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Establishing the basic knowledge, methodology, and technology for a framework
for the continuous decoding of hand/arm movement intention was the aim of the
ERC-funded project “Feel Your Reach”. In this work, we review the studies and
methods we performed and implemented in the last 6 years, which build the basis
for enabling severely paralyzed people to non-invasively control a robotic arm in
real-time from electroencephalogram (EEG). In detail, we investigated goal-directed
movement detection, decoding of executed and attempted movement trajectories,
grasping correlates, error processing, and kinesthetic feedback. Although we have
tested some of our approaches already with the target populations, we still need to
transfer the “Feel Your Reach” framework to people with cervical spinal cord injury and
evaluate the decoders’ performance while participants attempt to perform upper-limb
movements. While on the one hand, we made major progress towards this ambitious
goal, we also critically discuss current limitations.

Keywords: electroencephalogram (EEG), brain-computer interface (BCI), goal-directed movement, movement
detection, trajectory decoding, error-related potential, kinesthetic feedback, spinal cord injury (SCI)

INTRODUCTION

‘‘Making the paralyzed move’’ is a dream for many researchers but even more for people suffering
from a spinal cord injury (SCI) or other diseases leading to non-functional limbs and therefore
a dramatic decrease in quality of life. While walking is always the first function an independent
observer thinks is most critical, affected people usually have other wishes (Anderson, 2004). The
higher the lesion in the spinal cord, the less important the walking. While very high lesions in the
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cervical spine lead to dysfunction of breathing and all motoric
and sensory functions, a lesion in the lower cervical levels
leads to restricted hand and arm movements, whereas breathing,
speaking and head movements are usually not affected (Rupp,
2020). Besides, vegetative functions can also be reduced or
affected.

Currently, there are not many options for the restoration of
hand and arm function. Although there have been attempts by
using functional electrical stimulation (FES) systems, controlled
via movements of the contralateral shoulder (e.g., the implanted
Freehand system, or research systems based on transcutaneous
electrodes), there is no real system available for full arm
function restoration (Eck and Rupp, 2021). Sometimes, surgical
interventions like tendon or muscle transfers help to stabilize,
e.g., hand rotation or improve biceps function (Dengler et al.,
2021). On the other hand, there exist robotic arm systems,
mounted on the wheelchair, which can be, although very
cumbersome, controlled with, e.g., a chin joystick.

In neuroscience, the restoration of hand and arm function
has been a research topic since the late 90s. Relatively soon, the
ambition of ‘‘reading’’ the intention of movement from brain
activity and transferring it into real movement with the help of
a brain-computer interface (BCI) has emerged (Wolpaw et al.,
2002; Millán et al., 2010; Wolpaw and Wolpaw, 2012; Brunner
et al., 2015).

Recordings and real-time interpretation of neural activity
originating within the motor cortex and other motor-related
areas, first done in non-human primates (Georgopoulos et al.,
1982; Kalaska et al., 1989) and later in humans, led to the first
BCIs for the control of robotic arms. Up to 10 degrees of freedom
could be successfully controlled by end-users with implanted
multielectrode arrays (MEAs; Hochberg et al., 2006; Collinger
et al., 2013; Wodlinger et al., 2015). Neuroprosthetic devices,
i.e., systems based on functional electrical stimulation (FES; Rupp
et al., 2015), applied to the upper limb of tetraplegic participants,
can also be successfully controlled by invasive BCIs (Bouton
et al., 2016; Ajiboye et al., 2017). While electrocorticogram
(ECoG) is less invasive than MEAs, the first results for
motor control applied in tetraplegics were recently reported
(Silversmith et al., 2020).

The first application of a non-invasive BCI based on the
electroencephalogram (EEG) to control the lost hand function
of a high spinal cord injured male was presented in 2000
(Pfurtscheller et al., 2000). This and subsequent works relied
on power modulations of sensorimotor rhythms associated
with the imaginations of different limbs (Pfurtscheller and da
Silva, 1999). Introducing functional electrical stimulation
and neuroprosthetics led to more meaningful control
(Pfurtscheller et al., 2003; Müller-Putz et al., 2005). In
parallel, Scherer et al. (2004, 2008), Wolpaw and McFarland
(2004), and McFarland et al. (2010) demonstrated 2D and
3D cursor control. Further developments such as hybrid
BCIs (Pfurtscheller et al., 2010; Müller-Putz et al., 2011) and
coding of brain patterns (Müller-Putz et al., 2010) showed
small successes (Rohm et al., 2013). However, a non-invasive
natural control of a full arm movement was at this point out
of reach.

Back in 2010, Bradberry et al. (2010) demonstrated three-
dimensional movement decoding in the center out tasks.
Subsequently, several investigations were performed to explore
the possibility to also decode movement trajectories from EEG
(Lv et al., 2010; Ofner and Müller-Putz, 2012; Kim et al., 2015).

The long-term vision of our research is to realize a
non-invasive EEG-based, intuitive controller for an upper
extremity neuroprosthesis or robotic arm in people with high
SCI. There are some works done in this direction, for example by
Meng et al. (2016), who demonstrated that non-disabled people
can perform tasks which require multiple degrees of freedom
by a combination of two sequential low dimensional controls.
They were using combinations of left and right-hand movement
imaginations to achieve 2D control. Sequentially, they were then
able to move a robotic arm up and down and grasp an object.

Back in 2015 when our project, ‘‘Feel Your Reach’’, granted
from the European Research Council (ERC) started, we could
see that either trajectory decoding was possible to some extent,
but only in offline scenarios, or unnatural control sequences were
used to control a robotic arm, as described above.

The main idea of the project was twofold. First, we aimed
to characterize several brain patterns and mechanisms that
encode information about goal-directed movement intention,
movement kinematics, error processing, and processing
of kinesthetic sensory feedback in the EEG. Second, the
mechanisms should be combined in a hybrid framework to
derive a control signal that would allow an end-user to steer
an artificial arm, a robotic limb, which can be mounted to
the wheelchair, to a selected goal. Supported by the kinesthetic
sensory feedback and continuous error detection, the user should
be enabled to control the artificial arm efficiently in a natural
way. The final aim of this project is to apply these methods to
individuals with spinal cord injury.

This current article describes our findings and studies so far
on all the aforementioned topics.

METHODOLOGY

In Figure 1 we illustrate the project idea and subsequently, we
review a series of studies, which we performed and published
over the last 6 years. Thus, we start with goal-directed movement
planning and movement detection in an asynchronous
classification scenario: (1) this is followed by our approach
to trajectory decoding; (2) from offline studies to several
online feedback experiments. While grasping is one logical
end of a goal-directed arm movement, we investigated how
a large variety of grasps are represented in neural patterns;
(3) it is well known that BCIs always come along with wrong
detections and misclassifications. Thus, we investigated neural
correlates of errors during, e.g., robotic arm control, and used
the detections to correct wrong movements; (4) one major goal
of the project is to also include kinesthetic feedback additionally
to visual feedback with the goal to advance trajectory decoding;
and (5) furthermore, several methods to remove eye-dipole-
induced artifacts from brain signals have been developed and
evaluated. This was a crucial step, as the typical restrictions
on eye movements imposed by current BCI protocols are also
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one reason why the control feels unnatural to the user. Robust
eye-artifact correction models allow for the incorporation
of visual guidance, an aspect which is critical in daily-life
upper-limb movements.

Goal-Directed Movement Planning and
Detection
Studying the early stages of goal-directed movement planning
can be of interest for BCIs which aim to restore or replace
motor functions because the majority of such BCI applications
involve interactions with targets. An important example of such
an interaction would be the activation of a robotic arm to grasp
a glass located in the vicinity of the user. The neural correlates of
goal-directed movements and their differences from movements
which do not result in an interaction with a particular goal
have, over the past years, mainly been studied in movement
observation tasks (Rizzolatti et al., 2014) and often using other
neuroimaging techniques, like functional magnetic resonance
imaging (fMRI). Studies show, for instance, a greater activation
of the posterior parietal cortex (PPC) during the observation of
goal-directed actions, when compared to the observation of the
same actions but without a goal (Buccino et al., 2001). So, one
of our primary objectives is to understand how goal-directed
movements are represented in the EEG and how they differ from
movements which do not have specific targets.

While the execution or imagination of motor tasks can
be represented in power modulations in different frequency
bands (mainly of sensorimotor rhythms, SMR) commonly
exploited in SMR-based BCIs, low-frequency time-domain
(LFTD) signals within the delta frequency range of the EEG
can provide rich information about the users’ movement
intentions and the characteristics of the upcoming movement.
Concretely, movement-related cortical potentials (MRCPs) are
LFTD potentials that are neural correlates of movement planning
and execution and are time- and phase- locked to the movement
onset (Kornhuber and Deecke, 1964; Shibasaki and Hallett,
2006). MRCPs features have been exploited for movement
detection (i.e., asynchronous classification of movement vs.
rest) and are characterized by a slow negative deflection before
movement execution (ME), imagination (MI), or attempted ME,
reaching the maximum negativity near the movement onset,
followed by a positive rebound before returning to the baseline
level. Over the last decade, MRCP features have been shown to
be a rich alternative to power modulations since not only they
can be exploited for movement detection (Niazi et al., 2011;
Jochumsen et al., 2013, 2015; López-Larraz et al., 2014; Sburlea
et al., 2015; Jiang et al., 2015; Liu et al., 2018), but also for
classification of movement-related parameters like speed (Gu
et al., 2009), force (Jochumsen et al., 2013), or even different
types of grasps (Schwarz et al., 2018) and other upper-limb
movements (Ofner et al., 2017). Importantly, our group has
shown that different upper-limb movements can be decoded
in individuals with complete SCI, and additionally that such
decoding is possible online (Ofner et al., 2019). In a single-case
online proof-of-concept, movement detectionwas also evaluated.
A true positive rate of 30% was obtained for the detector, with
more than three false positives per min (FP/min).

In Pereira et al. (2017) we have shown that MRCPs differ
between goal and non-goal-directed movements. In this study,
a population of 10 non-disabled participants performed reach-
and-touch movements with the same kinematics. Differences
between the goal- and non-goal-directed conditions were found
not only in the negative slope before movement onset on
the central electrodes (Figure 2A, top panel) but also on
the reafferent potential after movement onset. The results of
an offline single-trial classification procedure showed that the
performance of a movement detector, which exploited such
MRCP features, was significantly higher when the movement
was directed towards a goal (Figure 2A, middle panel). Notably,
movement detection was possible before movement onset in all
participants for the goal-directed movement (average accuracy
of 73%), but in only 6 out of 10 participants for the non-
goal-directed movement (average accuracy of 66%). These
results suggest goal-directedness as a factor that can improve
movement detection performance. Moreover, discrimination of
goal movement vs. non-goal movement was possible with an
average accuracy of 71%. When analyzing the correspondent
classifier patterns (Figure 2A, bottom panel), we could determine
that the brain areas relevant for goal vs. non-goal discrimination
were the supplementary motor area, premotor cortex (PM),
and superior parietal lobule, which constitute a fronto-parietal
network and have been previously associated with movement
goals (Saxe et al., 2004; Rizzolatti et al., 2014). It is fair to
assume that for the goal-directed movement condition-specific
information about the spatial location of the target had to be
integrated for motor planning, which additionally explains the
involvement of the parietal regions known for their role in
visuomotor transformations (Andersen et al., 1997; Rizzolatti
et al., 2014; Vingerhoets, 2014). After the movement onset, the
discriminant patterns show activations not only in the primary
motor (M1) but also in the left posterior parietal cortex (PPC),
which is in consistency with the findings in Buccino et al. (2001)
using fMRI.

A limitation of Pereira et al. (2017) and most of the studies
on MRCPs for movement decoding and detection, is that the
potentials are time-locked to the movement onset or to discrete
cues. If one wants to exploit MRCPs in a population with
little or no residual movement on their upper-limbs, as in
complete cervical SCI, it is often not possible to time-lock
to a movement onset. With the impossibility to measure a
movement onset, which would be used to define a feature
extraction window for themovement class, discrete ‘‘go-’’cues are
used as an alternative time-locking point. However, this strategy
comes not only at the cost of the influence of external cues
on the EEG signals but also with the fact that the movements
are not self-initiated (or self-paced). As a consequence, it is
unlikely that a movement detector trained on cue-based data
would generalize to the envisioned scenario with self-initiated
movements (Figure 1). In Pereira et al. (2018), we attempted to
circumvent this challenge and allowed non-disabled participants
to perform self-initiated goal-directed reach-and-grasp MI. The
estimation of the MI onset was accomplished by introducing a
scroller with numbers on a computer monitor, and instructing
the participants to memorize the number that was on the scroller
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FIGURE 1 | Schematic overview of the project ideas. The robot’s movement can start when a goal-directed movement intention is detected. By decoding
trajectories the movement can be performed, always taking care, whether the detection of errors occurs. How grasping is reflected in neural patterns has been
investigated as well as how visual and kinesthetic feedback influences the decoding accuracy.

when they perceived the urge to perform the MI. We show
for the first time that it is possible to extract the MRCPs
features around a self-initiated MI onset to train a movement
detector (Figure 2B). This detector was evaluated offline in
an asynchronous manner, reaching an average percentage
of correctly classified trials of 53%. Performance was above
chance-level for all participants (around 20%). Note that this
measure of performance does not allow for false positives within
the trial period [more details in Pereira et al. (2018)]. This
approach is theoretically transferable to movement attempts,
which have been proven to be a good control strategy for SCI
participants (Blokland et al., 2012). However, it is suboptimal
to introduce an additional (memorization) task parallel to the
imagination task. Not only is the overall task more complex,
but it can also distract the participants from the main focus
of the experiment which is the motor task itself. In fact,
parallel to this work, Aliakbaryhosseinabadi et al. have shown
that the higher attention diversion imposed by a dual-task
(counting and moving) led to a significant reduction in specific
MRCPs features, further affecting the movement detection
performance when compared with the single movement task
(Aliakbaryhosseinabadi et al., 2017).

