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Feedforward Inhibition Allows Input Summation to
Vary in Recurrent Cortical Networks
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Abstract

Brain computations depend on how neurons transform inputs to spike outputs. Here, to understand input-output

transformations in cortical networks, we recorded spiking responses from visual cortex (V1) of awake mice of

either sex while pairing sensory stimuli with optogenetic perturbation of excitatory and parvalbumin-positive

inhibitory neurons. We found that V1 neurons’ average responses were primarily additive (linear). We used a

recurrent cortical network model to determine whether these data, as well as past observations of nonlinearity,

could be described by a common circuit architecture. Simulations showed that cortical input-output transformations

can be changed from linear to sublinear with moderate (�20%) strengthening of connections between inhibitory

neurons, but this change away from linear scaling depends on the presence of feedforward inhibition. Simulating a

variety of recurrent connection strengths showed that, compared with when input arrives only to excitatory neurons,

networks produce a wider range of output spiking responses in the presence of feedforward inhibition.

Key words: Cortex; mouse; network model; optogenetic; vision

Introduction
Neurons in the cerebral cortex receive thousands of

synaptic inputs and transform those inputs into spike
outputs. Input-output transformations can be character-
ized in single cells (measuring firing rate while injecting
current to produce a, f–I curve; Koike et al., 1970; Con-
nors et al., 1982; Destexhe and Paré, 1999), but network
effects can dramatically alter input-output transforma-

tions in vivo. For example, ongoing network activity can
create supralinearities in neurons’ input-output functions
(Priebe and Ferster, 2008), strong network connectivity
can create entirely linear input-output functions (van
Vreeswijk and Sompolinsky, 1996; Brunel, 2000), and re-
current connections can amplify inhibition to produce
sublinearity (Ahmadian et al., 2013).
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Significance Statement

Brains are made up of neural networks that process information by receiving input activity and transforming

those inputs into output activity. We use optogenetic manipulations in awake mice to expose how a

transformation in a cortical network depends on internal network activity. Combining numerical simulations

with the data uncovers that this transformation depends critically on feedforward inhibition – the fact that

inputs to the cortex often make strong connections on both excitatory and inhibitory neurons.
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In this work, we examine input-output transformations
in vivo by first measuring spiking responses to combina-
tions of visual and optogenetic input in the mouse visual
cortex (V1). Then, to shed light on the network and circuit
mechanisms of input-output transformations, we use a
spiking recurrent network model. The experimental data
show that excitatory neuron stimulation gives a primarily
linear (additive) input-output transformation in mouse V1,
which stands in contrast to sublinearity seen in monkey
V1 (Nassi et al., 2015). The model shows that the cortical
network can achieve both kinds of transformations with
only moderate changes in local recurrent synaptic
strengths. The model makes a further prediction that
feedforward inhibition—input that synapses not just on
excitatory but also on inhibitory neurons—allows the cor-
tex to support both kinds of transformations.

Optogenetic stimulation can reveal how networks in
vivo transform inputs into output. Studies using sensory
stimuli alone are complicated by the fact sensory stimuli
are processed by many brain regions, each of which may
provide input to a cortical area under study. Combinations
of sensory stimuli, however, have found that a wide range
of transformations are possible, often finding evidence for
normalization, a form of sublinear summation (Carandini
and Heeger, 2012). A few recent studies have used direct
optogenetic input to study input-output transformations,
and studies in different species have observed both nor-
malization (Sato et al., 2014; Nassi et al., 2015) and more
linear summation (Huang et al., 2014), pointing to the
need to understand what features of cortical networks
can change input-output transformations.

Models and theoretical approaches complement exper-
imental studies of input-output transformations, because
is difficult to control connectivity in an in vivo cortical
network experimentally. Rate-based models (Ahmadian
et al., 2013; Rubin et al., 2015) have characterized the
range of behaviors cortical networks can support. But not
all the effects seen in rate-based models may occur in
biological networks, as spiking neurons have biophysical
properties that can impact input-output transformations,
such as refractory periods and nonlinearities due to spike
threshold. Analysis of networks of spiking neurons is most
advanced for models that approximate neuronal inputs as
currents and not conductances (e.g., Brunel, 2000), but
input-output relationships can be modified by the
changes in effective synaptic strength and Vm variability
(Richardson, 2004, 2007) that occur in realistic conductance-
based neurons. Therefore, we use numerical simulations
of models of conductance-based spiking neurons to de-
termine which connectivity properties might create the
input-output transformations seen in my data and in past
data.

Below, we first describe the experimental results from
excitatory optogenetic perturbations in mouse visual cor-
tex (Figs. 1 and 2), showing near-linear responses across
a wide range of firing rates and visual contrast. We then
describe results from the model, showing that feedfor-
ward inhibition can produce sublinearity (Fig. 3), and that
with feedforward inhibition, local connectivity can allow
networks to be either linear or sublinear (Figs. 4 and 5).

Finally, we construct a model network (Fig. 6) that fits the
observations and show it is consistent with data from
optogenetic perturbations of inhibitory neurons (Fig. 7).
The observations are together best described by a model
with feedforward inhibition.

Materials and Methods

Neurophysiology
All animal procedures were performed in accordance

with the Harvard Medical School animal care committee’s
regulations, and in accordance with NIH standards. A
detailed description of the neurophysiological methods is
given in Glickfeld et al. (2013). In brief: Neurophysiological
data from Emx1-Cre animals (n � 4, of both sexes but sex
not recorded) were collected. Animals kept on a moni-
tored water schedule were given small drops of water (�1
�l) every 60–120 s during recording to keep them awake
and alert. The visual stimulus, a Gabor patch with spatial
frequency 0.1 cycle/deg and sigma 12.5 deg, were pre-
sented for 115 ms [full width at half maximum (FWHM)
intensity], and successive visual stimuli were presented
every 1 s. Optogenetic light pulses were delivered on
alternating sets of 10 stimulus presentations (light onset
500 ms before first stimulus; offset 500 ms after end of
last stimulus; total light pulse duration 10.2 s). A 1-s delay
was added after each set of 10 stimulus presentations.
Extracellular probes were 32-site silicon electrodes (Neu-
ronexus, probe model A4x8). Recording surfaces were
treated with poly(3,4-ethylenedioxithiophene) (PEDOT) to
lower impedance and improve recording quality. On each
recording day, electrodes were introduced through the
dura and left stationary for �1 h before recording to give
more stable recordings. Channelrhodpsin-2 (ChR2) was
expressed in excitatory neurons (as described in Histed
and Maunsell, 2014) using viral (AAV-EF1a-DIO-ChR2-
mCherry, serotype 2 or 8; http://openoptogenetics.org)
injections into the Emx1-Cre (Gorski et al., 2002; #5628,
Jackson Laboratory) line. Virus (0.25–1.0 �l) was injected
into a cortical site whose retinotopic location was identi-
fied by imaging autofluorescence responses to small
visual stimuli. Light powers used for optogenetic stimula-
tion were 500 �W/mm2 on the first recording session; in
later sessions, dural thickening was visible and changes in
firing rate were smaller, so power was increased (maxi-
mum 3 mW/mm2) to give mean spontaneous rate in-
creases of approximately �5 spk/s in that recording
session. Optogenetic light spot diameter was 400–700
�m (FWHM) as measured by imaging the delivered light
on the cortical surface.

