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FEJÉR-TYPE INEQUALITIES (II)

K.-L. TSENG, SHIOW-RU HWANG, AND S.S. DRAGOMIR

Abstract. In this paper, we establish some Fejér-type inequalities for convex

functions. They complement the results from the previous recent paper [12].

1. Introduction

Throughout this paper, let f : [a, b] → R be convex, g : [a, b] → [0,∞) be
integrable and symmetric to a+b

2 and define the following functions on [0, 1] :

G (t) =
1
2

[
f

(
ta + (1− t)

a + b

2

)
+ f

(
tb + (1− t)

a + b

2

)]
;

H (t) =
1

b− a

∫ b

a

f

(
tx + (1− t)

a + b

2

)
dx;

Hg (t) =
∫ b

a

f

(
tx + (1− t)

a + b

2

)
g (x) dx;

L (t) =
1

2 (b− a)

∫ b

a

[f (ta + (1− t) x) + f (tb + (1− t) x)] dx;

and

Lg (t) =
1
2

∫ b

a

[f (ta + (1− t) x) + f (tb + (1− t) x)] g (x) dx.

If f is defined as above, then

(1.1) f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)
2

is known as the Hermite-Hadamard inequality [1].
For some results which generalize, improve, and extend this famous integral

inequality see [2] – [17].
In [2], Dragomir established the following theorem which refines the first inequal-

ity of (1.1).

Theorem A. Let f,H be defined as above. Then H is convex, increasing on [0, 1] ,
and for all t ∈ [0, 1], we have

(1.2) f

(
a + b

2

)
= H (0) ≤ H (t) ≤ H (1) =

1
b− a

∫ b

a

f (x) dx.

In [7], Dragomir, Milošević and Sándor established the following inequalities
related to (1.1):
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Theorem B. Let f , H be defined as above. Then:
(1) The following inequality holds

f

(
a + b

2

)
≤ 2

b− a

∫ a+3b
4

3a+b
4

f (x) dx(1.3)

≤
∫ 1

0

H (t) dt

≤ 1
2

[
f

(
a + b

2

)
+

1
b− a

∫ b

a

f (x) dx

]
.

(2) If f is differentiable on [a, b] , then, for all t ∈ [0, 1], we have the inequalities

0 ≤ 1
b− a

∫ b

a

f (x) dx−H (t)(1.4)

≤ (1− t)

[
f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx

]
and

(1.5) 0 ≤ f (a) + f (b)
2

−H (t) ≤ (f ′ (b)− f ′ (a)) (b− a)
4

.

Theorem C. Let f, H, G be defined as above. Then:
(1) G is convex and increasing on [0, 1].
(2) We have

inf
t∈[0,1]

G (t) = G (0) = f

(
a + b

2

)
and

sup
t∈[0,1]

G (t) = G (1) =
f (a) + f (b)

2
.

(3) The following inequality holds for all t ∈ [0, 1]:

(1.6) H (t) ≤ G (t) .

(4) The following inequality holds:

2
b− a

∫ a+3b
4

3a+b
4

f (x) dx ≤ 1
2

[
f

(
3a + b

4

)
+ f

(
a + 3b

4

)]
(1.7)

≤
∫ 1

0

G (t) dt

≤ 1
2

[
f

(
a + b

2

)
+

f (a) + f (b)
2

]
.

(5) If f is differentiable on [a, b] , then, for all t ∈ [0, 1] , we have the inequality

(1.8) 0 ≤ H (t)− f

(
a + b

2

)
≤ G (t)−H (t) .

Theorem D. Let f,H,G,L be defined as above. Then:
(1) L is convex on [0, 1].
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(2) We have the inequality:

(1.9) G (t) ≤ L (t) ≤ 1− t

b− a

∫ b

a

f (x) dx + t · f (a) + f (b)
2

≤ f (a) + f (b)
2

for all t ∈ [0, 1] and

sup
t∈[0,1]

L (t) =
f (a) + f (b)

2
.

(3) For all t ∈ [0, 1] , we have the inequalities:

H (1− t) ≤ L (t) and
H (t) + H (1− t)

2
≤ L (t) .

In [8], Fejér established the following weighted generalization of the Hermite-
Hadamard inequality (1.1).

Theorem E. Let f, g be defined as above. Then

(1.10) f

(
a + b

2

) ∫ b

a

g (x) dx ≤
∫ b

a

f (x) g (x) dx ≤ f (a) + f (b)
2

∫ b

a

g (x) dx

is known as Fejér inequality.

In [14], Yang and Tseng established the following theorem which refines the first
inequality of (1.10) and generalizes Theorem A.

Theorem F. Let f, g,Hg be defined as above. Then Hg is convex, increasing on
[0, 1] , and for all t ∈ [0, 1], we have

(1.11) f

(
a + b

2

) ∫ b

a

g (x) dx = Hg (0) ≤ Hg (t) ≤ Hg (1) =
∫ b

a

f (x) g (x) dx.

In this paper, we establish some Fejér-type inequalities related to the functions
G, H,Hg, L, Lg and generalize Theorems B – D. They complement the results from
the recent paper [12].

2. Main Results

In order to prove our main results, we need the following lemma:

Lemma 1 (see [9]). Let f : [a, b] → R be a convex function and let a ≤ A ≤ C ≤
D ≤ B ≤ b with A + B = C + D, then

f (C) + f (D) ≤ f (A) + f (B) .

