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Abstract. Recently, we showed how to strengthen block ciphers by
decorrelation techniques. In particular, we proposed two practical block
ciphers, one based on the GF(2n)-arithmetics, the other based on the
x mod p mod 2n primitive with a prime p = 2n(1 + δ). In this paper we
show how to achieve similar decorrelation with a prime p = 2n(1 − δ).
For this we have to change the choice of the norm in the decorrelation
theory and replace the L∞ norm by the L2 norm. We propose a new
practical block cipher which is provably resistant against differential and
linear cryptanalysis.

At the STACS’98 conference, the author of the present paper presented the
technique of decorrelation which enables to strengthen block ciphers in order to
make them provably resistant against the basic differential and linear cryptanal-
ysis [13].1 So far, this analysis which is based on Carter and Wegman’s paradigm
of universal functions [3,17], has been used with the L∞-associated matrix norm
in order to propose two new practical block cipher families which are prov-
ably resistant against those cryptanalysis: COCONUT98 and PEANUT98. This
technique has been shown to enable to propose real-life encryption algorithms as
shown by the Advanced Encryption Standard submission [5] and related imple-
mentation evaluations on smart cards [9]. In this paper we present some earlier
results based on the L2 norm in order to make a new practical block cipher
PEANUT97.2

1 Basic Definitions

We briefly recall the basic definitions used in the decorrelation theory. Firstly,
let us recall the notion of d-wise distribution matrix associated to a random
function.

Definition 1 ([13]). Given a random function F from a given set A to a given
set B and an integer d, we define the “d-wise distribution matrix” [F ]d of F as a
Ad × Bd-matrix where the (x, y)-entry of [F ]d corresponding to the multi-points
x = (x1, . . . , xd) ∈ Ad and y = (y1, . . . , yd) ∈ Bd is defined as the probability
that we have F (xi) = yi for i = 1, . . . , d.
1 A full paper version [14] is available on the web site [15].
2 The decorrelation technique with the L2 norm happens to be somewhat less easy

than the L∞ norm, which is why is has not been published so far.
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Secondly, we recall the definition of two matrix norms: the L∞-associated norm
denoted |||.|||∞, and the L2-norm denoted ||.||2.

Definition 2. Given a matrix A, we define

||A||2 =
√∑

x,y

(Ax,y)
2 (1)

|||A|||∞ = max
x

∑
y

|Ax,y| (2)

where the sums run over all the (x, y)-entries of the matrix A.3

Finally, here is the definition of the general d-wise decorrelation distance between
two random functions.

Definition 3 ([13]). Given two random functions F and G from a given set
A to a given set B, an integer d and a matrix norm ||.|| over the vector space
RA

d×Bd, we call ||[F ]d−[G]d|| the “d-wise decorrelation ||.||-distance” between F
and G. In addition, we call “d-wise decorrelation ||.||-bias” of a random function
(resp. permutation) F its d-wise decorrelation ||.||-distance to a random function
(resp. permutation) with a uniform distribution.4

We consider block ciphers on a message-block space M with a key represented
by a random variable K as a random permutation CK defined by K over M.
Since the subscript K is useless in our context we omit it and consider the
random variable C as a random permutation with a given distribution. Ideally,
we consider the Perfect CipherC∗ for which the distribution of C∗ is uniform over
the set of the permutations overM. Hence for any multi-point x = (x1, . . . , xd)
with pairwise xis and any multi-point y = (y1, . . . , yd) with pairwise yis we have

[C∗]dx,y = Pr[C∗(xi) = yi; i = 1, . . . , d] =
1

#M . . . (#M− d+ 1)
.

We are interested in the decorrelation bias ||[C]d− [C∗]d|| of a practical cipher
C.

We recall that |||.|||∞ and ||.||2 are matrix norms (i.e. that the norm of any
matrix-product A × B is at most the product of the norms of A and B) which
makes the decorrelation bias a friendly measurement as shown by the following
Lemma.
3 The strange |||.|||∞ notation used in [13] comes from the fact that this norm is

associated to the usual ||.||∞ norm over the vectors defined by ||V ||∞ = max
x
|Vx| by

|||A|||∞ = max
||V ||∞=1

||AV ||∞.