To eliminate the need for memorization tasks and a monitor
to present visual cues, in Pereira et al. (2021) we have
developed a paradigm that allowed for the online detection
of self-initiated movements asynchronously in a more realistic
scenario (Figure 3A). The largest body of studies that use

EEG signals for movement detection involve tasks in which
participants are typically requested to fixate their gaze at a
specific point in the environment. These restrictions are imposed
due to concerns with regard to eye-dipole-induced artifacts
which can easily contaminate EEG signals in the low-frequency
bands here analyzed. In Pereira et al. (2021), EEG signals were
locked to the saccade onset as 20 non-disabled participants
were instructed to also shift their gaze towards the movement
target when they initiated the goal-directed reach-and-grasp.
This strategy allowed us to obtain a time-locking point to extract
relevant movement-related features, and further, it allowed us
to incorporate gaze. Special care was taken regarding artifact
attenuation (see ‘‘Artifact Handling’’ Section), and an additional
control oculomotor task was introduced. In this control task,
participants solely performed a goal-directed saccade.

There was a clear fronto-central negativity in both conditions,
but the negativity was significantly stronger for the reach-
and-grasp condition. This stronger negativity peaked shortly
before the recorded movement onset. The source imaging
results corresponding to the difference between conditions in
Figure 3B (bottom panel) point to brain areas associated with
the generation of MRCPs. Superimposed on the fronto-central
negativity, a positive potential located primarily in parietal sites
was observed in the channel space. In the source space, this
activity emerged mainly from the superior parietal cortex in both
conditions (Figure 3B, top and middle panels). These LFTD
features were exploited in a hierarchical classification approach
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FIGURE 2 | (A) Neural correlates of goal-directed movements [adapted from Pereira et al. (2017)]. Grand-average MRCPs (n = 10) over electrode C3 with respect
to the ME onset and respective confidence interval, for both Goal and No-Goal conditions (top panel). Time-locked classification results: peak accuracies relative to
the task pair comparisons for the time-windows before and after movement onset (middle panel). Discriminative spatial patterns in the source space for the Goal
Movement vs. No-Goal Movement condition (bottom panel). (B) Detection of self-initiated goal-directed MIs of reach-and-grasp movements [adapted from Pereira
et al. (2018)]. Grand-average MRCPs (n = 15) on the source space with respect to the imagination onset (top panel). MRCP on channel Cz of participant s01
time-locked to the imagination onset (middle panel). For that same participant, we show the single-trial image showing the imagination detections (marked in white)
over each testing trial (bottom panel). A trial was considered when there was at least one true positive, and no false positives. On the group level, 53 ± 17% of trials
were correctly classified (chance level of 20%).

to detect the goal-directed reach-and-grasp movement online. A
true positive rate of 54% was obtained (chance-level 12%) and an
average of 1.7 FP/min was reported on pure rest, and 1.2 FP/min
within the main blocks of the experiment.

The study in Pereira et al. (2021) opens doors to more
realistic settings and ultimately to tasks which incorporate not
only motor but also visual processing and their EEG correlates
in the real world. Finally, it is important to mention that there
are other aspects which cover the domains of both perceptual
and movement-related decision making and are interesting to
investigate as well. One of them is for instance the target selection
process in goal-directed movements: deciding on a target is not
a strictly motoric process, and on BCI training paradigms the
targets are often externally-cued. However, movement targets in

a real-life scenario are often defined internally [as in Pereira et al.
(2021)]. We also have started studying these processes in Pereira
et al. (2018).

Non-invasive Movement Decoding
In goal-directed movements, the brain does not only integrate
visual and sensory information about whether to initiate a
movement but also transforms the multimodal information
into downstream commands for an ensuing movement, and,
as the movement is executed, adapts movement commands
according to incoming feedback (Cisek and Kalaska, 2010).
Electrophysiology studies in non-human primates (NHPs) and
fMRI studies in humans have shown that the extrinsic sensory
information is transformed into intrinsic movement commands
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FIGURE 3 | (A) Experimental paradigm [adapted Pereira et al. (2021)]. Participants performed two main conditions. In the MOVE&LOOK condition participants
initially fixated their gaze on one of the points on the vertical board, and then freely decided when (within the 13 s) to perform the reach-and-grasp movement and
simultaneously shift their gaze towards the self-chosen target. On the online trials, feedback on the MOVE&LOOK detections was provided through LEDs displayed
on the targets. In the LOOK condition, participants solely performed the goal-directed saccade. (B) Source imaging results. The top and middle panels show the
grand-average (n = 20) source space LFTD activity locked to the saccade onset for the MOVE&LOOK and the LOOK condition, respectively. Differences between
both experimental conditions in the source space are shown in the bottom panel (only significantly different voxels are colored).

along the dorsal stream in fronto-parietal networks for reaching
and grasping (Georgopoulos et al., 1982; Kalaska et al.,
1989; Battaglia-Mayer, 2019). Whether the intrinsic movement
commands rather reflect kinetics, kinematics or synergies is an
ongoing debate (Omrani et al., 2017).

In the non-invasive domain, LFTD signals have been reported
to primarily encode information about executed movements
(Gu et al., 2009; Jochumsen et al., 2013; Ofner et al., 2017;
Schwarz et al., 2018). Following the vast majority of previous
magnetoencephalographic (MEG)/EEG studies, we focused our
analysis on decoding the kinematics of executed and attempted
movements. Some groups reported that they could classify the
direction of discrete, center-out upper-limb movements phase-
locked to the movement onset (Waldert et al., 2008) or even
decode the movement trajectories (Bradberry et al., 2010), while
others reported the absence of directional information at the
movement onset (Antelis et al., 2013). The different findings
raised the question whether MRCPs, phase-locked to the onset
of discrete movements, are modulated by movement direction.

Complementary to discrete movement tasks, a number of
studies investigated the expression of directional information
during continuous movements (Lv et al., 2010; Ofner and
Müller-Putz, 2012; Kim et al., 2015) and volitional states
(Kim et al., 2015; Ofner and Müller-Putz, 2015). The majority
decoded positions and/or velocities with linear models from
LFTD features (Robinson and Vinod, 2016). When decoding
movements, the trajectories can be reconstructed by integrating

decoded velocities (Bradberry et al., 2010; Ofner and Müller-
Putz, 2012), by directly decoding positions (Ofner and Müller-
Putz, 2012), or by decoding and merging both types of kinematic
signals (Li et al., 2009). In the invasive domain, it was shown that
the spiking activity of neurons in M1 carries information about
both types of kinematic signals (Wang et al., 2007), and that the
activity is preferentially tuned to velocities rather than positions
(Paninski et al., 2004; Wang et al., 2007). Since spiking activity
and EEG activity reflect fundamentally different spatial scales,
it is not clear whether the tuning characteristics of M1 neurons
transfer to EEG activity.

Although discrete, center-out reaching movements are well
suited to study MRCPs, they are not suited to study the tuning
characteristics of EEG activity to positions and velocities. In
a center-out task, the position and velocity signals are tightly
correlated, limiting the chance of identifying the position and/or
velocity-related effects in the EEG activity. To address both
research questions, we designed an experiment that involved
center-out and continuous goal-directed movements.

The experimental setup and trial-based paradigm as well as
the main findings are summarized in Figure 4. We considered
two conditions (execution, observation) to study different
volitional states. In either condition, the participants were asked
to fixate a target stimulus with their gaze in a 2D workspace.
During execution condition trials they additionally controlled
a cursor by moving their right arm. We used the center-out
task to investigate whether MRCPs are modulated by movement
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direction (Kobler et al., 2020a) and a pursuit tracking task (PTT)
to investigate the tuning characteristics of positions and velocities
(Kobler et al., 2018).

In the execution condition, we observed a prominent MRCP
around the movement onset (Figure 4C, top panel). As expected,
the MRCP at the movement onset contributed to a successful
classification of the experimental conditions (execution vs.
observation; 78.2% classification accuracy). In Kobler et al.
(2020a), we also observed significant classification accuracies
for the movement direction (50.6% for four classes). However,
if we aligned the data to the presentation of the cues rather
than to the cursor movement onset, the movement direction
could be detected with significantly higher accuracy (55.9%). The
direction classifier accuracy curves are summarized in Figure 4C
(bottom panel). Using a general linear model that considered
the factors’ condition and direction for both types of alignments
(cues, cursor movement onset), we could identify cortical
networks encoding condition and direction-related information.
We found a consistent representation of movement direction
in the parieto-occipital cortex 300–400 ms after the direction
cue irrespective of the condition. A consistent representation of
movement direction in the parieto-occipital cortex agrees with
reports of previous fMRI studies, which implicated this region in
reaching and eye movements and showed that it has a retinotopic
organization in humans (Fernandez-Ruiz et al., 2007; Fabbri
et al., 2010; Magri et al., 2019). The EEG activity originating
in the sensorimotor cortex encoded less information about
the movement direction. Moreover, the encoded directional
information in the sensorimotor cortex was less consistent across
participants and specific to the execution condition. Combining
the neurophysiology and classification results, the findings of this
study suggest a stronger representation of movement direction
in parieto-occipital areas phase-locked to the presentation of
the cues rather than in sensorimotor areas phase-locked to the
movement onset.

In every second trial, the center-out task was followed by
the PTT. As in Paninski et al. (2004), we designed the target
stimulus’ trajectories so that the position and velocity trajectories
were decorrelated at lag 0 and independent across the two
dimensions. In analogy to the center-out task, we also observed
in the PTT that the parietal-occipital cortex carried significant
directional information in either condition (Figure 4D, top).
By contrasting the encoding strength of directional information
between the conditions, we found that the PM and contralateral
M1 encoded more information about the cursor velocity in the
execution condition (Figure 4D, middle). The temporal tuning
characteristics indicated that the activity led the cursor velocity
by approximately 150ms (Kobler et al., 2018). These observations
in the EEG are in agreement with the tuning characteristics of the
spiking activity of M1 neurons (Paninski et al., 2004). Offline, we
used a partial least squares (PLS) regression-based Wiener filter
to decode the cursor velocity trajectories from LFTD features of
the past 300 ms, and obtainedmoderate correlations in execution
(0.4) and observation (0.35) conditions (Figure 4D, bottom).

In a follow-up study (Mondini et al., 2020), we investigated
the feasibility of continuously decoding voluntary hand/arm
movement trajectories from the EEG, to achieve closed-loop

online control of a robotic arm. The experimental setup is
depicted in Figure 5A. The paradigm implemented a PTT, where
the participants were asked to track a moving object on the
screen (the ‘‘snake’’, Figure 5A) by controlling a robotic arm.
In the first part of the experiment, the participants performed
some calibration runs with the robot fully controlled by their
hand kinematics. After the EEG decoding model was fitted
to the movement, the control signal for the robotic arm was
gradually switched from kinematics- to EEG-based decoded
trajectories, first with 33%, then 66%, up to a final condition
of 100% EEG control (Figure 5C). PLS regression was once
again used to decode several movement parameters (namely,
the two-dimensional positions, velocities, and accelerations)
from the EEG. To integrate the information from the different
decoding models, we introduced a combined PLS and Kalman
filtering approach, named PLSKF (Mondini et al., 2020). We
obtained moderate yet overall significantly better than chance
correlations between the hand kinematics and the PLSKF-
decoded trajectories of (0.28, 0.29, 0.26, and 0.24) on average,
for the (0%, 33%, 66%, and 100%) EEG control conditions,
respectively (Figure 5E). For the sake of comparison, we
simulated offline the correlations that would have been obtained
with PLS regression alone. With respect to PLS regression, the
PLSKF led to a stable correlation increase of ∆r = 0.049 on
average, demonstrating the successful integration of different
decodingmodels. The level of robot control was above the chance
level in all conditions, and participants finally reported feeling
enough control to be able to improve with training, even in the
100% EEG condition. Despite the encouraging results, we found
an amplitude mismatch between hand kinematics and decoded
trajectories, which could not be fixed with the PLSKF model
(Figure 5D).