Spike waveforms were sorted after the experiment us-
ing OfflineSorter (Plexon, Inc.). Single units (SU) were
identified as waveform clusters that showed clear and
stable separation from noise and other clusters, unimodal
width distributions, and interspike interval histograms
consistent with cortical neuron absolute and relative re-
fractory periods. Multiunits (MU) were clusters that were
distinct from noise but did not meet one or more of those
criteria, and thus these multiunits likely group together a
small number of single neuron waveforms. Signal-to-
noise ratios (SNRs) of unit waveforms (Kelly et al., 2007)
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were median 4.57 for single units (n � 50) and 3.02 for

multiunits (n � 239). Although SNR can depend on sta-

tistical clustering criteria, it allows comparison between

units within a study and can allow approximate compar-

isons across studies. The SNRs we measured are similar

to those from other multielectrode recordings (e.g., using

“Utah” arrays; Wissig and Kohn (2012) saw median SNR

across all units of �2.75). The number of short interspike

intervals was also lower in single units than multiunits, as

expected due to neurons’ refractory periods [ISIs �2.5

ms: SU 0.28%, MU 1.2%, p � 0.001, Kolmogorov–Smir-

nov (KS) test; ratio of ISIs � 2.5 ms observed to those

expected for a Poisson process with same rate: SU 0.26,

MU 0.72, p � 0.001, KS test]. We also repeated the single-

and multiunit comparisons (Figs. 1 and 2) using both more-

and less-stringent criteria to qualify a unit as a single unit and

found no qualitative differences in the results.

Experimental design and statistical analysis

Spike histograms were smoothed using piecewise

splines (LOWESS smoothing). To compute neurons’ vi-

sual responses (e.g., Figs. 1D and 2A), we counted spikes

over a 175-ms period beginning 25 ms after stimulus

onset, with a matched baseline period 175 ms long, end-

ing at stimulus onset. To test for nonlinearity, for each cell

we found the response count with and without optoge-

netic stimulation by taking the stimulus response count

and subtracting the baseline count. Neurons were classi-

fied as significantly nonlinear if the p-value of a two-

sample two-tailed KS test on the counts with and without

stimulation was �0.01. The Emx1 dataset includes data

from 100 shank penetrations (�25 recording sessions

with a 4-shank electrode). Because the intershank spac-

ing was 200–400 �m, our stimuli in fixed retinotopic

locations could not activate neurons on all shanks. There-

fore, we included only shanks in which an average visual

response �0.2 spk/s was measured (38/100 shanks). This

gave 417 single and multiunits. We examined only units

that showed a visual stimulus response (n � 289; mean

stimulus response – mean spontaneous �0.2) in the ab-

sence of ChR2 stimulation. Because ChR2 expression

was highest at the site of viral injection and fell off with

distance, we took advantage of this variation to sort units

into three groups based on the strength of local ChR2

activation (Fig. 1C). We found the average change in

spontaneous rate induced by ChR2 stimulation for all

units on a shank and rank-ordered the shanks. Dividing

shanks into three groups based on small, medium, or

large ChR2 effects yielded three nearly equal-sized

groups of units receiving small, medium, or large ChR2

activation. The group sizes differ by a few units because

we sorted by shank, not by individual unit.

Recording site depth was measured as the distance

below the most superficial site at which activity was

seen. More units were recorded at superficial than deep

locations, in part because probe insertion was stopped

after units were seen at the most superficial site on one

shank. Small cortical curvature could thus lead to some

shanks with no units at the deeper sites.

Conductance-based spiking network model

The cortical model is a recurrent network of conductance-

based leaky integrate-and-fire neurons. Example Python

code and a Jupyter notebook (http://jupyter.org) are pro-

vided at https://github.com/histedlab/code-feedforward-

inhibition-condLIF. that run the network simulation with all

its inputs, replicating spike counts shown in Fig. 6C,

bottom row. To recover the rest of the simulations in Fig.

3–7, this code can be run in parallel on a larger cluster.

Each model neuron is connected randomly to each

other neuron with fixed probability (sparsity). For example,

for a 10% sparsity network, each cell receives input from

10% of the excitatory cells and thus gets 0.1 � 8000 �

800 E inputs. Similarly, at 10% sparsity, each cell receives

0.1 � 2000 � 200 I inputs. We chose the inhibitory

synaptic strength to be larger than the excitatory synaptic

strength, as seen in the cortex. We varied both synaptic

strengths and found that our conclusions were not af-

fected by changes in E/I synaptic strength ratio. (See also

Fig. 5 for effects of changing together E and I recurrent

synaptic weights by an order of magnitude). We refer to

this baseline set of random, sparse connections as the

balancing connections. To change local connectivity, we

change the strength of a second added set of connec-

tions with the same sparsity while keeping the strength of

the balancing connections constant. For example, when

I¡I connectivity is varied in the 2% sparsity network (e.g.,

Fig. 4), each I cell receives an extra 40 synapses from other

I cells, and the y-axis in Fig. 4A,B shows the effects of

varying the weight of those 40 synapses from zero to �20%

of the weight of the standard recurrent I¡I synapses.

Each simulated neuron’s membrane potential evolves

according to the following equation:

dVm

dt
� �

1

�m

�gleak�Vm � Erest� � gChR2�Vm � Ee� � ge

�Vm � Ee� � gi�Vm � Ei�� .

When the membrane potential Vm crosses a threshold

(–50 mV), a spike is recorded and Vm is reset to Erest (–60

mV) for the absolute refractory period (3 ms).

Beyond the recurrent inputs from other neurons in the

network (described in the model architecture above),

model neurons can receive two kinds of external inputs:

external feedforward inputs simulating, e.g., sensory input

from thalamus, and external ChR2 inputs. Feedforward

(sensory) inputs are simulated as Poisson spike trains

whose rates are changed by stepping to a new value, with

values chosen to approximate visually-evoked changes

seen in the data. ChR2 input is simulated by linearly ramping

gChR2 to a new value over 2 ms, a timescale consistent with

ChR2 ton (Nikolic et al., 2009), and gChR2 amplitude is varied

to reproduce experimental changes in firing rate (see below).

Synaptic conductances ge and gi are incremented instanta-

neously by a constant excitatory or inhibitory synaptic

weight when a spike is fired by a recurrent or feedforward

input. The conductances decay with time constants �ge � 5

ms and �gi � 10 ms, described by
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dge

dt
� �

ge

�g
e

,

dgi

dt
� �

gi

�g
i

.

Other constants are: excitatory reversal (Ee) � 0 mV,
inhibitory reversal (Ei) � –80 mV, membrane time constant
(�m) � 20 ms. (Because neurons are conductance based,
effective time constants are shorter; Destexhe and Paré,
1999; Richardson, 2004.) Postsynaptic potential (PSP)
amplitudes can vary with network activity and synaptic
weight in the conductance-based model neurons. As we
varied sparsity in the network, the excitatory PSP ampli-
tude varied over an �10-fold range (0.3–3.0 mV for spar-
sity 20%–2%, if calculated assuming that the mean
membrane potential of network neurons is –65 mV.) Me-
dian Vm varies across neurons of the network (during
spontaneous activity without visual or ChR2 stimula-
tion, 5th–95th percentile of neuron median Vm: –71.0 to
– 60.5 mV).