4 It is thus important to outline that we are considering a function or a permutation.
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Lemma 4. Let ||.|| be a norm such that ||A×B|| ≤ ||A||.||B|| for any matrix A
and B. For any independent random ciphers denoted C1, C2, C3, C4, C

∗ (where
C∗ is perfect), the following properties hold.

||[C1 ◦ C2]d − [C∗]d|| ≤ ||[C1]d − [C∗]d||.||[C2]d − [C∗]d|| (3)
||[C1 ◦ C2]d − [C1 ◦ C3]d|| ≤ ||[C1]d − [C∗]d||.||[C2]d − [C3]d|| (4)
||[C1 ◦ C2]d − [C3 ◦ C4]d|| ≤ ||[C1]d − [C∗]d||.||[C2]d − [C4]d||

+||[C1]d − [C3]d||.||[C4]d − [C∗]d|| (5)

Those properties come from the easy facts [C1 ◦C2]d = [C2]d× [C1]d and [C∗]d×
[C1]d = [C∗]d.

Feistel Ciphers are defined overM =M2
0 for a given groupM0 (e.g. M0 =

Z2
m
2 ) by round functions F1, . . . , Fr onM0. We letC = Ψ(F1, . . . , Fr) denote the

cipher defined by C(xl, xr) = (yl, yr) where we iteratively compute a sequence
(xli, xri ) such that

xl0 = xl and xr0 = xr

xli = xri−1 and xri = xli−1 + Fi(xri−1)

yl = xrr and yr = xlr

(see Feistel [4]).
To illustrate the problem, we stress out that perfect decorrelation (i.e. decor-

relation bias of zero) is achievable on a finite field (no matter which norm we
take). For instance, a random (d− 1)-degreed polynomial with a uniform distri-
bution is a perfectly d-wise decorrelated function. A random affine permutation
with a uniform distribution is a perfectly pairwise decorrelated permutation.
(Perfect decorrelation of higher degree is much more complicated.) Finite field
arithmetic is however cumbersome in software for the traditional characteristic
two. This is why we studied decorrelation biases.

2 Previous Security Results

Decorrelation enables to quantify the security of imperfectly decorrelated ci-
phers. Here we consider the security in the Luby–Rackoff model [6]. We consider
opponents as Turing machines which have a limited access to an encryption ora-
cle device and whose aim is to distinguish whether the device implements a given
practical cipher C1 = C or a given cipher C2 which is usually C2 = C∗. When
fed with an oracle c, the Turing machine T c returns either 0 or 1. If we want to
distinguish a random cipher C from C∗, we let p (resp. p∗) denote Pr[T C = 1]
(resp. Pr[T C∗ = 1]) where the probability is over the distribution of the random
tape of T and the distribution of the cipher. We say the attack is successful if
|p− p∗| is large. On the other hand, we say that the cipher C resists against the
attack if we have |p − p∗| ≤ ε for some small ε. This model is quite powerful,
because if we prove that a cipher C cannot be distinguished from the Perfect
Cipher C∗, then any attempt to decrypt a ciphertext provided by C will also be
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applicable to the cipher C∗ for which we know the security. (For more motivation
on this security model, see Luby–Rackoff [6].)

Inspired by Biham and Shamir’s attack [2] we call differential distinguisher
with the (fixed) characteristic (a, b) and complexity n the following algorithm:

Input: a cipher c, a complexity n, a characteristic (a, b)

1. for i from 1 to n do

(a) pick uniformly a random X and query for c(X) and c(X ⊕ a)
(b) if c(X ⊕ a) = c(X)⊕ b, stop and output 1

2. output 0

Similarly, inspired by Matsui’s attack [7] we call linear distinguisher with the
characteristic (a, b) and complexity n the following algorithm:5

Input: a cipher c, a complexity n, a characteristic (a, b), a set A

1. initialize the counter value t to zero

2. for i from 1 to n do

(a) pick a random X with a uniform distribution and query for c(X)
(b) if X · a = c(X) · b, increment the counter t

3. if t ∈ A, output 1, otherwise output 0

Both linear and differential distinguishers are particular cases of iterative distin-
guisher attacks (see [14]).

