix W ∈ HM×L comprises the connection weights between
the input and hidden layers, and the component of the vector ω ∈ HM consists of the
connection weights between the hidden and output layers. Here L is the number of units in
the input layer defined as L = n + p + 1, and M is the number of units in the hidden layer.

The connection weights are updated with the learning algorithm using Equations (11)
and (12) at every sampling number, trained in real-time. Thus, the QNN acts as an adaptive
controller. When the generalised δ-rule is applied to the QNN training by considering the
plant’s dead time, the connection weight training in the controller is performed as follows:

ω(k + 1) = ω(k− d)− η
∂E(k)

∂ω∗(k)
, (18)

W(k + 1) = W(k− d)− η
∂E(k)

∂W∗(k)
. (19)

where (·)∗ is the quaternion conjugate operator. The cost function, Equation (10), is defined
using the feedback controller output instead of the output error; namely, the feedback
controller output is minimised during the QNN training process according to the FEL.
While the feedback controller is expected to keep the control system stable at the beginning
of the QNN training process, the QNN comes to be a feedforward controller when the QNN



Machines 2022, 10, 333 6 of 14

training is ideally completed. Thus, such a controller is called a feedforward–feedback
controller [26]. Figure 1 shows the resulting control system schematic.

Plant

Quaternion

neural

network

Feedback

controller

z-1

+

+
+

-

uσ
z-p’

z-n’

z-1

r y
zd

v

z-2

z-2

Figure 1. Schematic of a QNN-based feedforward–feedback controller, where z is a shift operator,
n′ = n− 1 and p′ = p− 1.

2.4. Remarks on the Stability Condition of the Controller

The stability analysis of the QNN-based feedforward–feedback controller is important.
However, it is generally difficult, owing to the nonlinearity of the controller and the plant,
the noncommutative multiplication of quaternion numbers and the analyticity of the
quaternion function used in the activation function. Therefore, the local stability condition
of the controller is discussed by introducing the following assumptions:

(i) The plant is represented by Equation (13), where the orders of the plant, the dead time
and the sign of the high–frequency gain are known.

(ii) The QNN’s activation function is a split-type function using a component-wise linear
function even though it is not analytic in the field of quaternion number.

(iii) The feedback controller is a P–controller, and the QNN’s connection weights allow
the feedback controller output to be sufficiently small.

Using assumption (ii), the QNN, Equation (17) and the connection weight’s learning
algorithm, Equations (18) and (19) can be rewritten as follows:

σ(k) = ωT(k)W(k)s(k), (20)

W(k + 1) = W(k− d) +
1
2

ηω∗(k)v(k)sH(k), (21)

ω(k + 1) = ω(k− d) +
1
4

v(k)
{

sH(k)WH(k)
}T, (22)

where (·)H is the Hermitian operator. Using assumption (i), the control error is represented
by Equation (14). Substituting Equation (20) into Equation (14) yields:

e(k + d) = β0{ξT −ωT(k)W(k)}s(k)

= β0ζT(k)s(k),
(23)

where ζT(k) = ξT−ωT(k)W(k) denotes the parameter error vector. Substituting Equations (21)
and (22) into the parameter error vector and using the condition ‖v(k)‖ � 1 obtained by
assumption (iii) yields:

ζT(k + 1) = ξT −ωT(k + 1)W(k + 1)

≈ ζT(k− d)
{

E− 1
4 hηΩ(k− d)

}
,

(24)
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where

Ω(k− d) = s(k− d)
{

sH(k)WH(k)W(k− d) + 2v−1(k)ωT(k− d)ω∗(k)v(k)sH(k)
}

, (25)

E is the identity matrix, and the feedback controller is assumed v(k) = hβ−1
0 e(k) where

h ∈ R+ is the feedback gain. Assuming the function V(k) = ‖ζ(k)‖2 ≥ 0 as the Lyapunov
function candidate yields:

∆V(k) = V(k + 1)−V(k− d)

= − 1
4 hηζT(k− d)Φ(k− d)ζ∗(k− d),

(26)

where

Φ(k− d) = Ω(k− d) + ΩH(k− d)− 1
4

hηΩ(k− d)ΩH(k− d). (27)