The sparse recurrent connections yield spontaneous
activity in the network in the absence of external input
(van Vreeswijk and Sompolinsky, 1998; Vogels and Ab-
bott, 2005). To equate the spontaneous firing state of the
network across different sparsity and synaptic strength,
we adjusted network spontaneous rate. Although several
biophysical or input properties could be varied in neurons
to change spontaneous rate, we used an additional ex-
ternal Poisson excitatory input to either E or I neurons to
respectively raise or lower the spontaneous rate. The rate
of this Poisson input was chosen via stepwise optimiza-
tion to give a mean spontaneous rate across excitatory
neurons of 5 spk/s. The added input is less than the input
coming from neurons within the network; e.g., in Fig. 4,
across all points plotted for sparsities 2%–20% (rows 2, 4,
and 5), added input is 0.4%–18.9% (5th–90th percentile;
maximum 69%) of the total conductance input to the cell
during spontaneous activity, and smaller when the net-
work is driven by ChR2 or visual input. For many net-
works, a local minimum of the parameter can be found
repeatably, but for extreme values of sparsity and synap-
tic strength, the network is unstable and spontaneous
rates are either sensitive to small perturbations or diverge.
In these cases, network response is not shown (e.g., gray
regions, Fig. 5B,C).

Simulations were performed with the Brian package
(Brette et al., 2007) on a multi-CPU cluster with an inte-
gration time step of 50 �s.

Results

Experimental measurements in mouse V1 show
linear summation

We combined visual and excitatory optogenetic input
(Fig. 1A,B) by expressing ChR2 in V1 excitatory neurons
using a transgenic mouse line and a Cre-dependent virus,
and we used blue light pulses several seconds in duration
(4–6 s) to shift neurons’ firing rates to a new baseline. We

delivered the same visual stimulus repeatedly, with and
without ChR2 stimulation. We kept animals alert by giving
them drops of fluid approximately once a minute, and we
measured neurons’ spiking via extracellular recording
with multisite probes.

When we presented the same visual stimulus with and
without optogenetic stimulation, we found that V1 neu-
rons’ responses scaled nearly linearly (Fig. 1C)—that is,
nearly the same size response was produced even as the
optogenetic stimulus changed the baseline firing rate.
Even for relatively large optogenetic baseline shifts (�10
spk/s, roughly the same magnitude as the average visual
response), the visual response was similar with and with-
out ChR2 stimulation. This response implies that the
input-output transformation is linear (also called additive,
e.g., Huang et al., 2014), meaning the sensory response
produces a fixed change in firing rate above the changing
baseline rate. (In contrast, if the response were sublinear,
higher baseline rates would produce a smaller sensory
response.) We saw nearly linear responses across a range
of intensities of the visual stimulus (contrast range 8%–
90%; Fig. 1D), and we saw linear responses in both
averages across single units (n � 50) and multiunits (n �

239). Responses became slightly sublinear in cells with
the largest baseline shifts (Fig. 1E), but responses were on
average within a few percentage points of linear (for max-
imum contrast, as in Fig. 1D: average sensory response
changed from 9.6 to 8.7 spk/s, a –9.5% change; for single
units, –7.9%; for multiunits, –10.0%; in contrast, the av-
erage baseline rate almost doubled: 5.8–10.8 spk/s;
change 86%). This sublinearity is small compared with the
normalization typically seen in visual cortex of species
such as the macaque (�50% sublinearity seen when
combining optogenetic and visual stimuli in V4; Nassi
et al., 2015; as shown by their Fig. 4E,F; note that their
additive index � 0.67 is in our terminology approximately
equal to a 50% sublinearity).

Firing rate variation could be an initial hypothesis to
explain observed variation in scaling across studies. Con-
sistent with this idea, responses of single neurons in
macaque MT show linear scaling at low rate and sublinear
scaling at high firing rate for combinations of visual stimuli
(Britten and Heuer, 1999). Mouse V1 visual processing
operates at lower firing rates than macaque V1, as strong
(high-contrast) visual stimuli gave �10 spk/s average re-
sponses (Fig. 1), equal to or larger than previously re-
ported (e.g., Adesnik et al., 2012) but much lower than the
100 spk/s responses at times seen in macaque V1 (Nassi
et al., 2015). However, several experiments that combine
optogenetic and visual stimulation argue that other mech-
anisms are in play besides just firing rate variation. In
some cells of macaque V1, complete sublinearity is seen
with combinations of optogenetic and visual input, even at
low firing rates (Nassi et al., 2015; their Fig. 6B,F). And, in
tree shrew V1 (Huang et al., 2014; e.g., their Fig. 7C,I),
nearly linear responses are seen with somewhat higher
firing rates than here. Although firing rate variation may
partially explain the differences seen across animals, we
wished to understand whether cortical summation can be
dramatically affected by circuit properties such as recur-
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Figure 1. Near-linear scaling with excitatory optogenetic stimulation in mouse V1. A, Schematic of experimental stimulus protocol.

If scaling is linear, the same input pulse produces the same response when baseline (spontaneous) rate is changed. B, Baseline rates

are raised using ChR2 in excitatory (E) neurons (Cre-dependent virus in Emx1-Cre mouse line). C, Population histograms showing

responses to combined ChR2 and visual (90% contrast) stimuli. In the top row, columns show three groups of neurons, divided based

on size of ChR2 baseline firing rate changes: left, smallest ChR2 effects (n � 94; 36 single, 58 multiunits); middle, intermediate ChR2

effects (n � 101; 31 single, 70 multiunits); right, largest ChR2 effects (n � 94; 28 single, 66 multiunits). Brown, responses to visual

stimulus with no optogenetic stimulus; cyan, responses to visual stimulus when baseline rates are changed by sustained optogenetic

stimulus. The bottom row shows the same data as the top row, with spontaneous firing rates subtracted. Visual responses differ
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rent connectivity. Thus, below we use simulations to ex-
plore how network recurrent connectivity might change
summation.

We observed that average neuronal responses were
nearly linear, but individual recorded units were often
either supra- or sublinear (Fig. 2). Units with large and
small ChR2 effects are nonlinear (points lie above or
below the horizontal line that shows a perfectly linear
response; Fig. 2A). Both SU and MU are nonlinear (Fig.
2A; example time courses in Fig. 2B). With the 90%
contrast visual stimulus, 34% of single units are signifi-
cantly nonlinear (17/50, p � 0.01, KS test; Fig. 2A), and
28% of multiunits are significantly nonlinear (67/239, p �

0.01, KS test).
We examined whether cortical layer or depth might

explain some of the observed heterogeneity in response
scaling in different cells. To do this, we regressed per-
centage change in visual response (before and after ChR2
stimulation) on depth of recording site. We found that
depth did not affect the amount of nonlinearity (coefficient
not significantly different from zero, regression p � 0.70).
Site depth, however, did affect the magnitude of units’
responses to ChR2, as expected due to cortical surface
illumination, with more superficial sites showing larger
effects (units at sites with depth �300 �m, n � 188,

median ChR2 response 3.4 spk/s, top quartile ChR2 re-
sponse 8.0 spk/s; units at sites with depth �400 �m, n �

101, median ChR2 response 1.5 spk/s, top quartile 3.8
spk/s). To further explore factors that might explain the
size of the nonlinearity, we used multivariate regression
with several explanatory variables, including depth, visual
response magnitude, baseline firing rate without ChR2
stimulation, and whether a unit was a single or multiunit.
None of these factors, individually or together, signifi-
cantly explained the percentage change in visual re-
sponse (for full model with three factors, regression p �

0.33; no submodel with a subset of the independent
variables had a p-value �0.33). Fig. 1C,E shows that
ChR2 response magnitude can slightly predict the size
of the nonlinearity, and the regressions show that the
other factors, besides ChR2 response magnitude, do
not add any additional power to predict the size of the
nonlinearity.

