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Ecological Monographs (1975) 45: pp. 199-230 

FEEDING RELATIONSHIPS AMONG SPECIES OF NOTROPIS 

(PISCES: CYPRINIDAE) IN A WISCONSIN STREAM' 

JON MENDELSON2 

D)eparinient of Zoology, Un iil'esity of Wisconsin, Madison, Wisconsil 53706 USA 

Abstract. The relationship between spatial preference and diet in four species of the 

genus Notropis (Pisces: Cyprinidae) was investigated in Roxbury Creek, a small stream in 

southern Wisconsin. Characteristic spatial distributions for each species were determined from 

frequency of catch in unbaited minnow traps set at varying heights and locations in the 

pools of the stream. Data for the year 1966-67 indicate that two species, Notropis atheri- 

ioides and N. spilopterus are common in midwater. Notropis dorsalis is most frequently 

found near the bottom and shows a strong preference for the upstream edge of pools. 
Votropis strarnineus is also found most often near the bottom but within the pools themselves. 

The spatial distributions of aquatic invertebrates, the major prey of Notropis in the pools of 

Rtoxbury Creek, were also investigated. Data gathered from drift and bottom samples taken 

in eight sampling periods during 1970-71 suggest a separation between the relatively sedentary 

bottom fauna, composed of oligochaetes, isopods, several genera of chironomids, tipulids, and 

trichopterans; and the drift fauna, composed of copepods, chironomids of the subfamily Ortho- 

cladiinae, ephemeropterans, and terrestrial arthropods. Certain genera, including the ubiquitous 

Gailmnairus were found commonly in both drift and benthic samples. Indices of similarity 

between pool benthos and drift ranged between 7% and 59%. Data on food habits of Notropis 

gathered from stomach content analysis of fishes collected over the same period indicate that 

73%'/o of the invertebrate genera present are utilized by Notropis species in Roxbury Creek. 

Considerable overlap exists in the invertebrate genera chosen by the four species (69%-84%), 
and strong overall correlations between species are found in the importance of various orders 

of aquatic invertebrates in the diet. Differences in food habits relate principally to differences 

in space utilization. Midwater species tend to feed on drifting chironomids, copepods, 

terrestrials, and other animals found in the water column. Bottom-dwelling fishes feed 
on benthic genera of chironomids, tipulids, oligochaetes, and other organisms found com- 

monly in pool substrates. It is concluded that spatial rather than taxonomic considerations 

are the chief determinants of prey selection in these four species, and that this pattern of 

resource subdivision acts to reduce competition in sympatric, syntopic populations of these 

fishes. Data from other Wisconsin streams, from aquarium observations, and from literature 

review suggest that multispecific assemblages of mutually responsive species like the ones 

in Roxbtlry Creek are common in Notropis. 

Key words: Bclit/ios; C/,ironomnidae; (oflpcetilionl; Cyprinidae; drift; invertebrates; Notropis; 

predautio; sc/ooin/jg; similarity indices; streams. 

INTRODUCTION 

This paper attempts to describe the invertebrate 

fauna of a small Wisconsin stream and to analyze the 

pattern of exploitation of this resource by four species 

of the cyprinid genus Notropis. 

The partitioning of food resources among closely 

related species touches on at least two important 

kinds of ecological interactions: predation and com- 

petition. The food-gathering adaptations of a pred- 

ator must to some degree represent an evolutionary 

response to the habits of its prey. These adaptations 

may be influenced as well by the continued presence 

of other predators feeding on the same resource. 

Which of the two is more significant in determining 

the ultimate survival of a species is difficult to 

l Manuscript received 12 November 1973; accepted 21 
June 1974. 

2 Present address: College of Environmental and 
Applied Sciences, Governors State University, Park 
Forest South, Illinois 60466 USA. 

specify. It seems reasonable to assume, however 

in the case of relatively unspecialized predators, 

that pressures from others at the same trophic level 

could be of greater importance in determining the 

composition of the diet than would be the habits of 

animals actually eaten. 

Competition has been defined as "the demand 

typically at the same time of more than one organism 

for the same resources of the environment in excess 

of immediate supply" (Larkin 1956:330). It might 

be better here to employ the term "potentially com- 

petitive" for the relationship among these fishes. 

To establish competition one must first determine 

whether the resource sought by the species involved 

is in fact limiting. In the present study this deter- 

mination could not be made. Attention is focused 

rather on the ways in which these different species 

exploit their common supply of food. It is assumed 

that if this resource were or ever became limiting, a 

reasonable prediction could be made as to the out- 

come of the subsequent competitive process. 

199 

http://www.jstor.org/page/info/about/policies/terms.jsp


200 JON MENDELSON Ecological Monographs 
Vol. 45, No. 3 

Other questions of importance to the nature of 

potentially competitive interactions may be suggested: 

how long, for example, have the species been in 

contact; how intimate is their association; how 

extensive geographically is the region of overlap? 

Such questions touch on the significance of the 

relationship rather than on its functioning. The 

interactions of animals only casually or sporadically 

in contact are clearly less interesting than those of 

more deeply involved species. In Notropis, a very 

large genus of freshwater fishes, syntopic populations 

are commonly encountered. Whether the resulting 

contacts are, as a rule, sufficiently well developed to 

exert strong selective pressures on participating spe- 

cies can only be guessed at. Nevertheless, examples 

of this apparently widespread process would seem to 

be of interest. 
In analyzing resource utilization among these 

four species, I hypothesized that partitioning of the 

food supply is largely a result of the partitioning of 

space in areas mutually inhabited, rather than of the 

active selection of different prey types by the fishes. 

To test this hypothesis I attempted to describe 

the spatial distribution both of the invertebrate fauna 

and of the fishes that prey upon these invertebrates, 

and then to relate the resulting overlaps in distribu- 

tion to the diet of each of the four species: Notropis 

atherinoides, the emerald shiner; N. dorsalis, the big- 

mouth shiner; N. spilopterus, the spotfin shiner; 

and N. stramnineus, the sand shiner. 

STUDY AREA 

Roxbury Creek, arising in northwestern Dane 

County and entering the Wisconsin River just west 

of Sauk City, is about 11 km long. Only the lower 

1.6 km was investigated in this study. The upper 

9.6 km are dry most of the year, as a result of marsh- 

land drainage near the town of Roxbury. The lower 

portion, however, is fed by springs and flows per- 

manently along the edge of a deep forest; the water 

is clear, the bottom unsilted. Only at flood stage, 

mainly in spring, does silt-laden runoff enter the 

stream from agricultural land bordering the upper 

reaches. Roxbury Creek enters an undammed por- 

tion of the Wisconsin where the river is sand 

bottomed and free flowing. 

The stream is narrow, averaging somewhat less 

than 4 m in width, and shallow, rarely exceeding 1 

m in the deepest pools. Current is gentle, 7.5-20 

cm/s in pools, although up to 30 cm/s over shallow 

areas. During floods, velocities of 52 cm's have been 

found. 

Originating in springs and flowing through shady 

woodland, Roxbury Creek is a cool stream, with 

maximum temperature of about 20? C in midsummer. 

Its lower reaches remains ice-free in winter. Data 

on other physical and chemical characteristics of the 

stream may be found in Poff and Threinen (1962). 

The substrate is composed principally of sand 

interspersed with small patches of gravel. Pools are 

covered with organic detritus mixed with sand and 

silt. 

Sandy streams, subject to mass movements of 

bottom material, are generally uniform, but rather 

unstable environments. In Roxbury Creek, however, 

the stream bed is partitioned into relatively permanent 

pools and shallows, largely because the creek interacts 

with the adjacent forest. Trees, undermined and 

toppled across the stream, or still standing with their 

trunks and roots extending into the channel, form 

semipermanent dams all along Roxbury Creek. In 

time of flood the scouring water excavates pools 

behind these obstructions. During normal flow silt, 

mud, and organic matter are deposited, creating 

conditions suitable for the rich development of 

animal life. As Nilsen and Larrimore have noted 

(1973), fallen trees may themselves serve as sub- 

strate for the development of invertebrate com- 

munities. The long, shallow, sandy stretches form 

relatively barren connections between these pockets 

of biological activity. Similar patterns have developed 

along most of the small tributaries flowing through 

the forested bottomland of the lower Wisconsin 

River. 

The growth of aquatic plants appears to be 

inhibited by the shade of the forest canopy. Rooted 

aquatics, for example, are absent from wooded 

portions of Roxbury Creek, although waterweed 

(Elodea canadensis) grows abundantly in unshaded 

upstream reaches. As a consequence, leaf fall and the 

fruits and flowers of forest trees become the main 

source of organic matter on which stream life 

depends. This aspect of woodland stream ecology has 

been discussed by Hynes (1960), Elton (1966), 

Minshall (1967), Mackay (1969), and Cummins 

et al. (1973). The fauna of the stream, ultimately 

dependent on leaf fall, is largely confined to the pools. 

where most of this detritus eventually accumulates. 

In spite of the stabilizing presence of fallen 

trees, the pools in Roxbury Creek are sometimes 

buried by shifting sands. Although most are even- 

tually reexcavated, the life of any pool is of limited 

duration, and the animal populations inhabiting it are 

subject to periodic decimation or displacement. 

Between 20 and 30 pools, of various sizes but of 

similar morphology, may be found at any one time 

along the 1.6 km of permanent flow in Roxbury 

Creek. The stations selected for study were repre- 

sentative of conditions in most of these pools, and 

to a large extent reflect conditions in other small 

sandy tributaries of the lower Wisconsin River. 
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INTRODUCTION TO THE ECOLOGY OF NOTROPIS 

The fish fauna of Roxbury Creek is composed of 

about 30 species belonging to eight families (Table 

1). Most of the species are rare; many, particularly 

the larger piscivorous fishes, must be considered 

stragglers from the Wisconsin River only about 1.6 

km downstream. Among the exceptions are four 

species of the cyprinid genus Notropis: the emerald 

shiner, N. atherinoides; the bigmouth shiner, N. 

dorsalis; the spotfin shiner, N. spilopterus; and the 

sand shiner, N. stramineus. Vast numbers of these 

four species may often be found in the small pools 

of Roxbury Creek. The two other species of Notropis 

collected from Roxbury Creek were less common. 

Schools of N. atherinoides often harbored small 

numbers of N. blennius. Notropis cornutus was col- 

lected only once. 

Notropis is the largest genus of freshwater fishes 

in North America; 97 species have been described 

(Blair et al. 1968). The genus is thought to be of 

monophyletic origin (Bailey, pers. comm.), but has 

been divided into a varying number of subgenera, 

usually nine, by different authors (summarized in 

Jordan and Evermann 1896). Only a few of 

these subgenera, particularly Cyprinella, exhaustively 

treated by Gibbs (1957a, b) and the subgenus 

Notropis (Snelson 1968), have received detailed 

examination. 

Originally the genus was restricted to North 

America east of the Rocky Mountains, but intro- 

ductions have been made on the West Coast (Blair 

et al. 1968, Branson 1968). In general, the greatest 

number of species occur in the Mississippi-Missouri 

drainage, with lesser numbers to the east and west. 

Many endemic species have been reported from 

streams emptying directly into the Atlantic in the 

Southeastern states (Gibbs 1957a, Howell and 

Williams 1971). Eighteen species are recorded from 

Wisconsin (Johnson and Becker 1970). 

Morphology 

Notropis appear generally silvery, with a dark 

lateral band in some species. As in other cyprinids 

the jaws are toothless, but pharyngeal teeth in one 

or two rows are found. The teeth are usually 

sharp-pointed, hooked, with narrow grinding surfaces 

(Jordan and Evermann 1896), suggesting a carniv- 

orous diet. 

Several other morphological features also appear 

to be correlated with the food habits of these fishes. 

Among these is the color of the peritoneum, usually 

silvery, but black in one herbivorous species, N. 

inekistocholas (Snelson 1971). Similarly, the intes- 

tinal tract is short and S-shaped in carnivorous spe- 

cies, but long and coiled in herbivorous types 

(Snelson 1971). The size, shape, and location of the 

TABLE 1. Fish fauna of Roxbury Creek 

Taxon Common name 

Catostomidae 
Carpoides sp. Carpsucker 
Catostomus comnmersonni White sucker 

(Lacepede). 

Cyprinidae 
Cyprinus carpio Linnaeus Carp 
Canmpostoma anoinalum Stoneroller 

(Agassiz) 
Rhiniclhthys atratulus Blacknose dace 

(Hermann) 
Nocomis bigutatta Hornyhead chub 

(Kirtland) 
Semotilus atromaculatus Creek chub 

(Mitchell) 
Chrosomus erythrogaster Southern redbelly dace 

(Rafinesque) 
Clinostomus elongatus Redside dace 

(Kirtland) 
Notemigonus chroysolelucas Golden shiner 

(Mitchell) 
Pimephales notatus Bluntnose minnow 

(Rafinesque) 
Pimephales promelas Fathead minnow 

Rafinesque 
Hybognatlius hankinsoni Brassy minnow 

H ubbs 
Notropis cornutus Common shiner 

(Mitchell) 
Notropis atherinoides Emerald shiner 

Rafinesque 
Notropis spilopteruts Spotfin shiner 

(Cope) 
Notropis blennius River shiner 

(Girard) 
Notropis stramineus Sand shiner 

(Cope) 
Notropis dorsalis Bigmouth shiner 

(Agassiz) 

Ictaluridae 
Ictalurus natalis Yellow bullhead 

(LeSueur) 
ictalurus melas Black bullhead 

(Rafinesque) 

Umbridae 
Unmbra linmi (Kirtland) Central mudminnow 

Esocidae 
Esox amiiericanus LeSueur Grass pickerel 

Percidae 
Perca fla v'escens Yellow perch 

(Mitchell) 
Percina maculata Blackside darter 

(Girard) 
Etheostonma nigrum Johnny darter 

Rafinesque 

Centrarchidae 
Miicropterus salmoides Largemouth bass 

(Lacepede) 
Lepomis macrochirus Bluegill 

Rafinesque 

Gaste roste idae 
Culaea inconstans Brook stickleback 

(Kirtland ) 

mouth is useful both in the identification and in 

the ecological characterization of members of this 

genus (Hubbs 1941). 

Each of the four species in Roxbury Creek 
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belongs to a different subgenus (Jordan and Ever- 

mann 1 896). Thus, within the genus the four are not 

closely related. Subgeneric differences, however, are 

relatively slight in comparison with the similarities 

uniting this taxonomically difficult group. 

Notropis atherinoides, subgenus (Notropis), is 

somewhat compressed laterally and is the most 

slender of the four species. It has a short snout and a 

terminal, oblique mouth; the eye is large. In Rox- 

bury Creek N. atherinoides ranged from 30 to 80 

mm in standard length. 

Notropis spilopterus, subgenus (Cyprinella), is 

similarly compressed, but has a deeper body. The 

mouth is also oblique and terminal; the snout acute. 

Standard lengths of Roxbury Creek specimens 

ranged from 29 to 71 mm. 

Notropis strainineus, subgenus (Alburnops), is 

rather stout in comparison to N. spilopterus and N. 

atherinoides. The mouth is subterminal and only 

slightly oblique; the snout is blunt. The eyes are 

lateral. In Roxbury Creek N. stramineus ranged from 

28 to 56 mm in standard length. 