More recently in Kobler et al. (2020c), we suggested that
integrating information about non-directional kinematics (e.g.,
distance, speed) in the decoding model can alleviate the problem
of amplitude mismatch. Recent studies suggest, indeed, that
cortical signals not only carry information about movement
direction (e.g., positions, velocities), but also information
about movement amplitude (e.g., distance, or speed). This
non-directional kinematic information has been found in both
ECoG (Hammer et al., 2016) and MEG activity (Kobler et al.,
2019a). Provided that distance and speed are nonlinearly related
to position and velocities, the previously introduced PLSKF
approach (Mondini et al., 2020) had to be extended to an
Unscented Kalman Filter (UKF), which we denote PLSUKF
here. In Kobler et al. (2020c), the EEG data from Kobler
et al. (2018) and MEG data from Kobler et al. (2019a) were
reanalyzed, to evaluate the performance of the PLSUKF with
respect to both the PLS and the PLSKF, during both observed
and executed movements. The correlations between the executed
and the decoded trajectories were higher compared to the
other algorithms, specifically 0.49 on average during execution
and 0.36 during observation. In addition, the integration
of non-directional kinematics in the decoding model could
reduce the amplitude mismatch between recorded and decoded
trajectories (Figure 5F, with respect to Figure 5D), thus
overcoming the limitations of the previous study.
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FIGURE 4 | Non-invasive correlates of upper-limb movement kinematics adapted from Kobler et al. (2018, 2020a,c). (A) Experimental setup. The participants’ right
hand’s palm position was tracked on a 2D surface with a motion capture system (Leap Motion; Leap Motion Inc., USA); the hand movements were mapped to
cursor movements in a virtual 2D workspace. (B) The trial-based paradigm considered two conditions—execution and observation. In execution condition trials, the
participants controlled the cursor, while in observation condition trials, matching cursor movements were replayed. We considered two tasks. In a center-out task, a
target moved for 0.5 s in one direction and stopped. After the cursor reached and maintained the target’s position for 1 s, the pursuit tracking task started. (C)
Results of the center-out task. The plots in the top panel show the grand average potential at channel C1 for both conditions and two alignments (cues, cursor
movement onset). Shaded areas indicate confidence intervals. Comparing the conditions, the grand average traces differed most around the movement onset.
Source space plots visualize how the condition factor was encoded around the movement onset. Direction-related results are summarized in the bottom panel. It
contains accuracy curves for both conditions and alignments and source space plots that visualize how the direction factor was encoded around the movement
onset in either alignment. (D) Position, and velocity decoding results during the pursuit tracking task. The source space plots in the top summarize how the position
(left) and velocity (right) were encoded in the LFTD features irrespective of the condition, while the plots below show the differences across conditions (execution −

observation). Each source space plot depicts the average position or velocity-related activity within a 300 ms sliding window ([−0.3, 0.0] s). We used the same
sliding window for a PLS-based Wiener filter decoder. The boxplots display correlations between the recorded and decoded cursor position and velocity trajectories.
The significance levels for positions and velocities were at 0.12 and 0.10.

We tested how the results of the PLSUKF would translate
to a closed-loop online scenario, recently in Martínez-Cagigal
et al. (2020). The study implemented the same paradigm with
the robotic arm as in Mondini et al. (2020) (Figures 5A–C),
with the main difference of using a PLSUKF-based decoder. We
obtained grand average correlations between hand kinematics
and PLSUKF-based decoded trajectories of (0.43, 0.34, 0.27, 0.23)

on average for the (0%, 33%, 66%, 100%) EEG control conditions
(Figure 5G). Moreover, the PLSUKF could adjust the amplitude
mismatch (Figure 5F), with a grand average amplitude ratio of
1.07 between recorded and decoded movements.

Having demonstrated the feasibility of decoding continuous
executed movement in non-disabled participants, we proposed a
new paradigm in a follow-up study to advance our setup toward
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FIGURE 5 | (A) The participants’ right-hand positions were recorded with a LeapMotion controller. During the experiment, participants were controlling a moving
arm to track a moving object (i.e., the snake) on the screen. The control signal of the robotic arm was a mixture of hand kinematics (recorded by the LeapMotion) and
EEG-based decoded trajectories, with a changing proportion over the course of the experiment. (B) Each trial started with a self-paced break, where the participants
were in control of a cursor. As the participants wanted to start a new trial, they moved the cursor to the center of the screen, and held it still for 1 s (baseline). A
moving trace was then displayed for 23 s, marking the beginning of the tracking period. (C) The experiment was divided into two parts, namely the calibration and
the online part. The main experimental paradigm was implemented in the “snakeruns”, whose trials had the structure depicted in (B). During the online part, the
proportion of the EEG-based decoded trajectory was progressively increased every two snakeruns, first with 33%, 66% and up to the final condition of 100% EEG
control. (D,E) Sample decoded trajectories and Pearson’s correlation r distributions between hand kinematics and PLSKF-decoded trajectories in the first online
study (Mondini et al., 2020). (F,G) Sample decoded trajectories and Pearson’s correlation r distributions between hand kinematics and PLSUKF-decoded trajectories
in the second online study (Martínez-Cagigal et al., 2020).

motor-impaired end-users. In a pilot study, we investigated the
viability of decoding from attempted movement, mimicking
the limited motor function a spinal cord injured person would
experience by strapping each participant’s dominant arm to
the chair he/she was seated on (Figure 6C). In the said pilot
study, we not only observed correlations in a similar order
of magnitude to the correlations achieved by decoding from
actual movement, but we also found an increase in perceived
performance towards the end of the session, as reported by the
participant. Consecutively, we decided to investigate possible
learning effects that may arise when training a BCI user multiple

times on the same motor control task (Pulferer et al., 2021),
which we now discuss in more detail.

In three sessions within 5 days per participant, the EEG
of 10 non-disabled participants was recorded. The time
frame was chosen to ensure that the participants could
recuperate from the mental strain of the diverse tasks, yet
still retain a clear recollection of prior sessions. Within two
different paradigms—snakeruns originally described in Mondini
et al. (2020) and Müller-Putz et al. (2021) and freeruns
(Figures 6A,B)—the participants were asked to visually track a
target or trace a fixed shape on a screen while simultaneously
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attempting a corresponding movement with their strapped
arm as if wielding a computer mouse. As before, eye-
dipole-induced artifacts were corrected as outlined in Section
‘‘Artifact Handling’’. For each session, four calibration snakeruns
(48 trials) using fake feedback (delayed snake) were performed
for fitting the decoder, followed by three snakeruns (36 trials)
each with first 50% and then 100% EEG feedback until finally,
three freeruns (36 trials) using 100% EEG feedback were
recorded (Figure 6D). Pearson’s correlation coefficient was again
chosen as an evaluation metric, yielding the results shown in
Figures 6E–G, which amount to grand average correlations
across all movement parameters of 0.31 (0.02 SD), 0.32 (0.02 SD),
and 0.30 (0.02 SD) for sessions 1–3 in both the online tracking
tasks combined. These values range between corresponding
results of 0.31 (0.08 SD) during an observation-only task,
and 0.40 (0.06 SD) during executed movement in identical
tracking tasks of slightly shorter duration (16 s) as reported
previously in Kobler et al. (2020c). Due to a lack of ground truth
trajectories (snake) in the freeruns, we estimated the decoder
performance between the EEG-decoded and the eye movement
inferred trajectories. Horizontal and vertical eye movements
were estimated from electrooculographic (EOG) activity. To
avoid variation due to differences in decoder performance from
session to session, the correlations were normalized with respect
to the mean correlation during the calibration runs in each
respective session. In all feedback conditions and paradigms,
we observed single participant means (dots) and hence grand
averages (dashed horizontal lines) exclusively above chance
level (solid horizontal lines). A slight though non-significant
improvement from the first to the second session could be
observed for all kinematic parameters in the 50% EEG feedback
condition as well as for the parameters along the x-axis in the
100% EEG feedback condition, implying a positive effect of user
training on the decoding performance, followed by performance
degradation from the second to the third session. Additionally,
we observed a decrease in performance with increasing time
interval from decoder calibration; while the grand average
correlations reached close to calibration correlation during the
50% EEG feedback snakeruns (Figure 6F), the performance
decreases consecutively in the 100% EEG feedback snakeruns
(Figure 6G) and reaches the lowest results during the freeruns
(Figure 6E). A multitude of factors could potentially explain
these observations. For example, nonstationarities in the EEG
signals could have led to a degradation of the decoder
performance over time. Alternatively, the users’ task engagement
could have declined as they got accustomed to the paradigms and
tasks. Furthermore, the intrinsic differences in the dynamics of
both paradigms could explain why the performance of a model
trained on the snake runs with fake feedback degrades when it
is transferred to freeruns with different dynamics as well as to
snakeruns where the decoder output modifies the task dynamics.
As this issue is not limited to non-invasive decoding, established
closed-loop control techniques from the invasive domain might
aid in transferring open-loop calibrated models to closed-loop
control (Gilja et al., 2012; Willett et al., 2018).

We also investigated the possibility of performing the hand
trajectory decoding in source space (Srisrisawang and Müller-

Putz, 2021). To do so we based the processing steps on Martínez-
Cagigal et al. (2020). We introduced an additional source-space
transformation and extracted the activity of regions of interest
(ROI). These additional steps were done via source imaging
(Michel et al., 2004). First, we modeled 5,000 unconstrained
current dipole sources (each source comprises three directional
components) across the ICBM152 template head model with
the boundary element method. Then, we solved the source
localization problem using sLORETA via the brainstorm package
(Tadel et al., 2011). We addressed the problem of a high number
of dimensions in the source space via a two-fold dimensionality
reduction approach. First, we defined ROIs according to the
frontoparietal network identified in our previous studies (Kobler
et al., 2018, 2019a, 2020a). The defined ROIs can be seen in
Figure 7B. Second, we applied three different dimensionality
reduction techniques to each directional source component of
each ROI. The techniques were: averaging, principal component
analysis (PCA), locality preserving projection (LPP; He and
Niyog, 2003). For PCA and LPP, we empirically determined the
number of components to be retained in each ROI as 8, due
to saturation of the decoding performance. We then compared
the decoding performance for the following cases: sensor-space
decoding (Se), Mean, PCA8, LPP8.

Figure 7A shows the decoding performance in terms
of correlation and SNR where each circle represents the
corresponding performancemetric of each subject. The gray lines
connected between the median values were added to facilitate
the comparison. To simplify the visualization, the horizontal
and vertical components were grouped together into position
and velocity and the distance and speed were grouped into
magnitude. Generally, a similar range of correlation and SNR
could be observed across all approaches (correlations: around
0.3 for position and velocity and around 0.1 for magnitude,
SNRs: around −2 dB for position and velocity and −3 dB for
magnitude). Mean and LPP8 indicated slightly lower correlations
and SNRs than Se, while PCA8 showed a small improvement
in terms of correlations for velocity and magnitude and in
terms of SNRs for position and magnitude. Overall, we observed
statistically significant differences only between LPP8 and
PCA8. PCA8 showed on average an improvement in terms of
correlations in comparison to Se by 0.0043 and in terms of
SNRs by 0.0476 dB. The decoding patterns at time lag 0 ms
(Figure 7C) revealed a strong dependence on the brain regions
in the parieto-occipital cortex for velocity decoding as well
as in the frontal regions in the distance and speed decoding.
We concluded from these results that the source-space-based
decoding is possible with similar performance as done in the
sensor space.

Grasp Representation
Electromyographic and kinematic information have been
proposed as candidates for the neural representation of hand
control (Ejaz et al., 2015; Leo et al., 2016). However, it remains
unclear how these movement covariates are reflected in the EEG
activity during different stages of grasping movements, such
as hand-preshaping, reaching the final grasping posture, and
holding.
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FIGURE 6 | Paradigm, decoded trajectories, and grand average correlations adapted from Pulferer et al. (2021). (A–C) Paradigms, and experimental setup.
Participants were asked to trace the object on screen—the “snake” during snakeruns (A, tracking task) and static shapes during freeruns (B, tracing task)—with their
gaze while simultaneously attempting movement with the dominant hand/arm strapped to the chair as they sat in front of the screen (C). Online feedback was
delivered as a green dot. (D) Exemplary freerun shapes with corresponding EEG-decoded trajectories (P4, session 2). (E–G) Normalized (w.r.t. the mean correlation
achieved in the calibration snakeruns of the respective session) correlations over sessions for freeruns (E: 100% EEG feedback) and snakeruns (F: 50% EEG
feedback, G: 100% EEG feedback). Grand average correlations between EOG-decoded trajectories (freeruns) resp. snake (snakeruns) and EEG-decoded
trajectories with standard deviations (dashed vertical lines and tails), single participant means (dots), median and 25th/75th percentiles (boxes), and median chance
levels for all movement parameters.