Although such heterogeneity in response scaling could
in principle arise from different levels of ChR2 expression
in different cells (as are produced by the AAV viral trans-
fection; Watakabe et al., 2015), it seems likely that the
amount of ChR2 input to a given cell does not explain all
heterogeneity. First, if the amount of ChR2 expression
predicted a unit’s summation, one might expect a strong

continued

somewhat between columns because each column is a different group of neurons, but within each group there is little response

change as spontaneous rate varies. D, Linear scaling is seen across a wide contrast range. Top row, responses without baseline

subtraction; bottom row, baseline subtracted. Error bars are SEM of pooled unit responses. E, Linear scaling is seen on average,

across neurons with a variety of ChR2-induced baseline rate changes, with some weak sublinearity at the highest rate changes and

highest contrasts. Y axes, difference in visual responses (relative to baseline) with and without ChR2 stimulation; dashed line at zero

shows a perfectly linear response. Red, LOWESS regression; shaded region is a bootstrapped 95% confidence interval. Two outlier points

in 90% contrast plot are omitted for visual clarity although they are included in the regression; the two outliers are shown in Fig. 2A.

Figure 2. Different units can be sub- or supralinear, although mean of population is near-linear. A, Unit responses to excitatory neuron

optogenetic (Emx1-ChR2) stimulation, showing that many individual units are significantly supra- or sublinear. X-axis, average firing

rate change with ChR2 stimulus; y-axis, difference between visual responses (90% contrast; each visual response measured from

preceding baseline) with and without optogenetic stimulus. Error bars are SEM. Points that are at least 1 SEM away from horizontal

line at zero (linear response) are colored blue (single units; SU) or black (multiunits; MU). Points within 1 SEM of linear are gray. Data

are as in Fig. 1E for 90% contrast, here with SEM for each point, and adding on the negative y-axis the few units that are suppressed

by stimulation. 34% of single units are significantly nonlinear (17/50, p � 0.01, KS test), and 28% of multiunits are significantly

nonlinear (67/239, p � 0.01, KS test). B, Four example units. Pink region shows visual stimulus presentation time. Shaded regions

around mean response are SEM.
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relationship between the size of a cell’s ChR2 effect and
summation (e.g., cells that responded more to ChR2
would be more supralinear, whereas nonresponsive cells
would be sublinear). We saw only a small effect of ChR2
response on scaling (Fig. 1C,E). Second, in model simu-
lations (discussed below), where we can definitively iden-
tify model cells’ ChR2 input, we saw heterogeneity in
single units similar to experiment, but scaling had the
same trend whether cells received direct ChR2 input or
not (see below). Thus, heterogeneity in neurons’ re-
sponses hints that neurons’ connectivity influences sum-
mation—that the population response is shaped by
connections between excitatory and inhibitory neurons
that dynamically respond to each others’ activity (van
Vreeswijk and Sompolinsky, 1996; Brunel, 2000). Below,
using a spiking network model, we explore how connec-
tion variation might cause network summation to vary.

Other experimental work finds sublinear summation
in macaque visual cortex

In contrast to this average linear scaling in mouse pri-
mary visual cortex, recent work in the monkey primary
visual cortex (Nassi et al., 2015) found that neural re-
sponses were at times highly sublinear, and averages
across neurons were also sublinear. (Previous work in the
tree shrew and mouse also found linearity and sublinear-
ity; Huang et al., 2014; Sato et al., 2014.) The experimental
approach used by Nassi et al. (2015) does not seem to
differ in important ways from our approach: they ex-
pressed ChR2 primarily in excitatory neurons (using a
CaMKII-	 promoter strategy), stimulated an area of the
cortex a few hundred micrometers in diameter, and paired
ChR2 and visual stimulation. Because the different results
may stem from differences in cortical architecture across
species, rather than differences in experimental methods,
we sought to determine whether there were features of
local cortical circuits that could change response scaling
from linear to sublinear.

Model network simulations identify circuit properties
controlling input summation

Because it is difficult to manipulate neural connectivity
in vivo, we used numerical simulations of conductance-
based model neurons to understand how network con-
nectivity might change response scaling. We constructed
networks of 10,000 conductance-based leaky integrate-
and-fire neurons, 8000 excitatory (E) and 2000 inhibitory
(I). We chose realistic parameters for the model neurons,
including sparse connectivity (initially 2%), and moderate
synaptic strengths such that a few tens of excitatory PSPs
(EPSPs) were required to push a neuron over threshold.
(We explore a range of values of sparsity and synaptic
strength below.) These sparse, randomly connected net-
works produce irregular and asynchronous spontaneous
activity (Fig. 3A) similar to that observed experimentally
(Steriade et al., 2001; Destexhe et al., 2003) and show
stable responses to external inputs (Vogels and Abbott,
2005). For all simulations, we set the spontaneous aver-
age rate of the network to 5 spk/s. There are a variety of
single-cell properties that could set neurons’ spontane-
ous rate, but we changed the spontaneous rate by sup-

plying a small, constant amount of excitatory input that
does not vary with network activity or input, to either
excitatory or inhibitory neurons (see Methods).

To determine how different sorts of feedforward inputs
affect neurons’ responses, we simulated external inputs
to E and I cells using two input groups of Poisson spike
trains whose rates could be varied independently. As
expected, when we varied the external input rates, in-
creasing input to E cells (x axis) monotonically increased
the average network response (Fig. 3B, contour lines;
average of all excitatory cells in the network, a measure
similar to that obtained by multi-electrode recordings),
and increasing input to we cells (y axis) monotonically
decreased the average network response. However, we
could hold the average response constant by adjusting
the two feedforward inputs. When the average response
was constant (along contour lines in Fig. 3B), we still
observed changes in response scaling, and those
changes depended on the amount of I input.

To assess response scaling in the model (Fig. 3), I
began with a combination of E and I input that produced
a 15 spk/s response (chosen because we measured ex-
perimentally an average response that peaked near 15
spk/s; Fig. 1C,D). Then, we multiplied both input rates by
a single constant and measured the size of the response
to the scaled input. We found that when feedforward I
input is small, responses are near-linear (Fig. 3C). This is
not surprising, as previous theoretical work using strong
local synaptic coupling in models with binary (van
Vreeswijk and Sompolinsky, 1996) or current-based
(Brunel, 2000) neurons showed that networks can pro-
duce linear responses although individual neurons in cor-
tical networks are nonlinear (Priebe and Ferster, 2008).
However, these models did not characterize the effects of
varying feedforward E and I input separately, and so we
varied feedforward I input in the conductance-based
model. Indeed, when feedforward I input was varied, we
observed deviations from linearity. Although the sponta-
neous spike rate and the spike rate response to a single
stimulus alone were both held constant with and without
feedforward inhibition, increasing stimulus strength
showed more sublinear response scaling when feedfor-
ward inhibition was present.