Notropis dorsalis, subgenus (Hudsonius), is com- 

pressed dorsoventrally. The head particularly is long 

and flattened. The mouth is ventral, horizontal rather 

than oblique, and large. The eyes have a somewhat 

greater dorsal field than those of the other three 

species. Standard lengths of N. dorsalis in Rox- 

bury Creek ranged from 31 to 60 mm. 

All four species are silvery and lack lateral bands. 

Both N. dorsalis and N. strarnineus, however, have 

iridescent gold dashes along the dorsal midline 

behind the dorsal fin, a characteristic facilitating 

recognition in the field. All species possess short 

S-shaped digestive tracts and silvery peritoneums. 

It appears that these four species form a series 

with respect to body shape. Notropis atherinoides 

and N. spilopterus are both laterally compressed. 

Notropis strainineus with its robust, uncompressed 

body lies midway between these two and the dorso- 

ventrally compressed N. dorsalis. A parallel series 

exists with respect to the location of the mouth. 

Notropis atherinoides and N. spilopterus have ter- 

minally placed, oblique mouths, whereas the mouth 

of N. strainineus is subterminal and only slightly 

oblique; N. dorsalis has a ventral, horizontal mouth. 

The relationship of characters such as these to 

habitat has been discussed by Hubbs (1941) and 

Keast and Webb (1966). Hubbs, in an illuminating 

paper dealing with three of these species-N. atheri- 

noides, N. stramineus, and N. dorsalis-suggests that 

dorsoventral flattening and ventral mouths are as- 

sociated with bottom-dwelling, bottom-feeding habits. 

while lateral compression together with terminal 

mouth placement generally implies a free-swimming 

mode of existence. 

Habitat 

The ranges of the four species broadly overlap, 

especially in the upper Mississippi Valley: south- 

western Wisconsin, southern Minnesota, Illinois, 

Iowa, northern Missouri, and northwestern Kansas 

Distributional data may be found in Trautman 

(1957) and Hubbs and Lagler (1958). 

Notropis atherinoides, which has the most ex- 

tensive range of the four species, characteristically 

inhabits larger bodies of water, the great rivers and 

lakes (Trautman 1957, Cross 1967, Pfleiger 1971). 

Although the emerald shiner is found most often 

in midwater (Trautman 1957), Cross (1967) sug- 

gests a preference for sand bottoms. The species is 

common to abundant in the larger lakes of Wisconsin 

as well as in the lower Wisconsin and Mississippi 

rivers (Johnson and Becker 1970). 

Although characteristic of large rivers, emerald 

shiners often ascend small tributaries, particularly 

in fall and spring (Trautman 1957). This movement 

may be influenced by temperature differences be- 

tween the river or lake and the tributary stream 

(Campbell and MacCrimmon 1970). 

Notropis dorsalis is a characteristic inhabitant 

of streams in the prairie regions. Its present distri- 

bution has in fact been correlated with a previous 

advance of prairie in the last xerothermic period. 

The small isolated populations of N. dorsalis in the 

east, the subspecies N. d. keimni is thought to be a 

relict of this earlier, drier time (Trautman 1957). 

It is generally agreed that N. dorsalis reaches 

maximum abundance in the smaller sand-bottomed 

streams, and is less common in the larger rivers 

(Simon 1946, Cross 1967, Pfleiger 1971). Starrett 

(1950a), however, considered N. dorsalis the third 

most abundant minnow in the Des Moines River, a 

stream 125-200 ft in width. Here N. dorsalis was 

sometimes collected over recently covered sandbars, 

suggesting an ability to make use of newly formed 

habitats. In Wisconsin, Johnson and Becker (1970) 

report N. dorsalis to be common in sandy streams 

of medium size in the Mississippi drainage. 

Both N. spilopterus and N. stramineus appear 

to prefer streams of moderate size and seem generally 

less rigorous in their choice of habitat. 

Notropis spilopterus is found in streams of all 

sizes in Missouri (Pfleiger 1971), but appears in 

other regions to prefer medium- to large-sized rivers 

(Starrett 1950a, Johnson and Becker 1970). The 

spotf in is found over rubble and gravel bottoms 

(Cross 1967, Pfleiger 1971) but is more commonly 

reported over sand (Hankinson 1930, Greene 1935, 

Becker 1966). In southwestern Wisconsin N. spilop- 

terus is most common in streams with sand bottoms. 

Notropis strainineus, a species characteristic of 

prairie regions, also appears capable of living suc- 
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cessfully in a broad range of habitats. Medium-sized 

streams, however, contain the largest populations 

(Starrett 1950a, Trautman 1957, Pfleiger 1971). 

Notropis strainineus is found most often over sand. 

This survey suggests that, paralleling differences 

in morphology among these four species, there is 

a gradient of preference for habitat as well. Notropis 

(Itherinloides is most abundant in the largest rivers 

and lakes; N. spilopteruts and N. stratnineus, found 

in streams of all sizes, most characteristically inhabits 

streams of moderate size; N. dorsalis reaches maxi- 

mum abundance in the smaller streams. 

The preference of N. strainineus and N. dorsalis 

for sandy substrates is mentioned by many observers. 

Less clear are the substrate requirements of N. atheri- 

noides and N. spilopterus, although they are often 

found over sand. All four species live most suc- 

cessfully in streams and rivers of slow-to-moderate 

current. 

Associations among species of Notropis 

Notropis species show a strong tendency to 

school. Frequently the large aggregations found in 

open water contain several species. An examination 

of collections housed at the University of Wisconsin 

Zoological Museum and of notes from the University 

of Wisconsin Field Zoology course filed in the 

museum suggests that multispecific assemblages of 

Notropis are common. Of 291 collections in which 

at least one species of Notropis was present, over 

60% contained two or more species. About one- 

third of the collections contained three or more, and 

26 collections were composed of five or more species 

of Notropis. The number of species, of course, gen- 
erally increases with the size of the stream and the 

intensity of sampling, the latter detail usually not 

quantified by collectors. Nevertheless, it appears 

that positive associations among species in this genus 

do occur frequently. The co-occurrence of Notropis 

species is also suggested by the data of Breder and 

Crawford (1922), Snelson (1968, 1971, 1973), 
Davis and Louder (1971), Howell and Williams 

( 1971 ), F. B. Cross (pers. commin.), and W. L. Pfleiger 

(pers. comm.), among others. 

It is not possible to conclude from information 

gathered principally by seining that real interactions 

among species are taking place in such assemblages. 

Observations made in aquaria, however, suggest that 

Notropis species are mutually responsive, individuals 

of one species readily following those of another. 

By and large, fishes of several species held in 

aquaria act as a single school. In experiments in- 

volving three Notropis species, pairs either of the 

same or of different species were observed for 

evidence of schooling behavior in 114-liter aquaria 

(Table 2'). The total length of time that one fish 

TABLE 2. Schooling behavior of Notropis. Each pair of 
fishes was observed for 10 min. The total length of 
time that parallel swimming, following, or simultaneous 
turning occurred served as the measure of schooling 
behavior 

Mean 
schooling 

Number time (min) 
of pairs (-+ 9 5% 

Species observed limits) 

N. dorsalis 10 8.8 ? 0.7 
N. strarnineus 8 7.3 + 1.7 
N. spilopterus 11 6.0 ? 1.7 
N. dorsalis-N. stramineus 8 7.2 ? 1.5 
N. dorsalis-N. spilopterus 10 6.7 ? 1.6 
N. spilopterus-N. stramineus 11 4.6 ? 1.5 

followed, swam parallel to, or turned simultaneously 
with the other served as the measure of such behavior 

during 10-min observation periods. 

Notropis dorsalis was the most responsive of the 
three species both to conspecifics and heterospecifics, 

whereas N. spilopterus schooled least often. In 

general, fishes showed less interest in members of 

other species than of their own. The strength of 
this interest, however, was roughly proportional to 

the responsiveness shown to conspecifics. Congeneric 

pairs including N. dorsalis, for example, schooled 

more frequently than congeneric pairs including N. 
spilopterus. 

Collections made in regions of sympatry suggest 
that association among these species occurs with 

fair regularity. Cross (1967) finds N. dorsalis and 

N. stramineus common associates in Kansas streams. 

In Canada, where N. dorsalis has recently been 

reported for the first time, Fedoruk (1971) lists 

N. strainineus as a common associate. Similar 

observations have been made by Pfleiger (pers. 

commn.), who often finds these species together, 

along with Notropis lutrensis and N. uimbratilis. 

Starrett (1950a) comments that N. strainineus and 

N. dorsalis commonly associate with N. spilopterus in 

the Des Moines River. 

Trautman (1957) mentions large aggregations of 

N. atherinoides and N. volucellus in the Ohio River. 

In the Wisconsin River, N. atherinoides often appears 
in collections with N. volucellus, N. blennius, and 

N. spilopteruis. 
It is in the small- to moderate-sized tributaries of 

the lower Wisconsin River that we find the associa- 

tion among these four species most highly developed. 

At least three and usually all four species are 

found together in parts of Duck and Prentice creeks 

(Columbia County), Roxbury Creek, and a small 

unnamed creek west of Roxbury Creek (T9N, R6E, 

S22, Dane County), Honey Creek (Sauk County) 

Gran Crae Creek (Crawford County), and the Big 

Green River, (Grant County). These streams are 
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FIG. I. Arrangement of fish traps in longitUdinal section thr-oLgh an idealized pool. 

tributaries of the lower Wisconsin. The four species 
have also been reported together from many collec- 
tions made in the Wisconsin River itself (Becker 
1966). 

The ecological significance of this information is 
not easy to assess. The association of these four 
species is most frequently encountered in small 
sandy tributaries of large rivers, a kind of habitat 
repeated with some regularity along the lower 
Wisconsin. Such areas, because of their proximity to 
large rivers, tend to be invaded by species common 
in the rivers. Notropis atherinoides in particular 
has a propensity for such movements. Because these 
streams are relatively small and have sand bottoms, 
they are capable of supporting such species as N. 
dorsalis which prefer such habitats. In this sense, 
streams like Roxbury Creek are analogous to the 
"edge habitats" of terrestrial ecology, the importance 
of the associations among animals living there being 
directly related to the stability of the habitat and to 
the frequency with which it recurs. 

Each species seems to have morphological adap- 
tations, particularly in mouth location and body 
shape, sufficiently different to permit coexistence. 
Moreover, these characters vary from species to 
species in a regular way. The co-occurrence of four 
species differing from one another in this fashion 
strongly suggests an association going beyond chance. 
Nevertheless, in view of their rather distant rela- 
tionship within the genus, these animals would seem 
more likely to be preadapted for coexistence rather 
than molded by mutual interaction into a functioning 
unit. The fact that each species reaches maximum 
abundance in habitats slightly different from those 
most favorable to the others also suggests that the 
regular variation in morphological features, how- 
ever advantageous to their continued coexistence, is 
not the result of a long history of mutual contact. 

Regardless of the interpretation we place on the 
character of the relationship, it is a fact that year 
after year large populations of these four Notropis 
species can be found living together in the pools of 

small Wisconsin streams. 

SPATIAL AND TEMPORAL DISTRIBUTION 

OF FISHES IN ROXBURY CREEK 

Methods 

Data on the spatial distribution of Notropis 
atherinoides, N. dorsalis, N. spilopterus and N. 
stramineus were collected for 1 yr (fall 1966 to fall 
1967) from six pools in Roxbury Creek. Unbaited 
fish traps were placed at specified depths and loca- 
tions within each of the pools. The capture of indi- 
viduals of a certain species in a trap was considered 
evidence that the individuals were swimming in the 
area of the trap. Characteristic spatial distributions 
for each species were derived from the relative fre- 
quency of capture in traps set at different depths or 
in different locations. 

Rectangular traps made of one-fourth in. hard- 
ware cloth, 50 cm wide, 12.5 cm high and 30.5 cm 
long, with a single round opening facing downstream 
were arranged in a vertical series 5 cm apart. Traps 
were attached at the proper heights to a frame set 
permanently in the stream bottom. Changes in water 
level were compensated for by the addition or re- 
moval of the topmost trap. The others remained fixed 
relative to the bottom and to each other. 

Series of traps were placed in five different loca- 
tions in each pool: the upstream edge, the downstream 
edge, the deepest part of the pool, and two locations of 
intermediate depth, one upstream, the other down- 
stream from the deepest point. The arrangement of 
traps in an idealized pool is shown in Fig. 1. Traps 
placed at the downstream edge of the pools were inef- 
fective in capturing fishes and are not considered in 
further calculations. Although the distributions of 
fishes in traps set at intermediate depths are consistent 
with distributions determined from traps set at the 
deepest point, there is no unambiguous way to combine 
these sets of data. In the discussion of vertical distri- 

bution, data are used only from traps set in the 

water column at the deepest point. Basic data on the 

arrangement of fishes in the pool is expressed as 

the relative frequency of capture along two axes: 
a longitudinal one, from the head of the pool through 
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FIG. 2. Seasonal distribution of Notropis as indicated by weekly trapping returns. Data are expressed as 

numbers of fish per trap day. The number of trap days in any week is equal to the product of the number 

of traps set and the number of occasions traps were examined during that week. In data on presence, "+" 
below the x-axis indicates the presence of fishes; "-" indicates that no fishes of that species were trapped; "0" 

indicates that samples were not taken during that week. NOTE: Scale on y-axis differs among species. 

the pool proper, and a vertical one, depth of cap- 

ture within the pool. 

Only two pools were trapped at any given time 

during the study. From time to time pools became 

unsuitable for further trapping, usually as a result 

of lowering water levels, filling-in of the pools, or 

the disappearance of fishes. Traps were examined 

and reset at dawn and dusk 2 days each week in 

each pool for the entire year. Fish were removed 

from the traps, identified, counted, and returned to 

the stream. Numbers of fish caught during the 

day or at night are considered suggestive of activity 

patterns among the four species. 

Information on seasonal distribution is derived 

principally from trap records in 1966-67 and from 

visual observation throughout the years 1966-71. 

During this period pools were also sampled with 

a 15-ft, one-fourth in. mesh nylon seine. Although 
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FIG. 3. Seasonal distribution of Notropis as indicated by seine collections. In general, 3 seine hauls were 
made in each pool. Collections in 1966 were taken from Station I or from a pool downstream from Station 
l. In 1970, collections were taken from Stations 1 and 2 with the exception of collections made on September 
15 at Station 3. 

the number of seine hauls was not fixed in advance, 
three passes through a pool was generally sufficient 
to obtain a quantitatively representative sample. 

In an attempt to determine whether the same fish 
were continually reappearing in the traps, fish were 
marked by fin-clipping for several weeks both in 
1966 and in 1967. On 4 April 1966, 302 individuals 
representing all four species in roughly equal numbers 
were marked. Only 3% were recaptured on May 7 
of that year. No significant differences in percentage 
recapture among species were noted. In the spring 
of 1967, 205 individuals were marked. During the 
following 3 mo of weekly trapping not one marked 
Notropis was recovered. The data suggest that 
repeated trapping of the same individuals has little 
effect on the data. The possibility that fin-removal 
had serious ill effects on fishes was discounted: 
aquarium-held animals showed no adverse response 
to such treatment. Pools were seined periodically 
during the course of trapping to insure that each 
species was secured in reasonable proportion to its 
abundance in the pools as measured by the sum of 
the frequency of capture in all traps. 

