
Feeding Frenzy: Selectively Materializing Users’ Event
Feeds

Adam Silberstein1, Jeff Terrace2, Brian F. Cooper1, Raghu Ramakrishnan1

1Yahoo! Research
Santa Clara, CA, USA

{silberst,cooperb,ramakris}@yahoo-inc.com

2Princeton University
Princeton, NJ, USA

jterrace@cs.princeton.edu

ABSTRACT

Near real-time event streams are becoming a key feature of
many popular web applications. Many web sites allow users
to create a personalized feed by selecting one or more event
streams they wish to follow. Examples include Twitter and
Facebook, which allow a user to follow other users’ activ-
ity, and iGoogle and My Yahoo, which allow users to follow
selected RSS streams. How can we efficiently construct a
web page showing the latest events from a user’s feed? Con-
structing such a feed must be fast so the page loads quickly,
yet reflects recent updates to the underlying event streams.
The wide fanout of popular streams (those with many fol-
lowers) and high skew (fanout and update rates vary widely)
make it difficult to scale such applications.
We associate feeds with consumers and event streams with

producers. We demonstrate that the best performance re-
sults from selectively materializing each consumer’s feed:
events from high-rate producers are retrieved at query time,
while events from lower-rate producers are materialized in
advance. A formal analysis of the problem shows the surpris-
ing result that we can minimize global cost by making local
decisions about each producer/consumer pair, based on the
ratio between a given producer’s update rate (how often an
event is added to the stream) and a given consumer’s view
rate (how often the feed is viewed). Our experimental re-
sults, using Yahoo!’s web-scale database PNUTS, shows that
this hybrid strategy results in the lowest system load (and
hence improves scalability) under a variety of workloads.

Categories and Subject Descriptors: H.2.4 [Systems]:
distributed databases

General Terms: Performance

Keywords: social networks, view maintenance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’10, June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

1. INTRODUCTION
Internet users like to be kept up-to-date with what is go-

ing on. Social networking sites like Twitter and Facebook
provide a “feed” of status updates, posted photos, movie re-
views, etc., generated by a user’s friends. Content aggrega-
tors like My Yahoo and iGoogle let users create a customized
feed aggregating multiple RSS sources. Similarly, news ag-
gregators like Digg and Reddit provide a feed of the latest
stories on topics like“entertainment”and“technology,”while
news sites like CNN.com provide the ability to follow fine-
grained topics like “health care debate.”

Each of these examples is a follows application: a user
follows one or more interests, where an interest might be
another user, content category or topic. In this paper, we
formalize this important class of applications as a type of
view materialization problem. We introduce the abstraction
of a producer, which is an entity that generates a series of
time-ordered, human-readable events for a particular follow-
able interest. Thus, a producer might be a friend, a website,
or aggregator of content on a particular topic collected from
multiple sources. The goal of a follows application is to
produce a “feed” for a user, which is a combined list of the
latest events across all of the producers a user is following.
For example, a feed might combine recent status updates
from all of the user’s friends on a social site, or recent sto-
ries on all of the user’s topics on a content aggregation site.
In some cases a user wants a combined feed, including both
social and topic updates. An important point to keep in
mind for optimization purposes is that we need only show
the most recent events (specified in terms of a window of
time or number of events) when a consumer checks his feed.

Follows applications are notoriously difficult to scale. The
application must continually keep up with a high through-
put of events. Twitter engineers have famously described
re-architecting Twitter’s back-end multiple times to keep
up with rapid increases in throughput as the system be-
came more popular (see for example [26]). At the same
time, users expect their feed page to load fast, which means
latency must be strictly bounded. This often means exten-
sive materialization and caching, with associated high cap-
ital and operations expenditure. For example, Digg elected
to denormalize and materialize a large amount of data to re-
duce latency for their “green badge application” (e.g., follow
which stories my friends have dugg), resulting in a blow up
of stored data from tens of GB to 3 TB [10].

There are several reasons why such applications are hard
to scale. First, events fan out, resulting in a multiplicative
effect on system load. Whenever Ashton Kutcher “tweets,”

his status update is propagated to over 4.6 million follow-
ers (as of March 2010). Even a considerably lower aver-
age fanout can cause severe scaling problems. Second, the
fanouts and update rates have high skew across producers,
making it difficult to choose an appropriate strategy. Face-
book, for example, reportedly employs different feed mate-
rialization strategies for wide-fanout users like bands and
politicians, compared to the majority of users who have
much narrower fanout.
In this paper, we present a platform that we have built

for supporting follows applications. Consider a producer of
events (such as a user’s friend, or news source) and a con-
sumer of events (such as the user himself). There are two
strategies for managing events:

• push—events are pushed to materialized per-consumer
feeds

• pull—events are pulled from a per-producer event store
at query time (e.g., when the consumer logs in)

If we regard each consumer’s feed as a “most recent”window
query, we can think of these options in traditional database
terms as a “fully materialize” strategy versus a “query on
demand” strategy. Sometimes, push is the best strategy, so
that when users log in, their feed is pre-computed, reducing
system load and latency. In contrast, if the consumer logs
in infrequently compared to the rate at which the producer
is producing events, the pull strategy is best. Since we only
need to display the most recent N events, it is wasteful to
materialize lots of events that will later be superseded by
newer events before the consumer logs in to retrieve them.
In our approach, a consumer’s feed is computed using a

combination of push and pull, to handle skew in the event
update rate across producers: a particular user that logs in
once an hour may be logging in more frequently than one
producer’s rate (so push is best) and less frequently than
another producer’s rate (so pull is best.) A key contribu-
tion of this paper is the theoretical result that making local
push/pull decisions on a producer/consumer basis minimizes
total global cost. This surprising result has great practical
implications, because it makes it easier to minimize overall
cost, and straightforward to adapt the system when rates or
fanouts change. Our experiments and our experience with a
live follows application show that this approach scales bet-
ter than a purely push or purely pull system across a wide
range of workloads. Furthermore, this local optimization
approach effectively allows us to cope with flash loads and
other sudden workload changes simply by changing affected
producer/consumer pairs from push to pull. Thus, our tech-
niques can serve as the basis for a general-purpose follows
platform that supports several instances of the follows prob-
lem with widely varying characteristics.
The follows problem is similar to some well-studied prob-

lems in database systems. For example, the “materialize or
not” question is frequently explored in the context of index
and view selection [13, 4]. In our context, the question is
not which views are helpful, but which of a large number of
consumer feed views to materialize. There has been work
on partially materialized views [16] and indexes [27, 24, 25]
and we borrow some of those concepts (e.g., materializing
frequently accessed data). In contrast to this previous work,
we show that it is not possible to make a single “materialize
or not”decision for a given base tuple (producer event) in the
follows problem setting; instead, we need to make that deci-

sion for each producer/consumer pair based on their relative
event and query rates. Other work in view maintenance and
query answering using views targets complex query work-
loads and aggregation, while our scenario is specialized to
(a very large number of) most recent window queries over
(a very large number of) streams. We review related work
more thoroughly in Section 6.

In this paper, we describe an architecture and techniques
for large scale follows applications. We have implemented
these techniques on top of PNUTS [9], a distributed, web-
scale database system used in production at Yahoo!. In par-
ticular, we make the following contributions:

• A formal definition of the follows problem as a partial
view materialization problem, identifying properties that
must be preserved in follows feeds (Section 2).

• An analysis of the optimization problem of determining
which events to push and which events to pull, in order
to minimize system load (equivalently, maximize scala-
bility) while providing latency guarantees. We establish
the key result that making push/pull decisions on a local
basis provides globally good performance (Section 3).