In an exploratory study (Sburlea and Müller-Putz, 2018), we
simultaneously acquired EEG, kinematic and electromyographic
signals in 31 non-disabled human subjects while observing
33 different pictures of hand-object interaction and executing
the grasps previously observed. Our study aims were three-
fold. First, we investigated the relation between EEG and the
behavioral covariates associated with the movement execution
phase. Using representational similarity analysis, we found that
EEG activity reflected different movement covariates in different
stages of grasping. During the pre-shaping stage, centro-parietal
EEG in the lower beta frequency band reflected the object’s shape
and size, whereas, during the finalization and holding stages,
contralateral parietal EEG in the mu frequency band reflected
muscle activity. Second, we asked how the EEG patterns of
static grasping observation relate to the behavioral covariates
of movement execution (Sburlea and Müller-Putz, 2019). We
found that the EEG representation of the observation phase in
the mu and low beta frequency bands was correlated with the

muscle representation during the execution, most strongly in
the movement holding phase. This similarity indicates that when
visually processing the hand-object interaction, we focus on the
final grasping posture. Third, we investigated whether the muscle
envelope of different grasping movements can be continuously
predicted from LFTD EEG amplitudes using a filtering approach
(Sburlea et al., 2021). We achieved higher prediction accuracy for
intermediate grasps compared to power or precision grasps.

To confirm the hypothesis, derived from the previous study,
which surmises that the shape of the objects is encoded in
the brain patterns from parieto-occipital regions during hand
preshaping, we conducted a new study (Sburlea et al., 2021).
By separating properties of the objects from properties of
grasping movements, we found a different spatial encoding of
the grasp type and number of fingers (grasping movements)
and the shape and size (intrinsic object properties) throughout
the movement stages. Using LFTD EEG activity we reached
significantly higher than chance level classification accuracy for
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FIGURE 7 | The overall results from the source-space decoding. Adapted from Srisrisawang and Müller-Putz (2021). (A) The decoding performance resulting from
the sensor-space decoding approach (Sensor), and the source-space decoding approaches (Mean, PCA8, and LPP8). The average metrics were computed within
the 0%–100% EEG. The horizontal and vertical of the directional kinematics were grouped into position and velocity. The non-directional kinematics were grouped
into magnitude. (B) The defined regions of interest. (C) The decoding pattern. In the case of PCA and LPP, only the first component is shown.

both object properties and grasp types during the planning
and execution of the movement. Therefore, this preferential
time-wise encoding allows the decoding of object properties
already from the observation stage, while the grasp type can also
be accurately decoded also at the object release stage.

These findings contribute to the understanding of the
temporal organization of neural grasping patterns and could
inform the design of noninvasive neuroprosthetics and BCIs.
Moreover, these findings allow us to gain a joint understanding
of the relation between movement observation and execution,
and represent a means to facilitate an intuitive control of
neuroprostheses in motor-impaired individuals.

Error-Related Potentials During
Continuous Feedback
BCIs are still prone to errors when converting the user’s
intentions into actions. The neural signature of error processing
is known as error-related potential (ErrP) and can be measured
using EEG when BCI users realize that the BCI committed a
mistake (Ferrez and Millán, 2005). Initial research on the use
of ErrPs on BCIs focused on the detection of ErrPs during
discrete tasks, using a time-locked approach (Chavarriaga et al.,
2014). More recently, the study of the continuous detection of
ErrPs during continuous tasks emerged, using an asynchronous
approach (Omedes et al., 2015; Spüler and Niethammer, 2015).
Within the ‘‘Feel Your Reach’’ project, we focused on the study
of the asynchronous detection of ErrPs during the continuous
control of an end-effector.

In our first study, we investigated the continuous detection of
ErrPs in offline conditions (Lopes-Dias et al., 2017, 2018). We
measured the EEG of 15 non-disabled participants while they
controlled a cursor using a joystick towards one of four targets, as
depicted in Figure 8A. There were two experimental conditions:
one condition in which the cursor’s position was masked by the
incorporation of a jitter component (masked feedback) and one
condition with no jitter (unmasked feedback). Thirty percent of

the trials were error trials. In these trials, the participants’ control
of the cursor was interrupted at an unexpected moment during
the trajectory. The remaining trials were named correct trials.We
evaluated the time-locked classification of correct epochs against
error epochs and obtained an average TPR of 81.8% and an
average TNR of 96.4% (Lopes-Dias et al., 2018). Furthermore, we
also investigated the asynchronous detection of ErrPs during the
entire duration of the trials. To this end, we used a sliding window
approach (Omedes et al., 2015), by continuously evaluating a
window of the pre-recorded EEG, as depicted in Figure 8B. The
output of the classifier was then transformed into the binary
detection of ErrPs using a decision threshold.

The asynchronous detection of ErrPs was evaluated in a cross-
validated manner and in a simulated online manner, using trial-
based metrics that considered the entire duration of the trials.
The asynchronous detection of ErrPs in the simulated online
scenario yielded an average TPR of 64.5% and an average TNR
of 84.0%.

Our following study tested the feasibility of asynchronously
detecting ErrPs in an online condition and during the continuous
control of a robotic arm. In this study, we measured the EEG
of 15 non-disabled participants, who were instructed to move
the robotic arm towards one of two targets in front of them,
as depicted in Figure 8C. This experimental setup is intended
to mimic a possible use of a BCI by an end-user (Lopes-Dias
et al., 2019a). In 30% of the trials, the experimental protocol
halted the participants’ control of the robot at an unexpected
moment during the continuous movement towards the target
(error trials). The remaining trials were named correct trials. This
experiment comprised two distinct phases: offline calibration
and online testing. During the offline calibration, we recorded
the EEG signals of the participants while performing the task.
These signals were used to train a personalized ErrP classifier
for every participant, which was tested in the online part of
the experiment. In this part, the participants could correct the
errors elicited by the experiment, if an ErrP was detected in the
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participants’ real-time EEG signals. When this happened, the
participants regained control of the robot and could reach the
intended target. The asynchronous ErrP detection in the online
part of the experiment, considering the entire trial duration,
resulted in an average TPR of 70.0% and an average TNR of
86.8%, as depicted in Figure 8D.

The long duration of this experiment, due to its two phases,
could hinder its transferability to BCI end-users. Hence, we
decided to investigate a strategy to dismiss the offline calibration.
Therefore, we proposed a generic classifier, which was trained
with the EEG signals of 14 non-disabled participants and tested
in a different participant. At a group level, the asynchronous ErrP
detectionwith this classifier yielded a comparable performance to
a personalized ErrP classifier (Lopes-Dias et al., 2019b).

Finally, we investigated the use of the generic classifier for
the asynchronous detection of ErrPs in online conditions. In
this study, we measured the EEG of eight participants with
an SCI and eight non-disabled control participants, while they
controlled a robotic arm, in an experimental setup similar
to the previous experiment (Lopes-Dias et al., 2019a). The
experiment required no offline calibration and the participants
received feedback of their brain signals from the start of
the experiment onwards. Participants with SCI displayed a
more heterogeneous ErrP morphology than control participants
(Lopes-Dias et al., 2021). At a group level, the grand average
ErrP of the SCI group displayed lower peak amplitudes than the
grand average ErrP of the control group, as depicted in Figure 8E.
Nevertheless, participants in either group who displayed a
clear ErrP morphology also obtained classification results above
the chance level. Figure 8F illustrates the asynchronous ErrP
detection in one control participant.

Summarizing, these works offer a strategy to asynchronously
detect ErrPs without requiring prior offline calibration. This
strategy was tested online with participants with SCI and with
control participants. Moreover, these results can also promote
the combination of ErrP detection with other control modalities
when developing a BCI.

Kinesthetic Feedback
Our endeavors to provide artificial somatosensory feedback
focus on transmitting kinesthetic information by non-invasive
means. After screening the possibilities of several potential
modalities, including non-contact ultrasonic acoustic radiation
force, electrotactile stimulation, and vibrotactile stimulation
via piezoelectric buzzers, magnetic transducers, and specialized
electromagnetic vibrotactile actuators, we concluded that the
latter would be the most suitable to our intention of stimulating
the shoulder blade or upper back, where the tactile receptor
density is relatively low. Specifically, we have conducted the
following investigations with C-2 tactors (Engineering Acoustics
Inc., Casselberry, USA), controlled by a custom device including
an ARM Cortex M4 microcontroller (STMicroelectronics,
Geneva, Switzerland). The tactors were attached to the inside of
an elastic shirt (Figures 9A,D).

In order to realize spatially continuous feedback with a low
number of discrete actuators, we tested stimulation patterns
intended to evoke moving sensations in a small behavioral pilot

study. Moving sensations can be achieved by exploiting tactile
illusions resulting from imprecise tactile perception, both in the
spatial and the temporal domain. When the skin is presented
with two stimuli that are too close together to discern their
locations, they are interpreted as a single ‘‘virtual’’ stimulus
at a location in between (Alles, 1970). Furthermore, when a
stimulus is followed by another at an interval too short for
them to be perceived separately, the illusion of apparent tactile
motion occurs (Sherrick and Rogers, 1966; Kirman, 1974; Israr
and Poupyrev, 2011). In our pilot study (Hehenberger et al.,
2019), patterns were computed such that a virtual stimulus
would travel from one tactor to another, where the virtual
stimulus was computed according to three different models
(linear, logarithmic, power), regarding the relation of tactor
intensities and desired stimulus location. Based on participant
responses, we concluded that the power model most accurately
maps the location of virtual stimuli. Our findings were in line
with conclusions reached by Israr and Poupyrev (2011) and
Luzhnica et al. (2017) for stationary stimuli.

In the context of ‘‘Feel Your Reach’’, it is relevant to
examine to which extent vibrotactile feedback would influence
EEG signals, be it by introducing artifacts or by impacting
sensorimotor processing due to the additional somatosensory
input. In our first study in a non-disabled population regarding
this concern (Hehenberger et al., 2020), we recorded four
conditions and three movement directions in a center-out
task, in order to get a broad overview. In the first condition
(condition ME+VF), participants received real-time vibrotactile
feedback of the hand position. In the second and third
conditions, they were provided with static vibrations carrying
no information (condition ME+Vstat), and no stimulation
(condition ME), respectively. In the fourth condition, they were
instructed not to perform any movement while receiving sham
feedback (condition VF). The movements were performed in
a self-paced manner, following a cue indicating the movement
direction (i.e., right, left, or up1). As depicted in Figure 9C,
grand-average MRCPs exhibited a marginally larger peak in
condition ME+VF, compared to condition ME, both shortly
after the movement onset. In condition ME+Vstat, the initial
slope is similar to the feedback condition, but the MRCP
peaks at the time point of the movement onset. This peak
is weaker than in the other two movement conditions. The
MRCP is localized centrally, with a slight lateralization to the
contralateral side. In the two movement conditions containing
vibrotactile stimulation (i.e., conditions ME+VF, ME+Vstat),
it slightly expands to the ipsilateral side. The presence of
vibrotactile stimulation seemed to prompt 11 of 12 participants
to initiate movements significantly earlier than in trials without
stimulation. The three movement conditions could be classified
against rest, based on LFTD features, with peak accuracies
of 60%–65% (significantly above chance), while accuracies for
the non-movement condition do not exceed the chance level.
In a four-way classification, condition VF and condition ME
could be discriminated at a within-class accuracy significantly

1In ‘‘up’’ trials, the cue on the screen as well as the vibrotactile feedback on the
back moved upward, while the movement was performed forward.
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FIGURE 8 | (A) Experimental paradigm. Participants controlled a cursor on the screen towards one of four target squares [adapted from Lopes-Dias et al. (2018)].
(B) Schematic representation of the asynchronous detection of ErrPs using a sliding window approach. (C) Experimental paradigm. Participants used their hand to
control a robotic arm towards one of two boxes lying in front of the robot. Before each trial, a screen indicated the target box and after each trial, it presented
feedback regarding the robot’s behavior [adapted from Lopes-Dias et al. (2019a)]. (D) Decoding results of the online part of the experiment [adapted from
Lopes-Dias et al. (2019a)]. (E) Grand average correct and error signals at channel FCz for participants with SCI and control participants. The shaded areas represent
the 95% confidence interval of the grand average curves [adapted from Lopes-Dias et al. (2021)]. (F) Decoding evaluation of one participant. Left: error trials, aligned
to the error onset (black vertical line). Right: correct trials, aligned to the start of the trial. The dark gray areas represent the trials and the white marks within them
represent the ErrP detections [adapted from Lopes-Dias et al. (2021)].

above chance, while conditions ME+VF and ME+Vstat could
not. The accuracies are shown in Figure 9B. When separating
trials according to the three movement directions (movement
trials only), regardless of condition, the grand average MRCP
peak of movements to the right is considerably lower than for
movements to the left or forward. These amplitude differences

could potentially be attributed to differences in speed. Indeed,
movements to the right were performed significantly faster in
a majority of subjects. We hypothesize that these behavioral
differences could result from differences in the difficulty of
performing the movements. Three-way classification between
movement directions yielded within-class accuracies narrowly
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exceeding the significance threshold above chance around the
movement onset. According to Kobler et al. (2020a), the time
window around the movement onset contains poorer directional
information compared to the time where the direction is cued.