Theorem 5 ([14]). Let C be a cipher on the space M = Zm2 , let C∗ be the
Perfect Cipher, and let ε = |||[C]2− [C∗]2|||∞. For any differential distinguisher
between C and the Perfect Cipher C∗ with complexity n, the advantage |p− p∗|
is at most n

2m−1 + nε. Similarly, for any linear distinguisher, the advantage is
such that

lim
n→+∞

|p− p∗|
n

1
3
≤ 9.3

(
1

2m − 1
+ 2ε

) 1
3

.

This theorem means that C is immune against any differential or linear dis-
tinguisher if |||[C]2 − [C∗]2|||∞ ≈ 2−m. In this paper, we show we can obtain
similar results with the L2-decorrelation and that we can use them for an efficient
real-life cipher.

3 Security by L2-Decorrelation

It is well known that differential and linear cryptanalysis with characteristic (a, b)
respectively depend on the following measurements. If C is a random cipher on
Zm2 where ⊕ denotes the group operation (the bitwise XOR) and · denotes the
dot product (the parity of the bitwise and), we denote

5 For differential and linear cryptanalysis, we assume that the message spaceM is Zm2
so that the addition + is the bitwise exclusive or and the dot product · is the parity
of the bitwise and.
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EDPC (a, b) = E
C

(
Pr
X

[C(X ⊕ a) = C(X) ⊕ b]
)

= 2
−m

∑
x1⊕x2=a
y1⊕y2=b

[C]
2
x,y

ELPC (a, b) = E
C

((
2 Pr
X

[X · a = C(X) · b]− 1

)2)
= 1− 2

2−2m
∑

x1·a=y1·b
x2·a6=y2·b

x1 6=x2,y1 6=y2

[C]
2
x,y

where x = (x1, x2) and y = (y1, y2), and X is uniformly distributed.6 In [14],
Theorem 5 comes from the upper bounds

|EDPC(a, b)− EDPC
∗
(a, b)| ≤ |||[C]2− [C∗]2|||∞

|ELPC(a, b)− ELPC
∗
(a, b)| ≤ 2|||[C]2− [C∗]2|||∞.

The same inequalities hold with the L2 norm. (These are the consequence of
Cauchy-Schwarz Inequality.) We can thus adapt Theorem 5 with the L2 bounds
without any more argument.

Theorem 6. Theorem 5 remains valid if we replace |||.|||∞ norm by the ||.||2
norm.

This means that if ε = ||[C]2−[C∗]2||2 is small (i.e. if ε < 2−m), the complexity of
any basic differential or linear cryptanalysis is close to 2m, thus no more efficient
than exhaustive search.

In the following sections we show how to construct a practical cipher with
a relatively small ||[C]2 − [C∗]2||2. For this we first study how to bound the
decorrelation L2-bias of a Feistel Cipher from the decorrelation of its round
functions. Then we construct round functions with relatively small decorrelation
L2-bias and a corresponding dedicated cipher.

4 L2-Decorrelation of Feistel Ciphers

Here we show how to measure the decorrelation L2-bias of a Feistel cipher from
the decorrelation of its round functions. We first study the case of a 2-round
Feistel Cipher.

Lemma 7. Let M0 be a group and let M = M2
0. Let F1, F2, F ∗1 and F ∗2 be

four independent random functions on M0 where F ∗1 and F ∗2 have a uniform
distribution. If we have ||[Fi]d − [F ∗i ]d||2 ≤ ε then we have

||[Ψ(F1, F2)]d − [Ψ(F ∗1 , F
∗
2 )]d||2 ≤ ε

√
ε2 + 2Pd

where Pd is the number of partitions of {1, . . . , d}.
6 Those notations are inspired from Matsui’s [8]. Actually, Matsui defined DP and LP

and we use here their expected values over the distribution of the cipher in order to
measure the average complexity of the attacks.
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Proof. Let x = (x1, . . . , xd) (resp. y = (y1, . . . , yd))be a multi-point with xi =
(xli, x

r
i ) (resp. yi = (yli, y

r
i )). We recall that the relation yi = Ψ(g1, g2)(xi) means

that yri = xli + g1(xri ) and yli = xri + g2(yri ). We thus have

Pr[Ψ(G1, G2)(xi) = yi; i]
= Pr[G1(xri ) = yri − xli; i] Pr[G2(yri ) = yli − xri ; i].