• Algorithms for selectively pushing events to a consumer
feed to optimize the system’s performance. Our algo-
rithms leverage our theoretical result by making deci-
sions on a per-producer/consumer basis. Further, these
algorithms allow our system to effectively adapt to sud-
den surges in load (Section 4).

• An experimental study showing our techniques perform
well in practice. The system chooses an appropriate
strategy across a wide range of workloads (Section 5).

Additionally, we review related work in Section 6, and con-
clude in Section 7.

2. PROBLEM DEFINITION
We now define the follows problem formally. First, we

present the underlying data model, including consumers,
producers, and the follows concept. Next, we examine user
expectations about the resulting customized feed. Then, we
define the core optimization problem we are addressing.

2.1 Follows data and query model
A follows application consists of a set of consumers (usu-

ally, users) who are following the event streams generated
by a set of producers. Each consumer chooses the produc-
ers they wish to follow. In this paper, a producer generates
a named sequence of human-readable, timestamped events.
Examples of producers are “Ashton Kutcher’s tweets” or
“news stories about global warming.” In general, a producer
may be another user, a website (such as a news site or blog)
or an aggregator of events from multiple sources. We treat
each followable “topic” (such as “global warming” or “health
care debate”) as a separate producer in our discussion, even
if the content for different topics comes from the same web-
site or data source. Events are usually ordered by the time
they were created (although other orderings are possible.)

We define the connection network as a directed graph
G(V, F), where each vertex vi ∈ V is either a consumer
or a producer, and there is a follows edge fij ∈ F from
a consumer vertex ci to a producer vertex pj if ci follows
pj (i.e., ci consumes pj ’s events.) Social networks are one
example of a type of connection network. Other examples

include people following each other on Twitter, status and
location updates for friends, customized news feeds, and so
on. While these instances share a common problem formu-
lation, the specifics of scale, update rates, skew, etc. vary
widely, and a good optimization framework is required to
build a robust platform.
We can think of the network as a relation Connection-

Network (Producer,Consumer). Typically, the connection
network is stored explicitly in a form that supports effi-
cient lookup by producer, consumer or both. For exam-
ple, to push an event for producer pj to interested con-
sumers, we must look up pj in the producer network and
retrieve the set of consumers following that event, which is
{ci : fij ∈ F}. In contrast, to pull events for a consumer
ci, we need to look up ci in the network and retrieve the
set of producers for that consumer, which is {pj : fij ∈ F}.
In this latter case, we may actually define the relation as
ConnectionNetwork(Consumer,Producer) to support clus-
tering by Consumer. If we want to support both access
paths (via producer and via consumer), we must build an
index in addition to the ConnectionNetwork relation.
Each producer pj generates a stream of events, which

we can model as a producer events relation PEj(EventID,

Timestamp, Payload) (i.e., there is one relation per pro-
ducer). When we want to show a user his feed, we must
execute a feed query over the PEj relations. There are two
possibilities for the feed query. The first is that the con-
sumer wants to see the most recent k events across all of the
producers he follows. We call this option global coherency
and define the feed query as:

Q1. σ(k most recent events)

⋃

∀j:fij∈F

PEj

A second possibility is that we want to retrieve k events
per-producer, to help ensure diversity of producers in the
consumer’s view. We call this option per-producer co-
herency and define the feed query as:

Q2.
⋃

∀j:fij∈F

σ(k most recent events)PEj

Further processing is needed to then narrow down the per-
producer result to a set of k events, as described in the next
section. We next examine the question of when we might
prefer global- or per-producer coherency.

2.2 Consumer feeds
We now consider the properties of consumer feeds. A feed

query is executed whenever the consumer logs on or refreshes
their page. We may also automatically retrieve a consumer’s
updated feed, perhaps using Ajax, Flash or some other tech-
nology. The feed itself is a display of an ordered collection
of events from one or more of the producers followed by
the user. A feed typically shows only the N most recent
events, although a user can usually request more previous
events (e.g., by clicking “next”). We identify several proper-
ties which capture users’ expectations for their feed:

• Time-ordered: Events in the feed are displayed in times-
tamp order, such that for any two events e1 and e2, if
Timestamp(e1) < Timestamp(e2), then e1 precedes e2
in the feed1.

1Note that many sites show recent events at the top of the

• Gapless: Events from a particular producer are dis-
played without gaps, i.e., if there are two events e1 and
e2 from producer P , e1 precedes e2 in the feed, and there
is no event from P in the feed which succeeds e1 but pre-
cedes e2, then there is no event in PEj with a timestamp
greater than e1 but less than e2.

• No duplicates: No event ei appears twice in the feed.

When a user retrieves their feed twice, they have expec-
tations about how the feed changes between the first and
second retrieval. In particular, if they have seen some events
in a particular order, they usually expect to see those events
again. Consider for example a feed that contains N = 5
events and includes these events when retrieved at 2:00 pm:

Feed 1

Event Time Producer Text
e4 1:59 Alice Alice had lunch
e3 1:58 Chad Chad is tired
e2 1:57 Alice Alice is hungry
e1 1:56 Bob Bob is at work
e0 1:55 Alice Alice is awake

At 2:02 pm, the user might refresh their feed page, causing
a new version of the feed to be retrieved. Imagine in this
time that two new events have been generated from Alice:

Feed 2

Event Time Producer Text
e6 2:01 Alice Alice is at work
e5 2:00 Alice Alice is driving
e4 1:59 Alice Alice had lunch
e3 1:58 Chad Chad is tired
e2 1:57 Alice Alice is hungry

In this example, the two new Alice events resulted in the
two oldest events (e0 and e1) disappearing, and the global or-
dering of all events across the user’s producers are preserved.
This is the global coherency property: the sequence of
events in the feed matches the underlying timestamp order
of all events from the user’s producers, and event orders are
not shuffled from one view of the feed to the next. This
model is familiar from email readers that show emails in
time order, and is used in follows applications like Twitter.

In some cases, however, global coherency is not desirable.
Consider the previous example: in Feed 2, there are many
Alice events and no Bob events. This lack of diversity re-
sults when some producers temporarily or persistently have
higher event rates than other producers. To preserve diver-
sity, we may prefer per-producer coherency: the ordering
of events from a given producer is preserved, but no guaran-
tees are made about the relative ordering of events between
producers. Consider the above example again. When view-
ing the feed at 2:02 pm, the user might see:

Feed 2’

Event Time Producer Text
e6 2:01 Alice Alice is at work
e5 2:00 Alice Alice is driving
e4 1:59 Alice Alice had lunch
e3 1:58 Chad Chad is tired
e1 1:56 Bob Bob is at work

This feed preserves diversity, because the additional Alice
events did not result in the Bob events disappearing. How-

page, so “preceded” in the feed means “below”when the feed
is actually displayed.

ever, whereas before there was an event (e2) between the
Bob and Chad event, now there is not. This event “dis-
appearance” is not possible under global coherency, but is
allowed under per-producer coherency to preserve diversity.

2.2.1 Feed diversity

We now look closer at diversity and offer a formal defini-
tion. Because of the skew in event rates that are inherent
in many follows applications, we may need to take explicit
steps to preserve diversity. Consider for example a user,
David, who logs in once a day. His father, Bob, may only
generate an event once a day, while his sister, Alice, gener-
ates an event once an hour. When David logs in, he would
like to see his father Bob’s latest event, even though there
might be many more recent events from Alice.
A simplistic way to define diversity is to specify that the

feed must contain at least one (or at least k) events from
each of the consumer’s producers. However, a consumer
may have more producers than there are events shown in
the feed, making it impossible to show one event from every
producer. Moreover, we do not necessarily want to show
extremely old events just to ensure diversity. If Bob’s latest
event is a year old, we may not want to include it, even if it
means showing zero Bob events.
Therefore, we define the notion of k,t-diversity. Infor-

mally, k, t-diversity specifies that if there is an event from
Bob in the last t time units, then we should not show more
than k Alice events unless we are also showing the Bob event.
More formally, consider two producers pi and pj being fol-
lowed by consumer C. Define Candidate(P, t) as the number
of events from producer P that are no older than t seconds,
and Count(P) as the number of events from producer P that
are shown in C’s feed.