Local connectivity changes summation only in the

presence of feedforward inhibition

Although adding feedforward inhibition induced some
sublinearity, we wished to know whether more dramatic
nonlinearities were possible. Therefore, we next (Fig. 4)
changed local recurrent connectivity between and among
E and I populations and measured how those connectivity
changes affected response scaling. Fig. 4 shows the ef-
fects of varying two local connections (first, strength of
synapses from E to I, and second, strength of synapses
from I to I) to illustrate the range of effects I observed. To
implement varying connectivity in the model, we added
additional connections between two neuronal populations
(e.g., E to I or I to I) with the same sparsity as the network.
I then varied the strength of those additional connections
and measured effects on response scaling.
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Figure 3. Spiking model shows sublinear scaling with feedforward inhibition. A, Schematic of network architecture. Blue, E cells;

green, I cells. The conductance-based spiking model produces stochastic Vm and spikes as seen in vivo, and an example membrane

potential (Vm) trace from one excitatory cell is shown. B, Response scaling as feedforward (FF) input to E and I cells is varied. To

measure response scaling, inputs to E and/or I cells with rate given by x and y axes are delivered, and average response over all E

cells is measured. Then, the E and I input rates are multiplied by a constant (here, 2), and the size of the second response is compared

to the first. Percentage change shown by color: yellow, second response is similar (linear); blue, second response is smaller

(sublinear). Contour lines show first response (spk/s). Response rates �5 and �20 spk/s are masked (gray). Average spontaneous rate

is adjusted to 5 spk/s (Methods), and 33% of network neurons receive external input, to approximate the sparse set of cortical

neurons that typically respond to sensory inputs (Fig. 1). There is a gradual increase in sublinearity moving up and to the right in the

figure. Pink points show E and I rate combinations used in C and D. C, Near-linear responses to a range of input sizes when

feedforward input is provided to E cells only. Parameters here are indicated by pink dot in B, and first two responses here are the same

two responses used to compute percentage change shown in color there. Left, average rates; right, same data replotted showing
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With only feedforward input to E cells (Fig. 4A,C,E), we
found that changing network connections did not dramat-
ically affect response scaling. Changing the connectivity
could change the gain of the network (the size of the

response to a constant input; Fig. 4A, contour lines), but
response scaling was nearly linear (Fig. 4A, plot is yellow
throughout; Fig. 4C,D: black lines lie close to horizontal
dotted line). At high firing rates, we consistently saw

continued

change (spk/s) in response (y-axis) as a function of prior response (x-axis). For these plots, a linear response is a horizontal line

(dashed gray line). Heavy lines, prior rates �50 spk/s, highlighting for visual clarity rates far from potential saturation caused by

absolute refractory period (3 ms). D, Sublinear responses to a range of input sizes when input provided to both E and I cells. Same

conventions as C. In this case, heavy green line in right panel lies farther below horizontal than heavy blue line in C, showing more

sublinear scaling.

Figure 4. With feedforward inhibition, network model can produce linear or sublinear responses. A, Simulations with feedforward

input to E cells only, while local network connectivity is varied. x-axis, E-to-I connection strength; y-axis, I-to-I connection strength.

Axes give percentage change in total synaptic input that a single cell receives from one (E or I) population (see Methods), where zero

is a balanced network (e.g. Fig. 3) with equal probability of synapses onto E and I cells. Other conventions as in Fig. 3B (contour lines

show evoked response to first stimulus, color shows percentage difference in response to doubled external stimulus). Spontaneous

rate and external stimulus rates are constant for entire panel. B, Simulations with feedforward input to E and I cells while local

connectivity is varied. Pink symbols show parameter regions where scaling is sublinear (stronger I¡I connectivity) or linear (stronger

E¡I connectivity). C, Scaling plot (response size as a function of previous rate) for parameters shown by pink dot in A: no extra local

connections, feedforward E only, same parameters as Fig. 3C. Inset, time course of responses to the step stimulus; subtracting each

rate from rate at the previous step gives y-axis in main panel. D–F, same plots, using parameters shown by corresponding pink dots

in B. Comparing D and E shows that large sublinearity can be produced by extra I¡I connections only with feedforward inhibition.

Comparing D and F shows that linearity can also be achieved with feedforward inhibition if E¡I connectivity is strengthened.
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moderate increases in sublinearity, which seems likely to
be due to effects of the 3-ms absolute refractory period.
(To focus on rates well below the refractory period, I show
rates above 50 spk/s as light gray lines in Fig. 4C,D.) I also
varied all pairwise combinations of E-to-I connectivity, as
well as feedforward E-and-I input strength, and found that
without feedforward inhibition, responses never showed
substantial nonlinearity. Thus, the linear scaling we had
observed in the model when delivering input to E cells
only was robust to changes in local connectivity. In sum,
without feedforward inhibition, scaling was approximately
linear, and local connectivity changes had little effect.

Near-linear scaling was consistently seen when feed-
forward input arrived to E cells, but when feedforward
input arrived to both E and I cells, responses could be
either linear or sublinear. When we increased local I-to-I
connection strength (Fig. 4B, y axis), sublinearity was
observed (Fig. 4D; plot parameters correspond to pink
asterisk in Fig. 4B, in blue region of plot). But increased
E-to-I connection strength (Fig. 4B, x axis) led to increas-
ingly linear scaling (Fig. 4E; plot parameters correspond to
pink | symbol in Fig. 4B). The sublinear scaling produced
by stronger I-to-I connectivity was dramatic. As with all
the time course plots (Fig. 4C–F), I chose input strength so
that the first firing rate response was 15 spk/s, but when
I-to-I connectivity was increased, subsequent firing rate
responses fell as low as 1 spk/s (Fig. 4D).

It appears that increased I–I coupling creates sublinear-
ity for the later (stronger) stimuli by changing the scaling of
the E cells in the network. Analytical work shows it is
possible for the E cells to show a supralinearity for small
inputs that becomes more sublinear at larger inputs (Ah-
madian et al., 2013; Sanzeni et al., 2017). Stronger I–I
connections reduce amplification of inputs to I cells, but
at the same time increase amplification for inputs to E
cells. This increase in amplification of E responses can
increase the range of input that gives supralinearity in E
cells. It is consistent with the responses we saw in simu-
lation (Fig. 4C,D, insets) that, after changing I–I connec-
tions, the first response lies on the initial supralinearity,
making the rest of the responses more sublinear. (In all the
panels of Fig. 4, the I-cell responses show no large non-
linearities, suggesting that it is not changes in I-cell re-
sponses that drive the sublinearity we saw.) Whether I–I
connections can change very much in vivo is unclear, but
anatomic studies suggest that some changes can occur,
as inhibitory cells modify their dendritic structure over
time (Chen et al., 2011).

In sum, the numerical simulations show that local con-
nectivity changes can dramatically affect response scal-
ing, but only in the presence of feedforward I input.

Connectivity effects on summation do not depend

on connection sparsity or strength

We next examined whether synaptic strength and con-
nection sparsity can change the role of feedforward inhi-
bition in response scaling. We expected that varying the
total recurrent input that neurons receive would change
nonlinearity of responses (as predicted by theory, van
Vreeswijk and Sompolinsky, 1996; Ahmadian et al., 2013),

as long as the network remained stable. Therefore, we
varied total input in two ways, by varying connection
sparsity and synaptic strength (Fig. 5). Experimental esti-
mates of local connection sparsity range as high as 10%–
20% (i.e., each neuron connects to 10%–20% of nearby
neurons; Braitenberg and Schüz, 2001; Lefort et al.,
2009). But the effective sparsity of connections might be
lower, as connection probability in cortical networks is
known to fall off with distance. Average network connec-
tion probabilities might thus be lower than the measure-
ments obtained for nearby neurons. Therefore, to examine
the effects of changing connection probability, we varied
sparsity between 2% and 20%. We found that in all these
cases, adding feedforward inhibitory drive allowed more
sublinear responses (Fig. 5; green lines always lie below
blue lines in Fig. 5A). We observed more linear scaling
when we increased the strength of all synapses together
and a bigger range of possible scaling (from supralinear to
sublinear) when we decreased synaptic strength. These
results show that, in networks that use a range of con-
nection strength and sparsity, feedforward inhibition en-
ables local E and I connectivity to have similar effects on
response scaling, although the networks became more
linear as connectivity strength increased.

