

Feedforward FFT Hardware Architectures Based

on Rotator Allocation

Mario Garrido Gálvez, Shen-J ui Huang and Sau-Gee Chen

The self-archived postprint version of this journal article is available at Linköping

University Institutional Repository (DiVA):

http:/ / urn.kb.se/ resolve?urn=urn:nbn:se:liu:diva-145244

N.B.: When citing this work, cite the original publication.
Garrido Gálvez, M., Huang, S., Chen, S., (2018), Feedforward FFT Hardware Architectures Based on

Rotator Allocation, IEEE Transactions on Circuits and System s Part 1, 65(2), 581-592.

https:/ / doi.org/ 10 .1109/ TCSI.2017.2722690

Original publication available at:
https:/ / doi.org/ 10 .1109/ TCSI.2017.2722690

Copyright: Institute of Electrical and Electronics Engineers (IEEE)

http:/ / www.ieee.org/ index.html
© 2018 IEEE. Personal use of this material is permitted. However, permission to

reprint/ republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse

any copyrighted component of this work in other works must be obtained from the

IEEE.

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-145244
https://doi.org/10.1109/TCSI.2017.2722690
http://www.ieee.org/index.html
http://twitter.com/?status=OA%20Article:%20Feedforward%20FFT%20Hardware%20Architectures%20Based%20on%20Rotator%20Allocation%20http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-145244%20via%20@LiU_EPress%20%23LiU

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS PART I: REGULAR PAPERS 1

Feedforward FFT Hardware Architectures based on

Rotator Allocation
Mario Garrido, Member, IEEE, Shen-Jui Huang and Sau-Gee Chen

Abstract—In this paper we present new feedforward FFT
hardware architectures based on rotator allocation. The rotator
allocation approach consists in distributing the rotations of the
FFT in such a way that the number of edges in the FFT that
need rotators and the complexity of the rotators are reduced.
Radix-2 and radix-2k feedforward architectures based on rotator
allocation are presented in this paper. Experimental results
show that the proposed architectures reduce the hardware cost
significantly with respect to previous FFT architectures.

Index Terms—Fast Fourier Transform (FFT), Multi-path delay
commutator (MDC), Pipelined architecture, Radix-2, Radix-2k.

I. INTRODUCTION

THE fast Fourier transform (FFT) is one of the most im-

portant algorithms in the field of digital signal processing.

It is used to calculate the discrete Fourier transform (DFT)

efficiently. In order to meet the high performance and real-

time requirements of modern applications, hardware designers

have always tried to implement efficient architectures for the

computation of the FFT. In this context, pipelined hardware

architectures [1]–[27] are widely used, because they provide

high throughput and low latency suitable for real time, as well

as a reasonably low area and power consumption.

There are three main types of pipelined FFT architectures:

feedback (FB), feedforward (FF) and serial commutator (SC).

First, feedback architectures [1]–[14] are characterized by

their feedback loops, i.e., some outputs of the butterflies

are fed back to the memories at the same stage. Feed-

back architectures are divided into single-path delay feedback

(SDF) [1]–[5], which process a continuous flow of one sample

per clock cycle, and multi-path delay feedback (MDF) or

parallel feedback [6]–[14], which process several samples in

parallel. Second, feedforward architectures [3], [4], [15]–[21],

which mainly consist of multi-path delay commutator (MDC)

FFTs [3], do not have feedback loops and each stage passes the

processed data to the next stage. MDC architectures process

several samples in parallel. A comparison of parallel FFT

architectures is provided in [16]. Finally, SC FFT architec-

tures [22] are characterized by the use of circuits for bit-

dimension permutation of serial data.

M. Garrido is with the Department of Electrical Engineering,
Linköping University, SE-581 83 Linköping, Sweden, e-mail:
mario.garrido.galvez@liu.se

S.-J. Huang is with Novatek Corp., Hsinchu 300, Taiwan, e-mail: shen-
ray.ee95g@g2.nctu.edu.tw

S.-G. Chen is with the Department of Electronics Engineering, National
Chiao Tung University, Hsinchu 300, Taiwan, e-mail: sgchen@cc.nctu.edu.tw

This work was supported by the Swedish ELLIIT Program.
Copyright (c) 2017 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org

If the purpose is to improve parallel FFT architectures,

MDC FFTs already achieve the minimum number of but-

terflies with 100% usage and the minimum amount of total

memory [16]. However, there is still room for improvement

regarding rotators: Different radices lead to different amount of

rotators, as shown in [16]. For instance, radix-23 and radix-

24 architectures have less general rotators than radix-2 and

radix-22. However, instead of general rotators, they have a

larger number of W8 and W16 rotators. Therefore, there is a

trade-off among rotators.

This paper presents a new idea called rotator allocation.

The purpose is to reduce the number and the complexity of

the rotators even further. The number of rotators is reduced

by only having rotations by 0◦ in some of the FFT edges.

The complexity of the rotators is reduced by distributing the

rotations of the FFT so that similar rotations are calculated

by the same rotator. For instance, a rotation by 45◦ and a

rotation by 135◦ can be easily calculated by the same rotator

as it only consists of a rotation by 45◦ plus a trivial rotation by

0◦ or 90◦. New feedforward FFT architectures based on rotator

allocation are proposed in this paper. These architectures use

radices that lead to a small amount of hardware resources.

The paper is organized as follows. Section II reviews the

FFT algorithm. Section III summarizes the types of rotators

used in FFT architectures and assigns a cost to them in terms

of equivalent adders. Section IV provides general guidelines to

design an FFT hardware architecture. Section V explains the

design of FFT hardware architectures using rotator allocation.

Section VI presents the proposed architectures both for radix-2

and radix-2k. Section VII compares the proposed architectures

to the state-of-the-art in terms of the number of multipliers and

equivalent adders. Section VIII provides experimental results

and compares them to to previous works in the literature.

Finally, Section IX summarizes the main conclusions of the

paper.

II. THE FFT ALGORITHM

The N -point DFT of an input sequence x[n] is defined as:

X[k] =

N−1
∑

n=0

x [n] Wnk
N , k = 0, 1, . . . , N − 1 (1)

where Wnk
N = e−j 2π

N
nk.

To calculate the DFT, the FFT based on the Cooley-Tukey

algorithmm [28] is mostly used. The Cooley-Tukey algorithm

reduces the number of operations from O(N2) for the DFT

to O(N log
2
N) for the FFT.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS PART I: REGULAR PAPERS 2

Fig. 1. Flow graph of a 16-point DIF FFT.

(a) (b)

Fig. 2. Rotation angles used in the FFT for different values of φ. (a) 16-point
FFT. (b) 32-point FFT.

Figure 1 shows the flow graph of a 16-point radix-2 FFT

according to the Cooley-Tukey algorithm, decomposed using

decimation in frequency (DIF) [29]. The FFT consists of n =
log

2
N stages. At each stage of the graphs, s ∈ {1, . . . , n},

butterflies and rotations are calculated. The lower edges of

the butterflies are always multiplied by −1. These −1 are not

depicted in order to simplify the graphs.

The numbers at the input represent the index of the input

sequence, whereas those at the output are the frequencies, k,

of the output signal X[k]. Finally, each number, φ, in between

the stages indicates a rotation by:

Wφ
N = e−j 2π

N
φ (2)

As a consequence, samples for which φ = 0 do not need

to be rotated. Likewise, if φ ∈ [0, N/4, N/2, 3N/4] the

samples must be rotated by 0◦, 270◦, 180◦ or 90◦, which

correspond to complex multiplications by 1, −j, −1 and j,

respectively. These rotations are considered trivial, because

they can be carried out by interchanging the real and imaginary

components and/or changing the sign of the data.