• k, t-diversity: if Candidate(pi, t) > 0, and Count(pi) =
0, then Count(pj) ≤ k.

Consider again the feed examples in the previous section.
Imagine we specify t = 600 sec and k = 1. Then Feed
2 is not permitted, since Candidate(Bob, 600sec) = 1 and
Count(Bob) = 0, but Count(Alice) > 1. Feed 2’, however,
is permitted.
Note that we might prefer a stronger notion of diversity

in some cases. For example, if there are actually many Bob
events, we should not show ten Alice events and only one
Bob event. Therefore, applications may wish to maximize
some notion of “entropy” in the events that they show. For
our purposes, however, k, t-diversity captures a minimal no-
tion of diversity, and illustrates that even a minimal notion
of diversity conflicts with the global coherency guarantee.
For more flexibility an application can go further and ac-
quire a pool of events, and then use a custom algorithm to
decide which to show to the end user.

2.3 Optimization problem
To generate a feed, we must execute query Q1 or Q2.

The main question considered in this paper is, for a given
consumer ci, whether to pull events from the PEj relations
for the producers ci follows, or to pre-materialize (push) the
events that would result from the selections in the query. In
either case, system processing is required: work is done at
query time for pull, or event generation time for push. The
type of load placed on the system by this processing depends
on the architecture. If we store data on disk, the main cost
is likely to be I/O. However, in many follows applications,

data is stored in RAM for performance reasons. In that case,
the main cost is likely to be CPU cost.

Formally, let us define Cost() as the total usage of the
bottleneck resource (e.g., I/O or CPU). This usage includes
both processing events at generation time, as well as gener-
ating feeds at query time. Then, the general follows opti-
mization problem is:

• Minimize Cost(), while:

• Providing feeds that are time-ordered, gapless and
no-duplicates, and

• Respecting the chosen level of coherency (global or
per-producer), and

• If using per-producer coherency, then also ensuring
k, t-diversity.

Because a follows application is usually user-facing, we
may additionally be concerned about latency, and may be
willing to trade some extra system cost for reduced latency.
We define the latency-constrained follows optimization prob-
lem as:

• Minimize Cost(), while:

• Satisfying the conditions of the general follows op-
timization problem, and

• Ensuring the Nth percentile latency is less than M
time units (e.g., milliseconds).

For example, we might specify that the 99th percentile
latency be no more than 50 milliseconds. This might lead us
to make different decisions about pushing or pulling events
(in particular, we might push more events so that query time
latency meets the constraint.)

2.4 Aggregating producers
A producer may be an atomic entity (e.g., a user or news

website) or may be an aggregator of multiple other sites.
Aggregators are important to some follows applications be-
cause they can produce a single stream of events on a given
topic from multiple sources. Moreover, aggregators can ex-
tract information from sources that would not normally push
new events. In this paper, we treat atomic and aggregating
producers the same, and consider only their event rate and
fan out. However, a more general problem is to examine the
decisions that an aggregator must make: should the aggrega-
tor use push or pull for a given upstream source? Although
this decision is similar to the decisions we make when de-
ciding to push or pull for a producer/consumer pair, there
are additional complexities (like how frequently to pull, and
how to deal with upstream sources with different push or
pull costs). While this more general problem is outside the
scope of this paper, we discuss some of the additional chal-
lenges in Section 3.4.

3. OPTIMIZATION
We now solve the optimization problems introduced in

Section 2. We first solve the general follows optimization
problem. We call this solution MinCost. A particularly use-
ful result is that locally assigning each producer/consumer
pair to push or pull produces the globally optimal solution.
We then address the latency constrained follows optimiza-
tion problem by shifting edges from pull to push. This so-
lution, called LatencyConstrainedMinCost, allows us to in-
crementally adjust the system to effectively satisfy latency
constraints despite workload changes. Finally, we briefly

Notation Description

pj Producer
ci Consumer
fij “Follows:” consumer ci follows producer pj

Fi The set of all producers that consumer ci follows
H The cost to push an event to ci’s feed
Lj The cost to pull events from pj

ej,k The kth event produced by pj

φpj
pj ’s event frequency

φci
ci’s query frequency

kg Events to show in a feed (global coherency)
kp Max events to show per producer in a feed

(per-producer coherency)
λm Latency achieved in MinCost

λl Target latency of LatencyConstrainedMinCost

σij Decrease in latency by shifting eij from pull to push
ǫij Extra cost from shifting eij from pull to push

Table 1: Notation

examine the optimization problems posed by aggregating
producers.

3.1 Model and Assumptions
Recall the connection network G(V, F) from Section 2.1.

This graph is a bi-partite graph from producers to con-
sumers. When consumer ci performs a query, we must pro-
vide a number of events for ci’s feed. We consider both of the
coherency cases introduced in Section 2. In the global case,
we supply the most recent kg events across all producers
in Fi. In the per-producer case, we supply the most recent
kp events for each producer in Fi. Table 1 summarizes the
notation we use in this section.
The decisions we make for storing producer events and

materialized consumer feeds determine the cost to push or
pull events. We denote H as the cost to push an event to
ci’s feed, and Lj as the cost to pull a small constant number
of events from producer pj . Lj might vary between produc-
ers if we obtain their streams from different systems. We
assume kp and kg are both small enough that Lj will be the
same for each. Note that we assume that multiple events
can be retrieved using a pull from a single producer. This
is true if we have stored the events from producer streams,
clustered by producer; a single remote procedure call can
retrieve multiple events; and the disk cost (if any) for re-
trieving events is constant for a small number of events (e.g.
since any disk cost is dominated by a disk seek). We do not
consider the cost to ingest and store producer events; this
cost would be the same regardless of strategy.
Furthermore, we assume that the H and Lj costs are con-

stant, even as load increases in the system. If the system
bottleneck changes with increasing event rate or producer
fanout, this assumption may not be true. For example, we
may materialize data in memory, but if the number of con-
sumers or producer fan-out changes, the data may grow and
spill over to disk. This would change the push and pull costs
to include disk access. Usually we can provision enough re-
sources (e.g. memory, bandwidth, CPU etc.) to avoid these
bottleneck changes and keep H and Lj constant. Our anal-
ysis does not assume data is wholly in memory, but does
assume the costs are constant as the system scales.

3.2 Cost Optimization
We now demonstrate that the appropriate granularity for

decision making is to decide whether to push or pull indi-
vidually for each producer/consumer pair.

3.2.1 Per-Producer Coherency

We begin with the per-producer coherency case. For ci,
pj and event ej,k, we derive the lifetime cost to deliver ej,k
to ci. The lifetime of ej,k is the time from its creation to the
time when pj has produced kp subsequent events.

