VICTORIA UNIVERSITY MELBOURNE AUSTRALIA

Fejér-Type Inequalities (II)

This is the Published version of the following publication

Tseng, Kuei-Lin, Hwang, Shiow-Ru and Dragomir, Sever S (2009) Fejér-Type Inequalities (II). Research report collection, 12 (Supp).

The publisher's official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/17954/

FEJÉR-TYPE INEQUALITIES (II)

K.-L. TSENG, SHIOW-RU HWANG, AND S.S. DRAGOMIR

Abstract. In this paper, we establish some Fejér-type inequalities for convex functions. They complement the results from the previous recent paper [12].

1. Introduction

Throughout this paper, let $f:[a, b] \rightarrow \mathbb{R}$ be convex, $g:[a, b] \rightarrow[0, \infty)$ be integrable and symmetric to $\frac{a+b}{2}$ and define the following functions on $[0,1]$:

$$
\begin{gathered}
G(t)=\frac{1}{2}\left[f\left(t a+(1-t) \frac{a+b}{2}\right)+f\left(t b+(1-t) \frac{a+b}{2}\right)\right] \\
H(t)=\frac{1}{b-a} \int_{a}^{b} f\left(t x+(1-t) \frac{a+b}{2}\right) d x \\
H_{g}(t)=\int_{a}^{b} f\left(t x+(1-t) \frac{a+b}{2}\right) g(x) d x \\
L(t)=\frac{1}{2(b-a)} \int_{a}^{b}[f(t a+(1-t) x)+f(t b+(1-t) x)] d x
\end{gathered}
$$

and

$$
L_{g}(t)=\frac{1}{2} \int_{a}^{b}[f(t a+(1-t) x)+f(t b+(1-t) x)] g(x) d x
$$

If f is defined as above, then

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1.1}
\end{equation*}
$$

is known as the Hermite-Hadamard inequality [1].
For some results which generalize, improve, and extend this famous integral inequality see [2]-[17].

In [2], Dragomir established the following theorem which refines the first inequality of (1.1).

Theorem A. Let f, H be defined as above. Then H is convex, increasing on $[0,1]$, and for all $t \in[0,1]$, we have

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right)=H(0) \leq H(t) \leq H(1)=\frac{1}{b-a} \int_{a}^{b} f(x) d x \tag{1.2}
\end{equation*}
$$

In [7], Dragomir, Milošević and Sándor established the following inequalities related to (1.1):

[^0]Theorem B. Let f, H be defined as above. Then:
(1) The following inequality holds

$$
\begin{align*}
f\left(\frac{a+b}{2}\right) & \leq \frac{2}{b-a} \int_{\frac{3 a+b}{4}}^{\frac{a+3 b}{4}} f(x) d x \tag{1.3}\\
& \leq \int_{0}^{1} H(t) d t \\
& \leq \frac{1}{2}\left[f\left(\frac{a+b}{2}\right)+\frac{1}{b-a} \int_{a}^{b} f(x) d x\right] .
\end{align*}
$$

(2) If f is differentiable on $[a, b]$, then, for all $t \in[0,1]$, we have the inequalities

$$
\begin{align*}
0 & \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x-H(t) \tag{1.4}\\
& \leq(1-t)\left[\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right]
\end{align*}
$$

and

$$
\begin{equation*}
0 \leq \frac{f(a)+f(b)}{2}-H(t) \leq \frac{\left(f^{\prime}(b)-f^{\prime}(a)\right)(b-a)}{4} \tag{1.5}
\end{equation*}
$$

Theorem C. Let f, H, G be defined as above. Then:
(1) G is convex and increasing on $[0,1]$.
(2) We have

$$
\inf _{t \in[0,1]} G(t)=G(0)=f\left(\frac{a+b}{2}\right)
$$

and

$$
\sup _{t \in[0,1]} G(t)=G(1)=\frac{f(a)+f(b)}{2}
$$

(3) The following inequality holds for all $t \in[0,1]$:

$$
\begin{equation*}
H(t) \leq G(t) \tag{1.6}
\end{equation*}
$$

(4) The following inequality holds:

$$
\begin{align*}
\frac{2}{b-a} \int_{\frac{3 a+b}{4}}^{\frac{a+3 b}{4}} f(x) d x & \leq \frac{1}{2}\left[f\left(\frac{3 a+b}{4}\right)+f\left(\frac{a+3 b}{4}\right)\right] \tag{1.7}\\
& \leq \int_{0}^{1} G(t) d t \\
& \leq \frac{1}{2}\left[f\left(\frac{a+b}{2}\right)+\frac{f(a)+f(b)}{2}\right] .
\end{align*}
$$