An index I ≡ bn−1 . . . b0 is also added to the graph, where

bn−1 . . . b0 is the binary representation of I . This index is used

TABLE I
SYMMETRIC ANGLE SETS FOR THE 16-POINT FFT.

Set 0 Set 1 Set 2

0 1 2
3

4 5 6
7

8 9 10
11

12 13 14
15

TABLE II
SYMMETRIC ANGLE SETS FOR THE 32-POINT FFT.

Set 0 Set 1 Set 2 Set 3 Set 4

0 1 2 3 4
7 6 5

8 9 10 11 12
15 14 13

16 17 18 19 20
23 22 21

24 25 26 27 28
31 30 29

in the explanations throughout the paper.

Different radices only differ in the rotations at the different

FFT stages [30], whereas the butterflies are the same. Thus,

different algorithms lead to different distributions of rotations,

which may influence the design of hardware architectures, as

shown throughout this paper.

III. HARDWARE ROTATORS FOR THE FFT

This section defines some terms used later in the paper.

A general rotator is a rotator that can carry out a rotation

by any angle, which is provided as an input. A single constant

rotator (SCR) is a rotator that carries out a rotation by a single

constant angle [31]. A multiple constant rotator (MCR) is a

rotator that rotates by an angle selected among several constant

angles.

A symmetric angle set (SAS) is a set of angles nπ/2± α,

where n = 0, . . . , 3 and α ∈ [0, π/4]. Any rotation in

a symmetric angle set can be calculated as a rotation by

α ∈ [0, π/4], a trivial rotation and a exchange of the real

and imaginary part of the rotation coefficient. Figure 2 shows

the angles used in a 16-point FFT (φ = 0, . . . , 15) and in a 32-

point FFT (φ = 0, . . . , 31) which correspond to dividing the

circumference into 16 and 32 equal parts, respectively. These

angles form several symmetric angle sets, which are shown in

Tables I and II.

An M -rotator or M -rot is a rotator that can rotate any

number of angles in M different symmetric angle sets. For

instance, a rotator that rotates by 0◦, 45◦ and 135◦ is a 2-

rot, as it rotates angles in the symmetric angle sets nπ/2 and

nπ/2± π/4. Likewise, the FFT twiddle factor W8 is a 2-rot,

the twiddle factor W16 is a 3-rot (note the 3 SAS in Table I)

and the twiddle factor W32 is a 5-rot (note the 5 SAS in

Table II). The symbols used in this paper for the different

types of rotators are shown in Fig. 3.

Table III shows an estimation of the hardware cost of dif-

ferent types of rotators in terms of adders. The table is divided

into rotators for arbitrary scaling and unity scaling. Arbitrary

scaling means that any scaling is accepted and unity scaling

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS PART I: REGULAR PAPERS 3

TABLE III
ESTIMATION OF EQUIVALENT NUMBER OF ADDERS IN FFT ROTATORS.

Rotator Hardware Cost

Type Approach Add. Rot. Multiplexers Add. Mux. Scaling Compensation Total Equivalent Adders

ARBITRARY SCALING

1-rot CCSSI [31]: SCR arbitrary scaling 6 0 0 - 6
2-rot CCSSI [31]: MCR uniform scaling 6 6 1.5 - 7.5
3-rot CCSSI [31]: MCR uniform scaling 8 24 6 - 14

General CORDIC II [32] 16 33 8.25 - 24.25
General Memoryless CORDIC [33] 21 26 6.5 - 27.5
General Complex Multiplier: Booth encoding 34 0 0 - 34

UNITY SCALING

1-rot CCSSI [31]: SCR with unity scaling 10 0 0 0 10
2-rot CCSSI [31]: MCR with unity scaling 10 10 2.5 0 12.5
3-rot CCSSI [31]: MCR with unity scaling 10 30 7.5 0 17.5

General CORDIC II [32] 16 33 8.25 6 30.25
General Memoryless CORDIC [33] 21 26 6.5 4 31.5
General Complex Multiplier: Booth encoding 34 0 0 0 34

Fig. 3. Symbols used in the paper for the different types of rotators.

means that the scaling must be a power of two [31]. M -rots

are obtained using the CCSSI approach [31], whereas general

rotators are obtained either using the CORDIC algorithm [32],

[33] or complex multipliers. The table shows the adders (Add.

Rot.) and multiplexers involved in the rotation. Considering

that a multiplexer is equivalent to 1/4 adders [34], the column

Add. Mux. shows the equivalent number of adders of the

multiplexers involved in the rotation. The next column is the

number of adders needed for scaling compensation. This is not

needed in case of arbitrary scaling. The scaling compensation

factor in the CORDIC II is K = 1/(1.563·1.008) = 0.6347 ≈
0.6348 = 2−1 + 2−3 + 2−7 + 2−9. Thus, it needs 6 adders, 3

for the real part and three for the imaginary part. The scaling

compensation in the memoryless CORDIC needs 4 adders,

2 for the real part and 2 for the imaginary part [33]. The

last column of the table shows the total number of equivalent

adders, which is the result of adding the adders involved in

the rotation, the equivalent adders of the multiplexers and the

adders of the scaling compensation. We use the results in

Table III to compute the number of equivalent adders of the

proposed FFT architectures.

IV. DESIGNING AN FFT HARDWARE ARCHITECTURE

In order to design an FFT hardware architecture, we have

to be aware of the FFT properties introduced in [16]. The

first property, which is general for any FFT architecture and

any N , is that at any FFT stage, butterflies operate on data

whose index I differ in bn−s, where n is the number of FFT

stages and s is the specific stage that we are considering. This

fact can be observed in the flow graph of Fig. 1. In this flow

graph, the index has n = 4 bits, i.e., I ≡ b3b2b1b0. At the first

stage, the butterflies operate on samples whose indexes differ

in bn−s = b4−1 = b3. This happens for samples with indexes

0 and 8, 1 and 9, etc. For the second stage, the different bit

is bn−s = b4−2 = b2. Note for instance, that the data with

indexes 0 and 4 are operated together in the butterfly at stage

2. For the third and fourth stages, the correponding bits are b1
and b0, respectively.

Therefore, if we want to design an FFT hardware architec-

ture, we have to assure that at each stage s, the indexes of the

inputs to any butterfly at any time instant differ in bn−s. Note

that the term butterfly refers now to a hardware component

of the architecture, not to the mathematical operation of the

algorithm in the flow graph. If we consider the example of Fig.

3 in [16], we observe that this property is fulfilled at all the

stages. In this figure bn−s is at the lowest parallel dimension,

which corresponds to the pair of samples that flow into the

butterflies at the same clock cycle.

The property of bn−s is the only requirement set by the

butterflies in FFT hardware architecture. As long as this

property is met, we can have any data order at the different

FFT stages. This allows for exploring a variety of data orders

at the FFT stages. This is what is done in the current paper,

as explained later in Section V.

The second FFT property refers to the rotations at the FFT

stages. At each stage, any sample with index I must be rotated

according to equation (2) by a value φ that depends on the

index I and on the stage, s. We can represent it as φs(I).
The work [30] explains how to calculate φs(I), which only

depends on the FFT algorithm that is used.