Claim 1. Assume that we have provisioned the system
with sufficient resources so that the costs to push and pull an
individual event are constant as the system scales. Further,
assume pull cost is amortized over all events acquired with
one pull. Then, the push and pull lifetime costs for an event
ej,k by pj for ci under per-producer coherency are:

Push cost over ej,k’s lifetime = H

Pull cost over ej,k’s lifetime = Lj(φci/φpj)

Proof: Push cost is oblivious to event lifetime; we pay H
once for the event. Pull cost does depend on lifetime. Event
ej,k has lifetime kp/φpj . Over this lifetime, the number of
times ci sees ej,k is φci(kp/φpj). The cost to pull ej,k is
(Lj/kp) (Lj amortized over each pulled event). Thus, life-
time cost for ej,k is (Lj/kp)φci(kp/φpj) = Lj(φci/φpj). 2

Then, we can conclude that for a given event, we should
push to a given consumer if the push cost is lower than pull;
and pull otherwise. Since the push and pull cost depend only
on producer and consumer rates, we can actually make one
decision for all the events on a particular producer/consumer
pair. We can derive the optimal decision rule:

Lemma 1. Under per-producer coherency, the policy which
minimizes cost for handling events from pj for ci is:

If (φci/φpj) >= H/Lj , push for all events by pj

If (φci/φpj) < H/Lj , pull for all events by pj

Proof: The push vs. pull decision draws directly from the
costs in Claim 1. 2

3.2.2 Global Coherency

Under global coherency, ci’s feed contains the kg most
recent events across all producers in Fi.

Claim 2. Assume that we have provisioned the system
with sufficient resources so that the costs to push and pull an
individual event are constant as the system scales. Further,
assume pull cost is amortized over all events acquired with
one pull. Then, the push and pull lifetime costs for an event
ej,k by pj for ci under global coherency are:

Push cost over ej,k’s lifetime = H

Pull cost over ej,k’s lifetime = Ljφci/
∑

pj∈Fi

φpj

Proof: The proof for the global case is similar to the per-
producer case, with a few key differences. Producer fre-
quency is an aggregate over all of Fi: φFi

=
∑

pj∈Fi
φpj .

Event ej,k has lifetime kg/φFi
, and its amortized pull cost is

L/kg. We substitute these terms in the per-producer anal-
ysis and reach the push and pull costs for global coherency.
We omit the complete derivation. 2

We can then derive the optimal decision rule for a (pro-
ducer, consumer) pair in the global coherency case.

Lemma 2. Under global coherency, the policy which min-
imizes cost for handling events from pj for ci is:

If φci/
∑

pj∈Fi

φpj >= H/Lj , push for all events by pj

If φci/
∑

pj∈Fi

φpj < H/Lj , pull for all events by pj

Proof: The push vs. pull decision draws directly from the
costs in Claim 2. 2
We summarize our main findings from Lemmas 1 and 2.

Under per-producer coherency, the lifetime cost for an event
for a particular consumer is dependent on both consumer
frequency and the event’s producer frequency. Under global
coherency, lifetime cost for an event is dependent on both
consumer frequency and the aggregate event frequency of
the producers that the consumer follows.

3.2.3 MinCost

We have shown how to minimize cost for individual pro-
ducer/consumer edges. We now show that such local deci-
sion making is globally optimal.

Theorem 1. For per-producer coherency, the MinCost so-
lution is derived by separately choosing push or pull for each
producer/consumer pair, with push vs. pull per pair deter-
mined by Lemma 1.

Proof: We minimize global cost by minimizing the cost paid
for every event. Similarly, we minimize the cost for an event
by minimizing the cost paid for that event for every con-
sumer. Lemma 1 assigns each edge push or pull to minimize
the cost paid for events between the edge’s consumer and
producer. Further, no assignment made on any one edge
imposes any restrictions on the assignments we can make
to any other edges. Therefore, minimizing cost for every
consumer and event minimizes global cost. 2

Theorem 2. For global coherency, MinCost is derived by
separately choosing push or pull for each consumer, with
push vs. pull per consumer determined by Lemma 2.

Proof: The proof mirrors that of Theorem 1. In this case,
Lemma 1 assigns all edges either push or pull. Again,
no edge assignment restricts any other edge assignments.
Therefore, minimizing cost for every consumer and event
minimizes global cost. 2
Theorems 1 and 2 have important theoretical and prac-

tical implications. The ability to separately optimize each
edge makes minimizing overall cost simple. Moreover, as
query and event rates change over time and new edges are
added, we do not need to re-optimize the entire system. We
simply optimize changed and new edges, while leaving un-
changed edges alone, and find the new MinCost plan.
We also observe that any system is subject to different

query and event rates, and skew controlling which consumers
or producers contribute most to these rates. To find the
MinCost, however, there is no need to extract or understand
these patterns. Instead, we need only separately measure
each consumer’s query rate and compare it to the event rate
of the producers that the consumer follows (either individ-
ually or in aggregate).

3.3 Optimizing Query Latency
To this point, our analysis has targeted MinCost. We

now consider LatencyConstrainedMinCost, which respects
an SLA (e.g. 95% of requests execute within 100 ms). Min-
Cost may already meet the SLA. If not, we may be able to
shift pull edges to push, raising cost, but reducing work at
query time, and meet the SLA. We might also move to a
push-only strategy and still not meet a very stringent SLA.
In this section we analyze the case where pushing helps, but
at a cost. We ultimately provide a practical adaptive algo-
rithm that approximates LatencyConstrainedMinCost.

Suppose MinCost produces a latency of λm, while La-

tencyConstrainedMinCost requires a latency of λl, where
λl < λm. Intuitively, we can shift edges that are pull in
MinCost to push and reduce latency. Formally, we define
σij as the decrease in global latency gained by shifting eij
to push. We define ǫij as the penalty from doing this shift.
Formally, ǫij = φpj (H − Lj(φci/φpj)) for per-producer co-
herency; this is the extra cost paid per event for doing push
instead of pull, multiplied by pj ’s event rate.

Consider the set of edges pulled in MinCost, R. To find
LatencyConstrainedMinCost, our problem is to choose a
subset of these edges S to shift to push, such that

∑
S
σij ≥

(λm − λl) and
∑

S
ǫij is minimized. Solving for S is equiva-

lent to the knapsack problem [19], and is therefore NP-hard.
We sketch this equivalence.

Lemma 3. LatencyConstrainedMinCost is equivalent to
knapsack.

Proof sketch: We start by reducing knapsack to Laten-

cyConstrainedMinCost. Consider the standard knapsack
problem. There exists a weight constraint W and set of n
items I, where the ith item in I has value vi and weight
wi. The problem is to find a subset of items K such that∑

i∈K
wi ≤ W and

∑
i∈K

vi is maximized. We can convert
this to an equivalent problem of finding the set of items
K′ omitted from the knapsack. Assume

∑
i∈I

wi = T .
The problem is to find K′ such that

∑
i∈K′ wi ≥ T − W

and
∑

i∈K′ vi is minimized. Through variable substitution
(omitted), we show the omitted knapsack problem is La-

tencyConstrainedMinCost. We can similarly reduce Laten-
cyConstrainedMinCost to knapsack. This verifies the two
problems are equivalent. 2

3.3.1 Adaptive Algorithm

We are left with two issues. First, knapsack problems are
NP-hard [19]. Second, we have defined σij as the reduction
in latency from shifting fij to push; in practice, we find that
we can not accurately predict the benefit gained by shifting
an edge to push. We now show how we handle both issues
with an adaptive algorithm.