This issue was taken into account in the design of a follow-up
study (Hehenberger et al., 2021), where we replaced the executed
movement with motor imagery, and directly cued the initiation
of the imagined center-out movement. This study included
two conditions—MI with concurrent visual and vibrotactile
guidance (condition MI+VG), and MI with visual guidance
only (condition MI). Furthermore, we reduced the number of
directions to two (right, up). The potentials (0.2–5 Hz) resulting
from a superposition of evoked responses and MRCPs are
depicted in Figure 9B, for the pre-MI and the MI period. The
grand-average MRCP peak is more pronounced and less variable
in condition MI, while the spatial profile is broader in condition
MI+VG (Figure 9E). Classification between the two conditions
based on LFTD features revealed that they are discriminable
with peak accuracies of 70%–90%, both during the MI and
the pre-MI period. The two directions could be classified with
peak accuracies varying between approximately 60% and 80%
during the MI period. On average, the accuracies are higher and
more consistent in condition MI+VG. However, the individual
peak accuracies are not statistically different (alpha = 0.05).
Classification of the MI period against baseline (taking fixed
windows from each trial) yields a higher average of accuracies
for condition MI+VG (75%–90%) compared to condition MI
(60%–95%), though the median is close to identical (Figure 9F).

Artifact Handling
When reaching toward an object people orient their attention to
the object. This process naturally unfolds in an overt fashion via
saccades between various points of interest (Sailer et al., 2005).
The saccades and other types of eye movements as well as blinks
introduce electrophysiological sources commonly referred to as
EOG. Consequently, electrodes at the scalp capture both the EEG
and EOG. This mixture of EOG and EEG activity in the recorded
channels can severely confound the experimental findings if the
eye movements covary with the experimental variables (e.g.,
kinematics).

EEG and EOG are typically disentangled by regression
or independent component analysis approaches (Urigüen
and Garcia-Zapirain, 2015). In online experiments, regression
approaches are common due to their simplicity. However, the
standard regression methods either undercorrect the eye artifacts
or remove a considerable amount of brain activity (Schlögl
et al., 2007). We recently proposed a short paradigm to record
approximately 5 min of data during specific eye movements
(Kobler et al., 2017) and have used it in our recent offline
(Kobler et al., 2018; Schwarz et al., 2020; Kobler et al., 2020a,c)
and online (Martínez-Cagigal et al., 2020; Mondini et al., 2020;
Pereira et al., 2021) studies. In Kobler et al. (2020b), we proposed
a new algorithm denoted sparse generalized eye artifact subspace
subtraction (SGEYESUB). Using M/EEG data of 69 participants,
we found that SGEYESUB achieved state-of-the-art eye artifact
correction and at the same time maintained resting brain activity
as well as MRCPs and ErrPs. SGEYESUB removed on average

1.5 µV from resting activity and less than 0.5 µV from the ERPs,
while the residual correlations of the EEG channels with the EOG
activity were below 0.1. More interestingly, using the calibration
data and SGEYESUB to attenuate eye artifacts in the EEG, we
could detect cortical activity that encoded information about
the kinematics during visuomotor and oculomotor tasks offline
(Figure 4) and online (Figure 5).

Considering an online scenario as in Figure 5, it is also
critical to detect high-variance artifacts such as drifts, electrode
pops, and muscle artifacts. These artifacts can be picked up
and amplified by a decoder and in turn, severely confound the
feedback for the user. In Kobler et al. (2019b), we proposed
a simple algorithm denoted high-variance electrode artifact
removal (HEAR). HEAR monitors the variance of each channel
and converts it into an artifact probability using a short period of
resting data. As the artifact probability increases the algorithm
interpolates the affected channels’ signal with the signal of
neighboring channels. HEAR proved effective to correct single
electrode pops and drifts, while it cannot correct multi-channel
muscle artifacts. However, the method can still be used to detect
them, giving the paradigm or experimenter the chance to react.

DISCUSSION

In this work, we review and demonstrate a broad spectrum of
works that build the basis for an EEG-based framework which
should enable people with cervical SCI to control a robotic arm to
assist in their daily activities, by the analysis of non-invasive brain
signals only. We have demonstrated that non-invasive BCIs can
be used to detect goal directed upper-limb movements and that
we are able to decode kinematics, i.e., position, velocity, distance,
and speed in 2D space. After developing decoding strategies,
we have reported on online movement decoding as well as on
decoding of trajectories of movement attempts. Furthermore,
we present novel results about the multi-modal representation
of human grasping movements. These findings contribute
to a better understanding of the dynamical organization of
non-invasive cortical patterns during reaching and grasping
stages. Also, we show that online continuous ErrP detection in
a robot control scenario is feasible, even when a generic classifier
trained with data from non-disabled participants was transferred
to people with SCI. Finally, we started to work on kinesthetic
feedback that in the future should provide the end-users with
additional feedback about the movement and the generated or
measured forces of the end effector, i.e., the robotic arm.

To further achieve a full robotic arm control, we need to
combine the various components in a hybrid BCI composed of all
the aforementioned systems. The various systems would then be
active when needed. For instance, an asynchronous goal-directed
movement detection based on MRCPs features would act as
a gating function on the kinematic decoders’ output before it
would be sent as a control signal to the robotic arm. The ErrP
detector would asynchronously monitor brain signals for error
occurrence during robotic arm control. Kinesthetic feedback
about the robotic arm’s state will be presented simultaneously to
support the integration and usefulness of the robotic arm to the
end-user.
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FIGURE 9 | (A) Illustration of the trial structure, for an example trial with real-time feedback (condition ME+VF, direction right). In the top row, the four dots identify
the layout of the vibrotactile actuators. They are presented in gray where they are off, and in green where they are active. The second row represents the hand
movement. The movement period is indicated by an arrow in the movement direction. The bottom row contains a sketch of the visual input presented to the
participant on a screen. At the beginning of each trial, a visual moving cue was presented, instructing the participant on the movement direction. Subsequently, the
actuator representing the starting position was turned on, and a fixation cross appeared on the screen. Participants were instructed to stay in a relaxed state for a
random delay period, and to initiate the movement in a self-paced manner [adapted from Hehenberger et al. (2020)]. (B) Classification accuracies are represented as
grand averages and confidence intervals for each condition against rest, as well as for multi-class classification between conditions, and between directions.

(Continued)
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FIGURE 9 | Continued
The purple dashed vertical lines mark the movement onset, and blue
dash-dotted horizontal lines the threshold of significantly better-than-chance
performance [adapted from Hehenberger et al. (2020)]. (C) MRCPs are
represented as grand averages and confidence intervals, along with
topographic representations at the time point of the movement onset. The
averages were separated by conditions in the left panel, and by movement
directions (movement trials only) in the right panel [adapted from Hehenberger
et al. (2020)]. (D) Illustration of the trial structure, for an example trial with
vibrotactile guidance (condition MI+VG, direction right), in a comparable
fashion to panel a. Here, the second row represents the imagined hand
movement, and the MI period is indicated by an arrow in the movement
direction. At the beginning of each trial, a fixation cross was presented for a
baseline period of two seconds, where participants were instructed to keep
their gaze fixed and relax. Subsequently, the actuator representing the
starting position was turned on, and the hand cue appeared. After a delay of
two seconds, both the hand and the vibrotactile input started moving, guiding
the participant’s imagined movement adapted from Hehenberger et al.
(2021). (E) Classification accuracies for classification between conditions and
between directions are represented as grand averages and confidence
intervals, as well as MI vs. baseline represented as box plots of the grand
average accuracies. Purple dashed vertical lines mark the cue movement
onset, and blue dash-dotted horizontal lines the threshold of significantly
better-than-chance performance [adapted from Hehenberger et al. (2021)] (F)
Potentials are represented as grand averages and confidence intervals, along
with topographic representations at the time point of the grand-average
MRCP peak [adapted from Hehenberger et al. (2021)].

One important aspect of the usage of such a framework to
control a robotic arm in daily life situations is that end-users
must be allowed to use their eyes in a natural way. The reasons
are manifold: (i) people with severe paralysis are used to using
their eye movements massively; (ii) to reach and grasp an
object naturally includes oculomotor control; and (iii) eye-hand
coordination is reflected in specific brain areas (Culham and
Valyear, 2006; Filimon et al., 2009; Gallivan and Culham, 2015)
and can contribute to decoding performance. For this reason,
we developed algorithms that remove EOG artifacts from EEG.
In EEG systems this is absolutely necessary, while in implanted
systems, e.g., in Collinger et al. (2013), Ajiboye et al. (2017),
and Benabid et al. (2019) artifacts caused by eye movements or
muscle activities play no role.

All studies so far have been carried out with non-disabled
participants and therefore all of these principles and
methodology need to be transferred to end-users with motor
impairments. Some aspects have already been transferred. For
instance, we could show that ErrPs can also be successfully
decoded online in end-users with SCI during a continuous
control task (Lopes-Dias et al., 2021). We have also successfully
demonstrated that MRCPs are still detectable and decodable
in a single-case study with a person with a complete cervical
SCI (Muller-Putz et al., 2019; Ofner et al., 2019). Concerning
trajectory decoding, we think that one can anticipate a baseline
decoder accuracy in paralyzed persons based on the decoder
performance during oculomotor tasks (no arm or finger
movements) in non-disabled persons, as explored in Kobler
et al. (2018), Kobler et al. (2020a), and Kobler et al. (2020c). If a
movement attempt strategy rather thanmere observation is used,
a similar performance to executed movements in non-disabled
persons might be within reach (Vargas-Irwin et al., 2018;
Rastogi et al., 2020).

One big challenge in BCI research is to minimize or even
remove calibration time, which is usually needed before online
experiments in non-invasive as well as invasive BCIs (Collinger
et al., 2013; Ajiboye et al., 2017; Mondini et al., 2020). This is
particularly challenging in complex paradigms that involve the
decoding of multiple cognitive and motor functions. Simpler
and more controlled setups have been shown to elicit more
robust brain patterns and lead to a reduction in calibration time
(Scherer et al., 2008). However, currently, when we want to study,
e.g., learning effects of our framework, too long calibration can
already decrease the motivation of participants (Pulferer et al.,
2021). In one study we have shown that an ErrP asynchronous
classifier trained on existing data of non-disabled participants
could be successfully transferred to a population with SCI
(Lopes-Dias et al., 2021).With the latest methodologies, e.g., with
deep learning approaches, a session-to-session and even user-to-
user transfer could overcome the necessity or at least drastically
reduce within-session model calibration (cf. Wu et al., 2020;
Huggins et al., 2021). Whether improvements on the feature
engineering or machine learning side might be sufficient is not
easy to predict. However, hybrid BCI solutions and intelligent
shared control approaches that make use of external sensors
could be a future option.

Even though we see no significant differences in decoding
performance at the single session level (Srisrisawang and Müller-
Putz, 2021), the transfer learning aspect of the source-space
decoding approach might be interesting to investigate further as
the specific anatomical information will be attenuated due to the
projection into the source space. Then, the source-space signals
might represent a common space (either across sessions or across
participants). Alternatively, the domain information (session,
user) could be used to learn data-driven models that either find
a common shared subspace (Samek et al., 2012; Özdenizci et al.,
2020), align data from different domains (Morioka et al., 2015;
Dyer et al., 2017; Farshchian et al., 2019), or even utilize more
robust metrics (Sabbagh et al., 2020; Kobler et al., 2021).

Overall, by proposing separate BCIs that each concern single
necessary steps in a goal-directed movement task, we were able
to address as well as resolve a set of major concerns in current
BCI research. Including the identification of movement goals,
artifact attenuation, online error detection, as well as kinesthetic
feedback, we were able to show that in principle it is possible
to reconstruct the kinematics of a continuous movement, which
is an important step forward regarding natural control of end
effectors for end-users compared to classical center-out tasks.
However, it is not clear how meaningful movements can be
realized, e.g., when from a starting position a user wants to
reach towards a certain goal, perform a specific target-interaction
there, i.e., grasp or release, and move to another place in space.
EEG-based work in this direction is already done compare (Meng
et al., 2016), however, not in a natural way, as we envision it. This
is a future topic for investigations.