(5) If f is differentiable on $[a, b]$, then, for all $t \in[0,1]$, we have the inequality

$$
\begin{equation*}
0 \leq H(t)-f\left(\frac{a+b}{2}\right) \leq G(t)-H(t) \tag{1.8}
\end{equation*}
$$

Theorem D. Let f, H, G, L be defined as above. Then:
(1) L is convex on $[0,1]$.
(2) We have the inequality:

$$
\begin{equation*}
G(t) \leq L(t) \leq \frac{1-t}{b-a} \int_{a}^{b} f(x) d x+t \cdot \frac{f(a)+f(b)}{2} \leq \frac{f(a)+f(b)}{2} \tag{1.9}
\end{equation*}
$$

for all $t \in[0,1]$ and

$$
\sup _{t \in[0,1]} L(t)=\frac{f(a)+f(b)}{2} .
$$

(3) For all $t \in[0,1]$, we have the inequalities:

$$
H(1-t) \leq L(t) \quad \text { and } \quad \frac{H(t)+H(1-t)}{2} \leq L(t)
$$

In [8], Fejér established the following weighted generalization of the HermiteHadamard inequality (1.1).

Theorem E. Let f, g be defined as above. Then

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x \leq \int_{a}^{b} f(x) g(x) d x \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x \tag{1.10}
\end{equation*}
$$

is known as Fejér inequality.
In [14], Yang and Tseng established the following theorem which refines the first inequality of (1.10) and generalizes Theorem A.

Theorem F. Let f, g, H_{g} be defined as above. Then H_{g} is convex, increasing on $[0,1]$, and for all $t \in[0,1]$, we have

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x=H_{g}(0) \leq H_{g}(t) \leq H_{g}(1)=\int_{a}^{b} f(x) g(x) d x \tag{1.11}
\end{equation*}
$$

In this paper, we establish some Fejér-type inequalities related to the functions G, H, H_{g}, L, L_{g} and generalize Theorems B - D. They complement the results from the recent paper [12].

2. Main Results

In order to prove our main results, we need the following lemma:
Lemma 1 (see [9]). Let $f:[a, b] \rightarrow \mathbb{R}$ be a convex function and let $a \leq A \leq C \leq$ $D \leq B \leq b$ with $A+B=C+D$, then

$$
f(C)+f(D) \leq f(A)+f(B)
$$

Now, we are ready to state and prove our results.
Theorem 2. Let f, g, H_{g} be defined as above. Then we have the following Fejértype inequalities:
(1) The following inequality holds:

$$
\begin{align*}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x & \leq 2 \int_{\frac{3 a+b}{4}}^{\frac{a+3 b}{4}} f(x) g\left(2 x-\frac{a+b}{2}\right) d x \tag{2.1}\\
& \leq \int_{0}^{1} H_{g}(t) d t \\
& \leq \frac{1}{2}\left[f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x+\int_{a}^{b} f(x) g(x) d x\right]
\end{align*}
$$

(2) If f is differentiable on $[a, b]$ and g is bounded on $[a, b]$, then, for all $t \in$ $[0,1]$, we have the inequality

$$
\begin{aligned}
& \qquad \begin{aligned}
0 & \leq \int_{a}^{b} f(x) g(x) d x-H_{g}(t) \\
& \leq(1-t)\left[\frac{f(a)+f(b)}{2}(b-a)-\int_{a}^{b} f(x) d x\right]\|g\|_{\infty} \\
\text { where }\|g\|_{\infty} & =\sup _{x \in[a, b]}|g(x)|
\end{aligned} .
\end{aligned}
$$

(3) If f is differentiable on $[a, b]$, then, for all $t \in[0,1]$, we have the inequality

$$
\begin{align*}
0 & \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x-H_{g}(t) \\
& \leq \frac{\left(f^{\prime}(b)-f^{\prime}(a)\right)(b-a)}{4} \int_{a}^{b} g(x) d x \tag{2.3}
\end{align*}
$$