The 1–1 relation between (xl, xr, yl, yr) and (xr , yr − xl, yr , yl − xr) is an im-
portant point. In the following, we let (t, u, v, w) denote this family. Let us write
the previous equation

Pr
G1G2

[x 7→ y] = Pr
G1

[t 7→ u] Pr
G2

[v 7→ w].

Let ∆Pr denotes PrF −PrF∗ with obvious notations. We have

∆Pr
12

[x 7→ y] = ∆Pr
1

[t 7→ u]∆Pr
2

[v 7→ w] + Pr
F∗1

[t 7→ u]∆Pr
2

[v 7→ w]

+ Pr
F∗2

[v 7→ w]∆Pr
1

[t 7→ u].

Now we have

||[Ψ(F1, F2)]d − [Ψ(F ∗1 , F
∗
2 )]d||22 =

∑
x,y

(
∆Pr

12
[x 7→ y]

)2

.

We note that ∑
t,u

Pr
F∗1

[t 7→ u]∆Pr
1

[t 7→ u] = 0

(and a similar property for Pr2), thus we have

||[Ψ(F1, F2)]d − [Ψ(F ∗1 , F
∗
2 )]d||22 = ε21ε

2
2 + ε21

∑
v,w

(
Pr
F∗2

[v 7→ w]
)2

+ε22
∑
t,u

(
Pr
F∗1

[t 7→ u]
)2

where εj = ||[Fj]d − [F ∗j ]d||22. Hence

||[Ψ(F1, F2)]d − [Ψ(F ∗1 , F
∗
2 )]d||22 ≤ ε4 + 2ε2

∑
t,u

(
Pr
F∗1

[t 7→ u]
)2

.

For any partition P = {O1, . . . , Ok} of {1, . . . , d} into k parts, let

MP = {t; ∀i, j (ti = tj ⇔ ∃k i, j ∈ Ok)}.

We have ∑
t,u

(
Pr
F∗1

[t 7→ u]
)2

=
∑
P into
k parts

∑
t∈MP

∑
u

(
Pr
F∗1

[t 7→ u]
)2

.
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We have Mk u-terms for which the probability is not zero. Namely it is 1/Mk.
The number of t-terms which correspond to this partition is M(M −1) . . . (M −
k + 1) thus

∑
t,u

(
Pr
F∗1

[t 7→ u]
)2

=
∑
P into
k parts

M(M − 1) . . . (M − k + 1)
Mk

which is less than Pd. ut

In order to measure the decorrelation distance between a 2-round Feistel
Cipher and the Perfect Cipher, we thus have to study the case of a truly random
2-round Feistel Cipher.

Lemma 8. Let M0 be a group and let M = M2
0. Let F ∗1 and F ∗2 be two inde-

pendent random functions on M0 with a uniform distribution and let C∗ be the
Perfect Cipher on M. We have

||[Ψ(F ∗1 , F
∗
2 )]d − [C∗]d||2 ≤

√
Pd(Pd − 1)

where Pd is the number of partitions of {1, . . . , d}.

Proof. With obvious notations we have

||[Ψ(F ∗1 , F
∗
2 )]d − [C∗]d||22 =

∑
x,y

(
Pr

Ψ(F∗1 ,F
∗
2 )
−Pr
C∗

)2

[x 7→ y].

The sums
∑

Pr2
C∗ [x 7→ y] and

∑
PrΨ(F∗1 ,F

∗
2 ) PrC∗ [x 7→ y] are equal to Pd. (We

observe it by fixing the partition associated to x and making the sum over all
ys.) For the remaining sum, we use same ideas as in the previous proof:

∑
x,y

(
Pr

Ψ(F∗1 ,F
∗
2 )

[x 7→ y]
)2

=
∑
t,u,v,w

(
Pr
F∗1

[t 7→ u] Pr
F∗2

[v 7→ w]
)2

which is less than P 2
d . ut

Lemma 8 may look useless because the decorrelation bias of is greater than one
(so we cannot consider product cipher and get efficient bounds). We can however
use it to study the case of a 4-round Feistel Cipher. From Lemma 7 and Lemma
8 and from Equation (5) we obtain the following Lemma in a straightforward
way.