Though we do not know the exact latency reduction from
shifting an edge to push, choosing a higher rate consumer
should result in a greater reduction, since this benefits more
feed retrievals. Therefore, we set σij = φci , estimate the∑

φci that does reduce latency by (λm − λl), and solve for
S. We measure whether S exactly meets the SLA. If not,
we adapt: if latency is too high, we solve for a larger

∑
φci :

if latency is too low, we solve for a smaller
∑

φci .
We want a solution that incurs only incremental cost when

we adjust the target
∑

φci . Moreover, the knapsack problem
is NP-hard, so our solution must provide a suitable approx-
imation of the optimal solution. To address both concerns,

we use an adaptive algorithm that produces a greedy ap-
proximation of the optimal solution; we expect a greedy ap-
proximation to be effective in practice. We simply sort the
pull edges by (φci/ǫij) descending, and shift some number
of top-ranked edges to push. Then, if our latency is higher
than the SLA, we incrementally shift the top-ranked pull
edges to push. If our latency is lower than the SLA, we in-
crementally shift the lowest-ranked push edges back to pull
(note that we never shift edges to pull if they are assigned
to push in MinCost).
We run the adaptive algorithm from MinCost as a start-

ing point. We must also periodically re-run the algorithm
to ensure we have the LatencyConstrainedMinCost solu-
tion. Suppose, for example, a number of consumers add
new interests (e.g. producer/consumer pairs), and the sys-
tem, optimizing for MinCost, chooses the pull strategy for
them. These new producer/consumer pairs may cause la-
tency to increase, even though push/pull decisions have not
changed for existing producer/consumer pairs. Thus, we
run the adaptive algorithm and shift more edges to push,
returning the system to LatencyConstrainedMinCost.

3.3.2 Moving consumers wholesale to push

An alternative strategy to moving producer/consumer pairs
is to move consumers as blocks; when moving pairs to push,
we select consumers with some pull pairs, and move all such
pairs to push at once. The intuition is that if we have to
pull even one producer for a consumer, that pull will domi-
nate the consumer’s latency. In this case, we compute ǫ for
an entire consumer ci as ǫi = φpj (H − Ljφci/

∑
pj∈Fi

φpj).

The downside of moving entire consumers is that it reduces
our flexibility, as we cannot convert highly beneficial pro-
ducer/consumer pairs to push unless we convert the entire
consumer. We compare the “per-pair” and “per-consumer”
strategies experimentally in Section 5.

3.4 Composite consumer, producer networks
In this paper, our focus is on simple connection networks,

where each node is either a producer or consumer, and the
network is a bipartite graph. Suppose we have a compos-
ite network, where some nodes might be both a consumer
relative to upstream event sources and a producer relative
to downstream consumers (as in Section 2.4). For example,
we might have a node that aggregates “health care debate”
events from several sources. The optimization problem is
still to assign push or pull to edges to minimize system cost.
The problem, however, is that decisions we make about

edges are no longer independent. If we decide to push for
a given edge, we cannot decide to pull for any adjacent up-
stream edges, because we cannot push events downstream if
upstream edges are also not pushing. Because this indepen-
dence no longer holds, our proofs of Theorems 1 and 2 no
longer hold. Therefore, new techniques are needed to glob-
ally optimize a composite network, and we are developing
these techniques in ongoing work.

4. IMPLEMENTATION
We have implemented the hybrid push/pull technique as a

view maintenance mechanism on top of our elastically scal-
able web serving database, PNUTS [9]. Although other ar-
chitectures are possible, our approach cleanly encapsulates
the materialization decisions in the view maintenance com-
ponent, while using the web database to handle other tasks

PNUTS

Query processor

Notifications

Events

ConsumersProducers

View maintainer

View

updates

Feed

retrieval

Figure 1: Architecture for follows application.

such as processing updates and feed queries. In this section,
we describe our implementation and the rationale for the
design decisions we have made.

4.1 Architecture
Figure 1 depicts our implementation architecture. When

a producer generates an event, it is stored in PNUTS. For
simplicity, we have elected to create a single table Produc-

erPivoted to store all of the producer event streams; so that
ProducerPivoted=

⋃
∀j

PEj . A producer in this case might

be an application layer (for example, if users directly gener-
ate events), a crawler (for example, to retrieve events from
external sources) or an ingest API (for example, to allow
sources to push events.) When an event enters the system,
PNUTS sends a notification to the view maintainer. The
view maintainer responds to this notification by deciding
whether to push the new event to one or more consumer feed
records, using custom logic to implement the decision rules
of Section 3. The view maintainer must read information
from the ConnectionNetwork table to make this decision, as
described in Section 4.2.

If an event is pushed, it is written back to PNUTS into a
materialized view. Again for simplicity, we store all of the
materialized queries for different consumers in a single table,
ConsumerPivoted. The ConsumerPivoted table also stores
information about which producers have not been material-
ized for the consumer, so that we know which producers to
pull from at query time. When a consumer retrieves their
view (e.g. when a user logs in or refreshes their page), this re-
sults in a query to the query processor. The query processor
reads pushed events from ConsumerPivoted and also pulls
events from ProducerPivoted. In our current implementa-
tion, ProducerPivoted and ConsumerPivoted are stored in
the same PNUTS instance. However, it is possible to store
these tables in separate infrastructures if desired.

Notifications are a native mechanism in PNUTS, similar
to very simple triggers. If our techniques were implemented
in a system without triggers, some other mechanism would
be needed (such as updating the view as part of the event
ingest transaction.) Notification allows view maintenance
to be asynchronous, improving update latency. However,
views may be slightly stale; this is acceptable in many web
applications (including follows applications).

4.1.1 Storage

PNUTS is a massively-parallel, distributed web scale data-
base, that provides low-latency reads and writes of individ-
ual records, and short range scans. Range scans are particu-
larly important for efficient push and pull operations, as we
describe in Section 4.2. We have elected to provision enough
main-memory to store the data tables in our application to

ConnectionNetwork
Key Value

bob 1.3 alice ...
bob 2.4 chad ...
bob 3.9 roger ...
roger 9.2 chad ...
roger 9.8 alice ...

ProducerPivoted
Key Content

alice t0 “Alice is awake”
alice t1 “Alice is hungry”
alice t2 “Alice had lunch”
bob t0 “Bob is at work”
bob t1 “Bob is tired”

Figure 2: Example tables

Key Events Priority

alice bob t0=”Bob is at work”, t1=”Bob is tired” 2.9
alice chad t0=”Chad is tired” 2.4
bob alice t0=”Alice is awake”, t1=”Alice is hungry”, ... 2.1
bob chad null 1.3
chad alice t0=”Alice is awake”, t1=”Alice is hungry”, ... 3.3

Figure 3: Table ConsumerPivoted

ensure low latency, although data is also persisted to disk
to survive failures. Other database systems besides PNUTS
could be used to implement our techniques if they similarly
provided range query capabilities.

4.2 Schema and View Definitions
In this section, we describe the data tables in our imple-

mentation in more detail. Note that for brevity we omit
columns from tables that are not vital to understanding the
design, such as metadata, timestamps, etc.
The ConnectionNetwork table stores the connection graph

between consumers and producers. An example is shown in
Figure 2. The key of the table is the composite (producer,
priority, consumer). The priority is calculated from the con-
sumer’s query rate and the producer’s event rate, according
to Lemmas 1 and 2. We sort the table by producer, and then
priority, to simplify the decision making about whether to
push an event. When a new event arrives, we do a range
query over the records prefixed with the event’s producer,
starting at priority R, where R is the optimal threshold de-
rived in Section 3 (e.g. H/Lj). This allows us to quickly
retrieve only the producer/consumer pairs with a priority
greater than R, which are the consumers to push to.
Events are stored in the ProducerPivoted table; an ex-

ample is shown in Figure 2. The key of this table is (pro-
ducer,timestamp) so that events are clustered by producer,
and ordered by time within a producer (reflecting the per-
producer event streams). This ordering facilitates efficient
retrieval of the latest events from a given producer using a
range scan with a specified limit on the number of events to
retrieve (since we only show the most recent N events.)
The ConsumerPivoted table stores materialized feed records

for each consumer. An example is shown in Figure 3. The
key of this table is (consumer,producer), so that there is a
separate record for each producer that a consumer follows.
If the consumer decides to follow a new producer, a new
ConsumerPivoted record is inserted, initially with no events
(as with bob_chad in the figure.) When the view maintainer
is notified of a new event, the maintainer performs a range
scan on the ConnectionNetwork table to find the list of con-
sumers to push the event to, and updates the appropriate
ConsumerPivoted record for each consumer. The result is
that some feed records have events materialized, while others
have null. The feed record also includes the priority for the
(consumer,producer) pair; this is the same priority stored
in the ConnectionNetwork table. If a feed record has no
events (e.g., null), we need only pull from ProducerPivoted

if the priority is below the threshold H/Lj . A null record
with priority above the threshold indicates that events will
be pushed, but the producer has not yet generated any.