Summation here and in past data can be explained

by a model with feedforward inhibition

Next, we asked whether a model that incorporates
realistic optogenetic input shows the same scaling de-
pendence on feedforward inhibition we observed. Up to
this point, I had examined the behavior of simulated net-
works only by scaling a feedforward (spiking) input (Figs.
3–5). I implemented this feedforward input to simulate the
way input spikes change conductance in neurons, by
modulating the firing rate of a (Poisson) stochastic point
process. Using these input spike trains, the sum of feed-
forward synaptic inputs in a given network neuron has
substantial fluctuations about its mean. In contrast, ex-
perimental ChR2 stimulation activates many channels and
produces conductance changes with much smaller fluc-
tuation about the mean. Thus, it might be possible that the
scaling behavior we studied experimentally, with ChR2
combined with visual stimuli, would differ from the com-
binations of feedforward input simulated in Figs. 3–5. To
determine whether there was a difference, we simulated
ChR2 input by changing conductance and combined this
with feedforward input (Fig. 6). I found that combinations
of ChR2 and visual inputs produced effects qualitatively
similar to those I had previously seen. Combinations of
simulated ChR2 and visual input (Fig. 6A) showed slightly
increased sublinearity compared with a single scaled vi-
sual input (cf. Fig. 3B). (I also saw some slight sublinearity
in my measurements of responses to combined ChR2 and
visual input in mouse V1, Fig. 1.) However, as with simu-
lated visual input (Figs. 3–5), we found that with paired
conductance (ChR2) and spiking (visual) inputs, more
sublinearity is possible when the feedforward input com-
bines inhibitory and excitatory targets than when feedfor-
ward input targets only excitatory neurons (Fig. 6B,C).
Also, in the presence of feedforward inhibition, moderate
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Figure 5. Feedforward inhibition leads to sublinearity in networks with a range of recurrent synaptic sparsities and synaptic strengths.

Top row, simulations in the conductance-based network with 10% connectivity, with strong synapses (each cell receives 10� more

E and I input than in the networks of Figs. 3 and 4). Other rows show networks with different sparsity and synaptic strength. The

network of Figs. 3 and 4 is the fourth row (2% sparsity, 1� strength). A, Scaling plots showing network response as a function of prior

rate before stimulus. Blue, feedforward E input only, parameters shown in column B; green, feedforward E and I input, corresponding

parameters shown in column C. In all rows, feedforward inhibition (green) allows more sublinearity than feedforward excitation alone

(blue). Dashed line, top row: network instability (rates diverge). B, Average network response as I-I synaptic strength (x-axis) and

feedforward E input (y-axis) are varied. No feedforward inhibition. Black dot shows parameters used to plot blue line in A (parameters

chosen to maximize sublinearity). Gray regions mask areas where evoked rates are �5 or �20 spk/s, or where network was unstable

(rates diverged to maximum rate given by refractory period). Other conventions as in Figs. 3B and 4A,B. C, network response as a

function of I¡I and feedforward E input, in the presence of feedforward inhibition. Individual gray squares seen in fifth row (20%

sparsity) column B, inside the 5–20 spk/s contours indicate strongly irregular (nonmonotonic) response scaling: strong sublinearity for
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changes in network connectivity can modify scaling be-
havior (Fig. 6D). In sum, in the models that simulate visual
input alone (Figs. 3–5) and the models that simulate com-
bined visual and ChR2 (conductance) inputs (Fig. 6), the
role of feedforward inhibition and I–I connectivity in re-
sponse scaling is similar.

We next asked what combinations of connectivity and
feedforward input could describe both my data and past

measurements. We constructed a model with combined
visual (spiking) and ChR2 (conductance) inputs and fitted
evoked rates to my data. My data (Fig. 6E) were well-
matched by the simulations that showed small sublinear-
ity (Fig. 6A–D). The data were similar to two different sets
of network simulation parameters. It was possible for
networks with only feedforward excitation to show re-
sponses describing the data (Fig. 6B), but networks with

continued

at least one stimulus step, when both previous and later responses were linear or supralinear. Feedforward inhibition arrival rate to

stimulated cells for each row, from top: 14k, 14k, 19k, 11k, 17k spk/s, chosen to give a 15 spk/s response for 3� the feedforward

excitatory rate that alone produces a 15 spk/s response (see Fig. 3B). Fourth row (2% sparsity, same network as Figs. 3 and 4) uses

40% extra I¡E connections to show that linear responses are robust to many forms of connectivity variation.

Figure 6. Experimental linear scaling can be replicated in networks receiving feedforward inhibition. A, Simulation where conductance

steps (ChR2 input) and feedforward Poisson trains (visual input) are combined. Strengths of feedforward E input (x-axis) and

feedforward I input (y-axis) are varied while spontaneous rate is set to 5 spk/s. Connection sparsity is 2%. Other conventions as in

Fig. 3B. Symbols (�) show values of E, I input used in B–D. B, Network responses when feedforward input is supplied to E cells only.

Top row, network responses (mean of E cell rates). Brown, feedforward Poisson (visual) input only; cyan, conductance (ChR2) input

combined with visual input. Conductance increase lasts for the full duration of the cyan trace. Visual input duration is shown by black

bar (bottom of plot). Dotted line indicates rates return to previous baseline when feedforward input ends. Second row, same data as

top row, with baseline rate subtracted. Third row, response (y-axis) as a function of rate before feedforward input begins (x-axis). C,

Same network simulations with feedforward input to both E and I cells (parameters marked by C in A). D, network receiving

feedforward input to both E and I cells, but with stronger local connections from E to I cells (compare Fig. 4, with similar effect for

two feedforward Poisson inputs instead of feedforward input paired with conductance step as shown here). E, data from Fig. 1C

plotted to show how responses scale as baseline is changed. Three lines (brown, no ChR2; cyan, with ChR2) are the three groups

of recorded neurons shown in Fig. 1C.

New Research 12 of 17

January/February 2018, 5(1) e0356-17.2018 eNeuro.org



both feedforward excitation and inhibition could also de-
scribe the data when the network local connectivity was
adjusted (Fig. 6D). Because feedforward inhibition is a
common feature of cortical networks in many species
(Douglas and Martin, 2004), a model using feedforward
inhibition seems a good choice to describe experimentally
measured response scaling. Moreover, as described
above, with feedforward inhibition, changes in local (e.g.,
I–I) connectivity can change response scaling from linear
to sublinear, describing not just this data but also past
data. These simulations show that a wide regime of cor-
tical scaling behavior, from linear (as seen here in mouse
V1 and also in the tree shrew; Huang et al., 2014), to
strongly sublinear (as seen in primate V1; Nassi et al.,
2015), can be achieved by a model with feedforward
inhibition. In sum, the simulations show that a model with
feedforward inhibition can describe both my data and
past observations.