Lemma 9. Let M0 be a group and let M = M2
0. Let F1, . . . , F4, F ∗1 , . . . , F ∗4

be eight independent random functions on M0 where the F ∗i s have a uniform
distribution. If we have ||[Fi]d − [F ∗i ]d||2 ≤ ε ≤

√
2 then we have

||[Ψ(F1, F2, F3, F4)]d − [Ψ(F ∗1 , F
∗
2 , F

∗
3 , F

∗
4 )]d||2 ≤ 2

√
2(Pd)

3
2 ε

where Pd is the number of partitions of {1, . . . , d}.
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It thus remains to study the decorrelation distance between a truly random
4-round Feistel Cipher and the Perfect Cipher: once we know that

||[Ψ(F1, F2, F3, F4)]d − [Ψ(F ∗1 , F
∗
2 , F

∗
3 , F

∗
4 )]d||2 ≤ ud

we obtain from Equation (3) that

||[Ψ(F1, . . . , F4r)]d − [Ψ(F ∗1 , . . . , F
∗
4r)]

d||2 ≤
(

2
√

2(Pd)
3
2 ε+ ud

)r
where ε = maxi ||[Fi]d− [F ∗i ]d||2 ≤

√
2. Unfortunately, the problem of obtaining

a general result on the d-wise decorrelation of a truly random 4-round Feistel
Cipher is still open.7 In the next section we propose a construction in the d = 2
case for which we can evaluate the decorrelation.

5 A Dedicated Construction

In a general finite field GF(q), an obvious way to construct pairwise decorrelated
functions (resp. permutations) consists of taking

F (x) = a.x+ b

where (a, b) is a random pair uniformly distributed in GF(q)2 (resp. GF(q)∗ ×
GF(q)). Unfortunately, the traditional message space Zm2 requires that we use
finite fields of characteristic two. If we aim to implement a cipher in software on a
modern microprocessor, it looks cumbersome to implement a poor characteristic-
two multiplication since there already is a built-in integer multiplication. For this
reason we can think of the

F (x) = ((ax+ b) mod p) mod 2
m
2

imperfectly decorrelated function to be inserted at the input of each round func-
tion of a Feistel Cipher, where p is a prime close to 2

m
2 .

In [14] the (m, r, d, p)-PEANUT Cipher Family is defined to be the set of all
r-round Feistel Ciphers over Zm2 in which all round functions can be written

F (x) = g

(
d∑
i=1

ki.x
d−i mod p mod 2

m
2

)
where (k1, . . . , kd) is an (independent) round key which is uniformly distributed
in {0, . . . , 2m2 − 1}d, p is a prime, and g is a permutation. For p > 2

m
2 , F

has a friendly d-wise decorrelation |||.|||∞-bias which is roughly 2dδ when p =
(1 + δ)2

m
2 . For p < 2

m
2 , the |||.|||∞-decorrelation is poor for d ≥ 2. For instance,

in the case d = 2, for x = (0, p) we have∑
y=(y1,y2)

∣∣∣∣Pr
[
g(k2 mod p) = y1

g(k2 mod p) = y2

]
− Pr

[
F ∗(0) = y1

F ∗(p) = y2

]∣∣∣∣ = 2− 21−m2 + δ.

7 This problem has been solved in [13,14] with the |||.|||∞ norm. This is why the L2

norm looks less friendly.
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Hence |||[F ]2 − [F ∗]2|||∞ ≈ 2. The p < 2
m
2 case can however be studied with

the L2 norm. In the following, we consider a PEANUT Cipher construction with
d = 2 and p < 2

m
2 .