By combining these ideas, we lead to the following conclu-

sions: On the one hand, any order at any stage of any FFT

hardware architecture is possible as long as the property of

bn−s is met at the input of the butterflies. On the other hand,

to any index I at any FFT stage corresponds a specific rotation

φs(I). As a result, we can play with the data order at different

FFT stages to look for patterns that allow for a more optimized

distribution of rotations. This is the idea behind the proposed

rotator allocation approach.

V. FFT DESIGN USING ROTATOR ALLOCATION

The purpose of the FFT design using rotator allocation is

to distribute the rotations of the FFT in such a way that the

number and complexity of the required rotators is reduced.

Fig. 4(a) shows an example of a layout for the first three

stages of a 16-point 4-parallel FFT. The indexes in the figure

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS PART I: REGULAR PAPERS 4

(a) (b)

(c) (d)

Fig. 4. Rotator allocation of a 16-point 4-parallel FFT. (a) Layout not aware of the rotator allocation. (b) FFT architecture for the layout in Fig. 4(a). (c)
Layout aware of the rotator allocation. (d) FFT architecture for the layout in Fig. 4(c).

show how data flows at the different stages. Each element in

the matrices of indexes is the index value according to Fig. 1.

Data flows from left to right. Thus, values in the same column

are data that flow in parallel and values in the same row

flow through the same path in consecutive clock cycles. The

matrices of rotations show the value φs(I) that corresponds to

each of the indexes according to the flow graph in Fig. 1. For

instance, the rotation corresponding to the index 10 at stage

1 is φs(I) = φ1(10) = 2 according to Fig. 1. This case is

highlighted in Fig. 4(a).

As for the indexes, each column in the matrices of rotations

are rotations that are calculated in parallel at the same clock

cycle, whereas rotations in the same row are calculated in

consecutive clock cycles by the same rotator. According to

this, each row of the matrices of rotations are the rotations

that must be calculated by a single rotator in consecutive clock

cycles. For instance, stage 1 needs a rotator by φ = {0, 1, 2, 3}
and a rotator by φ = {4, 5, 6, 7}, which are 3-rots according

to Table I. Stage 2 includes 2 2-rots and stage 3 includes 2

trivial rotators (T).

The layout in Fig. 4(a) translates into the FFT architecture

in Fig. 4(b), which shows the rotators at each stage, as well

as the content of the rotation memories.

By applying rotator allocation we aim to reduce the number

of rotators and their complexity. Rotator allocation simply

consists of reorganizing the matrices of indexes and, therefore,

the matrices of rotations, in such a way that the matrices of

rotations have less rotators (if possible) and the complexity

of the rotators is smaller. On the one hand, fewer rotators are

achieved when there are more rows in the matrices of rotations

whose elements are φ = 0. On the other hand, the complexity

of the rotators is reduced when the rotations in the same row

are in less SAS.

The procedure of rotator allocation consists in distributing

the bits bn−1 . . . b0 of the index I into serial and parallel

dimensions. Serial dimensions correspond to data arriving at

the same input terminal in series and parallel dimensions refers

to data arriving at parallel terminals. Depending on the FFT

size N = 2n and the number of parallel data in the FFT

P = 2p, the number of serial bits is n−p = log
2
(N)−log

2
(P)

and the number of parallel ones is p = log
2
(P). For the

example in Fig. 4, N = 16 and P = 4, so there are

n − p = log
2
(16) − log

2
(4) = 2 serial dimensions and

p = log
2
(P) = 2 parallel ones. The alternatives to allocate

the bits correspond to all the possible permutations of the bits,

i.e.,

Serial|Parallel

b3b2|b1b0 b2b3|b1b0 b3b2|b0b1 b2b3|b0b1
b3b1|b2b0 b1b3|b2b0 b3b1|b0b2 b1b3|b0b2
b3b0|b2b1 b0b3|b2b1 b3b0|b1b2 b0b3|b1b2
b0b1|b2b3 b1b0|b2b3 b0b1|b3b2 b1b0|b3b2
b0b2|b1b3 b2b0|b1b3 b0b2|b3b1 b2b0|b3b1
b1b2|b0b3 b2b1|b0b3 b1b2|b3b0 b2b1|b3b0

(3)

However, neither the order of the serial bits nor the order

of the parallel bits affect the complexity of the rotators: A

different order of the serial bits changes the order of the

rotations, but the same rotations are calculated by the rotators.

A different order of the parallel bits changes the edges in

which the rotators are placed, but the rotators are the same.

Therefore, the alternatives in each row of equation (3) have

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS PART I: REGULAR PAPERS 5

the same complexity, so only one alternative per row needs

to be evaluated. According to this, the number of alternatives

that need to be evaluated at each FFT stage is
(

n

p

)

=
n!

p!(n− p)!
(4)

Note that we can choose any order in equation (3) and

design the data management of the FFT to achieve the desired

order. However, it is in general a good idea to place the rotators

close to the butterflies of the same state. This requires that the

data order at the rotator respects the property of bn−s explained

in previous section. Alternatively, if the property of bn−s is

not met at the rotator, then additional permutation circuits are

needed between the butterfly and the rotator. The architectures

in this paper correspond to the case of placing the rotator just

after the butterfly.

Figure. 4(c) shows a layout of indexes and rotations that

is aware of the rotator allocation, and the corresponding FFT

architecture is shown in Fig. 4(d). The bits of the serial and

parallel dimensions at each stage are shown in Fig. 4(c). In this

layout, stage 1 requires a 2-rot and a 1-rot, stage 2 a trivial

rotator and a 1-rot, and stage 3 a trivial rotator. The trivial

rotator in stage 3 can be hard wired due to the fact that all the

rotations have the same value. Comparing this example with

the example in Figs. 4(a) and 4(b), it can be observed that the

number of rotators and their complexity have been reduced.

Instead of 2 3-rots, 2 2-rots and 2 trivial rotators, the design

aware of rotator allocation only needs a 2-rot, 2 1-rot and 1

trivial rotator.

As a conclusion, the rotator allocation can simplify signif-

icantly the complexity of the rotators at the different stages

of the FFT, while achieving the same complexity in terms of

butterflies and shuffling circuits.

VI. PROPOSED FEEDFORWARD FFT ARCHITECTURES

BASED ON ROTATOR ALLOCATION

A. Radix-2 feedforward FFTs based on rotator allocation

Fig. 5 shows the proposed 32-point 4-parallel radix-2 DIF

FFT architecture based on rotator allocation. The architecture

consists of five stages that include radix-2 butterflies (R2),

rotators and circuits for data management. In total, the archi-

tecture requires one 3-rot, two 2-rot, two 1-rot and a trivial

rotator. As for the 16-point FFT architecture in Fig. 4(d), the

trivial rotator in the last stage can be hard wired. Note also that

the 32-point architecture is equal to the 16-point architecture

plus an extra first stage. The twiddle factor values (φ) for the

different stages of the architecture are shown in Table IV.