With this model, we could compare response scaling of
neurons that received direct ChR2 input (33% of model E
neurons, see Methods) to those that received no ChR2
input and thus had optogenetic responses due only to
recurrent input from other cells in the network (67% of E
neurons). Using a model network in which the average
across all E neurons was sublinear (with feedforward
inhibition but no local connection changes; Fig. 6C), I
found that both directly driven and recurrent-only neurons
show sublinear scaling (all E cells, mean –0.7 spk/s
change in visual stimulation response per 1 spk/s change
in baseline rate; directly driven E cells, –0.6 spk/s per unit
baseline; non–directly driven E cells, –0.9 spk/s per unit

baseline), though the directly driven cells, as expected,
showed larger ChR2 responses (all E cells, 7.9 � 15
spk/s; directly driven, 22.7 � 20 spk/s; non–directly
driven, 3.0 � 8.9 spk/s, mean � SD). Thus, though ex-
perimentally it is difficult to reliably distinguish neurons
that receive direct ChR2 input from those that do not,
both populations show similar scaling in the model, sup-
porting analyses of scaling that consider both populations
without definitively separating them. Also, in the model,
the larger the ChR2 firing rate change, the larger the
change in visual response (in spikes per second). This is
consistent with the data in Figs. 1 and 2: the average
scaling in the data is slightly sublinear, and the neurons
with the largest ChR2 effects show slightly increased
sublinearity.

PV neuron stimulation effects are explained by the
model with feedforward inhibition

We next tested the model against data obtained by
pairing visual and optogenetic stimulation of parvalbumin-
positive (PV) cells. A majority of cortical PV inhibitory
neurons are soma-targeting fast-spiking basket cells
(Kawaguchi and Kubota, 1997; Tremblay et al., 2016),
which are well positioned to act as the balancing popu-
lation in the network models. We found that stimulating
PV neurons with ChR2 in awake mice produces a mod-
erate suppression of visual responses, with a larger
change in baseline rates than in stimulus responses. As
before, we measured the visual response relative to the
preceding baseline firing rate, which is changed by opto-
genetic stimulation. The optogenetic stimulation lowered

Figure 7. PV-ChR2 stimulation data support the recurrent model with feedforward inhibition. A, Moderately sublinear scaling of visual

responses is seen when PV neurons are optogenetically stimulated. (Data set previously reported in (Glickfeld et al., 2013)). Same

conventions as in Fig. 1D. n � 43 units, 6 SU, 37 MU. B, Response sizes plotted as a function of baseline rate; same conventions

as bottom panels in Fig. 6B–D. Stimulation of PV inhibitory neurons lowers baseline firing rates (here 2.3� reduction), so visual �

ChR2 response (blue point) is to the left of visual only (brown). C, D, Model (with feedforward inhibition) that best fits E neuron

stimulation data also describes moderate sublinearity seen in PV-ChR2 stimulation. C, Model with feedforward input to E cells

only (same model as in Fig. 6B) shows very strong sublinearity. Two lines show two different strengths of optogenetic input to

I cells (chosen to produce 2� or 3� decrease in baseline rates). D, Model with feedforward input to E and I cells and stronger

local E-to-I connectivity (same model as in Fig. 6D), shows a range of sublinear scaling similar to that seen in the experimental

data (A, B).
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the baseline firing rate by a substantial amount (from 5.4
to 2.4 spk/s, a 57% reduction; p � 10	7, Wilcoxon test)
and reduced the response to a high-contrast visual stim-
ulus by a smaller amount (Fig. 7A,B; from 7.6 to 5.3 spk/s
or 29%; p � 10	6, Wilcoxon test). The additive baseline
effect and smaller sublinear effect on responses we ob-
served is consistent with prior studies activating PV neu-
rons in mouse visual cortex (but see Atallah et al., 2012;
Lee et al., 2012; Wilson et al., 2012), where despite some
differences in sharpening of orientation tuning (perhaps
explained by threshold-linear models Atallah et al., 2012,
2014; Phillips and Hasenstaub, 2016), additive effects
with some sublinearity were seen.

We then used this PV-ChR2 stimulation data to deter-
mine which models in Fig. 6 fitted both the excitatory and
PV stimulation mouse V1 data. As with the simulations in
which excitatory neurons received ChR2 (conductance)
input, we simulated the effects of optogenetic stimulation
of PV cells by delivering a conductance input to PV neu-
rons in the models. We adjusted the size of the conduc-
tance input to match the firing rate changes in the data
(Fig. 7C). The two models that fitted the near-linear re-
sponses to excitatory stimulation (Fig. 6) are the model
without feedforward inhibition (Fig. 6B) and the model
with feedforward inhibition and local synapses adjusted to
produce near-linear responses (Fig. 6D). For each of those
two models, we simulated optogenetic input to PV cells
and measured the change in visual response size with and
without optogenetic PV input. We found that the model
without feedforward inhibition disagreed with the PV-
ChR2 data, displaying very strong suppression (Fig. 7C).
Only the model with feedforward inhibition (Fig. 7D)
showed the same scaling (moderate suppression) in the
PV-ChR2 data. The reduced suppression in the model
with feedforward inhibition might be due to a smaller
proportion of PV total input coming from optogenetic
stimulation in that model, compared with the model in
which PV cells receive no direct feedforward input. Opto-
genetic perturbations of excitatory and PV-positive cells
are described by a cortical recurrent network model that
requires feedforward inhibition.

In sum, my data show that average response sum-
mation for excitatory input in mouse V1 is close to linear,
although individual cells can be nonlinear. Linear summa-
tion holds even for substantial shifts in firing rate (ChR2-
induced firing rate changes of 10–15 spk/s, approximately
the same size as the maximum visual response; Fig. 1).
Using a numerical model of conductance-based spiking
neurons, we found that response scaling is affected dra-
matically by synaptic connectivity. Moderate changes in
synaptic coupling (�20%) between inhibitory cells can
change response scaling from linear to sublinear (Figs.
4–6). Further, the change in inhibitory-to-inhibitory (I–I)
connectivity that leads to sublinear summation only yields
such sublinear summation in the presence of feedforward
inhibition.

Discussion
It might seem surprising that we experimentally ob-

served linear responses and not purely divisive normal-

ization, where adding an additional stimulus yields

reduction of the responses to a single stimulus. This form

of sublinear summation has been observed in different

visual cortical areas of several species. Linear summation,

on the other hand, is also commonly seen at various

stages of sensory systems, and both linear and sublinear

responses may be useful at different levels (Carandini and

Heeger, 2012). Linear summation may be more desirable

when responses at different locations should receive

equal weight, as when an organism must sensitively de-

tect a distant predator, or when spikes that occur at

different times should produce the same downstream

effect. In fact, computer vision systems often use both

linear and normalization steps in distinct layers or net-

works (Carandini and Heeger, 2012; Yamins and DiCarlo,

2016). Experimentally, normalization is usually measured

with sensory stimuli, not with direct cortical input, and

thus normalization might partially depend on subcortical

(e.g., thalamic gain control; Bonin et al., 2006) or feedback

effects. Whether responses are linear or sublinear (divi-

sive) might also be controlled by network activity level

(Phillips and Hasenstaub, 2016), or, as studied here, by

intracortical connectivity in E and I populations.

The linear responses we observed with excitatory op-

togenetic stimulation in mouse primary visual cortex are

similar to those seen in tree shrew visual cortex (Huang

et al., 2014) but different from the sublinear responses

seen in macaque visual cortex (Nassi et al., 2015). Al-

though variation in evoked firing rates may be an expla-

nation for those differences, our simulations show that a

broadly similar cortical architecture can support both

kinds of scaling, subject to moderate adjustments in local

connectivity. The linear responses we saw in the mouse

differ from those of Sato et al. (2014), who also delivered

combinations of excitatory optogenetic and visual input to

mouse V1 neurons and found sublinearity under certain

conditions. However, Sato et al. used an experimental

approach different from the other three studies (macaque,

tree shrew, and the present study in mouse), in which they

optogenetically elicited antidromic input spikes by stimu-

lating the contralateral hemisphere from which they were

recording. Comparing these two types of input may shed

additional light on how cortical circuits transform inputs to

outputs.