R esuilts 

Seaisonal distribution. Seasonal changes in the 
numbers of Notropis in Roxbury Creek result pri- 
marily from periodic movement of fishes to and 
from the Wisconsin River. Significant upstream 

migration of most species occurs in both fall and 

spring (Fig. 2). Summer populations, on the other 
hand, are low, suggesting downstream migration in 
late spring. In winter, populations vary from species 
to species, although in 1966-67 the numbers declined 
overall. 

The abundance of fishes in the stream is also 
related to annual variation in the size of river popu- 

lations, information difficult to obtain with accuracy. 

Seasonal patterns are probably best expressed, there- 
fore, by data on presence whether a species oc- 
curred at all in a sample and not by the number 

TABLE 3. Results of Runs Test applied to seasonal 
distribution of Notropis. A run is defined as a suc- 
cession of identical symbols that are followed and 
preceded by different symbols or no symbols. For 
large samples a good approximation to the sampling 
distribution of r (the number of runs) is the normai 
distribution with 

2r 
, n2n,112 + 1 and 6 = 

2 111 2I - 
nl 

- 
112) 

III + n r ( n,+ ,11 
) 2(n + /12 - I 

where Ih - number of elements of one kind and 
12 --number of elements of the other kind 
(Siegel 1956). 

Weeks Weeks 
present absent 

Species (III) (112) Runs Z p 

N. stranineus 23 19 9 -4.07 < .01 
N. atherinioides 17 25 1I -3.28 < .01 
N. spilopterus 37 5 7 0.63 NS at .01 
N. dorsalis 28 14 15 -1.66 NS at .01 
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actually caught (Fig. 2). Data on the presence of 

species in weekly trapping periods during 1966-67 

were tested for significance by the Runs test (Table 

3), which distinguishes two types of ordered sequence 
from the random. Distributions with significantly 

fewer runs than would be expected by chance imply 
the action of long-term or seasonal factors (Siegel 

1956); distributions with a large number of runs 
suggest the influence of short-term or cyclic phe- 

nomena (MacArthur 1958). Notropis strainineus 

and N. atherinoides illustrate the former alternative, 

the seasonal influence being most strikingly expressed 

in summer, when neither species was collected from 

Roxbury Creek. This same pattern was noted also in 
1966 and in 1970 (Fig. 3 c, d, j, k, I). Notropis 

strainineus, although trapped in varying numbers, 
occurred with considerable regularity during the rest 
of the year. Notropis atherinoides appeared more 

erratically. In the fall and winter of 1966, huge 

schools occupied the lower reaches of Roxbury Creek, 

but failed to move upstream into the pools under 

study. In the fall of 1970, however, N. atherinoides 
was common in these same upstream locations 

(Fig. 3 m, n, o). 
The seasonal distributions of both N. spilopterus 

and N. dorsalis were random in 1966-67 (Table 3). 
Notropis spilopterus, while showing striking variation 
in abundance, was present throughout most of the 

year. The enormous numbers that moved into 

Roxbury Creek in the fall of 1966 (Fig. 3 f) were 

gradually reduced during the remainder of the year 

until late summer 1967, when the slight indication of 

future increase was noted (Fig. 2). In fall 1970, 

upstream migration was less marked than in 1966, 
but spring populations appeared somewhat larger 

(Fig. 3 g, h). 
Small populations of N. dorsalis, generally the 

least common of the four species, persisted in Rox- 

bury Creek throughout 1966-67 (Fig. 2 d). Even 

in summer, when other species populations were re- 

duced, a few N. dorsalis were collected (Fig. 2 d, 

Fig. 3 c, d). The regular occurrence of this species 
in 1966-67 suggests the possibility of a small resident 

population. 

June to August is thought to be the main breeding 

period of these fishes in the north central states 

(Starrett 1951). In view of their absence from 

Roxbury Creek during the summer months, it appears 

unlikely that any of the four species, with the possible 

exception of N. dorsalis, breeds in the stream. 

Starrett's excellent analysis of the effect of water 

levels on breeding success (also Moore 1944) sug- 

gests that recruitment is not directly dependent on 

events in the stream, but rather is determined by 

conditions in the river. 

Nevertheless, periods of abundance in tributary 

streams, occuring as they generally do in spring and 

fall, may well be significant to the overall success 

of these fishes in the lower Wisconsin River. High 

populations are found in Roxbury Creek throughout 

the spring, presumably a period of intense feedirng 

before spawning, and again in fall and early winter 

when food resources appear to be considerably 

reduced. 
Diel activity.-If the number of fishes actually 

caught in a trap period can be considered a measure 

of their general activity level during that period, then 

from the relative numbers of each species caught 

during the day or the night, we can obtain some infor- 

mation on diel patterns of activity in these fishes. 

Notropis dorsalis (n = 76, x2 < .01) and N. 

atherinoides (n = 143, x2 < .01) were trapped more 

frequently at night in Roxbury pools; N. spilopteruis, 

on the other hand, was trapped more often during 

the day (n - 2,686, x2 < .01 ). No difference is 

apparent in the behavior of N. strawnineus (n = 209, 

x2 > .05). 
All species showed a tendency to appear in 

"exposed" traps at night. These traps located in 

shallow water or near the surface in deeper water- 

caught relatively more fishes of all species at night 

than during the day. Increased immunity from ter- 

restrial predators, and the presence of emerging 

insect larvae may contribute to this. An analogous 

movement of N. spilopteriis into shallow water at 

night in the Des Moines River has been noted by 

Starrett (1 951). Nighttime activity in N. atherinoides 

has been described by Trautman (1957) and 

Campbell and MacCrimmon (1970). 
These data should nevertheless be interpreted 

with caution. It is not clear, for example, why fish 

enter unbaited minnow traps at all, nor is it known 

precisely when in the course of a day's or night's 

trapping the majority of the animals are caught. 

Turning on a light in a darkened aquarium room, 

one invariably finds all four species resting quietly 

on the bottom. It is only after several minutes of 

highly disorganized movement that the sluggish fishes 

resume their normal patterns of behavior. It would 

seem more probable, therefore, that nighttime capture 

is an indication of crepuscular rather than truly 

nocturnal activity. 

Spatial distribution. Seining data, trapping data, 

and visual observation indicate that in Roxbury 

Creek Notropis species are found almost without 

exception in the pools, those deposition areas whose 

morphology has already been discussed. Some pre- 

liminary general comments, based on field observa- 

tions, may help to orient the reader about the 

spatial distribution in these pools. 

At times of peak population in the stream, not 

only the relatively permanent pools, but also marginal 
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areas pockets formed behind small branches and 

troughs connecting pool to pool are occupied by 

fishes. Rarely are fish seen swimming over the bare, 

sandy stretches between pools, and even then they 

are usually moving from one pool to another. During 

such times they take advantage of ripples in the sand 

bottom, resting briefly on the lee sides and darting 

rapidly from one ripple to another. Only once was 

a species found to remain for any length of time in 

such an area. Several N. dorsalis were observed by 

flashlight on an evening in March 1969 moving 

slowly over these sandy stretches, remaining sta- 

tionary behind a sand ripple for short periods, then 

moving on unhurriedly to another. The propensity 

of N. dorsalis for sand flats has been mentioned by 

Hubbs and Walker (1942). 
In the pools fish remain in loose aggregations 

facing the current. This orientation is usually very 

precise; it occurs not only in the channel, where most 

of the fishes are found, but also outside the main 

thread of the current in eddies near the bank. Very 

often subsurface eddies can be detected only by 

the orientation of fishes to the circular pattern of 

water flow. Fish do not maintain themselves in a 

stationary position in the channel, but character- 

istically swim upstream a short distance, then drift 

backward a similar distance and repeat their forward 

movement. 
It is possible, by careful observation, to dis- 

tinguish different species in the pools, principally by 

the breadth of the dorsal aspect and by the nature 

of the middorsal stripe. Overt interactions between 

individual fishes of the same or different species are 

not common. If the fishes remain in species-specific 

schools this is not apparent from streamside observa- 

tion. 
Sometimes fishes are seen close to or actually 

feeding on the bottom, but in general the aggregation 
is well dispersed in the water column, and directional 

feeding movements are rarely noted. 

From time to time small groups break off from 

the main mass of fishes in a pool and begin hesi- 

tantly to move upstream. The slightest disturbance 

sends them racing back to the pool. Movements up- 

stream generally follow troughs at the bank edge of 

the stream. The fish move in a long line, several 

abreast. Very infrequently does a broad wave of 

fishes move out over wide stretches of sand. 

Although it is difficult to generalize from field 

observations made on shy animals in an environ- 

ment often rendered opaque by shifting light condi- 

tions, the dominant impression conveyed by these 

animals to an observer is one of patient waiting. 
For long periods individual fishes, always oriented 

into the current, may move only short distances 

upstream and downstream, apparently neither feed- 

ing nor interacting with their fellows. The purpose of 

TABLE 4. Results of Kolmogorov-Smirnov one-sample 
test comparing expected and observed cumulative 
frequency of capture of Notropis at different depths 
and locations 

Frequency of Notropis tItheritloides 
capture Trap depth 

Cumu- 
lative 

percent- 
age A B C D E F 

Expected 16.7% 33.4% 50.1% 66.8% 83.5% 100.0% 
Observed 20.3%o 63.7% 84.0% 96.4% 100.0% 100.0% 

0-EB 3.6% 30.3% 33.9% 29.6%o 16.6% ... 

N= 123 
D = (max O-EB!) =.339 

P < .01 

Cumu- 
lative Trap location 

percent- 
age 1 2 3 4 

Expected 25% 50% 75% 100%0 
Observed 23% 3 0%7o 85%7o 100% 

0-EB 2% 20% 10% . 

N = 156 
D = .200 
p < .01 

Depth Location 

Species N D p N D p 

N. atllerinoides 123 .339 < .01 156 .200 < .01 
N. dorsalis 47 .564 <.01 135 .300 <.01 
N. spilopterus 2,252 .035 <.01 3,662 .160 <.01 
N. straminieus 132 .478 <.01 239 .220 <.01 

trapping these animals, then, was to determine if, 

within this assemblage structured seemingly only by 

the direction of current flow, subpatterns of spatial 

preference among the four species could be detected. 

Spatial preferences were measured along two 

axes. Data averaged from all traps at locations 1, 

2, 3 and 4 (Fig. 1) measure preferences among the 

species along a longitudinal axis, from the head of a 

pool, or shallows region, through the pool itself. 

Data from traps positioned in the deepest part of a 

pool, location 3, measure preferences in a vertical 

direction, the height above the bottom at which 

fishes of each species are most commonly found. 

Deteriorating conditions sometimes necessitated 

the transfer of traps from one pool to another. As a 

result, data from some pools, principally those 

trapped for short periods of time, are less than 

complete. In order to describe the characteristic 

spatial distributions of the four species, therefore, 

I combined data from each of the six pools. (Com- 

plete data on the distribution of species in each pool 

are included in Appendices I, II, and III.) 

Comparisons between the distribution of indi- 

vidual species and hypothetical random distributions 
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TABLE 5. Results of Kolmogorov-Smirnov two-sample test comparing observed cumulative frequency of capture of 
pairs of Notropis species at different trap depths and locations 

Trap depth 
Cumulative--------- ---- ------- -- -- ------ 

percentage A B C D B F 

N. at/erinoides (123) 20.3%o 63.7% 84.0% 96.4% 100.0% 100.0%w 
N. dorsalis (47) 73.1% 88.4% 97.3% 100.0% 100.0%o 100.0C, 

D 52.8% 14.7% 13.3% 3.6% ... 

x22df 4D2 771772ijli2 4(.528)2 (123)(47)/123 + 47 38.0 

P < .01 

Depth Location 

Species pair D X22df P D X22df P 

N. atlerinoides-N. dorsalis .528 38.0 < .01 .420 28.6 < .01 
N. alherinoides-N. spilopterus .491 > 110.0 < .01 .140 12.0 < .(1 
N. (Itllerinoides-N. stranhineus .442 50.0 < .01 .260 25.0 < .01 
N. dorsalis-N. spiloptertis .738 100.0 < .01 .380 56.0 < .01 
N. dorsalis-N. stranmineus .093 0.09 > .50 .340 39.0 < .01 
N. spilopterus-N. stramineus .645 > 210.0 < .01 .120 11.2 < .01 

(equal numbers at each trap location or depth) were 

tested for significance by the Kolmogorov-Smirnov 

one-sample test (Table 4). This test compares ob- 

served and expected cumulative frequency distribu- 

tions. The point at which the two distributions show 

the greatest divergence is determined. Reference to 

the sampling distribution indicates whether such a 

large divergence is likely on the basis of chance. 

Differences between pairs of species in spatial dis- 

tribution along both longitudinal and vertical axes 

were tested by the Kolmogorov-Smirnov two-sample 

test (Table 5). Observed distribution of all species 

differed from expected at 0.01 level. No seasonal 

differences in the spatial preferences of any species 

could be detected. 
Vertical axis (Fig. 4) .-Both N. dorsalis and 

N. strarnineus were found most often in traps on the 

bottom (A-level). No significant differences in the 

vertical distribution of these two species was found 

(Table 5). Notropis strarnineus, trapped with 

greater frequency in midwater, nevertheless appeared 

less rigidly committed to a benthic existence than 

did N. dorsalis. Notropis atherinoides and N. spilop- 

teruts, on the other hand, were more commonly 

collected in midwater traps than on the bottom. 

The latter species in particular demonstrated a clear 

preference for midwater. The data on the distribution 

of N. atherinoides, whose midwater and surface- 

dwelling habits have been mentioned by both 

Trautman (1957) and Cross (1967), must be inter- 

preted cautiously. This species appeared in numbers 

in Roxbury Creek only in spring, and even then its 

presence was spotty. Almost 40% of all N. atheri- 

noides, for example, were captured in a single trap 

on the morning of 12 June 1967. This event, possibly 

reflecting some form of contagious behavior in a 

strongly aggregating species, affects data on the 

distribution of N. atherinoides to a disproportionate 

degree. 
Longitudinal axis (Fig. 4) .-Trapping data indi- 

cate a strong preference in N. dorsalis for shallow- 

water areas upstream from the pools (location 1), a 

preference previously suggested by Hubbs and 

Walker (1942) and Starrett (1 950a). The other 

three species were more commonly trapped within 

the pool itself (locations 2, 3, 4). 