Proof. (1) Using simple techniques of integration and the hypothesis of g, we have the following identities:

$$
\begin{gather*}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x=4 \int_{a}^{\frac{a+b}{2}} \int_{0}^{\frac{1}{2}} f\left(\frac{a+b}{2}\right) g(x) d t d x \tag{2.4}\\
2 \int_{\frac{3 a+b}{4}}^{\frac{a+3 b}{4}} f(x) g\left(2 x-\frac{a+b}{2}\right) d x \\
\quad=2 \int_{a}^{\frac{a+b}{2}} \int_{0}^{\frac{1}{2}}\left[f\left(\frac{x}{2}+\frac{a+b}{4}\right)+f\left(\frac{3(a+b)}{4}-\frac{x}{2}\right)\right] g(x) d t d x
\end{gather*}
$$

$$
\begin{align*}
& \quad \int_{0}^{1} H_{g}(t) d t \tag{2.6}\\
& =\int_{a}^{\frac{a+b}{2}} \int_{0}^{\frac{1}{2}}\left[f\left(t \frac{a+b}{2}+(1-t) x\right)+f\left(t x+(1-t) \frac{a+b}{2}\right)\right] g(x) d t d x \\
& \\
& \quad+\int_{a}^{\frac{a+b}{2}} \int_{0}^{\frac{1}{2}}\left[f\left(t(a+b-x)+(1-t) \frac{a+b}{2}\right)\right. \\
& \\
&
\end{align*}
$$

and

$$
\left.\begin{array}{l}
\frac{1}{2}\left[f\left(\frac{a+b}{2}\right)\right. \tag{2.7}
\end{array} \int_{a}^{b} g(x) d x+\int_{a}^{b} f(x) g(x) d x\right] .
$$

By Lemma 1, the following inequalities hold for all $t \in\left[0, \frac{1}{2}\right]$ and $x \in\left[a, \frac{a+b}{2}\right]$.

$$
\begin{equation*}
4 f\left(\frac{a+b}{2}\right) \leq 2\left[f\left(\frac{x}{2}+\frac{a+b}{4}\right)+f\left(\frac{3(a+b)}{4}-\frac{x}{2}\right)\right] \tag{2.8}
\end{equation*}
$$

holds when $A=\frac{x}{2}+\frac{a+b}{4}, C=D=\frac{a+b}{2}$ and $B=\frac{3(a+b)}{4}-\frac{x}{2}$ in Lemma 1.

$$
\begin{equation*}
2 f\left(\frac{x}{2}+\frac{a+b}{4}\right) \leq f\left(t \frac{a+b}{2}+(1-t) x\right)+f\left(t x+(1-t) \frac{a+b}{2}\right) \tag{2.9}
\end{equation*}
$$

holds when $A=t \frac{a+b}{2}+(1-t) x, C=D=\frac{x}{2}+\frac{a+b}{4}$ and $B=t x+(1-t) \frac{a+b}{2}$ in Lemma 1.

$$
\begin{align*}
& 2 f\left(\frac{3(a+b)}{4}-\frac{x}{2}\right) \tag{2.10}\\
& \quad \leq f\left(t(a+b-x)+(1-t) \frac{a+b}{2}\right)+f\left(t \frac{a+b}{2}+(1-t)(a+b-x)\right)
\end{align*}
$$

holds when $A=t(a+b-x)+(1-t) \frac{a+b}{2}, C=D=\frac{3(a+b)}{4}-\frac{x}{2}$ and $B=t \frac{a+b}{2}+$ $(1-t)(a+b-x)$ in Lemma 1.

$$
\begin{equation*}
f\left(t \frac{a+b}{2}+(1-t) x\right)+f\left(t x+(1-t) \frac{a+b}{2}\right) \leq f(x)+f\left(\frac{a+b}{2}\right) \tag{2.11}
\end{equation*}
$$

holds when $A=x, C=t \frac{a+b}{2}+(1-t) x, D=t x+(1-t) \frac{a+b}{2}$ and $B=\frac{a+b}{2}$ in Lemma 1.

$$
\begin{align*}
& f\left(t(a+b-x)+(1-t) \frac{a+b}{2}\right)+f\left(t \frac{a+b}{2}\right.+(1-t)(a+b-x)) \tag{2.12}\\
& \leq f\left(\frac{a+b}{2}\right)+f(a+b-x)
\end{align*}
$$

holds for $A=\frac{a+b}{2}, C=t(a+b-x)+(1-t) \frac{a+b}{2}, D=t \frac{a+b}{2}+(1-t)(a+b-x)$ and $B=a+b-x$ in Lemma 1. Multiplying the inequalities (2.8) - (2.12) by $g(x)$ and integrating them over t on $\left[0, \frac{1}{2}\right]$, over x on $\left[a, \frac{a+b}{2}\right]$ and using identities (2.4) - (2.7), we derive (2.1).
(2) By integration by parts, we have

$$
\begin{align*}
& \int_{a}^{\frac{a+b}{2}}\left(\frac{a+b}{2}-x\right)\left[f^{\prime}(a+b-x)-f^{\prime}(x)\right] d x \tag{2.13}\\
& =\int_{a}^{b}\left(x-\frac{a+b}{2}\right) f^{\prime}(x) d x \\
& =\frac{f(a)+f(b)}{2}(b-a)-\int_{a}^{b} f(x) d x
\end{align*}
$$