CONCLUSION AND OUTLOOK

This work presents a first review of the work done in the project
‘‘Feel Your Reach’’ towards natural decoding of reaching and
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grasping based on non-invasive EEG. However, there is still work
to be done to translate this into real life settings.

We believe that with the EEG enough information can be
retrieved to successfully decode hand and arm movements to
create control signals for artificial arms providing similar degrees
of freedom as a human arm. We have provided the first evidence
that in general, this can work on non-disabled populations,
however, performance improvements are mandatory. We did
not show 3D-movement decoding yet and need to get more
experience and evidence from online studies. While we have
started to include end-users, real evidence is still missing that
people with tetraplegia due to an SCI at the cervical level above
C4, with a total loss of arm and hand function, can benefit
from such a system. Are brain patterns still observable after
longer times since injury? Does the complexity of eye-hand
coordination still work sufficiently? Can end-users be trained to
use such a system? Evidence from works with implantable BCIs
is given, however, the proof with non-invasive EEG still needs to
be shown.
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et al. (2016). Predominance of movement speed over direction in neuronal
population signals of motor cortex: intracranial EEG data and a simple
explanatory model. Cereb. Cortex 26, 2863–2881. doi: 10.1093/cercor/bhw033

He, X., and Niyog, P. (2003). ‘‘Locality preserving projections,’’ in Advances in
Neural Information Processing Systems, eds S. Thrun, L. Saul and B. Schölkopf
(Cambridge, MA: MIT Press).

Hehenberger, L., Batistic, L., Sburlea, A. I., and Müller-Putz, G. R. (2021).
Directional decoding from EEG in a center-out motor imagery task
with visual and vibrotactile guidance. Front. Hum. Neurosci. 15:687252.
doi: 10.3389/fnhum.2021.687252

Hehenberger, L., Sburlea, A. I., and Müller-Putz, G. R. (2019). ‘‘Tuning of
parameters for a vibrotactile kinaesthetic feedback system utilizing tactile
illusions,’’ in Proceedings of the 8th Graz Brain-Computer Interface Conference
2019, eds R. Gernot J. D. Müller-Putz and W. Selina (Graz, Austria: Graz
University of Technology), 244–248.

Hehenberger, L., Sburlea, A. I., andMüller-Putz, G. R. (2020). Assessing the impact
of vibrotactile kinaesthetic feedback on electroencephalographic signals in a
center-out task. J. Neural Eng. 17:056032. doi: 10.1088/1741-2552/abb069

Hochberg, L. R., Serruya, M. D., Friehs, G. M., Mukand, J. A., Saleh, M.,
Caplan, A. H., et al. (2006). Neuronal ensemble control of prosthetic devices
by a human with tetraplegia. Nature 442, 164–171. doi: 10.1038/nature04970

Huggins, J., Krusienski, D., Vansteensel, M. J., Valeriani, D., Thelen, A.,
Staviskyf, S., et al. (2021). ‘‘Workshops of the eighth international brain-
computer interface meeting: BCIs: the next frontier,’’ in Brain-Comput.
Interfaces, 23–35. doi: 10.1080/2326263X.2021.2009654

Israr, A., and Poupyrev, I. (2011). ‘‘Tactile brush: drawing on skin with
a tactile grid display,’’ in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (Vancouver, BC, Canada), 2019–2028.
doi: 10.1145/1978942.1979235

Jiang, N., Gizzi, L., Mrachacz-Kersting, N., Dremstrup, K., and Farina, D.
(2015). A brain-computer interface for single-trial detection of gait initiation
from movement related cortical potentials. Clin. Neurophysiol. 126, 154–159.
doi: 10.1016/j.clinph.2014.05.003

Jochumsen, M., Khan Niazi, I., Mrachacz-Kersting, N., Farina, D., and
Dremstrup, K. (2013). Detection and classification of movement-related
cortical potentials associated with task force and speed. J. Neural Eng.
10:056015. doi: 10.1088/1741-2560/10/5/056015

Jochumsen, M., Khan Niazi, I., Taylor, D., Farina, D., and Dremstrup, K. (2015).
Detecting and classifying movement-related cortical potentials associated with
hand movements in healthy subjects and stroke patients from single-electrode,
single-trial EEG. J. Neural Eng. 12:056013. doi: 10.1088/1741-2560/12/5/056013

Kalaska, J. F., Cohen, D. A., Hyde, M. L., and Prud’homme, M. (1989).
A comparison of movement direction-related versus load direction-related
activity in primate motor cortex, using a two-dimensional reaching task.
J. Neurosci. 9, 2080–2102. doi: 10.1523/JNEUROSCI.09-06-02080.1989

Kim, J.-H., Bießmann, F., and Lee, S.-W. (2015). Decoding three-
dimensional trajectory of executed and imagined arm movements from
electroencephalogram signals. IEEE Trans. Neural Syst. Rehabil. Eng. 23,
867–876. doi: 10.1109/TNSRE.2014.2375879

Kirman, J. H. (1974). Tactile apparent movement: the effects of interstimulus
onset interval and stimulus duration. Percept. Psychophys. 15, 1–6.
doi: 10.3758/BF03205819

Kobler, R. J., Hirayama, J.-I., Hehenberger, L., Lopes-Dias, C., Muller-Putz, G. R.,
and Kawanabe, M. (2021). On the interpretation of linear riemannian tangent
space model parameters in M/EEG. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
2021, 5909–5913. doi: 10.1109/EMBC46164.2021.9630144

Kobler, R., Hirata, M., Hashimoto, H., Dowaki, R., Sburlea, A. I., and Müller-
Putz, G. R. (2019a). ‘‘Simultaneous decoding of velocity and speed during
executed and observed tracking movements: an MEG study,’’ in Proceedings
of the 8th Graz Brain-Computer Interface Conference (2019): Bridging
Science and Application (Verlag der Technischen Universität Graz), 100–105.
doi: 10.3217/978-3-85125-682-6-19

Kobler, R., Sburlea, A., Mondini, V., and Müller-Putz, G. (2019b). ‘‘HEAR
to remove pops and drifts: the high-variance electrode artifact removal
(HEAR) algorithm,’’ in 2019 41st Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC) (Berlin, Germany).
doi: 10.1109/EMBC.2019.8857742

Kobler, R. J., Kolesnichenko, E., Sburlea, A. I., and Müller-Putz, G. R. (2020a).
Distinct cortical networks for hand movement initiation and directional
processing: an EEG study. NeuroImage 220:117076. doi: 10.1016/j.neuroimage.
2020.117076

Kobler, R. J., Sburlea, A. I., Lopes-Dias, C., Schwarz, A., Hirata, M., and
Müller-Putz, G. R. (2020b). Corneo-retinal-dipole and eyelid-related eye
artifacts can be corrected offline and online in electroencephalographic and
magnetoencephalographic signals. Neuroimage 218:117000. doi: 10.1016/j.
neuroimage.2020.117000

Kobler, R. J., Sburlea, A. I., Mondini, V., Hirata, M., and Müller-Putz, G. R.
(2020c). Distance and speed informed kinematics decoding improves M/EEG
based upper-limb movement decoder accuracy. J. Neural Eng. 17:056027.
doi: 10.1088/1741-2552/abb3b3

Kobler, R. J., Sburlea, A. I., and Müller-Putz, G. R. (2017). ‘‘A comparison of
ocular artifact removal methods for block design based electroencephalography
experiments,’’ in Proceedings of the 7th Graz Brain-Computer Interface
Conference (Graz, Austria), 236–241. doi: 10.3217/978-3-85125-533-1-44

Kobler, R. J., Sburlea, A. I., andMüller-Putz, G. R. (2018). Tuning characteristics of
low-frequency EEG to positions and velocities in visuomotor and oculomotor
tracking tasks. Sci. Rep. 8:17713. doi: 10.1038/s41598-018-36326-y

Kornhuber, H. H., and Deecke, L. (1964). Hirnpotentialanderungen
beim Menschen vor und nach Willkurbewegungen dargestellt mit
Magnetbandspeicherung und Ruckwartsanalyse. Pflugers Arch. Eur. J.
Physiol. 281, 52.

Leo, A., Handjaras, G., Bianchi, M., Marino, H., Gabiccini, M., Guidi, A., et al.
(2016). A synergy-based hand control is encoded in human motor cortical
areas. eLife 5:e13420. doi: 10.7554/eLife.13420

Li, Z., O’Doherty, J. E., Hanson, T. L., Lebedev, M. A., Henriquez, C. S.,
and Nicolelis, M. A. L. (2009). Unscented kalman filter for brain-machine
interfaces. PLoS One 4:e6243. doi: 10.1371/journal.pone.0006243

Liu, D., Chen, W., Lee, K., Chavarriaga, R., Iwane, F., and Bouri, M. (2018). EEG-
based lower-limb movement onset decoding: continuous classification and
asynchronous detection. IEEE Trans. Neural. Syst. Rehabil. Eng. 26, 1626–1635.
doi: 10.1109/TNSRE.2018.2855053

Frontiers in Human Neuroscience | www.frontiersin.org 19 March 2022 | Volume 16 | Article 841312

https://doi.org/10.1038/nn.4038
https://doi.org/10.1523/JNEUROSCI.2571-10.2010
https://doi.org/10.1093/cercor/bhl137
https://infoscience.epfl.ch/record/83269
https://doi.org/10.1523/JNEUROSCI.3211-08.2009
https://doi.org/10.1016/j.conb.2015.03.012
https://doi.org/10.1016/j.conb.2015.03.012
https://doi.org/10.1523/JNEUROSCI.02-11-01527.1982
https://doi.org/10.1038/nn.3265
https://doi.org/10.1016/j.clinph.2009.05.006
https://doi.org/10.1093/cercor/bhw033
https://doi.org/10.3389/fnhum.2021.687252
https://doi.org/10.1088/1741-2552/abb069
https://doi.org/10.1038/nature04970
https://doi.org/10.1080/2326263X.2021.2009654
https://doi.org/10.1145/1978942.1979235
https://doi.org/10.1016/j.clinph.2014.05.003
https://doi.org/10.1088/1741-2560/10/5/056015
https://doi.org/10.1088/1741-2560/12/5/056013
https://doi.org/10.1523/JNEUROSCI.09-06-02080.1989
https://doi.org/10.1109/TNSRE.2014.2375879
https://doi.org/10.3758/BF03205819
https://doi.org/10.1109/EMBC46164.2021.9630144
https://doi.org/10.3217/978-3-85125-682-6-19
https://doi.org/10.1109/EMBC.2019.8857742
https://doi.org/10.1016/j.neuroimage.2020.117076
https://doi.org/10.1016/j.neuroimage.2020.117076
https://doi.org/10.1016/j.neuroimage.2020.117000
https://doi.org/10.1016/j.neuroimage.2020.117000
https://doi.org/10.1088/1741-2552/abb3b3
https://doi.org/10.3217/978-3-85125-533-1-44
https://doi.org/10.1038/s41598-018-36326-y
https://doi.org/10.7554/eLife.13420
https://doi.org/10.1371/journal.pone.0006243
https://doi.org/10.1109/TNSRE.2018.2855053
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Müller-Putz et al. Feel Your Reach

Lopes-Dias, C., Sburlea, A. I., Breitegger, K., Wyss, D., Drescher, H.,
Wildburger, R., et al. (2021). Online asynchronous detection of error-related
potentials in participants with a spinal cord injury using a generic classifier.
J. Neural. Eng. 18:046022. doi: 10.1088/1741-2552/abd1eb

Lopes-Dias, C., Sburlea, A. I., and Müller-Putz, G. R. (2017). Error-related
potentials with masked and unmasked onset during continuous control and
feedback. J. Neural Eng. 15:036031. doi: 10.1088/1741-2552/aab806

Lopes-Dias, C., Sburlea, A. I., and Müller-Putz, G. R. (2018). Masked and
unmasked error-related potentials during continuous control and feedback.
J. Neural Eng. 15:036031. doi: 10.1088/1741-2552/aab806

Lopes-Dias, C., Sburlea, A. I., and Müller-Putz, G. R. (2019a). Online
asynchronous decoding of error-related potentials during the continuous
control of a robot. Sci. Rep. 9:17596. doi: 10.1038/s41598-019-54109-x

Lopes-Dias, C., Sburlea, A. I., Müller-Putz, G. R., et al. (2019b). ‘‘Asynchronous
detection of error-related potentials using a generic classifier,’’ in Proceedings
of the 8th Graz Brain-Computer Interface Conference 2019 (Graz, Austria).
doi: 10.3217/978-3-85125-682-6-11

López-Larraz, E., Montesano, L., Gil-Agudo, Á., and Minguez, J. (2014).
Continuous decoding of movement intention of upper limb self-initiated
analytic movements from pre-movement EEG correlates. J. Neuroeng. Rehabil.
11:153. doi: 10.1186/1743-0003-11-153