Fig. 6 shows the proposed 32-point 8-parallel radix-2 DIF

FFT architecture based on rotator allocation. This architecture

can be derived from the 4-parallel radix-2 FFT in Fig. 5 in

the following way: Samples that arrive in even clock cycles

in the 4-parallel architecture are processed by the upper part

of the 8-parallel architecture, whereas samples that arrive in

odd clock cycles in the 4-parallel architecture are processed by

the lower part of the 8-parallel architecture. In the 8-parallel

architecture, the rotators are simplified compared to the 4-

parallel architecture. Therefore, the FFT hardware does not

TABLE IV
TWIDDLE FACTORS VALUES (φ) FOR THE 32-POINT 4-PARALLEL RADIX-2

MDC DIF FFT ARCHITECTURE IN FIG. 5

Stage 1

0 0 0 0 0 0 0 0
0 2 4 6 8 10 12 14 3-rot
0 0 0 0 0 0 0 0
1 3 5 7 9 11 13 15 2-rot

Stage 2

0 0 0 0 0 0 0 0
0 4 8 12 0 4 8 12 2-rot
0 0 0 0 0 0 0 0
2 6 10 14 2 6 10 14 1-rot

Stage 3

0 0 0 0 0 0 0 0
0 8 0 8 0 8 0 8 T
0 0 0 0 0 0 0 0
4 12 4 12 4 12 4 12 1-rot

Stage 4

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
8 8 8 8 8 8 8 8 -

duplicate when duplicating the number of samples in parallel.

Only the number of butterflies is duplicated. The memory is

reduced and the rotators are almost duplicated in number, but

simplified in complexity.

Figure 7 shows the proposed 4-parallel radix-2 FFTs for

decimation in time (DIT) [29]. It can be noted that this

architecture is symmetric with respect to the DIF one: Whereas

for the DIF case the length of the buffers and the complexity

of the rotators decrease with the number of the stage, for the

DIT case it is the opposite. As a result, the amount of hardware

resources for the DIF and DIT versions is the same. The 8-

parallel radix-2 DIT FFT is obtained in a similar way.

For larger N , any N -point P -parallel radix-2 DIF FFT

architectures based on rotator allocation is obtained by adding

one extra stage at the beginning of the N/2-point P -parallel

radix-2 DIF architecture, as can be observed when comparing

the 32-point 4-parallel radix-2 FFT in Fig. 5 and the 16-point

4-parallel radix-2 FFT in Fig 4(d). Analogously, for the DIT

case any N -point P -parallel DIT FFT is obtained by adding

one extra stage at the end of the N/2-point P -parallel radix-2

DIT architecture. In both DIF and DIT cases, further stages

added to the 32-point FFT require general rotators. Thus, the

64-point radix-2 FFT requires the same rotators as the 32-

point radix-2 FFT plus two general rotators. For any radix-2

4-parallel (DIF or DIT) FFT based on rotator allocation, the

type and number of rotators are shown in Table V. For the

8-parallel case, the type and number of rotators are shown in

Table VI. Both in the 4-parallel and 8-parallel architectures,

the number of general rotators increases with N . It would be

desired that the additional rotators are simpler than a general

rotator. This motivates the use of radix-2k instead of radix-2,

as shown in the next section.

B. Radix-2k feedforward FFTs based on rotator allocation

Radix-2k feedforward FFTs are obtained by combining the

radix-2 FFTs in previous section. For instance, the architecture

in Fig. 8 is a 256-point 4-parallel radix-24 DIF FFT. It consists

of two 16-point FFTs connected by the rotators and the

shuffling circuits in stage 4. The FFT algorithm used in this

architecture is represented by the binary tree in Fig. 9(i). The

16-point FFTs are the same as that in Fig. 4(d), with the only

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS PART I: REGULAR PAPERS 6

Fig. 5. Proposed 32-point 4-parallel radix-2 MDC DIF FFT architecture.

Fig. 6. Proposed 32-point 8-parallel radix-2 MDC DIF FFT architecture.

difference in the length of the buffers of the first 16-point FFT.

The connection stage has 4 general rotators. This is the same

for all radix-2k FFTs presented next. As a result, the radix-2k

feedforward FFTs have P/2·log
2
N butterflies, a total memory

size N − P , and the rotators of the radix-2 sub-FFTs plus P
general rotators per connection stage.

Table VII presents the proposed radix-2k feedforward FFTs

based on rotator allocation for 4-parallel samples. The table

is divided into Selected architectures and Other alternatives

with higher hardware cost. The selected architectures are

the ones that achieve smallest hardware cost. The first two

columns of the table show the number of points, N , and the

radix. The third column indicates the FFT algorithms used

in these architectures, which are represented by the binary

trees in Fig. 9. Note that the binary tree provides the values

of the rotation angles at each FFT stage [35]. The fourth to

the seventh columns show the number of rotators that the

architecture requires. The general rotators are separated into

two groups: The general rotators in the radix-2 sub-FFTs and

the general rotators used to interconnect sub-FFTs. Finally, the

last column indicates the total number of equivalent real adders

of the entire architecture, including the adders of the butterflies

and rotators, and the equivalent number of real adders of the

multiplexers:

Equiv. Adders = 2P ·log
2
N+AddersRot+2P/4·log

2
(N/P),

(5)

where the adders for the rotators (AddersRot) are computed

according to the estimations in Table III.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS PART I: REGULAR PAPERS 7

Fig. 7. Proposed 32-point 4-parallel radix-2 MDC DIT FFT architecture.

Fig. 8. 256-point 4-parallel radix-24 MDC DIF FFT architecture.

TABLE V
ROTATORS IN THE PROPOSED 4-PARALLEL RADIX-2 MDC FFT

ARCHITECTURES.

FFT Algorithm Rotators

N Radix General 3-rot 2-rot 1-rot

4 2 0 0 0 0
8 2 0 0 0 1
16 2 0 0 1 2
32 2 0 1 2 2
64 2 2 1 2 2

128 2 4 1 2 2
256 2 6 1 2 2
512 2 8 1 2 2
1024 2 10 1 2 2
2048 2 12 1 2 2
4096 2 14 1 2 2

In Table VII, radix-2k starts to get better results than radix-

2 for N = 64, whereas radix-2 is preferable for sizes smaller

than or equal to 32.

Analogously, Table VIII shows the proposed radix-2k feed-

forward FFTs based on rotator allocation for 8-parallel sam-

ples. In this case, radix-2k starts to obtain better results than

radix-2 for N = 128.

VII. COMPARISON

Table IX compares the proposed architectures to previous

ones in terms of complex adders and rotators. The table in-

cludes the rotators used in previous architectures as a function

of n = log
2
(N). For the proposed architectures there is

TABLE VI
ROTATORS IN THE PROPOSED 8-PARALLEL RADIX-2 MDC FFT

ARCHITECTURES.

FFT Algorithm Rotators

N Radix General 3-rot 2-rot 1-rot

8 2 0 0 0 2
16 2 0 0 0 5
32 2 0 0 3 6
64 2 2 1 4 6

128 2 6 1 4 6
256 2 10 1 4 6
512 2 14 1 4 6
1024 2 18 1 4 6
2048 2 22 1 4 6
4096 2 26 1 4 6

no generalized expression. Instead, the number of rotators is

provided by the Selected architectures in Tables VII and VIII.

For a better comparison of the number of rotators, Table IX

includes the examples of N = 1024 and N = 4096. The

architectures are sorted out by the exponent k = 0, . . . , 4 of

the radix-2k. It can be observed that radix-2 architectures lead

to the largest number of complex rotators, and this number

decreases as we increase k until radix-24. For N = 1024
the proposed architectures reduce this number even further,

as they require half the general rotators of previous radix-24

FFT architectures, both for 4-parallel and 8-parallel designs.