Using substitution rules for integration and the hypothesis of g, we have the following identities

$$
\begin{equation*}
\int_{a}^{b} f(x) g(x) d x=\int_{a}^{\frac{a+b}{2}}[f(x)+f(a+b-x)] g(x) d x \tag{2.14}
\end{equation*}
$$

and

$$
\begin{align*}
& H_{g}(t)=\int_{a}^{\frac{a+b}{2}}\left[f\left(t x+(1-t) \frac{a+b}{2}\right)\right. \tag{2.15}\\
&\left.+f\left(t(a+b-x)+(1-t) \frac{a+b}{2}\right)\right] g(x) d x
\end{align*}
$$

Now, using the convexity of f and the hypothesis of g, the inequality

$$
\begin{aligned}
& {\left[f(x)-f\left(t x+(1-t) \frac{a+b}{2}\right)\right] g(x)} \\
& \quad+\left[f(a+b-x)-f\left(t(a+b-x)+(1-t) \frac{a+b}{2}\right)\right] g(x) \\
& \leq(1-t)\left(x-\frac{a+b}{2}\right) f^{\prime}(x) g(x) \\
& \quad+(1-t)\left(\frac{a+b}{2}-x\right) f^{\prime}(a+b-x) g(x) \\
& =(1-t)\left(\frac{a+b}{2}-x\right)\left[f^{\prime}(a+b-x)-f^{\prime}(x)\right] g(x) \\
& \leq(1-t)\left(\frac{a+b}{2}-x\right)\left[f^{\prime}(a+b-x)-f^{\prime}(x)\right]\|g\|_{\infty}
\end{aligned}
$$

holds for all $t \in[0,1]$ and $x \in\left[a, \frac{a+b}{2}\right]$. Integrating the above inequalities over x on $\left[a, \frac{a+b}{2}\right]$ and using (2.13) - (2.15) and (1.11), we derive (2.2).
(3) Using the convexity of f, we have

$$
\frac{f(a)-f\left(\frac{a+b}{2}\right)}{2} \leq \frac{1}{2}\left(a-\frac{a+b}{2}\right) f^{\prime}(a)=\frac{a-b}{4} f^{\prime}(a)
$$

and

$$
\frac{f(b)-f\left(\frac{a+b}{2}\right)}{2} \leq \frac{1}{2}\left(b-\frac{a+b}{2}\right) f^{\prime}(b)=\frac{b-a}{4} f^{\prime}(b)
$$

and taking their sum we obtain

$$
\frac{f(a)+f(b)}{2}-f\left(\frac{a+b}{2}\right) \leq \frac{\left(f^{\prime}(b)-f^{\prime}(a)\right)(b-a)}{4} .
$$

Thus,

$$
\begin{align*}
\frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x-f\left(\frac{a+b}{2}\right) & \int_{a}^{b} g(x) d x \tag{2.16}\\
& \leq \frac{\left(f^{\prime}(b)-f^{\prime}(a)\right)(b-a)}{4} \int_{a}^{b} g(x) d x
\end{align*}
$$

Finally, (2.3) follows from (1.10), (1.11) and (2.16). This completes the proof.
Remark 3. Let $g(x)=\frac{1}{b-a}(x \in[a, b])$ in Theorem 2. Then $H_{g}(t)=H(t)$ $(t \in[0,1])$ and Theorem 2 reduces to Theorem B.