Note that potentially multiple events are stored in the
“Events” column of the ConsumerPivoted table. PNUTS
makes this process easier by supporting a complex column
type. Also, the same event may be stored for multiple con-
sumers. This is the result of producer fanout; multiple con-
sumers may be interested in events from the same producer.
If we fully materialized ConsumerPivoted (that is, pushed
every event) the size of ConsumerPivoted would be signifi-
cantly larger than ProducerPivoted. However, because we
selectively materialize producer/consumer pairs, storage re-
quirements are less, and ConsumerPivoted may be larger or
smaller than ProducerPivoted.

4.3 Adapting Priority
As producer event rates and consumer query rates change,

we must adapt the priorities for producer/consumer pairs.
We measure and maintain event rates for producers and
consumers. When the rates change, we re-compute prior-
ities for producer/consumer pairs and then update Connec-
tionNetwork and ConsumerPivoted records. We maintain
approximate statistics on rates, updating them periodically
to reduce write load. To reduce the number of writes to
update priorities we only perform the update if it would
change the producer/consumer pair from push to pull (or
vice versa). We include an experiment on adapting priori-
ties in Section 5.5.

5. EVALUATION
We now examine our experimental results. Our exper-

iments used the implementation described in Section 4 to
handle the event load obtained from a real follows applica-
tion (Twitter). We examine the impact on system load and
user feed latency as we vary several different characteristics
of the workload.

Our load metric was aggregate CPU load across all
servers, as measured by the Unix sar command. In our
system (as in many real-life deployments of follows applica-
tions) we provision sufficient main memory so that our data
and view tables fit in memory; this decision reduces latency
and improves throughput. Data is also written to disk for
persistence, but reads are performed from the memory copy.
As a result, CPU is the main bottleneck, and hence the best
metric for system load. System load directly correlates with
the amount of hardware that must be dedicated to the sys-
tem, or equivalently, determines the amount of throughput
sustainable by a given hardware deployment. Network band-
width may also be a bottleneck in some deployments. In our
experiments we measured network utilization and found the
same trends as the aggregate CPU results reported here.

We also measure latency as response time, observed
from the client, for retrieving a consumer’s feed. Users are
latency sensitive, and may stop using the website if their
feed pages take too long to load.

In summary, our results show:

• The hybrid push/pull mechanism most effectively mini-
mizes system load, even as the aggregate rate of events
varies relative to the aggregate feed retrieval rate.

• We can directly trade some extra cost for reduced latency
just by adjusting the push threshold.

• The density of the connection graph has a direct impact
on the cost in the system; more fanout means more event
processing work.

Number of producers 67,921
Number of consumers 200,000

Average Zipf parameter

Consumers per producer 15.0 0.39
Producers per consumer 5.1 0.62

Per-producer rate 1 event/hour 0.57
Per-consumer rate 5.8 queries/hour 0.62

Table 2: Workload parameters for baseline scenario.

• The system effectively absorbs flash events (a sudden in-
crease in event rate from some producers) by responding
to the new query:event ratio for affected consumers.

5.1 Experimental data and setup
We constructed our data set using traces from real fol-

lows applications. First, we constructed the Connection-
Network by downloading the “following” lists for 200,000
Twitter users, using the Twitter API [1]. This resulted in
a connection network with 67,921 producers and 1,020,458
producer/consumer pairs. The graph was highly skewed:
both the number of consumers per producer (i.e. “fan-out”)
and the number of producers per consumer (i.e. “fan-in”)
followed a Zipfian distribution. Second, for producer events
we downloaded the“tweets”(status updates) from those pro-
ducers via the Twitter API. We found that the distribution
of event rates also followed a Zipfian distribution. Third,
we constructed a sequence of feed retrieval queries by con-
sumers. Unfortunately, the Twitter API does not provide in-
formation about how often users retrieve their feeds. There-
fore, as a substitute we obtained a trace of pageviews from
Yahoo!’s Social Updates platform. Again, we found the dis-
tribution of pageview frequencies to be Zipfian. We assigned
a query rate to our 200,000 consumers to follow this Zipfian
distribution. Our baseline workload parameters are in Ta-
ble 2. Our prototype implements per-producer coherency,
to ensure diversity of results for consumers.
In our experiments, we measured the effect of varying

some of these parameters. The experiments reported here
used this real data set, although we ran other experiments
with a synthetic data set (with a connection graph that was
uniform instead of Zipfian) and observed similar trends. In
one experiment reported here (Section 5.4) we report results
using the synthetic data, which allowed us to more easily
vary the producer fanout.
We ran our experiments on server-class machines (8 core

2.5 GHz CPU, 8 GB of RAM, 6 disk RAID-10 array and gi-
gabit ethernet). In particular, we used six PNUTS storage
servers, one view maintainer server, and one query proces-
sor server. In addition, PNUTS utilizes query routers (two
servers in our experiments) and a replication system (two
servers in our experiments.) Although we did not explic-
itly examine replication policies in this work, replication is
necessary to provide fault tolerance (in particular, recovery
from data loss after a storage server failure.)

5.2 System cost
We start by examining which policies perform best as we

vary the relative query and event rates. We used the distri-
bution of event rates from our real dataset and varied the
average query rate, retaining the Zipfian skew observed in
the query trace.
First, we tuned the hybrid push/pull policy by measuring

 250

 300

 350

 400

 450

 500

 550

 600

 650

24168

A
g
g
re

g
at

e
C

P
U

 U
ti

l(
%

)

Global query:event ratio

Push All
Thresh 3

Push None

Figure 4: System Costs with Increasing query rates

 300

 400

 500

 600

 700

4210

A
g
g
re

g
at

e
C

P
U

 U
ti

l(
%

)

Consumer, Producer Skew (Zipf Parameter)

Push All
Thresh 3

Push None

Figure 5: Relative effect of producer and consumer
skew on Push None, Push All, and optimal.

the push threshold (that is, threshold ratio φci/φpj from
Lemma 1) that minimized system load. Our results (not
shown) indicate that across a variety of query:event ratios,
a push threshold of 3 minimizes system load.

Next we compared different policies. Figure 4 shows the
system cost as the query:event ratio changes. The figure
shows three strategies: Push All, Push None (i.e. pull all),
and our hybrid scheme with push threshold 3. As the figure
shows, neither Push All or Push None works well in all sce-
narios, confirming our hypothesis. For a scenario with a high
event rate, Push All results in 47 percent higher system load
than Push None. With a relatively high query rate, Push
None results in 23 percent more system load than Push All.
In contrast, the hybrid scheme always performs better than
either strategy. Hybrid does mostly push when query rate is
high, but still does some pull; similarly hybrid does mostly
pull when event rate is high but still does some push. In
the median scenario, where neither push nor pull is clearly
better, hybrid does best by doing push for some producer/-
consumer pairs and pull for others. Note that as we increase
the query:event ratio, total system load for all policies in-
creases. This is because we vary the ratio by increasing the
query rate while using the same event rate, resulting in more
total load on the system (regardless of the chosen policy).