Note also that when not using rotator allocation, a 1024-point

FFT that uses radix-25 requires 8 general rotators (4 W1024

and 4 W32), 4 3-rot and 4 2-rot, and a 1024-point FFT that

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS PART I: REGULAR PAPERS 8

Fig. 9. Binary trees of the proposed feedforward FFTs.

TABLE VII

PROPOSED 4-PARALLEL RADIX-2k MDC FFT ARCHITECTURES.

FFT Algorithm Rotators Eqiv.

N Radix Tree Gen. 3-rot 2-rot 1-rot Adders

SELECTED ARCHITECTURES

4 2 (a) 0 / 0 0 0 0 16

8 2 (b) 0 / 0 0 0 1 36

16 2 (c) 0 / 0 0 1 2 68.5

32 2 (d) 0 / 0 1 2 2 108.5

64 23 (f) 0 / 4 0 0 2 173

128 24,23 (h) 0 / 4 0 1 3 205.5

256 24 (i) 0 / 4 0 2 4 238

512 25,24 (k) 0 / 4 1 3 4 278

1024 25 (m) 0 / 4 2 4 4 318

2048 24,24,23 (o) 0 / 8 0 2 5 375

4096 24 (q) 0 / 8 0 3 6 407.5

OTHER ALTERNATIVES WITH HIGHER HW COST

64 2 (e) 2 / 0 1 2 2 179

128 2 (g) 4 / 0 1 2 2 249.5

256 25,23 (j) 0 / 4 1 2 3 245.5

512 23 (l) 0 / 8 0 0 3 310

2048 26,25 (n) 2 / 4 2 4 4 385.5

4096 26 (p) 4 / 4 2 4 4 435

4096 23 (r) 0 / 12 0 0 4 447

uses radix-24 [16] requires 8 general rotators (4 W1024 and 4

W32) and 6 3-rot, as shown in Table IX. Thus, radix-24 and

a radix-25 FFTs without rotator allocation are comparable in

area. However, when using rotator allocation, these numbers

are improved noticeably.

For the case of N = 4096 in Table IX, the number of

general rotators of the proposed architectures is the same as

those in previous radix-24 FFTs. However, the number of non-

general non-trivial rotators and their complexity is reduced

significantly by using the proposed approach.

TABLE VIII

PROPOSED 8-PARALLEL RADIX-2k MDC FFT ARCHITECTURES.

FFT Algorithm Rotators Eqiv.

N Radix Tree Gen. 3-rot 2-rot 1-rot Adders

SELECTED ARCHITECTURES

8 2 (b) 0 / 0 0 0 2 68

16 2 (c) 0 / 0 0 0 5 118

32 2 (d) 0 / 0 0 3 6 185.5

64 2 (e) 2 / 0 1 4 6 296

128 24,23 (h) 0 / 8 0 0 7 392

256 24 (i) 0 / 8 0 0 10 442

512 25,24 (k) 0 / 8 0 3 11 509.5

1024 25 (m) 0 / 8 0 6 12 577

2048 26,25 (n) 2 / 8 1 7 12 687.5

4096 24 (q) 0 / 16 0 0 15 766

OTHER ALTERNATIVES WITH HIGHER HW COST

64 23 (f) 0 / 8 0 0 4 342

128 2 (g) 6 / 0 1 4 6 437

256 25,23 (j) 0 / 8 0 3 9 469.5

512 23 (l) 0 / 16 0 0 6 616

2048 24,24,23 (o) 0 / 16 0 0 12 716

4096 26 (p) 4 / 8 2 8 12 798

4096 23 (r) 0 / 24 0 0 6 870

The total area occupied by the rotators is compared in

Figs. 10 and 11 for 4-parallel and 8-parallel FFTs, respec-

tively. The area is measured in terms of equivalent adders,

considering the adder cost of each type of rotator according

to Table III. Figs. 10 and 11 show that the rotator area of

the proposed architectures is smaller than that in previous

approaches for all FFT sizes. For 4-parallel architectures, the

rotator area reduction ranges from 17% to 36%. For 8-parallel

architectures, it ranges from 23% for to 50%. This highlights

the significant improvements of using the rotator allocation

approach.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS PART I: REGULAR PAPERS 9

TABLE IX

COMPARISON OF PIPELINE PARALLEL FFT ARCHITECTURES IN TERMS OF COMPLEX ADDERS AND ROTATORS

AREA

PIPELINED Complex Rotators Rotators (N=1024) Rotators (N=4096)

ARCHITECTURE Adders General 3-rot 2-rot Gen. 3-rot 2-rot 1-rot Gen. 3-rot 2-rot 1-rot

4-PARALLEL ARCHITECTURES

R2 MDC, [19] 4n+ 4 2n− 4 0 0 16 0 0 0 20 0 0 0

R4 MDC, [4] 4n 3⌈n/2⌉ − 3 0 0 12 0 0 0 15 0 0 0

R4 MDC, [15] 4n 3⌈n/2⌉ − 3 0 0 12 0 0 0 15 0 0 0

R22 MDC, [16] 4n 3⌈n/2⌉ − 3 0 0 12 0 0 0 15 0 0 0

R23 MDC, [16] 4n 4⌈n/3⌉ − 4 0 2⌊n/3⌋ 12 0 4 0 12 0 8 0

R24 MDF, [6] 4n 4⌈(n− 2)/4⌉ − 1 4⌊(n− 2)/4⌋ 0† 7 8 0 0 11 8 0 0

R24 MDF, [8] 8n 4⌈n/4⌉ − 4 4⌊n/4⌋ 0†† 8 8 0 0 8 12 0 0

R24 MDF, [12] 8n 4⌈n/4⌉ − 4 4⌊n/4⌋ 0†† 8 8 0 0 8 12 0 0

R24 MDC, [16] 4n 4⌈n/4⌉ − 4 3⌊n/4⌋ 0⋆ 8 6 0 0 8 12 0 0

Proposed, MDC 4n Table VII (Selected architectures) 4 2 4 4 8 0 3 6

8-PARALLEL ARCHITECTURES

R2 MDC, [36] 8n 4n− 8 0 0 32 0 0 0 40 0 0 0

R2 MDF, [37] 16n 4n− 8 0 0 32 0 0 0 40 0 0 0

R22 MDC, [16] 8n 6⌈n/2⌉ − 6 0 0 24 0 0 0 30 0 0 0

R8 MDC, [4] 8n 7⌈n/3⌉ − 7 0 2⌊n/3⌋ 21 0 6 0 21 0 8 0

R23 MDC, [16] 8n 7⌈n/3⌉ − 7 0 2⌊n/3⌋ 21 0 6 0 21 0 8 0

R24 MDF, [6] 8n 8⌈(n− 3)/4⌉ − 1 8⌊(n− 3)/4⌋ 2† 15 8 6 0 23 16 2 0

R24 MDF, [7] 16n 8⌈n/4⌉ − 8 8⌊n/4⌋ 0†† 16 16 0 0 16 24 0 0

R24 MDC, [16] 8n 8⌈n/4⌉ − 8 6⌊n/4⌋ 0⋆ 16 12 0 0 16 18 0 0

Proposed, MDC 8n Table VIII (Selected architectures) 8 0 6 12 16 0 0 15

†: It requires 2 additional 2-rot for 4-parallel if mod(n− 2, 4) = 3, and 4 2-rot for 8-parallel if mod(n− 3, 4) = 3, to calculate the W8 rotations.

††: If mod(n, 4) = 3, it requires 1 2-rot for 4-parallel and 2 2-rot for 8-parallel to calculate the W8 rotations.