Consequently, the stability of the parameter error vector ζ(k) is guaranteed when
∆V(k) ≤ 0 in Equation (26), namely, the matrix Φ(k − d) is positive semi-definite. The
matrix Φ(k− d) is Hermitian because of its definition, so its eigenvalues are real numbers.
This result clarifies the stability characteristics qualitatively, i.e., the stability depends on
the learning factor, the feedback gain and the connection weight, which is strongly related
to both the initial value and the convergence trajectory of the connection weight. Therefore,
the brute force approach which changes the learning factor, the feedback gain and the
connection weight’s initial values is necessary to find the stability condition quantitatively.
Additionally, the convergence of the parameter error vector ζ(k) would not always satisfy
the relationship ξT = ωT(k)W(k) even though the feedback controller output becomes
sufficiently small; namely, the control error approaches zero. The connection weight’s
learning algorithm for the QNN using the steepest descent method primarily minimises
the feedback controller output by matching the response between the plant output and
the reference signal but does not estimate the true values of the plant parameter as in the
adaptive control’s parameter identification. This shows that the QNN has a redundancy to
realise the controller.

3. Computational Experiments

To investigate the feasibility and the characteristics of the QNN trained using the learn-
ing algorithm based on the GHR calculus in control systems application, computational
experiments are performed to control a robot manipulator.

3.1. Robot Manipulator

The robot manipulator which has three joints, rotation–pivot–pivot type, shown
in Figure 2, is the target plant controlled using the QNN-based feedforward–feedback
controller. The motion equation of the robot manipulator is given as:

M(θ)θ̈+ Cθ̇+ K(θ, θ̇) = τ, (28)

where θ ∈ R3 is the joint angle vector, τ ∈ R3 is the control torque vector, M(θ) ∈ R3×3

is the inertia matrix, C = diag(c1, c2, c3) ∈ R3×3 is the viscous matrix, and K(θ, θ̇) ∈ R3 is
the nonlinear force vector including the Coriolis force, centrifugal force, gravitational force
and solid frictional force at the joints.
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X

Y

Z

O

θ1

θ2

θ3

τ1

τ2

τ3

Figure 2. Schematic of a three-link robot manipulator.

The control task is executed in the joint space, although the control objective for the
robot manipulator is to ensure that the end-effector tracks the desired trajectory given in
the workspace (Cartesian space). The desired position on the trajectory is transformed into
the desired joint angles in advance through the robot manipulator’s inverse kinematics
model. The movable range of each joint angle is restricted to avoid singular configurations
and multiple solutions of the robot manipulator.

3.2. Controller Condition

In the QNN-based feedforward–feedback controller, the QNN has nine units in the
input layer and one unit in the output layer. As described in Section 2.3, the input to the
QNN si(k) (i = 1, 2, · · · , 9) consists of the tapped–delay–line input–output sets of the robot
manipulator as follows:

s1(k) = r1(k + 1)ı + r2(k + 1) + r3(k + 1)κ
s2(k) = θ1(k)ı + θ2(k) + θ3(k)κ
s3(k) = θ1(k− 1)ı + θ2(k− 1) + θ3(k− 1)κ
s4(k) = θ1(k− 2)ı + θ2(k− 2) + θ3(k− 2)κ
s5(k) = θ1(k− 3)ı + θ2(k− 3) + θ3(k− 3)κ
s6(k) = u1(k− 1)ı + u2(k− 1) + u3(k− 1)κ
s7(k) = u1(k− 2)ı + u2(k− 2) + u3(k− 2)κ
s8(k) = u1(k− 3)ı + u2(k− 3) + u3(k− 3)κ
s9(k) = v1(k)ı + v2(k) + v3(k)κ

, (29)

where ri(k) is the reference signal to the joint angle θi(k), ui(k) is the control input, and
vi(k) is the feedback controller output (i = 1, 2, 3). Using the real variables of the imaginary
part of the QNN output σ(k) = σ0(k) + σ1(k)ı + σ2(k) + σ3(k)κ, the control input is
synthesised by ui(k) = σi(k) + vi(k) (i = 1, 2, 3). The feedback controller output is given
by vi(k) = γhTi ei(k) where γ is the scale factor, hi ∈ R2 is the feedback gain vector,
ei(k) = [ eθ

i (k) ∆i(k) ]T is the error vector, eθ
i (k) is the control error in the joint space, and

∆i(k) = eθ
i (k)− eθ

i (k− 1) is the difference of the control error (i = 1, 2, 3). Consequently,
the robot manipulator’s control torque is given by τi(k) = Tiui(k), where Ti is the torque
constant (i = 1, 2, 3).