In the following theorems, we point out some inequalities for the functions H, H_{g}, G, L_{g}, Q considered above:
Theorem 4. Let f, g, G, H_{g} be defined as above. Then we have the following Fejértype inequalities:
(1) The following inequality holds for all $t \in[0,1]$:

$$
\begin{equation*}
H_{g}(t) \leq G(t) \int_{a}^{b} g(x) d x . \tag{2.17}
\end{equation*}
$$

(2) The following inequality holds:
$2 \int_{\frac{3 a+b}{4}}^{\frac{a+3 b}{4}} f(x) g\left(2 x-\frac{a+b}{2}\right) d x \leq \frac{1}{2}\left[f\left(\frac{3 a+b}{4}\right)+f\left(\frac{a+3 b}{4}\right)\right] \int_{a}^{b} g(x) d x$

$$
\begin{aligned}
& \leq(b-a) \int_{0}^{1} G(t) g((1-t) a+t b) d t \\
& \leq \frac{1}{2}\left[f\left(\frac{a+b}{2}\right)+\frac{f(a)+f(b)}{2}\right] \int_{a}^{b} g(x) d x
\end{aligned}
$$

(3) If f is differentiable on $[a, b]$ and g is bounded on $[a, b]$, then, for all $t \in$ $[0,1]$, we have the inequality

$$
\begin{align*}
& \quad 0 \leq H_{g}(t)-f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x \leq(b-a)[G(t)-H(t)]\|g\|_{\infty} \tag{2.19}\\
& \text { where }\|g\|_{\infty}=\sup _{x \in[a, b]}|g(x)| \text {. }
\end{align*}
$$

Proof. (1) Using simple techniques of integration and the hypothesis of g, we have that the following identity holds on $[0,1]$:

$$
\begin{align*}
& G(t) \int_{a}^{b} g(x) d x=\int_{a}^{\frac{a+b}{2}}\left[f\left(t a+(1-t) \frac{a+b}{2}\right)\right. \tag{2.20}\\
&\left.+f\left(t b+(1-t) \frac{a+b}{2}\right)\right] g(x) d x
\end{align*}
$$

By Lemma 1 , the following inequality holds for all $x \in\left[a, \frac{a+b}{2}\right]$:

$$
\begin{align*}
f\left(t x+(1-t) \frac{a+b}{2}\right) & +f\left(t(a+b-x)+(1-t) \frac{a+b}{2}\right) \tag{2.21}\\
\leq & f\left(t a+(1-t) \frac{a+b}{2}\right)+f\left(t b+(1-t) \frac{a+b}{2}\right)
\end{align*}
$$

It holds when

$$
\begin{aligned}
& A=t a+(1-t) \frac{a+b}{2}, \quad C=t x+(1-t) \frac{a+b}{2} \\
& D=t(a+b-x)+(1-t) \frac{a+b}{2} \quad \text { and } \quad B=t b+(1-t) \frac{a+b}{2}
\end{aligned}
$$

in Lemma 1. Multiplying the inequality (2.21) by $g(x)$, integrating both sides over x on $\left[a, \frac{a+b}{2}\right]$ and using identities (2.15) and (2.20), we derive (2.17).
(2) As for (1), we have the following identities:

$$
\begin{align*}
2 \int_{\frac{3 a+b}{4}}^{\frac{a+3 b}{4}} f(x) g & \left(2 x-\frac{a+b}{2}\right) d x \tag{2.22}\\
& =\int_{a}^{\frac{a+b}{2}}\left[f\left(\frac{x}{2}+\frac{a+b}{4}\right)+f\left(\frac{3(a+b)}{4}-\frac{x}{2}\right)\right] g(x) d x
\end{align*}
$$

$$
\begin{align*}
& \frac{1}{2}\left[f\left(\frac{3 a+b}{4}\right)+f\left(\frac{a+3 b}{4}\right)\right] \int_{a}^{b} g(x) d x \tag{2.23}\\
& =\int_{a}^{\frac{a+b}{2}}\left[f\left(\frac{3 a+b}{4}\right)+f\left(\frac{a+3 b}{4}\right)\right] g(x) d x ; \\
& (b-a) \int_{0}^{1} G(t) g((1-t) a+t b) d t \\
& =\frac{b-a}{2}\left[\int_{\frac{1}{2}}^{1} f\left(t a+(1-t) \frac{a+b}{2}\right) g(t a+(1-t) b) d t\right. \\
& +\int_{0}^{\frac{1}{2}} f\left(t a+(1-t) \frac{a+b}{2}\right) g((1-t) a+t b) d t \\
& +\int_{0}^{\frac{1}{2}} f\left(t b+(1-t) \frac{a+b}{2}\right) g((1-t) a+t b) d t \\
& \left.+\int_{\frac{1}{2}}^{1} f\left(t b+(1-t) \frac{a+b}{2}\right) g(t a+(1-t) b) d t\right] \\
& =\int_{a}^{\frac{a+b}{2}} \frac{1}{2}\left[f\left(\frac{x+a}{2}\right)+f\left(\frac{2 a+b-x}{2}\right)\right. \\
& \left.+f\left(\frac{b+x}{2}\right)+f\left(\frac{a+2 b-x}{2}\right)\right] g(x) d x ; \tag{2.24}
\end{align*}
$$