Luzhnica, G., Stein, S., Veas, E., Pammer, V., Williamson, J., and Smith, R. M.
(2017). ‘‘Personalising vibrotactile displays through perceptual sensitivity
adjustment,’’ in Proceedings of the (2017) ACM International Symposium on
Wearable Computers - ISWC ’17 (Maui, HI, USA). doi: 10.1145/3123021.
3123029

Lv, J., Li, Y., and Gu, Z. (2010). Decoding hand movement velocity from
electroencephalogram signals during a drawing task. Biomed. Eng. Online 9:64.
doi: 10.1186/1475-925X-9-64

Magri, C., Fabbri, S., Caramazza, A., and Lingnau, A. (2019). Directional tuning
for eye and arm movements in overlapping regions in human posterior
parietal cortex. Neuroimage 191, 234–242. doi: 10.1016/j.neuroimage.2019.
02.029

Martínez-Cagigal, V., Kobler, R., Mondini, V., and Müller-Putz, A. G. R.
(2020). Non-linear online low-frequency EEG decoding of arm movements
during a pursuit tracking task. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
doi: 10.1109/EMBC44109.2020.9175723

McFarland, D. J., Sarnacki, W. A., and Wolpaw, J. R. (2010).
Electroencephalographic (EEG) control of three-dimensional movement.
J. Neural Eng. 7:036007. doi: 10.1088/1741-2560/7/3/036007

Meng, J., Zhang, S., Bekyo, A., Olsoe, J., Baxter, B., and He, B. (2016). Noninvasive
electroencephalogram based control of a robotic arm for reach and grasp tasks.
Sci. Rep. 6:38565. doi: 10.1038/srep38565

Michel, C. M., Murray, M. M., Lantz, G., Gonzalez, S., Spinelli, L., and
Peralta, R. G. d. (2004). EEG source imaging. Clin. Neurophysiol. 115,
2195–2222. doi: 10.1016/j.clinph.2004.06.001

Millán, J. D. R., Rupp, R., Müller-Putz, G. R., Murray-Smith, R., Giugliemma, C.,
Tangermann, M., et al. (2010). Combining brain-computer interfaces and
assistive technologies: state-of-the-art and challenges. Front. Neurosci. 4:161.
doi: 10.3389/fnins.2010.00161

Mondini, V., Kobler, R. J., Sburlea, A. I., and Müller-Putz, G. R. (2020).
Continuous low-frequency EEG decoding of arm movement for closed-loop,
natural control of a robotic arm. J. Neural Eng. 17:046031. doi: 10.1088/1741-
2552/aba6f7

Morioka, H., Kanemura, A., Hirayama, J.-I., Shikauchi, M., Ogawa, T., Ikeda, S.,
et al. (2015). Learning a common dictionary for subject-transfer decoding with
resting calibration. Neuroimage 111, 167–178. doi: 10.1016/j.neuroimage.2015.
02.015

Müller-Putz, G. R., Breitwieser, C., Cincotti, F., Leeb, R., Schreuder, M., Leotta, F.,
et al. (2011). Tools for brain-computer interaction: A general concept for a
hybrid BCI. Front. Neuroinform. 5:30. doi: 10.3389/fninf.2011.00030

Müller-Putz, G., Mondini, V., Martínez-Cagigal, V., Kobler, R., Pereira, J.,
Lopes-Dias, C., et al. (2021). ‘‘Decoding of continuous movement attempt in
2-dimensions from non-invasive low frequency brain signals,’’ in 2021 10th
International IEEE/EMBS Conference on Neural Engineering (NER) (Italy),
doi: 10.1109/NER49283.2021.9441346

Muller-Putz, G. R., Rupp, R., Ofner, P., Pereira, J., Pinegger, A., Schwarz, A.,
et al. (2019). Applying intuitive EEG-controlled grasp neuroprostheses in
individuals with spinal cord injury: preliminary results from the moregrasp

clinical feasibility study. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2019,
5949–5955. doi: 10.1109/EMBC.2019.8856491

Müller-Putz, G. R., Scherer, R., Pfurtscheller, G., and Neuper, C. (2010). Temporal
coding of brain patterns for direct limb control in humans. Front. Neurosci.
4:34. doi: 10.3389/fnins.2010.00034

Müller-Putz, G. R., Scherer, R., Pfurtscheller, G., and Rupp, R. (2005). EEG-based
neuroprosthesis control: a step towards clinical practice. Neurosci. Lett. 382,
169–174. doi: 10.3760/cma.j.cn112148-20211030-00937

Niazi, I. K., Jiang, N., Tiberghien, O., Nielsen, J. F., Dremstrup, K., and Farina, D.
(2011). Detection of movement intention from single-trial movement-related
cortical potentials. J. Neural Eng. 8:066009. doi: 10.1088/1741-2560/8/6/066009

Ofner, P., and Müller-Putz, G. R. (2012). Decoding of velocities and positions of
3D arm movement from EEG. Ann. Int. Conf. IEEE Eng. Med. Biol. Soc. 2012,
6406–6409. doi: 10.1109/EMBC.2012.6347460

Ofner, P., Müller-Putz, G. R.. (2015). Using a noninvasive decoding method to
classify rhythmic movement imaginations of the Arm in two planes. IEEE
Trans. BioMed. Eng. 62, 972–981. doi: 10.1109/TBME.2014.2377023

Ofner, P., Schwarz, A., Pereira, J., and Müller-Putz, G. R. (2017). Upper limb
movements can be decoded from the time-domain of low-frequency EEG. PLoS
One 12:e0182578. doi: 10.1371/journal.pone.0182578

Ofner, P., Schwarz, A., Pereira, J., Wyss, D., Wildburger, R., and Müller-
Putz, G. R. (2019). Attempted arm and hand movements can be decoded from
low-frequency EEG from persons with spinal cord injury. Sci. Rep. 9:7134.
doi: 10.1038/s41598-019-43594-9

Omedes, J., Iturrate, I., Minguez, J., and Montesano, L. (2015). Analysis and
asynchronous detection of gradually unfolding errors during monitoring tasks.
J. Neural Eng. 12:056001. doi: 10.1088/1741-2560/12/5/056001

Omrani, M., Kaufman, M. T., Hatsopoulos, N. G., and Cheney, P. D. (2017).
Perspectives on classical controversies about the motor cortex. J. Neurophysiol.
118, 1828–1848. doi: 10.1152/jn.00795.2016

Özdenizci, O., Wang, Y. E., Koike-Akino, T., and ErdoGmuS, D. (2020). Learning
invariant representations from EEG via adversarial inference. IEEE Access 8,
27074–27085. doi: 10.1109/access.2020.2971600

Paninski, L., Fellows, M. R., Hatsopoulos, N. G., and Donoghue, J. P. (2004).
Spatiotemporal tuning of motor cortical neurons for hand position and
velocity. J. Neurophysiol. 91, 515–532. doi: 10.1152/jn.00587.2002

Pereira, J., Kobler, R., Ofner, P., Schwarz, A., andMüller-Putz, G. R. (2021). Online
detection of movement during natural and self-initiated reach-and-grasp
actions from EEG signals. J. Neural Eng. 18. doi: 10.1088/1741-2552/ac0b52

Pereira, J., Ofner, P., Schwarz, A., Sburlea, A. I., and Müller-Putz, G. R. (2017).
EEG neural correlates of goal-directed movement intention. Neuroimage 149,
129–140. doi: 10.1016/j.neuroimage.2017.01.030

Pereira, J., Sburlea, A. I., and Müller-Putz, G. R. (2018). EEG patterns of
self-paced movement imaginations towards externally-cued and internally-
selected targets. Sci. Rep. 8:13394. doi: 10.1038/s41598-018-31673-2

Pfurtscheller, G., Allison, B. Z., Brunner, C., Bauernfeind, G., Solis-
Escalante, T., Scherer, R., et al. (2010). The hybrid BCI. Front. Neurosci.
4:30. doi: 10.3389/fnpro.2010.00003

Pfurtscheller, G., and da Silva, F. H. L. (1999). Event-related EEG/MEG
synchronization and desynchronization: basic principles. Clin. Neurophysiol.
110, 1842–1857. doi: 10.1016/s1388-2457(99)00141-8

Pfurtscheller, G., Guger, C., Müller, G., Krausz, G., and Neuper, C. (2000). Brain
oscillations control hand orthosis in a tetraplegic. Neurosci. Lett. 292, 211–214.
doi: 10.1016/s0304-3940(00)01471-3

Pfurtscheller, G., Müller, G. R., Pfurtscheller, J., Gerner, H. J., and Rupp, R. (2003).
‘Thought’ – control of functional electrical stimulation to restore hand grasp
in a patient with tetraplegia. Neurosci. Lett. 351, 33–36. doi: 10.1016/s0304-
3940(03)00947-9

Pulferer, H. S., Ásgeirsdóttir, B., Mondini, V., Sburlea, A. I., andMüller-Putz, G. R.
(2021). ‘‘Learning effects in 2D trajectory inference from low-frequency EEG
signals over multiple feedback sessions,’’ in Proceedings of Annual Meeting
of the Austrian Society for Biomedical Engineering (Verlag der Technischen
Universität Graz). doi: 10.3217/978-3-85125-826-4-22

Rastogi, A., Vargas-Irwin, C. E., Willett, F. R., Abreu, J., Crowder, D. C.,
Murphy, B. A., et al. (2020). Neural representation of observed, imagined
and attempted grasping force in motor cortex of individuals with chronic
tetraplegia. Sci. Rep. 10:1429. doi: 10.1038/s41598-020-58097-1

Rizzolatti, G., Cattaneo, L., Fabbri-Destro, M., and Rozzi, S. (2014). Cortical
mechanisms underlying the organization of goal-directed actions and

Frontiers in Human Neuroscience | www.frontiersin.org 20 March 2022 | Volume 16 | Article 841312

https://doi.org/10.1088/1741-2552/abd1eb
https://doi.org/10.1088/1741-2552/aab806
https://doi.org/10.1088/1741-2552/aab806
https://doi.org/10.1038/s41598-019-54109-x
https://doi.org/10.3217/978-3-85125-682-6-11
https://doi.org/10.1186/1743-0003-11-153
https://doi.org/10.1145/3123021.3123029
https://doi.org/10.1145/3123021.3123029
https://doi.org/10.1186/1475-925X-9-64
https://doi.org/10.1016/j.neuroimage.2019.02.029
https://doi.org/10.1016/j.neuroimage.2019.02.029
https://doi.org/10.1109/EMBC44109.2020.9175723
https://doi.org/10.1088/1741-2560/7/3/036007
https://doi.org/10.1038/srep38565
https://doi.org/10.1016/j.clinph.2004.06.001
https://doi.org/10.3389/fnins.2010.00161
https://doi.org/10.1088/1741-2552/aba6f7
https://doi.org/10.1088/1741-2552/aba6f7
https://doi.org/10.1016/j.neuroimage.2015.02.015
https://doi.org/10.1016/j.neuroimage.2015.02.015
https://doi.org/10.3389/fninf.2011.00030
https://doi.org/10.1109/NER49283.2021.9441346
https://doi.org/10.1109/EMBC.2019.8856491
https://doi.org/10.3389/fnins.2010.00034
https://doi.org/10.3760/cma.j.cn112148-20211030-00937
https://doi.org/10.1088/1741-2560/8/6/066009
https://doi.org/10.1109/EMBC.2012.6347460
https://doi.org/10.1109/TBME.2014.2377023
https://doi.org/10.1371/journal.pone.0182578
https://doi.org/10.1038/s41598-019-43594-9
https://doi.org/10.1088/1741-2560/12/5/056001
https://doi.org/10.1152/jn.00795.2016
https://doi.org/10.1109/access.2020.2971600
https://doi.org/10.1152/jn.00587.2002
https://doi.org/10.1088/1741-2552/ac0b52
https://doi.org/10.1016/j.neuroimage.2017.01.030
https://doi.org/10.1038/s41598-018-31673-2
https://doi.org/10.3389/fnpro.2010.00003
https://doi.org/10.1016/s1388-2457(99)00141-8
https://doi.org/10.1016/s0304-3940(00)01471-3
https://doi.org/10.1016/s0304-3940(03)00947-9
https://doi.org/10.1016/s0304-3940(03)00947-9
https://doi.org/10.3217/978-3-85125-826-4-22
https://doi.org/10.1038/s41598-020-58097-1
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Müller-Putz et al. Feel Your Reach

mirror neuron-based action understanding. Physiol. Rev. 94, 655–706.
doi: 10.1152/physrev.00009.2013

Robinson, N., and Vinod, A. P. (2016). Noninvasive brain-computer interface:
decoding arm movement kinematics and motor control. IEEE Syst. Man
Cybernet. Magazine 2, 4–16. doi: 10.1109/msmc.2016.2576638