⋆: If mod(n, 4) = 3, it requires 2 2-rot for 4-parallel and 4 2-rot for 8-parallel to calculate the W8 rotations.

N

4 8 16 32 64 128 256 512 1024 2048 4096

R
o

ta
to

r
ar

ea
 (

E
q

u
iv

al
en

t
ad

d
er

s)

0

100

200

300

400

500

Proposed

MDC 2
2
 [16, 17]

MDC 2
3
 [16]

MDC 2
4
 [16]

MDF 2
4
 [6]

MDF 2
4
,2

3
 [13]

Fig. 10. Rotator area of 4-parallel feedforward FFT architectures in terms
of equivalent adders.

For the area of the entire FFT architecture, Figs. 12 and 13

compare the proposed feedforward FFTs based on rotator

allocation with previous feedforward FFT architectures for 4-

parallel and 8-parallel, respectively. In all the architectures the

total memory is the same, N − P . Therefore, the comparison

is done in terms of equivalent adders of rotators, butterflies

and shuffling circuits. For the proposed architectures, the

N

8 16 32 64 128 256 512 1024 2048 4096

R
o

ta
to

r
ar

ea
 (

E
q

u
iv

al
en

t
ad

d
er

s)

0

200

400

600

800

1000

Proposed

MDC 2
2
 [16, 17]

MDC 2
3
 [16]

MDC 2
4
 [16]

MDF 2
4
 [6]

MDC 2
5
,2

2
 [18]

MDC 2
6
,2

2
 [20]

MDC 2
3
 [21]

MDF 2
4
,2

4
,2

3
 [7]

Fig. 11. Rotator area of 8-parallel feedforward FFT architectures in terms
of equivalent adders.

number of equivalent adders comes from Tables VII and VIII,

and equation (5). For the previous architectures, we calculate

the number of equivalent adders in the same way as for

the proposed architectures, i.e., considering the equivalent

adders in butterflies and shuffling circuits, and an optimized

implementation of the rotators according to Table III.

Figs. 12 and 13 show that the proposed architectures reduce

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS PART I: REGULAR PAPERS 10

N

4 8 16 32 64 128 256 512 1024 2048 4096

F
F

T
 a

re
a

(E
q

u
iv

al
en

t
ad

d
er

s)

0

100

200

300

400

500

600

Proposed

MDC 2
2
 [16, 17]

MDC 2
3
 [16]

MDC 2
4
 [16]

MDF 2
4
 [6]

MDF 2
4
,2

3
 [13]

Fig. 12. FFT area of 4-parallel feedforward FFT architectures in terms
of equivalent adders (including butterflies, rotators and multiplexers and
excluding memories).

N

8 16 32 64 128 256 512 1024 2048 4096

F
F

T
 a

re
a

(E
q

u
iv

al
en

t
ad

d
er

s)

0

200

400

600

800

1000

1200 Proposed

MDC 2
2
 [16, 17]

MDC 2
3
 [16]

MDC 2
4
 [16]

MDF 2
4
 [6]

MDC 2
5
,2

2
 [18]

MDC 2
6
,2

2
 [20]

MDC 2
3
 [21]

MDF 2
4
,2

4
,2

3
 [7]

Fig. 13. FFT area of 8-parallel feedforward FFT architectures in terms
of equivalent adders (including butterflies, rotators and multiplexers and
excluding memories).

the number of equivalent adders with respect to previous

approaches. For 4-parallel and N = 4096 points, the savings

of using rotator allocation are around 15% with respect to

radix-24 [16], and 40% with respect to radix-22 [16], [17]. For

8-parallel and N = 4096, the savings are around 22% with

respect to radix-24 architectures [16], and 48% with respect

to radix-22 [16], [17].

VIII. IMPLEMENTATION

In order to verify the advantages of the proposed archi-

tectures, we have implemented the proposed 1024-point 4-

parallel radix-25 DIF FFT based on rotator allocation, shown

in Table VII. The input data word length is chosen to be 16

bits. Similar to the case of the 256-point 4-parallel radix-24

MDC DIF FFT in Fig. 8, the 1024-point 4-parallel radix-25

DIF FFT can be derived by cascading two 32-point MDC DIF

TABLE X
COMPARISON OF 4-PARALLEL 1024-POINT FFTS ON FPGAS.

FFT Ours14 Glittas16 Wang16 Spiral17 Proposed
Parametes [16], [17] [19] [6] [26] -

N 1024 1024 1024 1024 1024
P 4 4 4 4 4

Radix 22 2 22 2 25

Word lenth 16 16 16 16 16

FPGA Virtex6 Virtex5 Virtex6 Virtex6 Virtex6
Slices 1341 4116 4359 1443 1420

BRAM 12 0 10 44 12
DSP slices 48 72 45 64 16
Clk (MHz) 227 380 305 289 253
Th (MS/s) 910 1520 1220 1157 1012

Ours14 [16, 17] Glittas16 [19] Wang16 [6] Spiral17 [26] Proposed
0

10

20

30

40

50

60

70

80

Slices (Hundreds)
BRAM
DSP

Fig. 14. Area comparison of 4-parallel 1024-point FFTs on FPGAs.

FFTs as that in Fig. 5, changing the length of the buffers of one

of them, and including rotators and shuffling circuits between

both of them.

A. FPGA results

Table X compares 4-parallel 1024-point FFT architectures

on FPGAs. The references to previous works include the first

author and the year of the work. For instance, ’Wang16’

means ’Wang, 2016’. The table includes the area in terms

of slices, BRAM and DSP slices, and the performance in

terms of clock frequency (Clk) and throughput (Th). The

proposed results are obtained for a Virtex-6 XC6VSX475T-

1-FF1156 FPGA. The comparison shows that the proposed

architecture reduces by 64% or more the number of DSP

slices with respect to previous approaches. This is due to the

fact that the proposed architecture has only 4 general rotators,

which are implemented in the DSP slices. The rest of rotators

are implemented as distributed logic (slices). This, however,

does not increase significantly the amount of distributed logic:

The proposed architecture requires approximately the same

distributed logic as [16], [17], which also require 12 BRAM.

Figure 14 shows the area comparison as a bar diagram. It

can be observed that our approach saves a significant amount

of DSP slices used for rotators with respect to previous ap-

proaches, while keeping a small number of slices and BRAM.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS PART I: REGULAR PAPERS 11

FPGA utilization (%) of a Virtex-6 XC6VSX475T-1-FF1156
0 1 2 3 4 5

T
h

ro
u

g
h

p
u

t
(M

S
a

m
p

le
s
/s

)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Ours16 (1P) [2]

Ours14 (4P) [16,17]

Ours14 (8P) [16,17]

Proposed

Glittas16 (4P) [19]

Wang16 (4P) [6]

Xilinx LogiCORE v8.0 (1P) [27]

Spiral17 (2P) [26]

Spiral17 (4P) [26]

Spiral17 (8P) [26]

Fig. 15. Throughput vs. FPGA utilization of 1024-point FFT hardware
architectures.

TABLE XI
PROPOSED 4-PARALLEL 1024-POINT FFTS ON ASICS.