3.3. Numerical Simulations

The robot manipulator’s trajectory-tracking control experiments were conducted using
the QNN-based feedforward–feedback controller. In the QNN, the unit’s activation function
in the hidden layer is the split-type function using a component-wise sigmoid function.
Each real variable of the quaternion numbers representing the connection weights was
initialised randomly from the interval [−1, 1]. The FEL of the QNN was conducted in
real-time. It was terminated when the normalised cost function, defined as the mean of the
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cost function, Equation (10), within one iteration of the desired trajectory, was less than the
threshold value 0.0005 after five continuous iterations. The network training was restarted
using the new connection weight’s initial values if the normalised cost function did not
satisfy the termination condition after 100 iterations or if it tended to exceed a threshold
and diverge during the training process. When the number of resets exceeded 10,000, the
network training was defined as a failure. In the training process, the end-effector’s desired
trajectory was a circle of radius 0.2 in the vertical plane parallel to the O–YZ plane. The
trajectory consisted of 1000 data points per round, and one round was defined as one
iteration. The feedback gains were h1 = [ 4.0 0.04 ]T, h2 = h3 = [ 2.0 0.02 ]T, and
the scale factor was γ = 1. The torque constants was Ti = 10 (i = 1, 2, 3). The motion
equation, Equation (28), was solved by the Runge–Kutta method with a 0.01 s step size in
the numerical simulations. In the robot manipulator, the links 1, 2 and 3 were 0.05 m long
and 0.4 kg mass, 0.25 m long and 0.2 kg mass, and 0.25 m long and 0.2 kg mass, respectively.
The damping factor was ci = 0.005 (i = 1, 2, 3), and the solid frictional forces were 0.2 Nm,
0.1 Nm and 0.1 Nm at the joints 1, 2 and 3, respectively. The robot manipulator’s initial
condition was θ(0) = [ 0 − π

12
5π
12 ]T.

First, the feasibility of training the QNN with the proposed learning algorithm derived
using the GHR calculus and controlling the robot manipulator using the QNN-based
feedforward–feedback controller was investigated through numerical simulations. Figure 3
shows the change of the normalised cost function where the number of units in the hidden
layer is two and the learning factor is 0.012. The normalised cost function decreases rapidly,
and the network training is completed when the training’s terminating condition is satisfied.
The normalised cost function decreases as the number of iterations progress and converge,
indicating that it is possible to train the QNN in the control system. Figure 4 shows the
response of the robot manipulator’s end-effector in the workspace and the variation of the
cost function at each sampling time, indicating the responses at the first and termination
of the training process shown in Figure 3. At the beginning of the training process, the
end-effector does not follow the desired trajectory due to a lack of enough adaptation using
the QNN. However, after the training converges, the end-effector could follow the desired
trajectory; namely, the QNN-based feedforward–feedback controller achieves the control
task. When the network training is terminated, the cost function at each sampling time is
sufficiently small. This means that the major role of controlling the robot manipulator has
shifted from the feedback controller to the QNN-based feedforward–feedback controller.
These results confirmed that the QNN learning algorithm derived from the GHR calculus is
functioning well. Therefore, it is feasible to apply the QNN-based controller for controlling
the robot manipulator.
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Figure 3. An example of the QNN’s training process.
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Figure 4. An example of system responses in the workspace for controlling the robot manipulator
using the QNN-based feedforward–feedback controller and the variation of the cost function. In the
top three figures, the desired trajectory’s reference signal is drawn with a thick line, and the system
response within the first iteration and the response that terminates the network training are drawn
with thin and medium thick lines, respectively. In the bottom figure, the cost function within the
first iteration and that which terminates the network training are drawn with thin and medium thick
lines, respectively.