Rohm,M., Schneiders,M.,Müller, C., Kreilinger, A., Kaiser, V.,Müller-Putz, G. R.,
et al. (2013). Hybrid brain-computer interfaces and hybrid neuroprostheses for
restoration of upper limb functions in individuals with high-level spinal cord
injury. Artif. Intell. Med. 59, 133–142. doi: 10.1016/j.artmed.2013.07.004

Rupp, R. (2020). Spinal cord lesions. Handb. Clin. Neurol. 168, 51–65.
doi: 10.1016/B978-0-444-63934-9.00006-8

Rupp, R., Rohm, M., Schneiders, M., Kreilinger, A., and Muller-Putz, G. R.
(2015). Functional rehabilitation of the paralyzed upper extremity after spinal
cord injury by noninvasive hybrid neuroprostheses. Proc. IEEE 103, 954–968.
doi: 10.1109/JPROC.2015.2395253

Sabbagh, D., Ablin, P., Varoquaux, G., Gramfort, A., and Engemann, D. A. (2020).
Predictive regression modeling with MEG/EEG: from source power to signals
and cognitive states. Neuroimage 222:116893. doi: 10.1016/j.neuroimage.2020.
116893

Sailer, U., Flanagan, J. R., and Johansson, R. S. (2005). Eye-hand coordination
during learning of a novel visuomotor task. J. Neurosci. 25, 8833–8842.
doi: 10.1523/JNEUROSCI.2658-05.2005

Samek, W., Vidaurre, C., Müller, K.-R., and Kawanabe, M. (2012). Stationary
common spatial patterns for brain-computer interfacing. J. Neural Eng.
9:026013. doi: 10.1088/1741-2560/9/2/026013

Saxe, R., Xiao, D.-K., Kovacs, G., Perrett, D. I., and Kanwisher, N. (2004). A region
of right posterior superior temporal sulcus responds to observed intentional
actions. Neuropsychologia 42, 1435–1446. doi: 10.1016/j.neuropsychologia.
2004.04.015

Sburlea, A., Butturini, N., andMüller-Putz, G. (2021). ‘‘Predicting EMG envelopes
of grasping movements from EEG recordings using unscented kalman
filtering,’’ in Annual Meeting of the Austrian Society for Biomedical Engineering
2021, 71–74.

Sburlea, A. I., Montesano, L., and Minguez, J. (2015). Continuous detection of
the self-initiated walking pre-movement state from EEG correlates without
session-to-session recalibration. J. Neural Eng. 12:036007. doi: 10.1088/1741-
2560/12/3/036007

Sburlea, A. I., and Müller-Putz, G. R. (2018). Exploring representations of
human grasping in neural, muscle and kinematic signals. Sci. Rep. 8:16669.
doi: 10.1038/s41598-018-35018-x

Sburlea, A., andMüller-Putz, G. (2019). ‘‘How similar are the neural patterns when
observing grasping hand postures to the behavioral patterns when executing
the grasp?,’’ in 8th Graz Brain-Computer Interface Conference 2019: Bridging
Science and Application (Graz, Austria: Verlag der Technischen Universität
Graz), 279–284. doi: 10.3217/978-3-85125-682-6-51

Sburlea, A. I., Wilding, M., and Müller-Putz, G. R. (2021). Disentangling human
grasping type from the object’s intrinsic properties using low-frequency EEG
signals. Neuroimage Rep. 1:100012. doi: 10.1016/j.ynirp.2021.100012

Scherer, R., Lee, F., Schlogl, A., Leeb, R., Bischof, H., and Pfurtscheller, G. (2008).
Toward self-paced brain-computer communication: navigation through
virtual worlds. IEEE Trans. Biomed. Eng. 55, 675–682. doi: 10.1109/TBME.
2007.903709

Scherer, R., Müller, G. R., Neuper, C., Graimann, B., and Pfurtscheller, G. (2004).
An asynchronously controlled EEG-based virtual keyboard: improvement of
the spelling rate. IEEE Trans. Biomed. Eng. 51, 979–984. doi: 10.1109/TBME.
2004.827062

Schlögl, A., Keinrath, C., Zimmermann, D., Scherer, R., Leeb, R., and
Pfurtscheller, G. (2007). A fully automated correction method of EOG artifacts
in EEG recordings. Clin. Neurophysiol. 118, 98–104. doi: 10.1016/j.clinph.2006.
09.003

Schwarz, A., Ofner, P., Pereira, J., Sburlea, A. I., and Müller-Putz, G. R. (2018).
Decoding natural reach-and-grasp actions from human EEG. J. Neural Eng.
15:016005. doi: 10.1088/1741-2552/aa8911

Schwarz, A., Pereira, J., Kobler, R., and Muller-Putz, G. R. (2020). Unimanual
and bimanual reach-and-grasp actions can be decoded from human EEG. IEEE
Trans. Biomed. Eng. 67, 1684–1695. doi: 10.1109/TBME.2019.2942974

Sherrick, C. E., and Rogers, R. (1966). Apparent haptic movement. Percept.
Psychophys. 1, 175–180. doi: 10.3758/BF03215780

Shibasaki, H., and Hallett, M. (2006). What is the bereitschaftspotential? Clin.
Neurophysiol. 117, 2341–2356. doi: 10.1016/j.clinph.2006.04.025

Silversmith, D. B., Abiri, R., Hardy, N. F., Natraj, N., Tu-Chan, A., Chang, E. F.,
et al. (2020). Plug-and-play control of a brain-computer interface through
neural map stabilization. Nat. Biotechnol. 39, 326–335. doi: 10.1038/s41587-
020-0662-5

Spüler, M., and Niethammer, C. (2015). Error-related potentials during
continuous feedback: using EEG to detect errors of different type and severity.
Front. Hum. Neurosci. 9:155. doi: 10.3389/fnhum.2015.00155

Srisrisawang, N., and Müller-Putz, G. (2021). ‘‘An investigation on dimensionality
reduction in the source-space-based hand trajectory decoding,’’ in Proceedings
Annual Meeting of the Austrian Society for Biomedical Engineering: ÖGBMT
2021 (Verlag der TU Graz), 79–82. doi: 10.3217/978-3-85125-826-4-21

Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., and Leahy, R. M. (2011).
Brainstorm: a user-friendly application for MEG/EEG analysis. Comput. Intell.
Neurosci. 2011:879716. doi: 10.1155/2011/879716

Urigüen, J. A., and Garcia-Zapirain, B. (2015). EEG artifact removal-state-
of-the-art and guidelines. J. Neural Eng. 12:031001. doi: 10.1088/1741-
2560/12/3/031001

Vargas-Irwin, C. E., Feldman, J. M., King, B., Simeral, J. D., Sorice, B. L.,
Oakley, E. M., et al. (2018). Watch, imagine, attempt: motor cortex
single-unit activity reveals context-dependent movement encoding in humans
with tetraplegia. Front. Hum. Neurosci. 12:450. doi: 10.3389/fnhum.2018.
00450

Vingerhoets, G. (2014). Contribution of the posterior parietal cortex in reaching,
grasping and using objects and tools. Front. Psychol. 5:151. doi: 10.3389/fpsyg.
2014.00151

Waldert, S., Preissl, H., Demandt, E., Braun, C., Birbaumer, N., Aertsen, A., et al.
(2008). Hand movement direction decoded from MEG and EEG. J. Neurosci.
28, 1000–1008. doi: 10.1523/JNEUROSCI.5171-07.2008

Wang, W., Chan, S. S., Heldman, D. A., and Moran, D. W. (2007). Motor cortical
representation of position and velocity during reaching. J. Neurophysiol. 97,
4258–4270. doi: 10.1152/jn.01180.2006

Willett, F. R., Murphy, B. A., Young, D. R., Memberg, W. D., Blabe, C. H.,
Pandarinath, C., et al. (2018). A comparison of intention estimation methods
for decoder calibration in intracortical brain-computer interfaces. IEEE Trans.
Biomed. Eng. 65, 2066–2078. doi: 10.1109/TBME.2017.2783358

Wodlinger, B., Downey, J. E., Tyler-Kabara, E. C., Schwartz, A. B., Boninger, M. L.,
and Collinger, J. L. (2015). Ten-dimensional anthropomorphic arm control in a
human brain-machine interface: difficulties, solutions and limitations. J. Neural
Eng. 12:016011. doi: 10.1088/1741-2560/12/1/016011

Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., and
Vaughan, T. M. (2002). Brain-computer interfaces for communication
and control. Clin. Neurophysiol. 113, 767–791. doi: 10.1016/s1388-2457(02)
00057-3

Wolpaw, J. R., and McFarland, D. J. (2004). Control of a two-dimensional
movement signal by a noninvasive brain-computer interface in humans. Proc.
Natl. Acad. Sci. U S A 101, 17849–17854. doi: 10.1073/pnas.0403504101

Wolpaw, J., and Wolpaw, E. W. (2012). Brain-Computer Interfaces: Principles and
Practice. doi: 10.1093/acprof:oso/9780195388855.001.0001

Wu, D., Xu, Y., and Lu, B.-L. (2020). Transfer learning for EEG-based brain-
computer interfaces: a review of progress made since 2016. IEEE Trans. Cogn.
Dev. Syst. 1–1. doi: 10.1109/TCDS.2020.3007453

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Müller-Putz, Kobler, Pereira, Lopes-Dias, Hehenberger, Mondini,
Martínez-Cagigal, Srisrisawang, Pulferer, Batistić and Sburlea. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 21 March 2022 | Volume 16 | Article 841312

https://doi.org/10.1152/physrev.00009.2013
https://doi.org/10.1109/msmc.2016.2576638
https://doi.org/10.1016/j.artmed.2013.07.004
https://doi.org/10.1016/B978-0-444-63934-9.00006-8
https://doi.org/10.1109/JPROC.2015.2395253
https://doi.org/10.1016/j.neuroimage.2020.116893
https://doi.org/10.1016/j.neuroimage.2020.116893
https://doi.org/10.1523/JNEUROSCI.2658-05.2005
https://doi.org/10.1088/1741-2560/9/2/026013
https://doi.org/10.1016/j.neuropsychologia.2004.04.015
https://doi.org/10.1016/j.neuropsychologia.2004.04.015
https://doi.org/10.1088/1741-2560/12/3/036007
https://doi.org/10.1088/1741-2560/12/3/036007
https://doi.org/10.1038/s41598-018-35018-x
https://doi.org/10.3217/978-3-85125-682-6-51
https://doi.org/10.1016/j.ynirp.2021.100012
https://doi.org/10.1109/TBME.2007.903709
https://doi.org/10.1109/TBME.2007.903709
https://doi.org/10.1109/TBME.2004.827062
https://doi.org/10.1109/TBME.2004.827062
https://doi.org/10.1016/j.clinph.2006.09.003
https://doi.org/10.1016/j.clinph.2006.09.003
https://doi.org/10.1088/1741-2552/aa8911
https://doi.org/10.1109/TBME.2019.2942974
https://doi.org/10.3758/BF03215780
https://doi.org/10.1016/j.clinph.2006.04.025
https://doi.org/10.1038/s41587-020-0662-5
https://doi.org/10.1038/s41587-020-0662-5
https://doi.org/10.3389/fnhum.2015.00155
https://doi.org/10.3217/978-3-85125-826-4-21
https://doi.org/10.1155/2011/879716
https://doi.org/10.1088/1741-2560/12/3/031001
https://doi.org/10.1088/1741-2560/12/3/031001
https://doi.org/10.3389/fnhum.2018.00450
https://doi.org/10.3389/fnhum.2018.00450
https://doi.org/10.3389/fpsyg.2014.00151
https://doi.org/10.3389/fpsyg.2014.00151
https://doi.org/10.1523/JNEUROSCI.5171-07.2008
https://doi.org/10.1152/jn.01180.2006
https://doi.org/10.1109/TBME.2017.2783358
https://doi.org/10.1088/1741-2560/12/1/016011
https://doi.org/10.1016/s1388-2457(02)00057-3
https://doi.org/10.1016/s1388-2457(02)00057-3
https://doi.org/10.1073/pnas.0403504101
https://doi.org/10.1093/acprof:oso/9780195388855.001.0001
https://doi.org/10.1109/TCDS.2020.3007453
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles

	Feel Your Reach: An EEG-Based Framework to Continuously Detect Goal-Directed Movements and Error Processing to Gate Kinesthetic Feedback Informed Artificial Arm Control
	INTRODUCTION
	METHODOLOGY
	Goal-Directed Movement Planning and Detection
	Non-invasive Movement Decoding
	Grasp Representation
	Error-Related Potentials During Continuous Feedback
	Kinesthetic Feedback
	Artifact Handling

	DISCUSSION
	CONCLUSION AND OUTLOOK
	AUTHOR CONTRIBUTIONS
	FUNDING
	ACKNOWLEDGMENTS
	REFERENCES