Subpatterns reflecting spatial preference among 

the four species do apparently exist within the super- 

ficially undifferentiated assemblages of fishes in the 

pools of Roxbury Creek. A possible morphological 

basis for maintaining particular spatial patterns, in- 

volving the relative size of the swim bladder, has 

been suggested for species in the cyprinid genus 

Rhinichthys (Gee and Northcote 1963, Gee and 

Maclean 1972). Of the four, N. dorsalis is most 

likely to be found near the bottom and in shallow 

water. Notropis strainineus is likewise most common 

near the bottom, but exhibits a preference for the 

pool itself rather than shallow water. Both N. spilop- 

terus and N. atherinoides appear to be midwater 

inhabitants in the pools, with the former tending to 

occur nearer the water surface. Reports on the 

surface-dwelling habits of N. atherinoides (Traut- 

man 1957) cast some doubt on the reality of this 

difference. 
It would be of interest to know whether the 

spatial distribution of one species changes in the 

presence or absence of others. Alterations of this 

kind in the habits of fishes, called "interactive 

segregation," have been discussed by Nillson (1967), 

who suggested that the presence of other species with 

similar habits may tend to restrict the distribution or 

otherwise modify the habits of a particular species. 

Traps are not a well-researched sampling tool how- 
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VERTICAL N. atherinoides N. spilopterus 'N. stromineus N. dorsolis 
DISTRIBUTION n -123 n- 2252 n- 132 n-47 

: 87.5-105.0 0.0 % 3% 0.0 % 0.0% 
0 
F 70.0- 87.5 3.6 % 24.9 % 0.0 % 0.0% 
0 
m 52.5-70.0 12.4 % 32.0% 10.2% 2.7 % 

> 35.0-52.5 20.3% 25.0% 10.7% 8.9% 
0 

4 17.5-35.0 43.4 % 7.5 % 14.6% 15.3 % 

o 0-17.5 20.3% 7.1% 64.5% 73.1% 

% TRAPPED % TRAPPED % TRAPPED % TRAPPED 
LONGITUDINAL 
DISTRI BUTION n = 156 n=3662 n=239 n- 135 

a 55% 55% 

I1 28% 31% 
23% 21/a 21%I750 

7 5% 13% 7% 1I3% 

LOCATION9 LOCATION9 LOCATION9 LOCAT ION 

Fi(G. 4. Longitudinal and vertical distribution of Notropis in Roxbury Creek pools. Vertical distributions 
represent percentage frequency of capture in traps set at location 3. 

ever, and their low efficiency makes one cautious. 

What data do exist suggest that the presence of a 

particular species does not significantly affect the 

spatial distribution of others. 

THE INVERTEBRATE FAUNA OF ROXBURY CREEK 

Only one of many kinds of spatial pattern in 

the invertebrate fauna, the principal food resource of 

Notropis in these pools, was examined in this study: 

the abundance of different forms in the drift and in 

the benthos of pools sampled in 1970-71. 

Sampling sites 

Two pools were chosen as permanent sampling 

stations in May 1970. Station 1, about 11 m long 

and 2 m wide, lies behind a buried tree trunk (Fig. 

5). Water depth at the pool center averaged 54 cm 

in 1 970-71. Leaf detritus is the principal component 

of the substrate. The upstream shallows of Station 

l, which averaged 15 cm deep over this period, has 

sediments of gravel and sand covered by silt. 

Station 2, about 1.5 km downstream, is a some- 

what smaller pool, but it approximates Station 1 in 

average depth. The pool has formed behind a large 

fallen tree. During high water increased flow over 

the trunk scours and deepens the pool; during normal 

flow, deposition occurs. Bark fragments, presumably 

from the tree trunk, litter the substrate. The up- 

stream shallows of Station 2 is composed primarily of 

sand and the fauna is correspondingly reduced. 

Station 2 is frequently buried by shifting sand. 

On one such occasion, coinciding with the September 

1970 sampling period, samples were taken at Station 

3, a pool of similar size abou: 25 m downstream. 

Here deep deposits of silt formed the pool substrate, 

and bark fragments were uncommon. By October, 

Station 2 had been reexcavated with large amounts of 

organic matter being quickly deposited, and sampling 

was resumed in this pool. 

Methods 

Sampling p/al .-Stations were sampled during 

eight 1-wk sampling periods spaced regularly through- 

out 1970-71. In February one station was not 

sampled because of bad weather. Both drift and 

benthic samples were taken in each sampling period. 

Fish, when present, were collected for analysis of 

stomach contents. The following 4-day sequence 

was followed at each station: 

day 1: drift sample 

day 2: collection of fishes 

day 3: drift sample 

day 4: benthic sample. 

The two drift samples were designed to estimate 

the impact of feeding fishes on the composition of 

the drift. In practice the number of fishes was 

either so great that it was impossible to remove a 

significant number, or so few that their effect on 

the drifting fauna was negligible. 

Since the quantity of drift varies with a diel 

as well as a seasonal cycle (Waters 1962, Elliott 1967, 
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, 4 ' 

FI(;. 5. Roxbury Creek, November 1970. View is of Station I in an upstream direction. Branch extending 
from buried trunk, which forms upstream edge of pool, can be seen in center of photograph. 

Holt and Waters 1967. Bishop and Hynes 1969), 
three different time periods were established for 
the sampling of drift: 

1) 3 h before sunrise to 3 h after sunrise; 
2) 3 h before midday to 3 h after midday; 
3) 3 h before sunset to 3 h after sunset. 

The length of sampling periods was determined from 
experimental evidence on the digestion rates of fishes 
in aquaria. The remains of simu1liid larvae fed to 
24 Notropixv of several species held in aquaria at 

20' C were recognizable in gut contents up to 6 h 

after feeding. Somewhat slower rates would be 

expected with more heavily chitinized prey (Molnar 

et al. 1966) or at cooler water temperatures (Windell 

1967). 

C'ollectiotn and analysis of (Irift sanples.-Drift 

nets were made of 42.3 JLm nylon monofilament 

attached at the mouth to brass frames of length 

50.8 cm and width 17.8 cm. Each net thus sampled 

an area of 910 cm . Depth of the net to the collecting 

tube was 43.2 cm. Nets were drained from the rear 

through plastic tubes sewn onto the net fabric. 
When nets were in use, tubes were sealed with metal 
clamps. 

Nets were set in vertical series in a wooden 
frame, a procedure designed to examine the pos- 
sibility of vertical stratification in the drift fauna. 
The number of nets used depended on the depth of 
the stream at the point sampled. 

In general, the sampler was located in the channel, 
at approximately the deepest part of a pool. To 
minimize disturbance, the sampler was placed in 
the stream from a platform extending from bank to 
bank. 

During a 6-h sampling period, four samples of 20 
min each, separated by 90-min intervals, were taken, 
a total of 80 min of sampling. 

Current measurements were made with a Price 
pattern pygmy current meter with a cup width of 
three-fourths in., sensitive to velocities 0.03-3.4 m/s. 
Such measurements, taken at 9-cm intervals from 
substrate to surface, permitted calculations of the 
total volume of water passing through each net. 

Drift samples were preserved in 2% Formalin 
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TABLE 6. The invertebrate fauna of Station 1. Numbers in parentheses refer to percentages of the total fauna collected in a sampling period. Benthic percentages l 
represent an average of pool and shallows samples 

Mav 5-7 June 16-18 July 31 November 4-6 December 16-18 February 3-5 

Drift Benthos Drift Benthos Drift Benthos Drift Benthos Drift Benthos Drift Benthos 
Taxon 17( 7 C c % % % % 0 % 

Oligochaeta 
Enchytraeidae 0.9(+) 
Tubificidae 

Limnodrillis 3.4(2.8) 3.8(3.1) 2.8(2.7) 
Others 0.2(0.2) 1.7(1.5) 5.8(5.6) 1.7(1.6) 1.5(+) 
Total Oligochaeta 0.2(0.2) 5.1 (4.3) 9.6(8.7) 0.9(+) 4.5(4.3) 

Copepoda 
Cyclopoida 

ElicYclops 3.9(1.4) 0.1(0.1) 8.2(1.4) 0.3(0.1) 11.5(0.5) 
Paracy'clops 3.1 (1.1) 0.4(0.1) 3.1(0.1) 
Tropocyclops 1.1(0.4) 2.6(0.4) 0.3(0.1) 2.0(0.1) 
Undetermined 10.7 (3.7) 1.7 (0.3) 6.8 (0.2) 

Harpacticoida 3.0(1.0) 0.6(0.6) +(+) 
Total Copepoda 21.8(7.6) 0.1(0.1) 12.9(2.2) 0.6(0.2) 23.4(0.9) 0.6(0.6) 

Ostracoda 2.8(+) 

Isopoda 
Asellits 0.1(0.1) 1.5(1.0) 0.3(0.2) 0.9(0.9) 0.1(0.1) 0.1(0.1) 

Amphipoda 
Garninarlis 30.6(10.8) 39.7(25.6) 5.2(0.9) 1.7(1.5) 83.6(18.5) 4.8(3.7) 24.1(0.9) 1.5(1.4) 2.8(+) 3.2(3.2) 14.7(0.3) 4.7(4.6) , 

Ephemieroptera 
Baetis 2.4(0.9) 19.0(3.3) 0.5(0.1) 2.0(0.1) 

Henliptera 0.4(0.2) 2.2(0.4) 

Coleoptera 0.5(0.2) 

Neuroptera 
Sialis 0.8(0.5) 0.3(0.1) 1.3(1.0) 0.9(+) 4.2(4.0) 0.5(0.5) 0.9(0.9) 

Trichoptera 
Hydropsyche 0.7(0.3) 1.3(0.9) 6.1(1.0) 0.9(0.7) 1.5(0.3) 
Platycentropius 0.2(0.1) 
Pvcnopsyche 0.5(0.3) 6.0(0.5) 1.2(0.9) 0.2(0.2) 5.5(+) 

Limnephilidae 0.3 (0.2) 1.8 (0.1) 

Diptera 
Tipulidae 
Dicranota 7.0(5.8) 0..3(0.1) 0.3(0.2) 0.1(0.1) 0.2(0.2) 
Hexatoma 0.5 (0.3) 1.7 (1.5) 0.3 (0.2) 0.2(0.2) 
Tipula 0.1 (0.1) 1.5 (+) 
Tipulidae A 1.1 (1.0) 3.0 (2.9) 

Ceratopogonidae 0.6(0.2) 0.4(0.1) 0.2(0.2) 0.1(0.1) 

Chironomidae: larvae 
Tanypodinae 0.7(0.3) 0.1(0.1) 0.3(0.1) 1.9(0.1) 0.4(0.4) 0.1(0.l) 0.2(0.2) 
Diamesinae 12.2(10.1) 0.2(0.2) 0.2(0.2) 0.1(0.1) r, 
Orthocladiinae 
Brillia 0.1(0.1) 0.9(0.2) 1.9(0.1) 0.7(0.7) +(+) 
Corvnonelira 0.5(0.2) 3.0(0.5) 1.0(0.2) 15.0(0.6) 27.8(0.1) 59.9(1.2) 
Cricotoptis 1.9(0.7) 
Nanocladitis 2.6(0.9) 5.6(1.0) 1.0(0.2) 1.9(0.1) 2.8(+) 1.9(+) 
Psectrocladius 0.3(0.1) 0.9(+) 2.8(+) 2.9(0.1) 
Thiemaniella 0.3(0.1 ) 12.6(2.2) 1.0(0.2) 5.5(+) 4.9(0.1) 
Undetermined 2.1(0.7) 0.5(0.3) 3.0(0.5) 0.9(0.7) 3.9(0.2) 0.2(0.2) 27.8(0.1) +(+) 0 

Total Orthocladiinae 7.8(2.8) 0.5(0.3) 26.1 (4.4) 0.9(0.7) 3.0(0.6) 23.6(1.0) 0.9(0.9) 66.7(0.2) 0.1(0.1) 69.6(1.4) 
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TABLE 6. (continued) 

May 5-7 June 16-18 July 31 November 4-6 December 16-18 February 3-5 U 

Drift Benthos Drift Benthos Drift Benthos Drift Benthos Drift Benthos Drift Bentho 

Taxon % 7 %% 

Tanytarsini0 
Micropsectra 23.9(8.4) 26.8(17.3) 0.9(0.1) 45.6(38.1) 1.0(0.2) 78.5(60.0) 10.6(0.4) 80.4(77.2) 11.0(+) 92.3(92.1) 4.4(0.1) 83.9(82.0) 

Chironomini 
Cryptochironoutits 0.3(0.2) 0.4(0.4) 0.1(0.1) 0.2(0.2) m 
Microtendipes 0.1(0.1) 1.9(1.2) 0.3(0.1) 0.3(0.2) 0.2(0.2) 0.1 (0.1) 
Paratendipes 0.4(0.2) 20.6(13.3) 0.6(0.5) 1.9(1.9) 4.4(0.1) 5.9 (5.8) 

Poly'pediliirn 1 1.9(0.7) 5.2(0.9) 0.5 (0.1) 4.7(0.2) 2.4(2.3) 

Stictochironomts. 13.0(11.6) 1.3(1.0) 0.5 (0.4) 1.5(+ 
Total Chironoinim 2.4(1.0) 22.5(14.5) 5.2(0.9) 13.0(11.6) 0.8(0.2) 2.5(1.9) 4.7(0.2) 3.5(3.3) 2.1(2.1) 6.9(0.1) 6.1(6.0) 

' 

Chironomidae: pupae 2.8(1.0) 4.7(3.0) 0.9(0.1 ) 3.4(2.8) 1.0(0.2) 1.1(+) 
Simuliidae 0.2(0.1,) 0.3 (0.1) 
Tabanidae 0.5(0.3) 0.4(0.1) 0.6(0.4) 0.6(0.6) 0.6(0.5) 01(01) - 

Diptera: undet. larvae 0.5 (0.2) 1.1+ 0.2(0.2) 0.4(0.4) 

Acari 0.5 (0.3) 
H grobates 0.6(0.1) 0.6(0.4)6) 
Lebertia 1.1(0.8) 0o(06 
Sperchonopsis 1.1(0.2) 

Terrestrials0 
Collembola 0.3(0.1) 0.9(0.1) 0.3(0.1) 2.8(+) 

Ihysanoptera 1.3(0.2) 0.5(0.1) 2.8(+) 
Herniptera 1.7 (0.3) 0.8(0.2) 
Homnoptera 3.0(0.5) 0.3(0.1) 0. 9(+) 
Coleoptera 0.2(0.1) 1.7(0.3) 0.3 (0.1) 
Diptera 4.1(1.6) 4.3 (0.7) 2.4(0.4) 0.9 (+) 5.6(+) 

Hymenoptera 0.3(0.1) 1.7(0.3) 1.0(0.2) 
Arachnida 0.5(0.2) 1.7(0.3) 1.7(1.5) 1.2(0.3) 1.9(0.1) 
Others 2.6(0.41) 1 ).(0.2) 

Total terrestrials 5.4(2.1) 19.8(3.1) 1.7(1.5) 6.9(1.7) 3.7 (0.2) 11.2(+) 
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during the summer months; 70% ethanol was used in 
subfreezing temperatures. 

In the laboratory the volume of each drift sample 
was recorded, filtered through 125 Ium silk bolting 
to remove silt, and examined under a dissecting 
microscope. Animals were removed and identified. 
Stibsampling was necessary when the volume of 
detritus in a sample was particularly great. From 
a gridded petri dish 40-in.-square sections were 
chosen by random processes. Animals present in the 
chosen sections were removed, identified, and counted. 
By this method one-fifth of the total sample was 
examined. 

The number of animals in a drift sample is 
expressed as drift density, following the definition 
of Waters (1969). 