Lemma 10. Let A and B be two independent random variables with a uniform
distribution over {0, . . . , 2m2 − 1}. We let F (x) = Ax + B mod p where p =
(1− δ)2m2 is a prime for 1/14 ≥ δ ≥ 0. Let F ∗ be a random function uniformly
distributed over the same set. We have

||[F ]2− [F ∗]2||2 ≤ 2
√

2δ.

Proof. We let N = 2
m
2 . We want to upper bound the sum∑

x=(x1 ,x2)
y=(y1,y2)

(
[F ]2x,y − [F ∗]2x,y

)2
.

Table 1 shows all the possible cases for x and y, the number of times they occur
and an upper bound for the probability difference.

For instance if x1 = x2 6≡ 0 (mod p) and y1 = y2 < p, we have

[F ]2(x1,x2),(y1,y2) = Pr[Ax1 + B mod p = y1]

and [F ∗]2(x1,x2),(y1,y2) = N−1. We let a (resp. b, c, d) be the number of (A mod
p, B mod p) pairs such that Ax1 +B mod p = y1 and

– A mod p < δN and B mod p < δN (resp.
– A mod p < δN and B mod p ≥ δN ,
– A mod p ≥ δN and B mod p < δN ,
– A mod p ≥ δN and B mod p ≥ δN).

We have a+ b = δN , a+ c = δN and a+ b+ c + d = p. Hence

[F ]2(x1,x2),(y1,y2) =
4a+ 2b+ 2c+ d

N2
=
N + δN + a

N2
.

Since we have 0 ≤ a ≤ δN , we have

(1 + δ)N−1 ≤ [F ]2(x1,x2),(y1,y2) ≤ (1 + 2δ)N−1.

The x1 6≡ x2 case is split into four cases which depend on x1 and x2. The last
case is y1 ≥ p or y2 ≥ p for which [F ]2x,y = 0. The three other cases correspond
to cases on (A mod p, B mod p) with yi = Axi + B mod p.

Case 1: A mod p < δN , B mod p < δN . We have [F ]2x,y = 4N−1.
Case 3: A mod p ≥ δN , B mod p ≥ δN . We have [F ]2x,y = N−1.
Case 2: other values. We have [F ]2x,y = 2N−1.

We can now upper bound the whole sum. We obtain that the decorrelation
bias ||[F ]2− [F ∗]2||22 is less than

7δ + 14δ2 − 6
δ

N
− 4δ3 − 24

δ2

N
+ 4

δ

N2
− 8δ4 + 16

δ3

N
− 8

δ2

N2

which is less than 8δ when δ ≤ 1/14. ut
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case x case y num. x num. y |[F ]2x,y − [F∗ ]2x,y| ≤
y1 = y2 < δN δN N−1

x1 = x2 ≡ 0 y1 = y2 ≥ (1 − δ)N 2 δN N−1

other cases N2 − 2δN 0

y1 = y2 ≥ (1 − δ)N δN N−1

x1 = x2 6≡ 0 y1 = y2 < (1 − δ)N N − 2 (1 − δ)N 2δN−1

y1 6= y2 N2 −N 0

y1 = y2 < δN δN 2N−1 − N−2

x1 6= x2, x1 ≡ x2 ≡ 0 y1 = y2 ≥ (1 − δ)N 2 δN N−2

other y1 = y2 (1 − 2δ)N N−1 −N−2

y1 6= y2 N2 −N N−2

x1 6= x2, x1 ≡ x2 6≡ 0 y1 = y2 < (1 − δ)N 2δN − 2 (1 − δ)N (1 + 2δ)N−1 −N−2

other cases N2 − (1 − δ)N N−2

case 1 δ2N2 3N−2

x1 6≡ x2 case 2 N2 − (1 + 2δ)N 2(1 − 2δ)δN2 N−2

case 3 (1 − 2δ)2N2 0
y1 or y2 ≥ (1 − δ)N (2 − δ)δN2 N−2

Table 1. Decorrelation of A.x+ B mod (1− δ)N

Lemma 11. Let M = Zm2 . Let F ∗1 , . . . , F
∗
4 be four independent random func-

tions on Z
m
2

2 with a uniform distribution and let C∗ be the Perfect Cipher on
M. We have

||[Ψ(F ∗1 , F
∗
2 , F

∗
3 , F

∗
4 )]2 − [C∗]2||2 ≤

√
2.2−m + 4.2−3m

2 .