To stimulate many V1 neurons, I delivered optogenetic

input to multiple neurons simultaneously. I used a blue

light spot a few hundred micrometers in diameter, com-

parable to the region of mouse V1 activated by my small

visual stimulus. Many neurons in the cortex change their

firing rates in response to even small sensory stimuli

(Bonin et al., 2011; Van Essen et al., 1984). Anatomically,

sensory input that arrives to multiple cells is common, as

in the case of divergent feedforward thalamic input to the

cortex (Reid, 2001). Single axons from the thalamus often

ramify across several hundred micrometers of the cortex

(Garraghty and Sur, 1990; Braitenberg and Schüz, 2001),

and thalamic axons projecting to the visual cortex can

make synapses on dozens of excitatory cortical cells

(Freund et al., 1989).
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Optogenetic stimuli may lead to firing rate changes in
other parts of the brain besides the area stimulated. But
perhaps because the majority of synapses made by cor-
tical neurons are within the same cortical area, local in-
tracortical effects for optogenetic stimuli like these have
been observed to be larger than effects on the visual
thalamus (Olsen et al., 2012; Li et al., 2013), although the
visual thalamus (dorsal lateral geniculate) receives a
strong projection from V1 (Reid, 2001). Thus, the neurons
best suited to act as the recurrent population in the model
may be other V1 neurons, and perhaps even neurons
within a few hundred micrometers of the neurons receiv-
ing input, where the probability of recurrent connectivity is
highest (Lefort et al., 2009). However, other neurons in the
brain could also in principle contribute to the recurrent
population.

My results show that network mechanisms can contrib-
ute to response summation. The model neurons are leaky
integrate-and-fire neurons, so individual model neurons
sum their subthreshold inputs linearly, and the nonlinear
spiking responses we characterized likely arise from how
E and I neurons interact. We chose this model architec-
ture because I judged it the simplest model that could
capture both excitatory-inhibitory interactions and also
single-cell nonlinearities due to refractory period, Vm fluc-
tuations, spike threshold, and conductance changes
(Chance et al., 2002; Richardson, 2004). There are, how-
ever, other single-cell mechanisms, such as short-term
synaptic plasticity or dendritic nonlinearity (Häusser et al.,
2000; Silver, 2010), that might additionally contribute to
even more nonlinear summation, both below threshold
and in spike responses. On the other hand, dendritic
nonlinearities might also have roles that do not affect
scaling; for example, nonlinearities can be used to amplify
distant input synapses so that different synapses produce
equal responses at the soma (Katz et al., 2009).

We adjusted synaptic coupling between (E and/or I)
populations by changing the strength of a set of fixed
connections between the desired populations. Because,
in sparse networks like this, neurons share only a small
fraction of their input, we expected increases in synaptic
strength to achieve the same qualitative result as adding
new synapses, even if the two types of changes may not
have exactly proportional effects on the behavior of the
network. Fig. 5 shows that feedforward inhibition allows
more sublinearity across changes in both synaptic
strength and synapse number.

Feedforward inhibition is included in the canonical cor-
tical microcircuit framework (Douglas and Martin, 2004)
because it is a stereotypical feature of many cortical
areas. In sensory cortical areas, including the visual cor-
tex, it has been observed that input thalamic neurons
make synapses onto both excitatory principal cells and
inhibitory basket cells. Such feedforward inhibitory con-
nectivity has been observed with both anatomic and
physiologic methods (Isaacson and Scanziani, 2011). Be-
cause inhibitory basket cells project strongly back to
excitatory cells, inhibitory changes due to thalamic input
arrive to principal cells a few milliseconds after the first
excitatory changes. This delay of a few milliseconds be-

tween the arrival of excitation and inhibition can be used
to align spike outputs of cortical neurons (Swadlow, 2003;
Gabernet et al., 2005; Cruikshank et al., 2007; Tiesinga
et al., 2008; Tremblay et al., 2016). Beyond shaping the
timing of spike responses, however, it has been previ-
ously noted that feedforward inhibition might also be used
to control response magnitude, either by preferential am-
plification of E or I inputs (Douglas et al., 1995) or by
extending the range of inputs over which an excitatory
population can respond (Pouille et al., 2009). Ahmadian
et al. (2013) examined preferential amplification and
showed that rate-based networks with an excitatory and
inhibitory term that are stable (so that the network does
not, e.g., diverge and become epileptic) have regimes of
both linearity and sublinearity, although it is not yet clear
which of these regimes spiking networks operate in, and
which cellular or synaptic parameters affect summation.
In the model of Ahmadian et al. (2013), individual cells can
be supralinear (Priebe and Ferster, 2008), but when ex-
ternal drive arrives to multiple cells, supralinearity is also
seen when recurrent connections are weak and thus ex-
citation and inhibition are not strongly coupled. This may
explain why we saw supralinear responses in the model
network with the weakest synaptic connectivity (Fig. 5).
Analytical work (Ahmadian et al., 2013; Sanzeni et al.,
2017) also shows that the range of summation possibili-
ties is limited in the absence of feedforward inhibition. For
example, in Ahmadian et al. (2013), their parameters 
E

and 
I describe some summation nonlinearities, and sev-
eral terms in those parameters disappear when feedfor-
ward inhibition (their gI) is set to zero.

Substantial recurrent intracortical response is elicited
by sensory input, with approximately two-thirds of synap-
tic input after a sensory stimulus arising from recurrent
synapses (Li et al., 2013; Lien and Scanziani, 2013). If
recurrent connectivity is very strong, previous modeling
results (van Vreeswijk and Sompolinsky, 1996; Renart
et al., 2010) predict that excitatory and inhibitory popula-
tions are forced by the strong coupling to track each
others’ activity closely, resulting in linear responses. In
accord with this prediction about strongly coupled net-
works, we observed increasing linearity when we in-
creased synaptic strength (Fig. 5) as long as the network
remained stable. However, for very strong recurrent con-
nectivity, feedforward connectivity must also be very
strong to drive any response (Ahmadian et al., 2013; see
also my Fig. 5), which appears nonphysiologic (Li et al.,
2013; Lien and Scanziani, 2013). Our simulations use
synapses of moderate size (order 1 mV with 2% sparsity
as in Figs. 3, 4, and 6 and Fig. 5, row 4; see Methods),
requiring tens of PSPs to combine to produce a spike, as
seen in cortical neurons (Barral and Reyes, 2016). These
observations suggest that the differences in scaling we
observed occur in a range of moderate synaptic strengths
(as predicted by Ahmadian et al., 2013): low enough to
avoid obligate linearity, and high enough to allow recur-
rent connections to contribute substantially to network
input-output functions.

We found that a network model can link local connec-
tivity to network physiologic responses in ways that might
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be difficult to predict without the model. It has been

difficult to measure many of the synapses in a brain

volume, but connectomic methods (Briggman et al., 2011;

Lee et al., 2016) promise to make such comprehensive

synaptic mapping possible even in column-sized volumes

of the cortex. Combining approaches for controlling input

with methods to measure connectivity will be useful to

shed light on an important part of brain computation: the

input-output transformations of populations of connected

cells.
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