FFT Proposed Proposed
Parametes (low power) (high performance)

N 1024 1024
P 4 4

Radix 25 25

Word length 16 16

Technology (nm) 55 55
Voltage (V) 0.9 0.9
Clk (MHz) 180 320
Th (MS/s) 720 1280

Latency (clycles) 263 265
Latency (µs) 1.46 0.83

Area (mm2) 0.198 0.212
SQNR (dB) 40.3 40.3
Power (mW) 8.88 17.02

@ 180 MHz @ 320 MHz

Figure 15 compares the throughput versus the FPGA utiliza-

tion for 1024-point FFTs on FPGAs. The FPGA utilization is

calculated as the percentage of FPGA hardware resources used

of a a Virtex-6 XC6VSX475T-1-FF1156 FPGA, according to

the definition in [17].

Fig. 15 includes both serial FFTs (1P) and parallel FFTs

(2P, 4P, 8P). The architectures improve as they increase

in throughput and/or decrease in FPGA utilization, towards

the upper left corner. Both the throughput and the FPGA

utilization increase with the parallelization of the FFT. Serial

FFTs [2], [27] appear in the lower left corner and 8-parallel

FFTs appear towards the upper right one. The proposed FFT

provides a good trade-off between throughput and resources.

Its FPGA utilization is 1.03% and the throughput is 1012

MS/s. This is 33% less area and 11% more throughput than

the closest FFT [16], [17]. Furthermore, it has significantly

smaller FPGA utilization than previous parallel FFTs, while

keeping a high throughput.

B. ASIC results

Table XI shows the ASIC results of the proposed FFT

in two different versions: low power and high performance.

The difference between these two versions is that the high

performance approach includes additional pipelining. The

experimental results show that the low power version only

requires 8.88 mW at 180 Mhz. The high performance version

calculates the 1024-point FFT in 0.83 µs at 1.28 GS/s. In both

versions, the SQNR [38], [39] is 40.3 dB, which meets the

SQNR needed in applications such as UWB [18], Wi-Fi [18]

and gigabit WPAN [40]. Finally, the area of the proposed FFTs

is small, around 0.2 mm2. This meets the main purpose of the

paper, i.e., achieving a small area for the FFT.

IX. CONCLUSIONS

In this paper, we have presented the rotation allocation

approach. It consists in finding an efficient distribution of

FFT rotations that reduces the number of rotators and their

complexity. This leads to new radix-2 and radix-2k MDC FFT

architectures. These architectures require the same memory

and butterflies as previous MDC FFTs, but fewer and/or

simpler rotators. For 4-parallel FFTs, the area of rotators is

reduced by a factor from 17% to 36% with respect to previous

approaches. For 8-parallel FFTs, the rotator area reduction

ranges from 23% to 50%. These savings are confirmed with the

implementation of a 4-parallel 1024-point radix-25 MDC FFT

based on rotation allocation. Experimental results on FPGAs

show significant reduction in area with respect to previous

4-parallel 1024-point FFTs, with 64% less DSP slices than

previous FFT architectures. This leads to 33% less total FFT

area. Experimental results on ASICs lead to a very small area,

together with low power consumption or high performance.

X. ACKNOWLEDGMENT

The authors would like to thank Dr. Martin Kumm for his

help with the calculation of the adder cost of the rotators.

REFERENCES

[1] L. Yang, K. Zhang, H. Liu, J. Huang, and S. Huang, “An efficient locally
pipelined FFT processor,” IEEE Trans. Circuits Syst. II, vol. 53, no. 7,
pp. 585–589, Jul. 2006.

[2] M. Garrido, R. Andersson, F. Qureshi, and O. Gustafsson, “Multiplier-
less unity-gain SDF FFTs,” IEEE Trans. VLSI Syst., vol. 24, no. 9, pp.
3003–3007, Sep. 2016.

[3] S. He and M. Torkelson, “Design and implementation of a 1024-point
pipeline FFT processor,” in Proc. IEEE Custom Integrated Circuits

Conf., May 1998, pp. 131–134.

[4] M. Sánchez, M. Garrido, M. López, and J. Grajal, “Implementing FFT-
based digital channelized receivers on FPGA platforms,” IEEE Trans.

Aerosp. Electron. Syst., vol. 44, no. 4, pp. 1567–1585, Oct. 2008.

[5] A. Cortés, I. Vélez, and J. F. Sevillano, “Radix rk FFTs: Matricial
representation and SDC/SDF pipeline implementation,” IEEE Trans.

Signal Process., vol. 57, no. 7, pp. 2824–2839, Jul. 2009.

[6] J. Wang, C. Xiong, K. Zhang, and J. Wei, “A mixed-decimation MDF
architecture for radix- 2k parallel FFT,” IEEE Trans. VLSI Syst., vol. 24,
no. 1, pp. 67–78, Jan. 2016.

[7] S.-N. Tang, J.-W. Tsai, and T.-Y. Chang, “A 2.4-GS/s FFT processor
for OFDM-based WPAN applications,” IEEE Trans. Circuits Syst. II,
vol. 57, no. 6, pp. 451–455, Jun. 2010.

[8] H. Liu and H. Lee, “A high performance four-parallel 128/64-point
radix-24 FFT/IFFT processor for MIMO-OFDM systems,” in Proc.

IEEE Asia Pacific Conf. Circuits Syst., Nov. 2008, pp. 834–837.

[9] L. Liu, J. Ren, X. Wang, and F. Ye, “Design of low-power, 1GS/s
throughput FFT processor for MIMO-OFDM UWB communication
system,” in Proc. IEEE Int. Symp. Circuits Syst., May 2007, pp. 2594–
2597.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS PART I: REGULAR PAPERS 12

[10] J. Lee, H. Lee, S. in Cho, and S.-S. Choi, “A high-speed, low-complexity
radix-24 FFT processor for MB-OFDM UWB systems,” in Proc. IEEE

Int. Symp. Circuits Syst., May 2006, pp. 210–213.

[11] N. Li and N. van der Meijs, “’A Radix 22 based parallel pipeline FFT
processor for MB-OFDM UWB system’,” in Proc. IEEE Int. SoC Conf.,
Sep. 2009, pp. 383 – 386.

[12] S.-I. Cho, K.-M. Kang, and S.-S. Choi, “Implemention of 128-point fast
Fourier transform processor for UWB systems,” in Proc. Int. Wireless

Comm. Mobile Comp. Conf., Aug. 2008, pp. 210–213.

[13] S.-I. Cho and K.-M. Kang, “A low-complexity 128-point mixed-radix
FFT processor for MB-OFDM UWB systems,” ETRI J., vol. 32, no. 1,
pp. 1–10, Feb. 2010.

[14] W. Xudong and L. Yu, “Special-purpose computer for 64-point FFT
based on FPGA,” in Proc. Int. Conf. Wireless Comm. Signal Process.,
Nov. 2009, pp. 1–3.

[15] K.-J. Yang, S.-H. Tsai, and G. Chuang, “MDC FFT/IFFT processor with
variable length for MIMO-OFDM systems,” IEEE Trans. VLSI Syst.,
vol. 21, no. 4, pp. 720–731, Apr. 2013.

[16] M. Garrido, J. Grajal, M. A. Sánchez, and O. Gustafsson, “Pipelined
radix-2k feedforward FFT architectures,” IEEE Trans. VLSI Syst.,
vol. 21, no. 1, pp. 23–32, Jan. 2013.

[17] M. Garrido, M. Acevedo, A. Ehliar, and O. Gustafsson, “Challenging the
limits of FFT performance on FPGAs,” in Int. Symp. Integrated Circuits,
Dec. 2014, pp. 172–175.