Proof. For each input pair x = (x1, x2) we have xi = (xli, x
r
i ). Similarly, for each

output pair y = (y1, y2) we have yi = (yli, y
r
i ). All (x, y) pairs can be split into

10 cases:

1. yr1 6= yr2, xr1 6= xr2

2. yr1 6= yr2, xr1 = xr2, xl1 ⊕ xl2 6∈ {0, yr1 ⊕ yr2}
3. yr1 6= yr2, xr1 = xr2, xl1 ⊕ xl2 = yr1 ⊕ yr2
4. yr1 6= yr2, x1 = x2

5. yr1 = yr2, yl1 6= yl2, xr1 ⊕ xr2 6∈ {0, yl1 ⊕ yl2}
6. yr1 = yr2, yl1 6= yl2, xr1 ⊕ xr2 = yl1 ⊕ yl2
7. yr1 = yr2, yl1 6= yl2, xr1 = xr2, xl1 6= xl2

8. yr1 = yr2, yl1 6= yl2, x1 = x2

9. yr1 = yr2, yl1 = yl2, x1 = x2

10. y1 = y2, x1 6= x2

Each case requires a dedicated study.
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We consider a truly random 2r-round Feistel cipher for r ≥ 1 denoted C =
Ψ(F ∗1 , . . . , F ∗2r). We have

[C]2x,y =



A1
r = 1

N2(N2−1)

(
1− 1

N2r

)
if case 1

A2
r = 1

N2(N2−1)

(
1− 1

Nr−1 − 1
Nr + 1

N2r−1

)
if case 2

A3
r = 1

N2(N2−1)

(
1 + 1

Nr−2 − 1
Nr−1 − 2

Nr + 1
N2r−1

)
if case 3

0 if case 4
A5
r = 1

N2(N2−1)

(
1− 1

Nr−1 − 1
Nr + 1

N2r−1

)
if case 5

A6
r = 1

N2(N2−1)

(
1 + 1

Nr−2 − 1
Nr−1 − 2

Nr
+ 1

N2r−1

)
if case 6

A7
r = 1

N2(N2−1)

(
1− 1

N2r−2

)
if case 7

0 if case 8
N−2 if case 9
0 if case 10

where N = 2
m
2 . We prove this by an easy induction. Namely we show thatA1

r

A2
r

A3
r

 =

 (N−1)2

N2 + 1
N

N−2
N2

1
N2

1− 1
N

1
N 0

1− 1
N 0 1

N

r−1 1
N4

0
1
N3


and A5

r

A6
r

A7
r

 =

 (N−1)(N−2)
N2 + 1

N
N−1
N2

N−1
N2

(N−1)(N−2)
N2

N−1
N2 + 1

N
N−1
N2

1− 2
N

1
N

1
N

r−1 0
1
N3

0


For instance, if r = 1 and yr1 6= yr2, xr1 = xr2, xl1 ⊕ xl2 = yr1 ⊕ yr2, the probability
corresponds to the fact that F ∗1 (xr1) XORs the good value on both xl1 and xl2
(with probability 1/N) and that both F ∗2 (yr1) and F ∗2 (yr2) XOR the good values
on xr1 and xr2 respectively (with probability 1/N2).

To prove the matrix relations, we let x denote the input of C, y denote the
output of the first two rounds and z denote the output. We have

z = Ψ(F ∗1 , F
∗
2 , F

∗
3 , . . . , F

∗
2r)(x) = Ψ(F ∗3 , . . . , F

∗
2r)(y)

(yr , yl) = Ψ(F ∗1 , F
∗
2 )(x).