For comparisons among drift samples taken on 
different days or at different depths, the 80-min 
cumulative samples were converted, by a correction 
factor, to the estimated 6-h values. For comparison 
with bottom samples, the method of Elliott (1967) 
was followed. The resulting formula estimates the 
quantity of drift passing over a strip of bottom 
I m wide in 6 h: (t'alt) (N) w, where t = actual 
sampling time, t' = 6 h, N number of animals 
caught in time t, and w = width of drift nets. 

Collection and analysis of benthic samples.-The 
difficulty of taking accurate and comprehensive 
bottom samples in streams is well known. A review 
of the problems involved is given by Hynes (1970). 
Some of these include (1) the choice of proper 
equipment for the substrate to be sampled (Cummins 
1962, Southwood 1968), (2) the sometimes uneven 
or clustered distribution of animals in the benthos 
(Mottley et al. 1938, Gaufin et al. 1956), and (3) 
the number of samples necessary for statistical reli- 
ability (Gaufin et al. 1956, Needham and Usinger 
1956, Cummins 1962, Ulfstrand 1968). Because of 
the relatively uniform nature of pool substrates and 
the small size of the pools themselves, these problems 
were considered of secondary importance, especially 
in relation to the potentially deleterious effects of 
removing large quantities of substrate. 

Benthic samples were taken with a D-frame 
aquatic net of width 30.5 cm and mesh size 20 
threads in., scraped over bottom sediments for a 
distance of 30.5 cm. The net penetrated and allowed 
sifting of bottom sediments in this stream to approxi- 
mately 1-3 cm. Although the mesh size of the 
benthic sampler was somewhat greater than that of 
the drift nets, no significant difference was found 
in the size of organisms captured. 

During each sampling period two benthic samples 
were taken along the midline of the pool: one in 
shallow water near the upstream edge of the pool, 
the other in deep water near the pool center. 

Samples were measured volumetrically, fixed in 

2% Formalin, washed through 125 [um silk bolting, 
treated with CaClI, to separate animals and organic 
material from sand and gravel (Anderson 1959, 
Hynes 1970), and then examined under suitable mag- 
nification. Subsampling, using the method described 
previously, was often necessary to process the large 
volume of material. 

Definitions.-Definitions of several terms that 
will be used throughout may help to clarify the sub- 
sequent discussions: 

1) Drift fauna. Waters (1965, 1969) recognized 
three types of drift phenomena: behavioral. 
constant, and catastrophic. In this study no 
distinction is made among these types. The 
drift fauna is operationally defined as those 
animals collected by nets placed in the pool 
facing upstream. The question of whether the 
animals collected are actually moving down- 
stream is left open. The definition can apply 
equally well to pool inhabitants making brief 
nondirectional excursions into the water 
column from the benthos. 

2) Pool fauna. Those animals collected from the 
benthos along longitudinal transects run 
through the center of each pool. 

3) Shallows fauna. Those animals collected from 
the benthos along longitudinal transects run 
through areas just upstream from the heads of 
pools. These areas are best defined by their 
spatial relationship to the pools. They differ 
from one another, sometimes markedly, in 
bottom type and current speed. 

For purposes of comparing elements of the fauna 
with one another several measures of relative abun- 
dance will be used: 

1) Percentage of the total fauna: the portion 
that a species composes of the total number of 
animals collected during a single sampling 
period, including both drift and benthic sam- 
ples The calculations necessary to convert 
numbers of animals per volume of water 
sampled to number per area of substrate have 

been discussed earlier. 

2) Percentage of the drift, pool, shallows, or 

henthic fauna: the proportion that a species 
makes up of one of these four kinds of samples 
taken in a pool during a single sampling period. 
Benthic samples are averages of the sum of 

pool and shallow samples. 

RESULTS 

Sixty-three kinds of invertebrates were collected 

from the three pools sampled in Roxbury Creek. 

Quantitative data were obtained on 55 of these. 

The monthly faunal composition of each pool ap- 

pears in Tables 6-8. Certain elements of the fauna 
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TABLE 7. The invertebrate fauna of Station 2. Numbers in parentheses refer to percentages of the total fauna 
collected in a sampling period. Benthic percentages represent an average of pool and shallows samples. 

5-7 May 1 August 4-6 November 

Drift Benthos Drift Benthos Drift Benthos 
Taxon VC)(Cc VC ?) 

Oligochaeta 
Enchytraeidae 0.3 (0.1) 6.2(2.4) 6.1(4.0) 
Tubificidae 

Lininodrilus 1. 1 (0.9) 7.7(1.8) 0.4(0.2) 54.4(35.5) 
l1yodrilus 0.4(0.1) 2.5(1.6) 

Others 2.9(0.4) 3.5 (1.2) 2.7(1.6) 
Total Oligochaeta 2.9(0.5) 1.1 ((0.9) 8.1(1.9) 10.1(3.8) 65.7(42.7) 

Copepoda 
Cyclopoida 
Cyclops 0.3 (0.1) 2.7(0.9) 0.2(0.2) 
Eucyclops 4.4(1.5) 0.2(0.2) 
Macrocyclops 0.6(0.1) 0.1(0.1) 1.3(0.5) 
Undetermined 2.4(0.3) 1.7(0.7) 

Harpacticoida 
Total Copepoda 3.3(0.6) 0.1(0.1) 10.1(3.6) 0.4(0.4) 

Isopoda 
As/llus 3.7(0.5) 15.4(12.9) 0.1(0.1) 10.4(2.4) 

Amphipoda 
Garninarits 63.5( 10.0) 8.1(6.8) 96.3 (73.8) 33.3 (7.8) 32.4(11.2) 6.7(4.3) 

Ephemeroptera 
Baectis 2.1(0.3) 0.8(0.6) 

Hemiptera 2.1(0.3) 

Coleoptera 0.6(0.2) +(+) 0.4(0.2) 

Trichoptera 
Hydropsyc/ie 0.1(0.1 ) 
Platycentropus 0. 1 (0.1 ) 1.2(0.3) 0.4(0.2) 
Pyc 1nopsychie 1.4(0.3) 3.3 (2.8) 1.5 (0.4) 3.1( 1.1) 1.8(1.2) 

Limnephilidae: undet. 0.2(0.2) 

Diptera 
Tipulidae 

Hexatonia 0.2(0.2) 
Prionoc era 0.4(0.1) 
Undetermined 0.9(0.3) 

Dixidae +(+) 
Chironomidae 

Tanypodinae (.9(0.1) 0.5(0.4) 0.3(0.2) 1.5(0.4) 0.9(0.3) 0.2(0.2) 
Diamesinae 0.8(0.2) 0.7(0.4) 
Orthocladiinae 

Brillia 0.8(0.2) 0.9(0.3) 
Corynoneura 0.4(0.3) 0.4(0.1) 4.9(1.7) 
Cricotopus 0.6(0.1) 
Nanocladius 0.6(0.1 ) +(+) 1.3(0.5) 
Psectrocladius 0.6(0.1) +(+) 0.9(0.3) 
Tluienianiella 0. 1 (0.1 ) 
Undetermined 0.3 (0.1) 2.2(0.8) 

Total Orthocladiinae 2.1(0.4) 0.6(0.5) 1.2(0.3) 10.2(3.6) 
Tanytarsini 

Micropsectra 2.1(0.4) 2.8(2.3) 21.5(5.1) 12.8(4.5) 3.9(2.5) 
Chironomini 
Paratendipes 6.7(0.8) 68.7(57.6) 13.5(3.1.) 
Polvpcdilum I 1.9(0.4) 0.1(0.1) 0.1(0.1) 2.7(0.6) 11.9(4.2) 9.1(5.9) 
Polypedilum II 10.1(6.6) 
Stictoculirononnis 0.4(0.1) 0.9(0.6) 

Total Chironomini 8.6(1.2) 68.8(57.7) (0.1(0.1) 16.6(3.8) 11.9(4.2) 20.1(13.1) 
Chironomidae: undet. 1.1(0.1) 0.1 (0.1 ) 2.6(0.9) 
Chironomidae: pupae 0.6(0.1) + ( +) 0.4(0.1) 0.9(0.3) 

Undetermined Diptera 0.1(0. 1) 

Terrestrials 
Collembola 0.3 (0.1) 1.3 (0.5) 
Hemiptera 0. 1 (0.1 ) 
Homoptera 0.2(0.2) 0.4(0.1) 
Coleoptera 0.3(0.1) 0.4(0.1) 0.4(0.2) 
Diptera 1.5(0.2) 0.2(0.2) 
Lepidoptera 0.3(0.1) 
Hymenoptera 0.6 ( 0.1 ) 0.1 ( 0.1) 
Others 2.4(0.4) + (+ ) 1.6(0.4) 1.2(0.6) 

Total terrestrials 5.4(1.0) 0.6(0.6) 2.4(0.6) 2.9(1.3) 
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TABLE 8. The invertebrate fauna of Station 3. Numbers 
in parentheses refer to percentages of the total fauna 
collected in a sampling period. Benthic percentages 
represent an average of pool and shallows samples 

17-19 September 

Drift Benthos 
Taxon (4 

Oligochaeta 
Enchytraeidae 1.7(0.4) 
Tubificidae 

Ilyodrilus 24.5 (18.8) 
Limnodrilus 36.1(27.7) 

Total Oligochaeta 1.7(0.4) 60.6(46.5) 

Copepoda 
Cyclopoida. 

Cyclops 0.7(0.2) 
Eucvclops 0.7(0.2) 
Paracyclops 0.3(0.1) 

Total Copepoda 1.7(0.5) 

Isopoda 
Asellus 1.3 (1.0) 

Amphipoda 
Ganitnarus 11.1(2.4) 17.3 (14.1) 

Ephemeroptera 
Bae/is 7.8(1.7) 

Coleoptera 0.6(0.1) 

Neuroptera 
Sialis 3.9(3.0) 

Trichoptera 
Limnephilidae: undet. 2.4(0.5) 

Ptilostoniis 0.4(0.1) 1.3 (1 .0) 

Diptera 
Tipulidae 

Dicraniota 0.3 (0.1) 
Dixidae 2.0(0.4) 
Ceratopogonidae 0.3 (0.1) 1. 1 (0.9) 
Chironomidae: larvae 

Orthocladiinae 
Corynoneura 6.7(1.4) 
Natiocladius 0.7 (0.2) 
Psectrocladius 0.7 (0.2) 
Thienianiella 2.7(0.6) 
Undetermined 2.4(0.5) 

Total Orthocladiinae 13.2(2.9) 
Tarnytarsi ni 

Micropsectra 4.0(1.2) 11.6(8.9) 
Chironomini 

C/uironiomus 0.6(0.4) 
Paratendipes 0.6(0.4) 
Polypedilumn I 1.0(0.2) 

Undetermined Chironomidae 1.0(0.2) 
Chironomidae: pupae 3.0(0.7) 1.7(1.3) 
Simuliidae 0.3 (0.1) 

Undetermined Diptera 2.0(0.4) 

Acari 
Hygrobates 0.3 (0.1) 

Terrestrials 
Collembola 2.0(0.4) 
Thysanoptera 0.7 (0.2) 
Homoptera 16.5(4.5) 
Hemiptera 1.4(0.3) 
Coleoptera 3.1(0.6) 
Diptera 11.8 (2.7) 
Hymenoptera 6.4(1.4) 
Arachnida 3.3 (0.8) 
Others 1.0(0.3) 

Total terrestrials 46.2(11.2) 

TABLE 9. Habitat classification of the invertebrate fauna 
based on the total number of individuals of each 
taxa collected. Data from the three sampling stations 
have been combined. N - total number collected 

%in 0 cin 
Taxon N drift benthos 

Di'ift fauna 

Baetis 490 100.0 0.0 
Dixa 6 100.0 0.0 
Simnulium 9 100.0 0.0 
Cricotopus 136 100.0 0.0 
Nanocladius 279 100.0 0.0 
Psectrocladius 64 100.0 0.0 
Cyclopoid copepods 1513 99.6 0.4 
Corynoneura 269 97.4 2.6 
T/hiemaniella 90 94.8 5.2 

Indeterminate fauna 

Ganirnarus 8242 72.0 28.0 
Polypedilum I 96 54.8 45.2 
Enchytraeidae 165 54.6 45.4 
Chironomid pupae 128 52.6 47.4 
Aquatic Acari 8 50.0 50.0 
Brillia 50 32.0 68.0 
Pentaneura 46 30.6 69.4 

Benthic fauna 

Pycnoplsyche 129 15.3 84.7 
Microtendipes 45 9.0 91.0 
Prodiarmesa 37 5.9 94.1 
Paratendipes 1280 5.9 94.1 
Sialis 180 4.9 95.1 
Sticlochlil 01o0.'nis 74 4.7 95.3 
Cry ptochilrnom017u11s 49 4.5 95.5 
Ilyodrilus 407 4.4 95.6 
Micropsectra 12,359 3.7 96.3 
Chlrysops 39 3.6 96.4 
A sellus 534 3.5 96.5 
Dicranota 118 3.4 96.6 
Limnodrilus 1504 2.3 97.7 
Peloscolex 8 0.0 100.0 
PolypedilunI 11 58 0.0 100.0 
Tipulidae "A" 350 0.0 100.0 
Hexatorma 39 0.0 100.0 

show distributions restricted either to the benthos 
of the pools or to the drift. Others, including some of 
the more abundant genera, were found both in the 
drift and on benthic substrates. The relative numbers 
of the more common organisms collected in either 
of these two habitats appear in Table 9. 

The drift fauna 

Animals characteristic of the drift were derived 

mainly from three taxonomic groups: cyclopoid 

copepods; chironomid larvae, principally genera in 
the subfamily Orthocladiinae; and ephemeropteran 
nymphs of the genus Baetis. Terrestrial invertebrates 
also contributed significantly to the drift, particularly 
in warmer months. Other dipteran larvae, including 
representatives of such families as the Simuliidae and 
the Dixidae were restricted to the drift as well, but 

were present in very small numbers. 
With few exceptions cyclopoid copepods, includ- 

ing at least five genera, were found only in the drift. 
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Since most of the genera collected are considered 

benthic forms (Hutchinson 1967), it is possible that 
they actually inhabit small backwaters, enclaves pro- 

tected from the main stream of the current, and are 

washed periodically into the drift. The Cyclopoida 

were absent from collections in December and 
February. 

Harpacticoid copepods, generally benthic in distri- 

bution, were collected in small numbers from both 

pool and shallows sediments, as well as from the drift. 

Members of the chironomid subfamily Ortho- 
cladiinae were collected almost exclusively from the 

drift. At Station 1 orthoclads constituted an average 
of 32.5% of the drift fauna and were the most abun- 

dant drifting forms in December and February 

samples. The genera Corynoneura, Cricotopus, two 
species of Nanocladius (Elukeifferilla), Psectro- 

cladius, and Thiemaniella were found only in drift 
samples at Station 1. Brillia and some undetermined 

genera were infrequently recorded from bottom 

samples, mainly in the shallows. At Station 2, where 
reduced numbers of the same genera were present, 

Brillia and a few Corynoneura alone appeared in 

benthic samples. The rest were restricted to the drift. 