[18] M. G. Kim, S. K. Shin, and M. H. Sunwoo, “New parallel MDC FFT
processor with efficient scheduling scheme,” in Proc. IEEE Asia-Pacific

Conf. Circuits Syst., Nov. 2014, pp. 667–670.

[19] A. X. Glittas, M. Sellathurai, and G. Lakshminarayanan, “A normal I/O
order radix-2 FFT architecture to process twin data streams for MIMO,”
IEEE Trans. VLSI Syst., vol. 24, no. 6, pp. 2402–2406, Jun. 2016.

[20] J. K. Jang, M. G. Kim, and M. H. Sunwoo, “Efficient scheduling scheme
for eight-parallel MDC FFT processor,” in Int. SoC Design Conf., Nov.
2015, pp. 277–278.

[21] T. Ahmed, M. Garrido, and O. Gustafsson, “A 512-point 8-parallel
pipelined feedforward FFT for WPAN,” in Proc. Asilomar Conf. Signals

Syst. Comput., Nov. 2011, pp. 981–984.

[22] M. Garrido, S.-J. Huang, S.-G. Chen, and O. Gustafsson, “The serial
commutator (SC) FFT,” IEEE Trans. Circuits Syst. II, vol. 63, no. 10,
pp. 974–978, Oct. 2016.

[23] Y.-W. Lin and C.-Y. Lee, “Design of an FFT/IFFT processor for MIMO
OFDM systems,” IEEE Trans. Circuits Syst. I, vol. 54, no. 4, pp. 807–
815, Apr. 2007.

[24] S. Li, H. Xu, W. Fan, Y. Chen, and X. Zeng, “A 128/256-point pipeline
FFT/IFFT processor for MIMO OFDM system IEEE 802.16e,” in Proc.

IEEE Int. Symp. Circuits Syst., Jun. 2010, pp. 1488–1491.

[25] M. Garrido, “Efficient hardware architectures for the computation of the
FFT and other related signal processing algorithms in real time,” Ph.D.
dissertation, Universidad Politécnica de Madrid, Dec. 2009.

[26] “Spiral DFT/FFT IP core generator,” May 2017, http://spiral.net/hard-
ware/dftgen.html.

[27] “Xilinx - FFT Logicore 8.0,” Jul. 2012, https://www.xilinx.com/support/
documentation/ip documentation/ds808 xfft.pdf.

[28] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex Fourier series,” Math. Comput., vol. 19, pp. 297–301, 1965.

[29] A. Oppenheim and R. Schafer, Discrete-Time Signal Processing. Pren-
tice Hall, 1989.

[30] M. Garrido, “A new representation of FFT algorithms using triangular
matrices,” IEEE Trans. Circuits Syst. I, vol. 63, no. 10, pp. 1737–1745,
Oct. 2016.

[31] M. Garrido, F. Qureshi, and O. Gustafsson, “Low-complexity multi-
plierless constant rotators based on combined coefficient selection and
shift-and-add implementation (CCSSI),” IEEE Trans. Circuits Syst. I,
vol. 61, no. 7, pp. 2002–2012, Jul. 2014.

[32] M. Garrido, P. Källström, M. Kumm, and O. Gustafsson, “CORDIC II:
A new improved CORDIC algorithm,” IEEE Trans. Circuits Syst. II,
vol. 63, no. 2, pp. 186–190, Feb. 2016.

[33] M. Garrido and J. Grajal, “Efficient memoryless CORDIC for FFT
computation,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process.,
vol. 2, Apr. 2007, pp. 113–116.

[34] J. Chen and C.-H. Chang, “High-level synthesis algorithm for the
design of reconfigurable constant multiplier,” IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst., vol. 28, no. 12, pp. 1844–1856,
Dec 2009.

[35] F. Qureshi and O. Gustafsson, “Generation of all radix-2 fast Fourier
transform algorithms using binary trees,” in Proc. European Conf.

Circuit Theory Design, Aug. 2011, pp. 677–680.

[36] J. A. Johnston, “Parallel pipeline fast Fourier transformer,” in IEE Proc.

F Comm. Radar Signal Process., vol. 130, no. 6, Oct. 1983, pp. 564–
572.

[37] E. Wold and A. Despain, “Pipeline and parallel-pipeline FFT processors
for VLSI implementations,” IEEE Trans. Comput., vol. C-33, no. 5, pp.
414–426, May 1984.

[38] W. H. Chang and T. Q. Nguyen, “On the fixed-point accuracy analysis
of fft algorithms,” IEEE Trans. Signal Process., vol. 56, no. 10, pp.
4673–4682, Oct. 2008.

[39] I. B. Dhaou, “Hardware architecture for an anti-traffic noise system,”
Microelectronics Journal, vol. 46, no. 5, p. 370?376, May 2015.

[40] Y. Chen, Y. C. Tsao, Y. W. Lin, C. H. Lin, and C. Y. Lee, “An indexed-
scaling pipelined FFT processor for OFDM-based WPAN applications,”
IEEE Trans. Circuits Syst. II, vol. 55, no. 2, pp. 146–150, Feb. 2008.

Mario Garrido (M’07) received the M.S. degree
in electrical engineering and the Ph.D. degree from
the Technical University of Madrid (UPM), Madrid,
Spain, in 2004 and 2009, respectively. In 2010 he
moved to Sweden to work as a postdoctoral re-
searcher at the Department of Electrical Engineering
at Linköping University. Since 2012 he is Associate
Professor at the same department.

His research focuses on optimized hardware de-
sign for signal processing applications. This includes
the design of hardware architectures for the calcu-

lation of transforms, such as the fast Fourier transform (FFT), circuits for
data management, the CORDIC algorithm, and circuits to calculate statistical
and mathematical operations. His research covers high-performance circuits
for real-time computation, as well as designs for small area and low power
consumption.

Shen-Jui Huang received his M.S. degree from
the Department of Electrical Engineering, National
Taiwan University in 1997, and his Ph.D. degree in
Electronics from National Chiao Tung University in
2012. His research interests include baseband signal
processing and circuit implementation. Currently he
is a deputy manager in Novatek Corp., Hsinchu,
Taiwan.

Sau-Gee Chen received his B.S. degree from Na-
tional Tsing Hua University, Taiwan, in 1978, M.S.
degree and Ph.D. degree in electrical engineering,
from the State University of New York at Buffalo,
NY, in 1984 and 1988, respectively. Currently, he is
a Professor at the Department of Electronics Engi-
neering, National Chiao Tung University (NCTU),
Taiwan, and a member of Board of Governor, IEEE
Taipei Section. He was the department Chair of
the Department of Electronics Engineering, NCTU,
during 2012-2015. He has been appointed as the

Coordinator of IEEE VTS Asia-Pacific Chapters, since 2014. He was the
Chair, IEEE Vehicular Technology Society, Taipei Chapter, during 2012-
2013. He was Director of Honors Program, College of Electrical & Computer
Engineering/College of Computer Science from 2011 to 2012 at NCTU. He
also was the Associate Dean, Office of International Affairs, during March-
July, 2011, as well as the director of Institute of Electronics from 2003
to 2006, all at the same organization. During 2004-2006, he served as an
associate editor of IEEE Transactions on Circuits and Systems I. His research
interests include digital communication, multi-media computing, digital signal
processing, and VLSI signal processing. He has published more than 100
conference and journal papers, and holds 19 US and Taiwan patents.

	Försättsblad
	PFFT2