5.2.1 Impact of skew

We also examined the impact of increased skew on sys-
tem load. We ran an experiment with a query:event ratio
of 16:1 (the median scenario from Figure 4) and varied the
Zipfian parameters for per-producer rate and per-consumer
rate (default settings in Table 2). Figure 5 shows the result-

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10
 250

 300

 350

 400

 450

 500

L
at

en
cy

 (
m

s)

C
o
st

Push Threshold

Average Latency
95th Percentile Latency

Cost

Figure 6: Push threshold vs. query latency (left
vertical axis) and system cost (right vertical axis).

ing system load. As the figure shows, the hybrid policy is
best in each case. Moreover, the improvement of the hybrid
policy over Push All or Push None increases as the amount
of skew increases from 14 percent at a moderate amount of
skew to 30 percent when there is higher skew. When there
is a great deal of skew, there are both consumers that log in
very frequently (favoring push) and producers that produce
events at a very high rate (favoring pull). Treating these ex-
treme producers and consumers separately, as hybrid does,
is essential to minimizing cost.

5.3 Latency
Next, we examined the latency experienced by the con-

sumer under the hybrid technique. Figure 6 plots threshold
vs. average and 95th percentile latency, again with a 16:1
query:event ratio. The 95th percentile latency is often more
important to web applications than the average latency, as it
reflects the latency observed by the vast majority of users.
As expected, as we decrease threshold and push for more
producer/consumer pairs, latency decreases.
Of course, decreasing the push threshold (in our system,

below 3) explicitly adds cost to the system, as we may be
pushing events to consumers, even if those consumers do not
log in frequently enough to “deserve” the push according to
the decision criteria of Lemma 1. Figure 6 demonstrates this
effect, showing the impact on system cost as we decrease the
threshold. Initially cost decreases, as the threshold decreases
and approaches the optimal point (from a cost perspective.)
As the threshold decreases further beyond the optimal, cost
begins to rise again as we push more events than are nec-
essary to minimize cost. This illustrates how we can trade
some system cost to achieve the latency SLA we desire. It
is up to the application designer to choose the appropriate
tradeoff between latency and cost.
To help understand these results, Figure 7 shows CDFs of

the number of users with 50 percent of the events in their
feeds pushed, and with 100 percent of the events in their
feeds pushed. As expected, a lower push threshold results
in more users with events pushed, until eventually all events
are pushed for all consumers, and latency (superimposed
curve) reaches its minimum point.

5.3.1 Latency/cost tradeoff strategy

We next investigate our question from Section 3.3.2 on
the best way to trade increased cost for reduced latency.
We can shift individual producer/consumer pairs to push

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10
 0

 50

 100

L
at

en
cy

 (
m

s)

Q
u
er

y
 C

D
F

(%
)

Push Threshold

95% Lat.
100% Push
50% Push

Figure 7: Push threshold vs. percentage of queries
100% pushed.

 0

 10

 20

 30

 40

 50

 200 220 240 260 280 300 320 340

L
at

en
cy

 (
m

s)

Cost

Per-pair Avg Latency
Per-pair 95th Latency

Per-consumer Avg Latency
Per-consumer 95th Latency

Figure 8: Cost vs. Latency, Per-pair and Per-
consumer cases.

(“per-pair”), or else shift whole consumers to push (“per-
consumer”). In this experiment we use a query-to-event ratio
of 8 since this is a scenario where pull would normally be
favored for system cost, but we might want to push more
events to reduce latency.

Figure 8 shows that latency is lower for the per-pair strat-
egy, for both the average and 95th percentile latency. The
per-pair strategy has more flexibility to materialize the pro-
ducer/consumer pairs that provide latency benefit at mini-
mum cost, while the need to materialize all or nothing for the
per-consumer strategy handicaps its decision making. The
result is that the per-pair strategy is better able to reduce
latency without too much cost.

5.4 Fan-out
We next measure the impact of event fan-out on system

cost. This experiment uses a synthetic ConnectionNetwork
and a fixed 4:1 query:event ratio. We fixed the number of
producers and consumers, but varied the number of con-
sumers per producer, and so the result of increasing fan-out
is to also increase fan-in; that is, the average number of
producers per consumer.

Figure 9 shows the system cost as we increase fan-out,
while using the hybrid policy. When fan-out increases, the
system must spend more effort to fan those events out to
more consumers, even though the event rate from produc-
ers is constant. This extra cost is incurred whether the
event is pushed to a consumer or pulled. In fact, the de-
cisions made for individual producer/consumer pairs does
not change; there are just more producer/consumer pairs
to make a push/pull decision for as we add edges to the
connection network, and overall higher system cost.

 0

 100

 200

 300

 400

 500

2015105

C
o
st

Average Producer Fan-out

Figure 9: Impact of changing fan-out.

 300

 400

 500

 600

 700

 800

 900

 1000

 0 2 4 6 8 10 12 14

C
o
st

Time (min)

Pre-flash Flash Post-adapt

Figure 10: Impact of flash events on cost.

5.5 Flash events
In follows applications, it is possible to have“flash events,”

when there is a sudden, sharp increase in events on a partic-
ular topic. For example, there was a huge upsurge in events
on Twitter during Barack Obama’s inauguration in January
2009 [26]. We ran an experiment to examine the impact
of such flash events. In this experiment, after running the
system, we suddenly changed the event rates of 0.1% of the
infrequent producers to start producing events at a signifi-
cantly higher rate. We also increased the average fanout of
those producers from 15 to 100, to reflect a large increase in
consumers interested in the flash event. As Figure 10 shows,
the experiment followed three phases: 1) A baseline before
the flash events, 2) when the flash events start happening, 3)
after the system has adjusted to the new query:event ratio
for consumers following the flash producers. During phase
2, we have a number of producer/consumer pairs assigned
to push (because they have low event rates normally) that
now result in a lot of cost because of the higher pushed event
rate. The system adapts by shifting all producer/consumer
pairs for these producers to pull. This lowers cost nearly
back down to the pre-flash level.

6. RELATED WORK
Materialized views have been extensively used to optimize

query processing. Much of this work, surveyed in [15], fo-
cuses on complex query workloads, and on choosing appro-
priate views. For example, view selection [13, 4] chooses
the best views to materialize for complex data warehousing
loads. Our problem is more specialized: we consider an un-
bounded number of consumer feeds and an unbounded num-
ber of producer streams. Each view we consider for partial
materialization is a most-recent window query that joins the

ConnectionNetwork table (more precisely, a selection of rows
from it corresponding to the given consumer) with (all con-
nected) event streams. Thus, in contrast to existing work,
it is simpler in that we only consider one kind of query, but
more complex in that we simultaneously optimize a large
collection of window queries over a large collection of input
streams, exploiting observed query and update patterns.

Partial indexing and materialization: Our collec-
tion of partially materialized feeds is similar to partial in-
dexes [27, 24, 25], which index only a subset of the base
table to reduce maintenance cost and index size. The choice
of what to index depends on the base data; for example, to
avoid indexing tuples with values that are never queried. In
our approach, we may materialize a base tuple for one con-
sumer and not another, and do so based on event and query
rates, not on the value distribution of the base data.

Luo [16] examines partially materialized views, material-
izing only frequently accessed results so that they can be
returned quickly while the rest of the query is executing.
In our model, this might be similar to caching events from
high fan-out producers. We have shown that it is important
to take the producer and consumer rates into account; even
high fanout producers may not be materialized for all con-
sumers. Top-k views are also partial materializations. Yi
et al [29] examine how to “refill” the view when one of the
top-k values falls out due to base data update or deletion.
Although our consumer views are like top-k views, we do not
need to compute an aggregate to refill the view, as in [29];
we only need to take the next time ordered value.