The four genera of Orthocladiinae found at Station 3 

were all collected from the drift, where they con- 

stituted over 13% of the fauna. 
The distribution of the Orthocladiinae is an 

example of how pools can act as catch basins for 

elements of the stream fauna not normally part of 

the pool benthos. The Orthocladiinae are the chi- 

ronomids most characteristic of running water (Leh- 

mann 1971). They are often abundant in aquatic 
moss (Percival and Whitehead 1929, Hynes 1961, 

Elgmork and Saether 1970), in gravel patches, and 

on higher aquatic plants (Lindegaard-Petersen 1972), 
habitats for the most part absent from the pools of 

Roxbury Creek. Many species do not build cases, 

but move about freely, increasing the probability of 

being carried away by stream currents. Oliver 

(1971) suggests that early instars of certain forms 

are in fact planktonic and that a pelagic habitat may 
be indicated for some species of Corynoneura. 

Although Elodea beds in the unshaded portion of 

Roxbury Creek harbor large populations of Ortho- 

cladiinae, they are at considerable distance from the 

pools sampled. A more likely source of drifting 

forms are the small gravel patches found at varying 

distances upstream from each of the pools. A similar 

origin is suggested for the few blackfly larvae 

(Simnulimlr) which also drifted through the pools. 

The Ephemeroptera were represented by small 

nymphs of an undetermined species of Baetis. This 

organism was present only in the warmer months, 

when it averaged over 4% of the drift fauna. It 

was never collected from bottom samples in any of 

the pools. In gravel patches, however, and in Elodea 
beds Baetis brunniecolor, B. flavistriga, and B. vagans 
were collected. Presumably individuals drifting 
through the pools were representative of one or more 
of these species. 

Terrestrial invertebrates, either floating on the 
water's surface or carried close to it, composed 
significant portions of the drift in warmer months. 
Infrequently, drowned organisms of terrestrial origin 
were collected from bottom sediments. Adult 
diptera particularly the families Chironomidae, 
Mycetophilidae, Sciaridae, and Dolichopodidae, often 
encountered along stream margins (Thomas 1962)- 
were the most common nonaquatic animals in the 
drift. Collembola were also frequently collected. 
Terrestrial Coleoptera, especially the family Staph- 
ylinidae, were generally more abundant than 
their aquatic counterparts. Homoptera (particularly 
Aphididae) and Hymenoptera of the superfamily 
Chalcidoidea were also taken in the drift. Spiders 
were present in low numbers. 

Among the other groups characteristic of the 
drift were oligochaetes of the families Aelosomatidae 
and Naididae. A diverse and abundant fauna con- 
sisting of the genera Aelosoma, Amphichaeta, Chaeto- 
gaster, Nais, Ophidonais and Pristina were recorded 
mainly from the drift in all pools. Once it became 
clear that their remains could not be identified with 
certainty from the stomach contents of fishes, quanti- 
tative estimates of their abundance were discontinued. 

Published reports, as well as collections from 
other parts of Roxbury Creek indicate that most 
elements of the drifting fauna spend considerable 
time on benthic substrates of one kind or another. 
Simulium and Baetis, for example, clearly do occur 
elsewhere, on gravel deposits or in other benthic 
habitats. In the pools of Roxbury Creek, however, 
they are largely confined to the drift, where they serve 
as one of the main food resources for Notropis. 

The benthic fauna 

A somewhat more varied fauna inhabited the 
benthos of pools in Roxbury Creek. Several major 
taxonomic groups, including the Diptera, Trichoptera, 
and Oligochaeta, comprised the bulk of the animals 
encountered. Isopods and neuropterans, somewhat 

less abundant, were also characteristically benthic 
in distribution. 

The Chironomidae (order Diptera) contributed 
the greatest number of individuals to the benthic 

fauna. Larvae of the tribe Tanytarsini, primarily 

species of Micropsectra, were especially abundant. 

At Station 1, Micropsectra composed an average of 

60% of the benthic fauna, generally increasing from 

midspring to winter (Table 6). Somewhat smaller 

populations were found at Stations 2 and 3. 
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Micropsectra was also found in the drift, but 

in relatively insignificant numbers (Table 9). In 

May, when large numbers were apparently drifting 

(Table 6), most were found in samples containing 

mats of an unidentified blue-green alga. These mats, 

probably benthic in origin, floated downstream in 

the early evening of both sampling periods. High 

metabolic activity resulting in the release of gas 

bubbles by these plants has been suggested as 

an explanation (Minckley 1963). Algal mats also 

contained large numbers of cyclopoid and harpacti- 

coid copepods and oligochaetes of the family 

Naididae. 
Benthic assemblages dominated by Micropsectra 

have been reported from Europe (Lindegaard-Peter- 

sen 1972). Mackay (1969) found this genus com- 

mon in detritus in a woodland Quebec stream. 

Where populations are high, the cases of Micropsectra, 

which are usually made of sand and detritus 

(Chutter 1969), may form thick layers on the sub- 

strate (Lindegaard-Petersen 1972). 

Genera included in the tribe Chironomini (family 

Chironomidae) were also largely benthic. Chiro- 

nomini, all of which build cases, generally burrow 

more deeply into the substrate than do other chiron- 

omid groups (Oliver 1971). Paratendipes, the most 

abundant form, showed definite seasonal trends. 

Populations were highest in May. In November, the 

genus was absent from both pools (Tables 6, 7). Of 

the two species of Polypedilurm one showed a strong 

tendency to drift. The other was restricted to benthic 

samples (Table 7). Members of this genus are said 

to feed on water-soaked wood (Hynes 1970). This 

may account for their somewhat greater abundance 

at Station 2, where bark fragments were common. 

The other genera, Cryptochironoinus, Microtendipes, 

and Stictochironoinus, were rarely found in the drift. 

The Tipulidae were also primarily benthic in- 

habitants in Roxbury Creek. Of the five genera 

reported, only Tipula, which grows up to 60 mm in 

length, drifted to any extent. The appearance of 

these large, dark larvae, writhing vigorously as they 

are carried downstream over long stretches of bare 

sand, is a characteristic winter scene in Roxbury 

Creek. The other genera were overwhelmingly 

benthic in distribution. Dicranota was restricted 

mostly to the shallow water benthic samples of 

Station 1, and constituted one of the distinctive 

elements of the shallows fauna (Table 6). 

Four genera of Trichoptera, referable to the 

families Hydropsychidae, Limnephilidae, and Phryg- 

aneidae, were collected. Pycnopsyche, a limnephilid 

that builds cases of sticks, leaves, and sometimes 

stones, and whose ecology has been exhaustively 

treated by Cummins (1964) and Mackay and Kalff 

(1973) was a common inhabitant of the benthos in 

all pools. Mature larvae were sometimes collected in 

drift nets (Station 1, December), but since these 

animals have a propensity for climbing-they were 

often found crawling on the outside of the nets-it is 

not clear whether they were in fact drifting. Early- 

instar limnephilids did, however, drift in late summer 

and fall, behavior reported also by Elliott (1967) 

and Bishop and Hynes (1969). 

The Hydropsychidae, net-spinning Trichoptera, 

were represented by a single species, Hydropsyche 

slossonae, smaller individuals of which drifted 

through Stations 1 and 2 during May, June, and 

August. Mature larvae were collected only from the 

shallow-water benthos of Station 1. 

Of the benthic oligochaetes, most common was 

the tubificid Limnodrilus, which appeared in benthic 

samples in all pools from May to November. Limno- 

drillis made up over half the benthic fauna of Station 

2 in November (Table 7), and was present in ap- 

preciable numbers in both May and August. A 

second tubificid genus, llyodrilus, was common at 

both Stations 2 and 3 (Tables 7, 8). 

Several other animals drifting infrequently were 

the carnivorous alder-fly Sialis and the isopod 

Asellus interinedius. Sialis, over 95% of which were 

collected from the benthos (Table 9), is character- 

istic of depositing substrates (Hynes [1960]; for a 

discussion of food habits see Woodrum and Tarter 

[1973]). A similar habitat is suggested for Asellus 

(Hynes 1960), which was found in greatest abun- 

dance at Station 2 (Table 7). A sellus was not 

collected from the drift at either Station 1 or Station 

3. 

Indeterminate fauna 

Of the organisms that could not be easily desig- 

nated as either drifting or benthic, the amphi- 

pod Ganunarus pseudolimnaeus was by far the most 

important. Gaminarlus was common in every avail- 

able habitat in Roxbury Creek, and formed a 

substantial part of the fauna in all three pools. The 

large populations of this species may well be cor- 

related with the high dissolved solid concentrations 

in Roxbury Creek (Poff and Threinen 1962, Macan 

1963, Minshall and Kuehne 1969). 

Although this mobile species was abundant in 

drift and benthos, its apparently contagious distri- 

bution made accurate estimation of numbers ex- 

tremely difficult. Greater numbers of Gaminarus 

appeared to drift in evening and morning, however, 

than in the daytime. Diel periodicity is a well-known 

characteristic of Gainmaruis populations (Waters 

1962). 

Other organisms present more or less equally in 

drift and benthos were pupae of the family Chiro- 

nomidae, whose generic identification was not 

http://www.jstor.org/page/info/about/policies/terms.jsp


Suemmer 1975 FEEDING RELATIONSHIPS AMONG NOTROPIS 219 

attempted, but which appeared frequently in both 

spring and summer samples. Enchytraeid oligo- 

chaetes, apparently benthic, showed a propensity to 

drift in the November sampling period at Station 

2 (Table 7). 
Drifting aquatic mites were found only in daytime 

samples. This tendency has been noted also by Moon 

(1940), Elliott (1967), and Bishop and Hynes 

(1969). Only three individuals of the mite Lebertia 

were collected at Station 1, all in shallow-water 

benthic samples. They comprised, together with 

Dicratiota and Hydropsyche, one of the distinctive 

faunal elements of this region. 

Distribution of drift in vertical strata of 
the water column 

One aim of this study was to examine the 

possibility of vertical stratification in the drift fauna. 

At normal stream flow, three nets arranged in vertical 

series were employed. Although certain animals were 

restricted to the drift, no recognizable pattern of 

vertical stratification could be detected. Similar 

results were obtained by Waters (1965) and Ulf- 

strand ( 1968). 

Similarities between drift and henthic faunas 

Considering that most organisms encountered in 

Roxbury Creek were more common either in the 

drift or in the benthos, and that relatively few had 

indeterminate distributions, one might reasonably 

expect little similarity between drift and benthic 

faunas in any one sampling period. To a high 

degree this expectation is confirmed by percentage 

of similarity calculations (Table 10). Only in May, 

when large numbers of the benthic genus Microp- 

scc tra were trapped in drifting mats of algae, did 

the percentage of similarity between drift and benthic 

samples rise above 35%,. The average similarity for 

10 sets of samples was only 25%. 

Paired drift samples, on the other hand, showed 

consistently high overlap. Only in December, when 

few animals drifted, did the percentage of similarity 

dip below 60%6. The average for 7 sets of compari- 

sons was over 66%,, suggesting that the composition 

of the drift remains relatively constant during a 

period of several days at least. 

The degree of similarity between pool and shal- 

lows samples varied among pools. At Station 1, where 

the shallows grade gently into the pool and where 

similar bottom sediments are found, the average 

degree of overlap was high (67.6%). At Station 2, 

where sandy shallows drop abruptly into a detritus- 

filled pool, the degree of similarity was low. 

Previous studies have emphasized comparisons 

between drift and those benthic substrates from 

which the drift had presumably originated (Elliott 

and Minshall 1968). In such situations overall 

TABLE 10. Percentage of similarity comparisons between 
drift and benthos. Percentage of similarity values 
Southwood 1968, Cox 1972.) are based on a com- 
parison of the percentage of individuals in a genus 
or other taxonomic category shared between samples: 
S = 2w/a + b where w = the sum of the lower of two 
percentage values for genera shared by the two 
samples, a = sum of all values for the first sample, and 
b = sum of all values for the second sample 

% Similarity 

Pool 
benthos 

vs. Drift 
Paired shallows vs. 

Sample drift benthos benthos' 

Station 1: May 69.2 25.0 59.2 
Station 1: June 66.1 48.8 12.4 
Station 1: July ... 82.6 7.1 
Station 1: November 63.4 81.7 17.5 
Station 1: December 35.7 81.1 14.6 
Station 1: February . 84.3 15.3 
Station 2: May 71.4 4.7 24.7 
Station 2: August .. . 35.9 34.6 
Station 2: November 70.1 50.6 33.8 
Station 3: September 69.2 47.7 28.4 

Average of pool and shallows samples 

similarity in faunal composition is expected. The 

drift organisms considered here, however, originate 

primarily in regions other than the pools sampled- 

in gravel patches, beds of aquatic plants, protected 

backwaters, and the surrounding terrestrial environ- 

ment. They float above a relatively sedentary bottom 

fauna, only the most common and active constituents 

of which ever venture from the substrate. The separa- 

tion between drift and benthic faunas is not, of 

course, complete. Overlap appears extensive, how- 

ever, only when benthic populations are high. 

FOOD HABITS OF NOTROPIS SPECIES IN 

ROXBURY CREEK 

This report on the food habits of the fishes 

emphasizes the effect of spatial patterns on composi- 

tion of the diet. The components of the invertebrate 

fauna differ not only in their distribution but also 

in other characteristics-size, ease of capture, 

palatability-whose importance is difficult to assess. 

Nevertheless, I suggest that availability in the sense 

of spatial proximity, largely determines the choice 

by these fishes of particular prey. 

The influence of spatial factors on diet has 

been pointed out by a number of biologists investi- 

gating the food habits of fishes (Nillson 1957, 

Jvlev 1961, Thomas 1962, Maitland 1965, Keast 

1965, 1966, Mann and Orr 1969). 

Closely related to the analysis of spatial prefer- 

ence as a means of structuring predator-prey inter- 

actions are the twin problems of competition and 

coexistence. The limits of the resource for which 
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the four species of fish may Le competing, and the 
time dimension in which such interactions may be 
taking place have not been considered in this study. 
However, I have examined the pattern of resource 
subdivision operating in this system, and attempted 
to determine whether differences in spatial distribu- 
tion do in fact satisfactorily explain observed dif- 
ferences in diet. 

Freshwater fishes often show considerable flexi- 
bility iin prey selection. Differences in diet among 
sympatric species, rather than being qualitative, may 
involve no more than differences in the proportion of 
the same items eaten by several species (Forbes 1878. 
Hartley 1948, Larkin 1956, Weatherly 1963). Pre- 
vious studies of the four species under consideration 
(Boessel 1937, Starrett 1950b, Pfleiger 1960, 
Minckley 1963, Campbell and MacCrimmon 1970) 
reported that strong preferences for particular prey 
are not apparent; instead a variety of invertebrates 
are used as food, suggesting that habitat and abun- 
dance may chiefly determine food habits. 

Methods 

Fishes were collected from pools on the day 
following the first of the two sets of drift samples. 
Collections were made at the end of the period 
reserved for drift sampling with a 15-ft, one-fourth 
in. mesh, nylon seine. Although the number of seine 
hauls was not fixed in advance, samples of fish 
taken from each pool in general reflect relative 
population sizes. In order to prevent regurgitation, 
fishes were killed in MS-222 (Sandoz Pharmaceuti- 
cals), an anesthetic for ectothermic vertebrates, and 
then fixed in 10% Formalin. After being washed, 
samples were placed in 70% ethanol for permanent 
storage. 