Next, the QNN’s learning characteristics were evaluated using two indexes: the
number of iterations required to satisfy the network training termination condition and the
number of resets during the training process. Here, 50 experimental results with different
initial network weights were used to calculate these indexes. Table 1 summarises the
number of iterations and resets when the number of units in the hidden layer is varied from
one to four with a 0.012 learning factor. The index’s median and interquartile range are used
instead of the mean and standard deviation because normal distribution is unobserved in
these indexes according to the Shapiro–Wilk test with a 5% significant level. Additionally,
multiple comparisons are conducted using the Steel–Dwass test. This result indicates that
the number of units in the hidden layer has less effect on the learning speed if the network
learning could progress, but the dependency on the connection weight’s initial values
to proceed with the network training increases as the number of units increases. Table 2
summarises the number of iterations and resets when the learning factor is changed, where
the number of units in the hidden layer is two. Increasing the learning factor improves
the learning speed; however, the number of reset increases, namely, the dependency on
the connection weight’s initial values to proceed with the network training increases.
Furthermore, using a small learning factor increases the number of resets. This is because
the first-order approximation of the steepest descent method makes the network training
unstable with a large learning factor, whereas it is easy to reach the upper limit of the
number of iterations with a small learning factor. Table 3 summarises the number of
iterations and resets when the feedback gains are changed by the scale factor, where the
number of units in the hidden layer is two and the learning factor is 0.012. Using smaller
or larger feedback gains increases the number of resets although there is no statistical
difference in the number of iterations. The network training did not converge when the
scale factor was γ = 0.1. Since the QNN output at the beginning of the network training
affects the feedback controller as a disturbance, it is difficult to keep the control system
stable with the smaller feedback gains. The control system becomes easily unstable with
larger feedback gains due to the nonlinear characteristics of the robot manipulator because
the feedback controller uses a simple error feedback. This result shows that an appropriate
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value of the feedback gain is required to proceed with the network training while ensuring
the stability of the control system.

Table 1. Learning characteristics of the QNN concerning the number of units in the hidden layer.

Steel–Dwass Test Iteration

1 2 3 4 Median (IQR)

Number of units

1 – 42.5 (32.5–59.5)
2 ∗ – 60.5 (38.5–81)
3 ∗∗ ns – 63 (44.75–82.25)
4 ∗∗ ns ns – 75 (60.75–87)

Steel–Dwass Test Reset

1 2 3 4 Median (IQR)

Number of units

1 – 48.5 (20.75–83.75)
2 ns – 75 (33.75–143.25)
3 ∗∗ ∗∗ – 256.5 (92.25–634.5)
4 ∗∗ ∗∗ ∗∗ – 1006.5 (317.75–2378.75)

(ns: not significant, * p < 0.05, ** p < 0.01).

Table 2. Learning characteristics of the QNN concerning the learning factor.

Steel–Dwass Test Iteration
0.006 0.012 0.018 0.024 0.030 Median (IQR)

Learning factor η

0.006 – 72 (55.25–87.25)
0.012 ns – 60.5 (38.5–81)
0.018 ∗∗ ns – 48.5 (37–67.5)
0.024 ∗∗ ∗ ns – 45 (29–66.25)
0.030 ∗∗ † ns ns – 43.5 (29.25–66)

Steel–Dwass Test Reset

0.006 0.012 0.018 0.024 0.030 Median (IQR)

Learning factor η

0.006 – 219.5 (91–681.5)
0.012 ∗∗ – 75 (33.75–143.25)
0.018 ∗∗ ns – 75.5 (31.75–141.25)
0.024 † ns † – 129 (47.75–270.5)
0.030 ns ∗ ∗∗ ns – 193.5 (64.5–392.25)

(ns: not significant, † p < 0.1, * p < 0.05, ** p < 0.01).

Table 3. Learning characteristics of the QNN concerning the feedback gain.

Steel–Dwass Test Iteration

0.5 1 2 10 Median (IQR)

Scale factor γ

0.5 – 62.5 (45.25–78.5)
1 ns – 60.5 (38.5–81)
2 ns ns – 71 (53–87.75)

10 ns ns ns – 71 (54.75–92)

Steel–Dwass Test Reset

0.5 1 2 10 Median (IQR)

Scale factor γ

0.5 – 287.5 (124.5–432)
1 ∗∗ – 75 (33.75–143.25)
2 ∗∗ ns – 72 (27.75–119.25)

10 ∗ ∗∗ ∗∗ – 483.5 (236.25–758.5)

(ns: not significant, * p < 0.05, ** p < 0.01).