and

$$
\begin{align*}
\frac{1}{2}\left[f\left(\frac{a+b}{2}\right)+\frac{f(a)+f(b)}{2}\right] & \int_{a}^{b} g(x) d x \tag{2.25}\\
& =\int_{a}^{\frac{a+b}{2}}\left[f\left(\frac{a+b}{2}\right)+\frac{f(a)+f(b)}{2}\right] g(x) d x
\end{align*}
$$

By Lemma 1, the following inequalities hold for all $x \in\left[a, \frac{a+b}{2}\right]$.

$$
\begin{equation*}
f\left(\frac{x}{2}+\frac{a+b}{4}\right)+f\left(\frac{3(a+b)}{4}-\frac{x}{2}\right) \leq f\left(\frac{3 a+b}{4}\right)+f\left(\frac{a+3 b}{4}\right) \tag{2.26}
\end{equation*}
$$

holds when $A=\frac{3 a+b}{4}, C=\frac{x}{2}+\frac{a+b}{4}, D=\frac{3(a+b)}{4}-\frac{x}{2}$ and $B=\frac{a+3 b}{4}$ in Lemma 1.

$$
\begin{equation*}
f\left(\frac{3 a+b}{4}\right) \leq \frac{1}{2}\left[f\left(\frac{x+a}{2}\right)+f\left(\frac{2 a+b-x}{2}\right)\right] \tag{2.27}
\end{equation*}
$$

holds when $A=\frac{x+a}{2}, C=D=\frac{3 a+b}{4}$ and $B=\frac{2 a+b-x}{2}$ in Lemma 1.

$$
\begin{equation*}
f\left(\frac{a+3 b}{4}\right) \leq \frac{1}{2}\left[f\left(\frac{b+x}{2}\right)+f\left(\frac{a+2 b-x}{2}\right)\right] \tag{2.28}
\end{equation*}
$$

holds when $A=\frac{b+x}{2}, C=D=\frac{a+3 b}{4}$ and $B=\frac{a+2 b-x}{2}$ in Lemma 1 .

$$
\begin{equation*}
f\left(\frac{x+a}{2}\right)+f\left(\frac{2 a+b-x}{2}\right) \leq f(a)+f\left(\frac{a+b}{2}\right) \tag{2.29}
\end{equation*}
$$

holds when $A=a, C=\frac{x+a}{2}, D=\frac{2 a+b-x}{2}$ and $B=\frac{a+b}{2}$ in Lemma 1 .

$$
\begin{equation*}
f\left(\frac{b+x}{2}\right)+f\left(\frac{a+2 b-x}{2}\right) \leq f\left(\frac{a+b}{2}\right)+f(b) \tag{2.30}
\end{equation*}
$$

holds when $A=\frac{a+b}{2}, C=\frac{b+x}{2}, D=\frac{a+2 b-x}{2}$ and $B=b$ in Lemma 1. Multiplying the inequalities $(2.26)-(2.30)$ by $g(x)$, integrating both sides over x on $\left[a, \frac{a+b}{2}\right]$ and using identities $(2.22)-(2.25)$, we derive (2.18).
(3) By integration by parts, we have

$$
\begin{align*}
& t \int_{a}^{\frac{a+b}{2}}\left[\left(x-\frac{a+b}{2}\right) f^{\prime}\left(t x+(1-t) \frac{a+b}{2}\right)\right. \\
& \left.\quad \quad+\left(\frac{a+b}{2}-x\right) f^{\prime}\left(t(a+b-x)+(1-t) \frac{a+b}{2}\right)\right] d x \\
& =t \int_{a}^{b}\left(x-\frac{a+b}{2}\right) f^{\prime}\left(t x+(1-t) \frac{a+b}{2}\right) d x \\
& =(b-a)[G(t)-H(t)] \tag{2.31}
\end{align*}
$$