In the laboratory the standard length of each 
specimen was recorded. In the analysis of food 
habits, the entire digestive tract was utilized. Con- 
tents were first examined under a dissecting micro- 
scope and larger items were removed and identified. 
The remainder was placed on a microscope slide, 
mounted in Hoyer's solution, then examined under 
a compound microscope. I determined percentage 
composition of the diet by counting the number of 
organisms of each type found in the digestive 
tract. Supplementary estimates of the volume of 
different prey types as well as of plant material and 
detritus were made by the "points method" (Hynes 
1950), which assigns numbers (1, 2, 4, 8, 16) to 
items in the digestive tract based on their relative 
volume. The degree of fullness of the tract is also 
ranked on a point scale of 0 (empty) to 20 (full). 
Estimates were made visually. When large numbers 
of fish were collected, I selected a random sample 
of approximately 50 specimens for analysis of food 
habits. 

TABLE 11. Utilization of the invertebrate fauna by 
Notropis. 

N. N. N. N. 
ather- dorsa- spilop- stra- 

Prey species inoides lis terus mineusl 

A tiacaena + 
Dixa + 
Macrocyclops + 
Ostracoda + 
Platycentropus + 
Pyctuopsyche + 
Stictochironomus + 

Asellus + + 
Cyclops + + 
Dicratnota + + 
Psectrocladius + + 
Thiemianiella + + 

Acari + + + 
Baetis + + + 
Brillia + + + 
Corynoneura + + + 
Cryptochirotnomus + + + 
Hexatoma + + + 
Microtendipes + + + 
Naididae + + + 
Nanocladius sp. 1 + + + 
Paracyclops + + + 
Paratendipes + + + 
Simnulium + + + 
Tropocyclops + + + 

Micropsectra + + + + 
Chironomidae pupae + + + + 
Cricotopus + + + + 
Enchytraeidae + + + + 
Eucyclops + + + + 
Gammarus + + + + 

Harpacticoida + + + + 
Hydropsyche + + + + 
Ilyodrilus + + + + 
Limnodrilus + + + + 
Nanocladius sp. 2 + + + + 
Palpomyia + + + + 
Penitaneura + + + + 
Polypedilum + ? + + + 
Prodiamesa + + + + 

Terrestrials 
Collembola + + 
Thysanoptera + + 
Homoptera + + + 
Hemiptera + + 
Coleoptera + + 
Trichoptera + 
Lepidoptera + + 
Diptera + + + + 
Hymenoptera + 
Arachnida + 

Not eaten 
Agabus Peltodytes 
Chironoiils Prionocera 
Chrysops Procladius 
Corixvidae Ptilostomnis 
Dubiraphia Sialis 
Haliplus Tipula 
Lumbriculidae "Tipulidae A" 
Peloscolex 
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Results 

Taxonomic considerations.-Of the 55 kinds of 

aquatic invertebrates for which quantitative data 

were available, 40, or about 73% of the available 

fauna, were eaten by at least one species of Notropis 

(Table 11). 
The pattern of exploitation suggests an absence 

of rare, burrowing, or particularly large animals 

in the diet, with a preference instead for com- 

mon, accessible, and moderate-sized organisms. The 

animals preyed upon by three and four species of 

Notropis, for example, were generally among the 

most abundant in the fauna. All were of an easily 

ingestible size. Larval chironomid genera were 

heavily utilized by all species. 

In some cases, the absence of a genus from the 

diet of fishes appears to reflect chance factors- 

difficulty in identification or rarity-rather than any 

peculiarity distinguishing it from others in the same 

family or order. For example, in the case of the 

cyclopoid copepods the most abundant genus, Eu- 

cyclops, was eaten by all species, whereas the least 

common (and incidentally most difficult to identify 

from fragmented exoskeletons), Macrocyclops and 

Cyclops, were eaten by one and two species of fish, 

respectively. 
Of the aquatic animals eaten by at least one 

species of Notropis, 25, or 62.5% were eaten by 

N. stramineus, 27 or 67.5% by N. dorsalis, 28 or 

70% by N. atherinoides, and 36 or 90.0% by N. 

spilopterus. The coefficient of community (Cox 

1972) expressing percentage overlap in terms of 

presence indicates strong similarities among the four 

species in the choice of aquatic prey (Table 12). 

Terrestrial representatives of 10 orders of arthropods 

were eaten. Here, however, distinct differences in 

TABLE 12. Percentage similarity comparisons among 
diets of Notropis based on presence. 

Aquatic prey 

Percentage similarity to 

N. N. N. 
Species dorsalis spilopterus stramineus 

N. atherinoides 84% 80% 77% 
N. dorsalis ... 78% 75% 
N. spilopterits ... ... 69% 

Terrestrial prey 

Percentage similarity to 

N. N. N. 

dorsalis spilopterus stramineus 

N. atherinoides 36% 82% 20% 
N. dorsalis ... 40% 67% 
N. spilopterus ... ... 12% 

TABLE 13. Results of Spearman Rank Correlation Test. 
Coefficient (r,) indicates degree of correlation among 
Notropis species in the importance of various taxa 
in the diet. N refers to the number of categories 
employed in constructing the test for each sample. 
Categories used are invertebrate taxa at the ordinal 
level. Terrestrial invertebrates are included as a 
single category. Asterisk means r, value is signifi- 
cant at .05 level. 

Correlation 
(r8 ) Proba- 

Species pair coefficient bility 

Station 1: May (N = 9) 
N. atherinoides-N. spilopterus .715 * 
N. atherinoides-N. stramineus .760 * 

N. spilopterus-N. stramineus .556 ns 

Station 2: May (N = 10) 
N. atherinoides-N. dorsalis .660 * 

N. atherinoides-N. spilopterus .715 * 

N. atherinoides-N. stramineus .560 ns 
N. dorsalis-N. spilopterus .739 * 
N. dorsalis-N. stramineus .805 * 

N. spilopterus-N. stramineus .520 * 

Station 1: November (N = 7) 
N. atherinoides-N. dorsalis .540 ns 
N. atherinoides-N. spilopterus .807 * 
N. dorsalis-N. spilopierus .778 

Station 2: November (N = 8) 
N. atherinoides-N. spilopterus .842 * 
N. atherinoides-N. stramineus .550 ns 
N. spilopterus-N. stramineus .470 ns 

Station 1: December (N =6) 
N. atherinoides-N. dorsalis .872 * 
N. atherinoides-N. spilopterus .872 * 

N. atherinoides-N. stramineus .872 * 

N. dorsalis-N. spilopterus .872 * 

N. dorsalis-N. stramineus 1.000 * 

N. spilopterus-N. stramineus .872 * 

Yearly average (N = 11) 
N. atlierinoides-N. dorsalis .920 * 
N. atherinoides-N. spilopterus .852 
N. atherinoidev-N. stramineus .702 
N. dorsalis-N. spilopterus .938 
N. dorsalis-N. stramineus .834 
N. spilopterus-N. stramineus .758 

utilization are apparent (Table 12). Notropis 

atherinoides and N. spilopterus, dwelling in midwater 

or near the surface, prey on a much wider variety of 

terrestrials than do the largely benthic N. dorsalis and 

N. stramineus. Differences in utilization of ter- 

restrials thus appear to reflect habitat differences 

among species. 
Although most of the invertebrates in Roxbury 

Creek are considered edible by Notropis, it is not 

clear from these comparisons whether they are 

eaten contemporaneously by the different species, or 

whether any similarity exists in the extent of utiliza- 

tion. I therefore used the Spearman Rank Cor- 

relation Coefficient (Siegel 1956) to assess the 

degree of correspondence among the four species in 

the choice of invertebrate prey (Table 13). Each 

order of invertebrates was assigned a rank (1, 2, 3, 

http://www.jstor.org/page/info/about/policies/terms.jsp


222 JON MENDELSON Ecological Monographs 
Vol. 45, No. 3 

q)~~~~~~~~~~~1 

q)~~~~~~~~~~1 
- o~~~~~~~~lw 

? E C) U) 'n 

> 60r - 

20Lj 

60 

O320 -I 
?z60ln nl En II 

02OLFn AdI InI*l 

w 60- 
zI 

12001 * 

|= 60 r 

O 20F I 

60 

Z 20 - 

> 
60 

o 2I 

o 20-f n m F 

600 

60F U- l 
>...20 II II 

IDrift Bent hic 

FIG. 6. Percentages of similarity between diets of 
fishes and drift and benthic faunas. Shaded bars repre- 
sent percentage similarity between diet and drift fauna; 

etc.) reflecting its proportion of the diet. Because 
many kinds of animals were not eaten in any one 
sampling period, it was not possible to carry out 
this test on taxonomic categories of rank lower than 
order. Terrestrial organisms, not a properly consti- 
tuted taxonomic category, are included in these 
calculations. Correlations among species of fishes 
based on the importance of different orders in the 
diet were then made and tested for significance. The 
correlation coefficient was applied to each of five 
sampling periods in which more than one species of 
fish was collected. 

Of the 21 possible comparisons between species 
pairs, 16 showed correlations significant at the .05 
level. All comparisons between the pairs N. spilop- 
terus-N. atherinoides, N. spilopterus-N. dorsalis, and 
N. dorsalis-N. stramineus were significantly cor- 
related. At the ordinal level at least, reasonable 
similarity in the degree to which various taxa are 
preyed upon appears to exist. Correspondence in 
the timing of utilization among fishes is also indi- 
cated. 

Relationships between diet and the distribution of 
the invertebrate fauna.-Within most of the higher 
invertebrate taxa, particularly the abundant Diptera, 
differences are distinct in the spatial distributions of 
various families and genera. In order to explore the 
significance of such patterns in determining prey 
selection, I used two measures that clarify the rela- 
tionship between habitat and diet: 

1) The percentage of similarity (Southwood 1968, 
Cox 1972) between the drift and benthic 
faunas and the diet of each species was calcu- 
lated. Relative degrees of similarity between 
drift-diet and benthos-diet comparisons indi- 
cate in a broad way where fishes were feeding 

(Fig. 6). 
2) In each sampling period, invertebrates col- 

lected were placed in one of six defined habitat 
categories. The percentage that each of these 
categories made up of the diet of fishes col- 
lected in the same sampling period was 
determined (Fig. 7, 8). The categories are: 

Terrestrial. Terrestrial invertebrates, found 
mostly on or near the water's surface. 

A utochthonous drift. Aquatic organisms 
found only in the drift. 

90% drift. Organisms of which 90%o-99% 
of all individuals were collected in the 
drift. 

unshaded bars represent percentage similarity between 
diet and benthic fauna. Absence of a figure indicates 
species was either absent during that sampling period 
or was feeding primarily on non-animal foods. 

http://www.jstor.org/page/info/about/policies/terms.jsp


Summer 1975 FEEDING RELATIONSHIPS AMONG NOTROPIS 223 

Indeterminate. Organisms of which less than 

90%; were found either in the drift or in 
benthic samples. 

90(% benthic. Organisms of which 90%-99% 
of all individuals were collected in benthic 
samples. 

Benthic. Organisms found only in the 
benthos. 

These measures do not, of course, exhaust the 
information available from an examination of 
digestive tract contents. Certain other trends, par- 
ticularly seasonal variation in prey selection, are given 
in a brief description of each species' food habits 
which precedes the analysis based on spatial con- 
siderations. The numbers and kinds of Notropis 
collected in each sampling period are listed in 
Table 14. 

Notropi.s atherinoides, present in spring and fall 
samples, preyed consistently on three principal groups 
of organisms: larval chironomids, copepods, and 
terrestrial invertebrates. Of the chironomids, Ortho- 
cladiinae were by far the most important, particularly 
in November and December when they averaged 
nearly 50% of the diet. The abundant benthic form 
Micropsectra was eaten in quantity only in May, 
when large numbers of smaller individuals were 
drifting. Terrestrials were consumed most frequently 
in the warmer months, tending to decrease in im- 
portance in fall samples. 

Percentage of similarity measures (Fig. 6) indi- 
cate strong overall resemblances between the com- 
position of the drift and the diet of N. atherinoides 
in each of five sample periods in which this species 
was present. 

A similar pattern emerges from a consideration of 
the habitat classification of prey (Fig. 7, 8). Drifting 
organisms are consistently abundant, while purely 
benthic forms are largely absent from the diet. 

Notropis spilopterits, although feeding on a wider 
variety of organisms, otherwise showed definite 
similarities in prey choice to N. atherinoides. Ortho- 
clad chironomids were utilized heavily in November 
and December, and terrestrials assumed prominence 
in the warmer months. Notropis spilopterus also 

consumed large numbers of the amphipod Gammnarus 

psveidolimnacilas, particularly in May, when young 
individuals were common. This species tended to 
feed on somewhat larger organisms than were eaten 
by N. atherinoides. These included, in one case, a 
terrestrial oligochaete 23 mm in length, and, in 

another, a sizable Pycnopsyche. Copepods and other 
smaller forms, however, were also taken in numbers, 
most notably in December. 

These trends are reflected in the similarity index 
(Fig. 6), which shows, for all sampling periods, 
greater dietary resemblances to the drift than to the 

TABLE 14. Numbers and sizes of Notropis collected 
for food habit analysis. 

No. No. Mean 
col- exam- No. size Range 

Species lected ined empty (nmm ) (mmi) 

Station 1. (May 6) 
evening 

N. atherinoides 62 53 6 33.4 24-44 
N. spilopterus 72 49 1 47.2 30-61 
N. strandineus 11 10 () 34.1 30-38 

Station 2. (May 7) 
morning 

N. atherinoides 243 36 0 44.0 26-46 
N. dorsalis 1 1 0 40.0 
N. spilopterus 222 52 14 47.9 32-60 
N. stramineus 99 50 10 40.3 27-51 

Station 1. (Jun 17) 
day 

N. dorsalis 10 10 0 54.9 51-59 
N. spilopterus 3 3 3 50.7 46-60 

Station 3. (Sep 19) 
day 

N. spilopterus 19 19 6 37.8 30-63 

Station 1. (Nov 2) 
evening 

N. atherinoides 38 38 10 48.0 37-65 
N. dorsalis 7 6 1 40.3 36-45 
N. spilopterus 92 91 24 40.3 29-60 
N. stramineus 105 16 0 46.4 39-51 

Station 2. (Nov 3) 
morning 

N. atherinoides 232 79 40 47.0 37-64 
N. dorsalis 2 2 0 38.5 37-40 
N. spilopterus 76 76 21 42.8 33-58 
N. stranmineus 27 27 0 46.4 33-54 

Station 1. (Dec 17) 
day 

N. atherinoides 21 21 5 46.7 36-53 
N. dorsalis 41 33 1 35.7 31-40 
N. spilopterus 23 23 5 38.7 32-50 
N. stramineus 7 7 1 40.7 28-51 

benthic fauna. Like N. atherinoides, the midwater 
dwelling N. spilopterus utilizes primarily drifting 
foods. 