For instance, transition from case 2 (zr1 6= zr2, yr1 = yr2 , yl1 ⊕ yl2 6∈ {0, zr1 ⊕ zr2}) to
case 1 (zr1 6= zr2 , xr1 6= xr2) corresponds to the N(N − 2) possibilities for yl1 and
yl2 (all but for yl1 = yl2 or yl1 ⊕ yl2 = zr1 ⊕ zr2), all with probability 1/N2 (since
F ∗1 (xr1) and F ∗1 (xr2) are independent), mixed with the N possibilities for yr1 = yr2,
all with probability 1/N2, which gives (N − 2)/N2. This means A1

r includes a
term N−2

N2 A
2
r−1 which represents all possible ys coming from case 2.

With this result we can compute the pairwise decorrelation bias of C. We
have

||[C]2− [C∗]2||22 = n1(∆A1
r)

2 + n2(∆A2
r)

2 + n3(∆A3
r)

2

+n5(∆A5
r)

2 + n6(∆A6
r)

2 + n7(∆A7
r)

2
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where ∆Air = Air − 1
N2(N2−1) and ni is the number of (x, y) pairs in case i. We

obtain

2N4−2r − 6N2−2r − 4N1−2r +N4−4r + 2N3−4r +N2−4r

(N − 1)2
.

For r = 2 (four rounds), this is less than 2N−2 + 4N−3. ut

We can now define the PEANUT97 Cipher construction. It consists of a
(m, 4r, 2, p)-PEANUT Cipher, i.e. a 4r-round Feistel Cipher on m-bit message
blocks which is characterized by some prime p ≤ 2

m
2 . Each round function of

the cipher must be with the form

Fi(x) = gi(K2i−1x+K2i mod p)

where (K1, . . . , K8r) is uniformly distributed in Z4mr
2 and gi is a (possibly inde-

pendently keyed) permutation on the m
2 -bit strings. The lemmata 9, 10 and 11

proves the following theorem.

Theorem 12. Let C be a (m, 4r, 2, p)-PEANUT97 Cipher such that p = (1 −
δ)2

m
2 with 0 ≤ δ ≤ 1

14 . Let C∗ be the Perfect Cipher. We have

||[C]2− [C∗]2||2 ≤
(

16
√

2δ +
√

2.2−m + 4.2−
3m
2

)r
.

For instance, with m = 64 and p = 232 − 5, we obtain ||[C]2− [C∗]2||2 ≤ 2−10r.
Thus for r = 7 we have ||[C]2 − [C∗]2||2 ≤ 2−70. Theorem 6 thus shows that
|p− p∗| ≤ 0.1 for any differential distinguisher with complexity n ≤ 260 and any
linear distinguisher with complexity n ≤ 244.

This PEANUT97 construction has been tested on a Pentium in assembly
code. A 28-round 64-bit encryption required less than 790 clock cycles, which
yields an encryption rate of 23Mbps working at 300MHz. The table below com-
pares it with the PEANUT98 construction, for which the |||.|||∞-decorrelation
theory enables to decrease the number of rounds (see [13]) and the DFC AES
candidate which is a PEANUT98 128-bit block cipher (see [5]). All ciphers have
similar security against differential and linear cryptanalysis. We remark that one
PEANUT97 is much faster than the other rounds, so PEANUT97 may be faster
than PEANUT98 if we can get tighter bounds in order to decrease the number
of rounds.

cipher PEANUT97 PEANUT98 DFC
block length 64 64 128
number of rounds 28 9 8
cycles/encryption 788 396 754
cycles/round 28 44 94
enc. rate at 300MHz 23Mbps 46Mbps 49Mbps
pairwise decorrelation 2−70 (L2) 2−76 (|||.|||∞) 2−112 (|||.|||∞)
reference [12], here [13,14] [5,9]
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6 Conclusion

We have shown how to use the ax + b mod p pairwise decorrelation primitive
for p ≤ 2

m
2 . It requires that we use the L2 norm in the decorrelation technique,

which leads to more complicated computations than for the |||.|||∞ norm.
When used at the input of Feistel Ciphers, this primitive enables to protect it

against differential and linear cryptanalysis. For 64-bit message block, it however
requires at least 28 rounds.

Some extensions of the |||.|||∞-decorrelation results to the L2-decorrelation is
still open: it is not clear how to state results with higher degrees of decorrelation
(d > 2) and how to prove the security of decorrelated ciphers against general
iterated attacks as in [14].
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