Now, using the convexity of f and the hypothesis of g, the inequality

$$
\begin{aligned}
& {\left[f\left(t x+(1-t) \frac{a+b}{2}\right)-f\left(\frac{a+b}{2}\right)\right] g(x)} \\
& \quad+\left[f\left(t(a+b-x)+(1-t) \frac{a+b}{2}\right)-f\left(\frac{a+b}{2}\right)\right] g(x) \\
& \leq t\left(x-\frac{a+b}{2}\right) f^{\prime}\left(t x+(1-t) \frac{a+b}{2}\right) g(x) \\
& \quad \quad+t\left(\frac{a+b}{2}-x\right) f^{\prime}\left(t(a+b-x)+(1-t) \frac{a+b}{2}\right) g(x)
\end{aligned}
$$

$$
\begin{aligned}
& =t\left(\frac{a+b}{2}-x\right)\left[f^{\prime}\left(t(a+b-x)+(1-t) \frac{a+b}{2}\right)\right. \\
& \left.\quad-f^{\prime}\left(t x+(1-t) \frac{a+b}{2}\right)\right] g(x) \\
& \leq t\left(\frac{a+b}{2}-x\right)\left[f^{\prime}\left(t(a+b-x)+(1-t) \frac{a+b}{2}\right)\right. \\
& \left.\quad-f^{\prime}\left(t x+(1-t) \frac{a+b}{2}\right)\right]\|g\|_{\infty}
\end{aligned}
$$

holds for all $t \in[0,1]$ and $x \in\left[a, \frac{a+b}{2}\right]$. Integrating the above inequality over x on $\left[a, \frac{a+b}{2}\right]$ and using (2.31) and (1.11), we derive (2.17). This completes the proof.

Remark 5. Let $g(x)=\frac{1}{b-a}(x \in[a, b])$ in Theorem 4. Then $H_{g}(t)=H(t)$ $(t \in[0,1])$ and Theorem 4 reduces to Theorem C.

Theorem 6. Let f, g, G, H_{g}, L_{g} be defined as above. Then we have the following results:
(1) L_{g} is convex on $[0,1]$.
(2) The following inequalities hold for all $t \in[0,1]$:

$$
\begin{align*}
G(t) \int_{a}^{b} g(x) d x & \leq L_{g}(t) \tag{2.32}\\
& \leq(1-t) \int_{a}^{b} f(x) g(x) d x+t \cdot \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x \\
& \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x
\end{align*}
$$

and

$$
\begin{gather*}
H_{g}(1-t) \leq L_{g}(t) \tag{2.33}\\
\frac{H_{g}(t)+H_{g}(1-t)}{2} \leq L_{g}(t) . \tag{2.34}
\end{gather*}
$$

(3) The following bound is true:

$$
\begin{equation*}
\sup _{t \in[0,1]} L_{g}(t)=\frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x \tag{2.35}
\end{equation*}
$$

Proof. (1) It is easily observed from the convexity of f that L_{g} is convex on $[0,1]$.
(2) As for (1) in Theorem 4, we have that the following identity holds on $[0,1]$:

$$
\begin{align*}
& L_{g}(t)=\frac{1}{2} \int_{a}^{\frac{a+b}{2}}[f(t a+(1-t) x)+f(t a+(1-t)(a+b-x)) \tag{2.36}\\
& {[f(t b+(1-t) x)+f(t b+(1-t)(a+b-x))] g(x) d x }
\end{align*}
$$

By Lemma 1, the following inequalities hold for all $x \in\left[a, \frac{a+b}{2}\right]$.
(2.37) $2 f\left(t a+(1-t) \frac{a+b}{2}\right) \leq f(t a+(1-t) x)+f(t a+(1-t)(a+b-x))$
holds when $A=t a+(1-t) x, C=D=t a+(1-t) \frac{a+b}{2}$ and $B=t a+(1-t)(a+b-x)$ in Lemma 1.

$$
\begin{equation*}
2 f\left(t b+(1-t) \frac{a+b}{2}\right) \leq f(t b+(1-t) x)+f(t b+(1-t)(a+b-x)) \tag{2.38}
\end{equation*}
$$

holds when $A=t b+(1-t) x, C=D=t b+(1-t) \frac{a+b}{2}$ and $B=t b+(1-t)(a+b-x)$ in Lemma 1. Multiplying the inequalities (2.37) - (2.38) by $g(x)$, integrating them over x on $\left[a, \frac{a+b}{2}\right]$ and using identities (2.20) and (2.36), we derive the first inequality of (2.32). Using the convexity of f and the inequality (1.10), the last part of (2.32) holds. Again from the convexity of f, we get

$$
\begin{align*}
H_{g}(1-t) & =\int_{a}^{b} f\left((1-t) x+t \frac{a+b}{2}\right) g(x) d x \tag{2.39}\\
& =\int_{a}^{b} f\left(\frac{t a+(1-t) x}{2}+\frac{t b+(1-t) x}{2}\right) g(x) d x \\
& \leq L_{g}(t)
\end{align*}
$$

and (2.33) is proved. From (2.17), (2.32) and (2.33), we get (2.34) .
(3) Using (2.32), the inequality (2.35) holds. This completes the proof.