Figures 7 and 8 suggest that, along with drifting 
forms, organisms of indeterminate origin are also of 
significance to N. spilopterus. This appears to be 
an expression of the large numbers of Garninaris 

consumed, principally during the May and September 
sampling periods. Benthic inhabitants, with few ex- 
ceptions, were not common in N. spilopterus' diet. 

Notropis straninezus showed greater variability in 

food habits than did other species, thereby increasing 
the difficulty of interpreting dietary trends. In 

November samples at Station 1, for instance, N. 

strainineuse fed almost entirely on detritus. In samples 
taken the following day at Station 2, the N. straini- 

neus collected had been preying vigorously on enchy- 

traeid worms, an otherwise minor element in the 

fauna apparently active at this time of year. In 
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bars represent terrestrials, indeterminate, and sum of drift-90%c drift and benthic-90%o benthic categories. 
respectively. 

other samples copepods, Gaininarus and larval chi- 

ronomids assumed dominance. Of this latter group 

Micropsectra and such other benthic forms as Para- 

tendipes and Stictochironoinus greatly outnumbered 

orthoclads in the diet. Terrestrials were infrequently 

taken. 
These ambiguities are reflected in Fig. 6, which 

suggests approximately equal similarity of diet to 

drift and benthic faunas in most sampling periods. 
Not surprisingly organisms of indeterminate origin 

were heavily utilized (Fig. 7, 8), but at various times 

drifting forms (Station 1, May) or benthic organisms 

(Station 1, December) predominated. Benthic com- 

ponents of the invertebrate fauna were generally 

more significant to N. strainineus than to either 
N. atherinoides or N. spilopterus, a fact consonant 

with the spatial distribution and morphology of this 

species. 

The diet of Notropis dorsalis showed much 

greater consistency than that of N. strainineus. 
Larval chironomids, particularly Micropsectra, were 

important in all sampling periods. At Station 2 in 

May, however, when Paratendipes was abundant in 

the benthos, this organism replaced Micropsectra as 
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the most common prey taken. Orthoclad chironomids 

and terrestrials were largely absent from the diet, 

but copepods appeared in numbers in the December 
sample. The apparent preference of N. dorsalis for 

shallow-water areas upstream from the pools is ex- 
pressed by the frequent presence of Hydropsyche and 

Dicranota, and on one occasion the mite Lebertia- 
all organisms collected primarily from the shallows- 
in the diet of this species. 

In all sampling periods the diet of N. dorsalis 

consisted more of benthic fauna than of drift (Fig. 

6); and in all sampling periods, with the exception of 

Station 2 in November when few N. dorsalis were 

collected, animals of primarily benthic origin pre- 
dominated (Fig. 7, 8). 

Discussion 

Significant correlations were found among all 
species pairs in the relative importance of various 
taxonomic categories in the diet (Table 13). Larval 
Diptera were, on the average, the most important 

constituents in the diets of all four Notropis species 
throughout the year. 

The percentages of similarity between diet and 
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faunal compositions (Table 13) suggest a broad 

similarity between diet and drift in N. atherinoides 

and N. spilopterus, both midwater inhabitants, and 

an equally strong agreement between diet and the 

composition of the benthos in the bottom-dwelling 

N. dorsalis. The diet of N. strarnineits showed ap- 

proximately equal similarity to drift and benthos, a 

result not unexpected on the basis of the spatial 

distributions and feeding behavior of this species. 

Notropis atherinoides and N. spilopterus utilized 

terrestrial and drifting organisms to a much greater 

extent than did either N. dorsalis or N. strainineus. 

The latter two species preyed more heavily on 

benthic elements of the fauna (Fig. 12). In general 

the utilization of animals of different habitat cate- 

gories also followed closely the direction expected 

from a consideration of the independently derived 

spatial distributions of the four species. 

Emphasis in the preceding analysis has been 

placed on the importance to predators of the prox- 

imity of their prey. Because the food habits of each 

of the four species of Notropis are so varied, 

specialization adapting these fishes to the capture of 

particular kinds of prey is probably not the chief 

mechanism by which potential competition is 

avoided. The apparently stable spatial preferences 

among the four suggest rather that adaptations allow- 

ing fishes to live in particular regions of a pool and 

to feed on whatever prey is available are more im- 

portant in permitting coexistence. 

In some cases, where the distribution and location 

of major elements of the invertebrate fauna cannot 

be determined with certainty spring and summer 

sampling periods, for example, when normally 

benthic forms are active in the drift the diets of the 

fishes are correspondingly difficult to interpret. In 

other situations the relationship between habitat and 

diet are much clearer. In December, for example, 

chironomid larvae were the chief prey of all four 

species. Notropis atherinoides and N. spilopterits, 

however, fed on genera restricted almost exclusively 

to the drift; N. stramnineiis and N. dorsalis concen- 

trated on the dominant benthic genus. Every chi- 

ronomid genus except very rare or cryptic forms 

is consumed to some extent by each Notropis species. 

The differences in proportions eaten, however, are 

important, and these generally reflect differences in 

spatial distribution among the fishes. In the pre- 

ceding example, bottom-dwelling Notropis fed on 

benthic chironomids; Notropis swimming in midwater 

fed on drifting forms. The same kinds of differences 

can be seen in the utilization of other invertebrate 

prey such as terrestrials, Ephemeroptera, other Dip- 

tera, particularly the Tipulidae, and at certain times 

Isopoda and Copepoda. 

Within this broad framework, there is a good 

deal of flexibility. Notropis atherinoides, which regu- 

larly feeds in midwater or near the surface, for 

instance, may at one time concentrate heavily on 

terrestrial insects. In another pool, or in a different 

sampling period this same species, faced with a 

potential prey fauna of similar composition, may 

utilize copepods or drifting chironomid larvae. The 

factors underlying these shifts in diet whether they 

include the presence of N. spilopterits feeding in 

the same regions, or local conditions undetected by 

sampling are not easily ascertained. The fact that 

only one collection of fishes was made in each 

sample period may account for some of this vari- 

ability. 
Drift-feeding fishes, especially N. atherinoides, 

prey on animals derived largely from sources other 

than the pools themselves. Events affecting the 

abundance or resident invertebrates in the pools, 

therefore, have relatively slight impact on drift- 

feeders. Bottom-dwelling fishes, especially N. 

dorsalis, are clearly dependent on prey populations 

produced in the pools. To the extent that fishes are 

feeding on prey faunas derived from different 

sources, they cannot compete, regardless of the simi- 

larity in prey species chosen. 

Notropis spilopterus, living in midwater and 

preying upon drifting animals, differs from the drift- 

feeding N. atherinoides in several ways. The former 

appears less firmly committed to drift foods. Several 

invertebrates important in the diet of N. spilopterits, 

Gaininarus in particular, are found commonly in 

both drift and benthos. A greater variety of prey 

types is used by N. spilopterius than by N. atheri- 

noides, and there is often a size difference in prey 

chosen. Notropis spilopterius tends to feed on 

larger items Trichoptera, Gamnmnarnis, Baetis- 

while N. atherinoides favors the smaller copepods 

and chironomids. 

Competition between these two species is a dis- 

tinct possibility in winter, when the variety and abun- 

dance of the drifting fauna are severely reduced. 

Both species in this season heavily utilize the limited 

numbers of chironomid larvae and Copepoda avail- 

able in the water column, although many individuals 

do not feed at all. 

Notropis stramnineus, which inhabits benthic 

regions of the pools, differs in several ways from 

the bottom-dwelling N. dorsalis. There is a strong 

suggestion, both from the kinds of prey species 

chosen and from the mode of feeding as observed in 

aquaria, that for N. stramnineus drifting forms, albeit 

not surface drift, are as important as benthic fauna. 

Excepting a propensity for copepods in fall and 

winter, N. dorsalis preys almost exclusively on the 

benthic fauna. The tendency of this species to 

occupy shallow areas upstream from the pools is 
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expressed by the frequent presence in the diet of 
several invertebrates Hydropsyche, Dicranota, Le- 

bhertia largely restricted to these regions. The im- 
portance to N. stramnineus of detritus and algae, 
which may in fact be removed from the drift, 
also tends to separate the two species. Detrital 
remains in N. dorsalis are very often simply the cases 

of the chironomid larvae on which this species preys. 

CONCLUSION 

Implied throughout the preceding discussion 
has been a comparison between possible approaches 
open to species of Notropis in searching for, pur- 
suing, and devouring prey. The alternatives appear 

to be these: 
]) Predators are adapted to the capture of specific 

kinds of prey. They frequent certain places 
because their prey generally reside there. 

2) Predators are adapted to particular habitats, 

to regions in which they function most effec- 

tively. In these regions they prey indiscrimi- 
nately on whatever animals of a suitable size 

are available. 
MacArthur and Levins (1964) and Hutchinson 

1965) have discussed an analogous set of alterna- 
tives. The first, which Hutchinson calls "morpho- 
logical adaptations" for predation, implies that 
predators adapted to the capture of different prey 

types can inhabit the same space. The second, 
"behavioral adaptations" implies that predators are 
spatially separated and hence can prey on the same 
kinds of animals without competing. 

From an analysis of the spatial distributions of 
predators and their prey and from an examination of 

the diet of the predators, I conclude that the second 
alternative is much the more compelling explanation 
for the continued coexistence of four species of 
Notropis in Roxbury Creek. It appears, further, that 
predatory styles conforming to this general pattern 
are more likely to develop as a result of selective 
pressures from other predators utilizing the same 

food supply than from the habits of the animals 

preyed upon. The effects of such an approach do, 
however, have implications for the prey fauna, the 

degree of impact on different species being roughly 
proportional to the extent of spatial overlap with the 

predators. For example, the larval forms of certain 

Chironomidae, the Orthocladinae. are preyed upon 
to a much greater extent than might be expected 
from a consideration of their numbers. This seems 

to be because their spatial distributions are generally 

congruent with those of the most abundant predators. 
Concerning relationships among the predators 

themselves, I have presented evidence that they occur 

together in other Wisconsin streams and over wide 

areas of their range. These species tend to associate 

in edge habitats: small, sandy streams tributary 

to large rivers. Such habitats are sufficiently common 
in southwestern Wisconsin and in the upper Missis- 
sippi Valley generally to arouse our interest in the 
nature of the relationship. On the other hand, these 
fishes are not so intimately associated, nor have they 
such an identity of habitat requirements to permit the 

conclusion that they have evolved together. Nor is 
there evidence that the geographic range of any one 
species has been affected by the presence or absence 
of the others. It is more likely that the morphological 
and behavioral characteristics permitting these species 
to coexist in Roxbury Creek and these, 1 have 
suggested, center on spatial partitioning are pre- 
adaptations allowing these species to coexist where- 

ever they are found together but not demanding a 

coevolutionary origin. 
In the genus Notropis, where association among 

species is sufficiently widespread to treat this par- 

ticular combination as an example of a more general 

trend, it is of interest to examine another possible 
reason for the existence of these groups. 

The tendency of Notropis to live in large aggrega- 
tions, and the observations that these four species 

are mutually responsive in aquarium settings suggest 
one explanation. Such aggregations may provide pro- 
tection to individuals from their own predators, 

although the functions of schools are not well under- 

stood (Keenleyside 1955, Shaw 1962, Etkin 1964, 

Shaw 1970). In natural habitats large schools 

composed of a single species might be more co- 

hesive than multispecific groups, but competition for 

food among its members would presumably be more 

severe. In multispecific schools like the ones con- 

sidered here, each species may have spatial prefer- 

ences and hence food habits somewhat distinct froml 

the others. In such groups, at least some of the 

advantages of schooling are preserved, while the 

disadvantage of intense intraspecific competition 

for food are partially avoided. The effectiveness of 

multispecific aggregations depends ultimately, how- 

ever, on maintaining in each species a balance 

between selective forces that tend to preserve mor- 

phological and behavioral similarities, thus insuring 

mutual responsiveness, and selective forces acting in 

an opposite direction, serving to minimize com- 

petition. 
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APPENDIX I 

SU MMARY: TRAPPING DATA FROM ROXBURY 

CREFIK, ALL POOLS 

Number trapped 

N. N. N. N. 
at/icr- dorsa- spilop- stra- 

Trap depth iioides lis terus mnineus 

Pool: Rox I 
(Station I) 

F 0 0 0 0 
E 0 0 2 0 
D 2 0 16 1 
C 4 2 44 2 
B 2 1 49 1 
A 6 7 25 23 

Pool: Rox I I 

F ... 
E 0 0 209 0 
D 1 0 715 7 
C I 1 644 10 
B 1 4 147 14 
A 2 4 168 8 

Pool: Rox I II 

F 0 0 5 0 
E 1 0 42 0 
D 0 1 5 0 
C 0 0 2 0 
B 0 0 3 0 
A 0 0 0 1 

Pool: Rox IV 

F ... 
E ... ... 
D ... 
C 1 1 33 2 
B () 0 6 0 
A 0 1 7 0 

Pool: Rox V 
F ... 

E 1 0 1 0 
D 10 0 26 3 
C 21 0 6 0 
B 52 2 12 4 
A 19 24 16 57 

Pool: Rox VI 
F ... ... 
E 0 0 64 0 
D 0 0 5 0 
C 0 0 0 0 
B 0 0 0 0 
A 0 0 0 ( 

APPENDIX II 
SPATIAL DISTRIBUTION: NUMBER OF TRAP-DAYS 

35"-42" F 6 
28"-35" E ... 54 ... 

Depth 2 1 "-28" D 101 ... 

14"-21" C 91 123 50 
7"-14" B ... 93 122 82 
0"- 7" A 123 96 128 84 

1 2 3 4 

Location 

APPENDIX III 

SPATIAL DISTRIBUTION: NUMBER OF FISH 

N. atlheri/loides 

F 0 
E ... 2 

Depth DC 2 2 
3 

B 0 55 1 
A 12 6 27 12 

1 2 3 4 
Location 

N. dorsalis 
F 0 
E ... 0 

Depth D I 
C 0 4 0 
B ... 1 7 0 
A 41 29 35 17 

1 2 3 4 
Location 

N. spilopterus 
F 5 ... 
E ... 318 ... 

Dph D 767 . 

Depth C ... 256 729 329 
B ... 56 217 111 
A 294 108 216 256 

1 2 3 4 
Location 

N. straminiieus 
F 0 ... 
E 0 ... 

Dph D 11 
Depth C i 1 14 10 

B ... 3 19 3 
A 20 12 88 58 

1 2 3 4 
Location 
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PLrA rE 1. Some widespread Anolis species of the western Caribbean. Top-left: A. carolin nins h from Crooked, a 
two-species island; top-right: A. carolinensis 8 from Bimini, brown phase (the same animal can turn bright green); 
middle-left: small A. carolinensis from a tiny one-species island off the west coast of Acklins Island. Notice 
convergence in general appearance to A. sagr-ei (bottom-left); middle-center: A. carolinensis A from Acklins, a 
one-species island; middle-right: A. carolintensis 9 (green phase) from Bimini, a foulr-species island; bottom-left: 
small A. .sagrei from Crooked; bottom-center: A. carolinen~sis z (green phase) from Bimini, a four-species island; 
bottom-right: adult A . dlistic~lius from Bimini. 
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