Other partial view types include partial aggregates to sup-
port quick, imprecise query results [14], and views in prob-
abilistic databases, which inherently represent partial infor-
mation about the actual world [22]. Our queries are non-
aggregate and exact, so these techniques are less applicable.

View and index maintenance: Several web-scale data-
base systems have begun to incorporate view maintenance
mechanisms [6, 3] or scalable query result caches [11]. These
scalable view and cache mechanisms could be used as the
substrate for storing our data tables and views.

Several techniques for efficiently maintaining views have
been developed, including techniques for determining which
base table updates require a view update [7], bringing a
stale view up to date when it is queried [30], maintaining
auxiliary information to aid in maintaining the view [17],
minimizing communication cost necessary to maintain the
views [32, 2], and applying view updates as quickly as possi-
ble to minimize view unavailability [23]. Much of this work
is focused on the general view maintenance problem, where
queries and view definitions can be quite complex, and of-
ten where transactional consistency of queries using views
must be maintained. The main problem in our setting is
determining how much of the view to materialize, not how
to properly maintain a fully materialized view.

Work on how to construct [20] and maintain [12] indexes
in an online manner has focused on maintaining the trans-
actional consistency of queries that use these indexes. Our
focus is instead on minimizing system load, and on the high-
fanout/high-skew problem.

Temporal and stream views: Maintaining temporal
views requires special handling. Yang and Widom [28] ex-
amine what auxiliary information must be stored in a data
warehouse to make temporal views self-maintainable. This
work focuses on“push”only to avoid querying the base data.

Our system is similar in some respects to a stream system,
in that the join between producer event streams and Connec-

tionNetwork in our system is similar to a continuous window
join. Babu, Munagala and Widom [5] examine which join
subresults to materialize in such a setting, focusing on com-
plex, multi-way joins. For our restricted problem (a large
collection of joins of two relations), the problem is to choose
which joins to materialize based on per-join relative update
and consumption intervals. Other stream work has focused
on how to filter pushed data updates at the source to reduce
the cost of updating a downstream continuous query [21], or
to pull data updates from sources when needed [18]. This
work focuses primarily on aggregation queries over numeric
values, and trades precision for performance. The tradeoff
in our scenario is latency versus system cost, and of course,
there is no aggregation in our setting.
Pub/sub: Publish/subscribe systems provide a mecha-

nism for fanning out events from producers to consumers [31,
8], using the push strategy. It may be possible to apply our
hybrid techniques to pub/sub systems.

7. CONCLUSIONS
Many popular websites are implementing a “follows” fea-

ture, where their users can follow events generated by other
users, news sources or other websites. Building follows ap-
plications is inherently hard because of the high fanout of
events from producers to consumers, which multiplicatively
increases the load on the database system, and the high
skew in event rates. We have abstracted many instances of
the follows problem into a general formulation and, under
assumptions about system resources that reflect common
practice, shown that the best policy is to decide whether to
push or pull events on a per producer/consumer basis. This
technique minimizes system cost both for workloads with a
high query rate and those with a high event rate. It also ex-
poses a knob, the push threshold, that we can tune to reduce
latency in return for higher system cost. These observations
are validated experimentally using traces and data distri-
butions from real social websites. Overall, our techniques
provide the foundation for a general follows platform that
an application developer can use to easily build a scalable,
low-latency follows application.

8. REFERENCES
[1] Twitter API. http://apiwiki.twitter.com/.

[2] D. Agrawal, A. E. Abbadi, A. K. Singh, and T. Yurek.
Efficient view maintenance at data warehouses. In
SIGMOD, 1997.

[3] P. Agrawal et al. Asynchronous view maintenance for
VLSD databases. In SIGMOD, 2009.

[4] S. Agrawal, S. Chaudhuri, and V. Narasayya.
Automated selection of materialized views and indexes
for SQL databases. In VLDB, 2000.

[5] S. Babu, K. Munagala, and J. Widom. Adaptive
caching for continuous queries. In ICDE, 2005.

[6] M. Cafarella et al. Data management projects at
Google. SIGMOD Record, 34–38(1), March 2008.

[7] S. Ceri and J. Widom. Deriving production rules for
incremental view maintenance. In VLDB, 1991.

[8] B. Chandramouli and J. Yang. End-to-end support for
joins in large-scale publish/subscribe systems. In
VLDB, 2008.

[9] B. F. Cooper et al. PNUTS: Yahoo!’s hosted data
serving platform. In VLDB, 2008.

[10] I. Eure. Looking to the future with Cassandra.
http://blog.digg.com/?p=966.

[11] C. Garrod et al. Scalable query result caching for web
applications. In VLDB, 2008.

[12] G. Graefe. B-tree indexes for high update rates.
SIGMOD Record, 35(1):39–44, March 2006.

[13] H. Gupta. Selection of views to materialize in a data
warehouse. In ICDT, 1997.

[14] P. Haas and J. Hellerstein. Ripple joins for online
aggregation. In SIGMOD, 1999.

[15] A. Halevy. Answering queries using views: A survey.
VLDB Journal, 10(4):270–294, 2001.

[16] G. Luo. Partial Materialized Views. In ICDE, 2007.

[17] G. Luo, J. F. Naughton, C. J. Ellmann, and
M. Watzke. A comparison of three methods for join
view maintenance in parallel RDBMS. In ICDE, 2003.

[18] S. Madden, M. Franklin, J. Hellerstein, and W. Hong.
TinyDB: An acquisitional query processing system for
sensor networks. TODS, 30(1):122–173, March 2005.

[19] S. Martello and P. Toth. Knapsack Problems:
Algorithms and Computer Implementations.
Wiley-Interscience, 1990.

[20] C. Mohan and I. Narang. Algorithms for creating
indexes for very large tables without quiescing
updates. In SIGMOD, 1992.

[21] C. Olston, J. Jiang, and J. Widom. Adaptive filters for
continuous queries over distributed data streams. In
SIGMOD, 2003.

[22] C. Re and D. Suciu. Materialized views in
probabilistic databases: for information exchange and
query optimization. In VLDB, 2007.

[23] K. Salem, K. Beyer, B. Lindsay, and R. Cochrane.
How to roll a join: Asynchronous incremental view
maintenance. In SIGMOD, 2000.

[24] P. Seshadri and A. Swami. Generalized partial
indexes. In ICDE, 1995.

[25] M. Stonebraker. The case for partial indexes.
SIGMOD Record, 18(4):4–11, 1989.

[26] E. Weaver. Improving running components at Twitter.
http://blog.evanweaver.com/articles/2009/03/13/-
qcon-presentation/.

[27] S. Wu, J. Li, B. Ooi, and K.-L. Tan. Just-in-time
query retrieval over partially indexed data on
structured P2P overlays. In SIGMOD, 2008.

[28] J. Yang and J. Widom. Temporal view
self-maintenance. In EDBT, 2000.

[29] K. Yi et al. Efficient maintenance of materialized
top-k views. In ICDE, 2003.

[30] J. Zhou, P.-A. Larson, and H. G. Elmongui. Lazy
maintenance of materialized views. In VLDB, 2007.

[31] Y. Zhou, A. Salehi, and K. Aberer. Scalable delivery
of stream query results. In VLDB, 2009.

[32] Y. Zhuge, H. Garcia-Molina, J. Hammer, and
J. Widom. View maintenance in a warehousing
environment. In SIGMOD, 1995.