Remark 7. Let $g(x)=\frac{1}{b-a}(x \in[a, b])$ in Theorem 6. Then $H_{g}(t)=H(t)$ $(t \in[0,1]), L_{g}(t)=L(t)(t \in[0,1])$ and Theorem 6 reduces to Theorem D.

References

[1] J. Hadamard, Étude sur les propriétés des fonctions entières en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl., 58 (1893), 171-215.
[2] S.S. Dragomir, Two mappings in connection to Hadamard's inequalities, J. Math. Anal. Appl., 167 (1992), 49-56.
[3] S.S. Dragomir, A refinement of Hadamard's inequality for isotonic linear functionals, Tamkang. J. Math., 24 (1993), 101-106.
[4] S.S. Dragomir, On the Hadamard's inequality for convex on the co-ordinates in a rectangle from the plane, Taiwanese J. Math., 5(4) (2001), 775-788.
[5] S.S. Dragomir, Further proprtities of some mapping associoateed with Hermite-Hadamard inequalities, Tamkang. J. Math., 34 (1) (2003), 45-57.
[6] S.S. Dragomir, Y.J. Cho and S.S. Kim, Inequalities of Hadamard's type for Lipschitzian mappings and their applications, J. Math. Anal. Appl., 245 (2000), 489-501.
[7] S.S. Dragomir, D.S. Milošević and J. Sándor, On some refinements of Hadamard's inequalities and applications, Univ. Belgrad. Publ. Elek. Fak. Sci. Math., 4 (1993), 3-10.
[8] L. Fejér, Über die Fourierreihen, II, Math. Naturwiss. Anz Ungar. Akad. Wiss., 24 (1906), 369-390.(In Hungarian).
[9] D.Y. Hwang, K.L. Tseng and G.S. Yang, Some Hadamard's inequalities for co-ordinated convex functions in a rectangle from the plane, Taiwanese J. Math., 11(1) (2007), 63-73.
[10] K.C. Lee and K.L. Tseng, On a weighted generalization of Hadamard's inequality for G convex functions, Tamsui-Oxford J. Math. Sci., 16(1) (2000), 91-104.
[11] K.L. Tseng, S.R. Hwang and S.S. Dragomir, On some new inequalities of Hermite-HadamardFejér type involving convex functions, Demonstratio Math., XL(1) (2007), 51-64.
[12] K.L. Tseng, S.R. Hwang and S.S. Dragomir, Fejér-type Inequalities (I), submitted.
[13] G.S. Yang and M.C. Hong, A note on Hadamard's inequality, Tamkang. J. Math., 28(1) (1997), 33-37.
[14] G.S. Yang and K.L. Tseng, On certain integral inequalities related to Hermite-Hadamard inequalities, J. Math. Anal. Appl., 239 (1999), 180-187.
[15] G.S. Yang and K.L. Tseng, Inequalities of Hadamard's type for Lipschitzian mappings, J. Math. Anal. Appl., 260 (2001), 230-238.
[16] G.S. Yang and K.L. Tseng, On certain multiple integral inequalities related to HermiteHadamard inequalities, Utilitas Math., 62 (2002), 131-142.
[17] G.S. Yang and K.L. Tseng, Inequalities of Hermite-Hadamard-Fejér type for convex functions and Lipschitzian functions, Taiwanese J. Math., 7(3) (2003), 433-440.

Department of Mathematics, Aletheia University, Tamsui, Taiwan 25103.
E-mail address: kltseng@email.au.edu.tw
China University of Science and Technology, Nankang, Taipei, Taiwan 11522
E-mail address: shru@ccs.cust.edu.tw
School of Engineering and Science, Victoria University, PO Box 14428, Melbourne City MC, Victoria 8001, Australia.

E-mail address: sever.dragomir@.vu.edu.au
URL: http://www.staff.vu.edu.au/RGMIA/dragomir/

[^0]: 1991 Mathematics Subject Classification. 26D15.
 Key words and phrases. Hermite-Hadamard inequality, Fejér inequality, Convex function.
 This research was partially supported by grant NSC 97-2115-M-156-002.