The control ability of the QNN-based feedforward–feedback controller was tested
against untrained conditions after the QNN training process with the circular trajectory
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was completed. Figure 5 illustrates examples of the system response in the workspace
where the desired trajectory and the initial condition of the joint angle were different from
those set in the training process. Here, the number of units in the hidden layer was two, and
the learning factor was 0.012. The FEL of the QNN was continued in real-time during the
test. Although control errors can be observed partially around the curvature of the desired
trajectory changes, the end-effector can follow the desired trajectory. The cost function
sometimes increased with the control error but decreased soon as the sampling number
progressed because the FEL can be performed stably in real-time after the pretraining with
the circular trajectory. These results show that the QNN’s learning and generalisation
capabilities are effective to compensate for the robustness of the control system against
varying the robot manipulator’s experimental conditions.
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Figure 5. Examples of responses for controlling the robot manipulator using the QNN-based
feedforward–feedback controller against untrained conditions, where the desired trajectory and
the robot manipulator’s initial condition are as follows: in the top figure, a square and
θ(0) = [ 0 − π

12
π
2 ]T; in the middle figure, a Lissajous curve and θ(0) = [ − 3π

16
π
9

π
3 ]T; in

the bottom figure, a Lissajous curve and θ(0) = [ − 3π
8 −π

8
3π
4 ]T. In each figure, the left figure

illustrates the system response in the workspace where the desired trajectory and the response of
the end-effector are drawn with thick and medium thick lines, respectively. The arrow indicates the
direction of the end-effector’s movement and the stick figure illustrates the initial posture of the robot
manipulator, whereas the left figure shows the variation of the cost function.

Finally, the learning algorithm derived using the pseudo-derivative to calculate the
cost function derivative to the network parameters was applied to train the QNN as a
reference. Table 4 compares the number of iterations and resets the learning algorithm
obtained using the GHR calculus with those obtained by the learning algorithm using
the pseudo-derivative. A total of 100 experimental results were used to calculate these
indexes. Here, there were two units in the hidden layer, and the learning factor was 0.012.
To compare the learning characteristics under more severe conditions, the threshold value
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for terminating the network training was 0.0002. The learning algorithm using the pseudo-
derivative attains a little faster learning speed, and the Mann–Whitney U test shows a
statistical difference in the number of iterations. However, the learning algorithm using the
pseudo-derivative requires many resets to proceed with the network training. Additionally,
the network training by the learning algorithm using the pseudo-derivative sometimes
failed to converge with the same value of the learning factor used in the learning algorithm
using the GHR calculus. These results indicate that the learning algorithm using the GHR
calculus can perform the network training stably with relatively less dependence on the
connection weight’s initial values.

Table 4. Comparison of learning characteristics between the connection weight’s learning algorithms.

Iteration Reset
Success Rate [%]

Median (IQR) Median (IQR)

GHR calculus 69.5 (51.25–85.75) 874.5 (460.5–2038.5) 100
Pseudo–derivative 45.5 (29.75–75.25) 2106 (935–4656.5) 94

Mann–Whitney U test ∗∗ ∗∗
(** p < 0.01).

4. Conclusions

This study investigated a feedforward–feedback controller based on the QNN trained
by the learning algorithm derived using the GHR calculus. In the QNN-based feedforward–
feedback controller, the tapped–delay–line input–output sets of a plant were input to the
QNN, and the control input to the plant was synthesised using the QNN output. A FEL
framework performed at every sampling time was introduced to train the controller’s
QNN to ensure that the plant output followed the desired output in real-time. Additionally,
the local stability condition of the controller was analysed under linear assumptions of
the QNN and plant. The result clarified how the learning factor, the feedback gain and
the QNN’s connection weights affect the stability of the parameter error. Computational
experiments on the trajectory-tracking control of a three-link robot manipulator using
the QNN-based feedforward–feedback controller were conducted. Simulation results
confirmed the feasibility of the learning algorithm derived using the GHR calculus to
train the QNN, and the effectiveness of the QNN’s learning and generalisation capabilities
to maintain the robot manipulator’s control performance. The experimentation of the
QNN-based feedforward–feedback controller on an actual robot manipulator in real-world
scenarios will be discussed in future work.
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