Now, we are ready to state and prove our results.

Theorem 2. Let f, g,Hg be defined as above. Then we have the following Fejér-
type inequalities:
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(1) The following inequality holds:

f

(
a + b

2

) ∫ b

a

g (x) dx ≤ 2
∫ a+3b

4

3a+b
4

f (x) g

(
2x− a + b

2

)
dx(2.1)

≤
∫ 1

0

Hg (t) dt

≤ 1
2

[
f

(
a + b

2

) ∫ b

a

g (x) dx +
∫ b

a

f (x) g (x) dx

]
.

(2) If f is differentiable on [a, b] and g is bounded on [a, b], then, for all t ∈
[0, 1] , we have the inequality

0 ≤
∫ b

a

f (x) g (x) dx−Hg (t)

≤ (1− t)

[
f (a) + f (b)

2
(b− a)−

∫ b

a

f (x) dx

]
‖g‖∞ ,(2.2)

where ‖g‖∞ = sup
x∈[a,b]

|g (x)| .

(3) If f is differentiable on [a, b], then, for all t ∈ [0, 1] , we have the inequality

0 ≤ f (a) + f (b)
2

∫ b

a

g (x) dx−Hg (t)

≤ (f ′ (b)− f ′ (a)) (b− a)
4

∫ b

a

g (x) dx.(2.3)

Proof. (1) Using simple techniques of integration and the hypothesis of g, we have
the following identities:

(2.4) f

(
a + b

2

) ∫ b

a

g (x) dx = 4
∫ a+b

2

a

∫ 1
2

0

f

(
a + b

2

)
g (x) dtdx;

(2.5) 2
∫ a+3b

4

3a+b
4

f (x) g

(
2x− a + b

2

)
dx

= 2
∫ a+b

2

a

∫ 1
2

0

[
f

(
x

2
+

a + b

4

)
+ f

(
3 (a + b)

4
− x

2

)]
g (x) dtdx;

(2.6)
∫ 1

0

Hg (t) dt

=
∫ a+b

2

a

∫ 1
2

0

[
f

(
t
a + b

2
+ (1− t) x

)
+ f

(
tx + (1− t)

a + b

2

)]
g (x) dtdx

+
∫ a+b

2

a

∫ 1
2

0

[
f

(
t (a + b− x) + (1− t)

a + b

2

)
+ f

(
t
a + b

2
+ (1− t) (a + b− x)

)]
g (x) dtdx;
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and

(2.7)
1
2

[
f

(
a + b

2

) ∫ b

a

g (x) dx +
∫ b

a

f (x) g (x) dx

]

=
∫ a+b

2

a

∫ 1
2

0

[
f (x) + f

(
a + b

2

)]
g (x) dtdx

+
∫ a+b

2

a

∫ 1
2

0

[
f

(
a + b

2

)
+ f (a + b− x)

]
g (x) dtdx.

By Lemma 1, the following inequalities hold for all t ∈
[
0, 1

2

]
and x ∈

[
a, a+b

2

]
.

(2.8) 4f

(
a + b

2

)
≤ 2

[
f

(
x

2
+

a + b

4

)
+ f

(
3 (a + b)

4
− x

2

)]

holds when A = x
2 + a+b

4 , C = D = a+b
2 and B = 3(a+b)

4 − x
2 in Lemma 1.

(2.9) 2f

(
x

2
+

a + b

4

)
≤ f

(
t
a + b

2
+ (1− t) x

)
+ f

(
tx + (1− t)

a + b

2

)
holds when A = ta+b

2 + (1− t)x, C = D = x
2 + a+b

4 and B = tx + (1− t) a+b
2 in

Lemma 1.

(2.10) 2f

(
3 (a + b)

4
− x

2

)
≤ f

(
t (a + b− x) + (1− t)

a + b

2

)
+ f

(
t
a + b

2
+ (1− t) (a + b− x)

)

holds when A = t (a + b− x) + (1− t) a+b
2 , C = D = 3(a+b)

4 − x
2 and B = ta+b

2 +
(1− t) (a + b− x) in Lemma 1.

(2.11) f

(
t
a + b

2
+ (1− t)x

)
+ f

(
tx + (1− t)

a + b

2

)
≤ f (x) + f

(
a + b

2

)
holds when A = x, C = ta+b

2 + (1− t) x, D = tx + (1− t) a+b
2 and B = a+b

2 in
Lemma 1.

(2.12) f

(
t (a + b− x) + (1− t)

a + b

2

)
+ f

(
t
a + b

2
+ (1− t) (a + b− x)

)
≤ f

(
a + b

2

)
+ f (a + b− x)

holds for A = a+b
2 , C = t (a + b− x) + (1− t) a+b

2 , D = ta+b
2 + (1− t) (a + b− x)

and B = a + b − x in Lemma 1. Multiplying the inequalities (2.8) − (2.12) by
g (x) and integrating them over t on

[
0, 1

2

]
, over x on

[
a, a+b

2

]
and using identities

(2.4)− (2.7), we derive (2.1) .
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(2) By integration by parts, we have∫ a+b
2

a

(
a + b

2
− x

)
[f ′ (a + b− x)− f ′ (x)] dx(2.13)

=
∫ b

a

(
x− a + b

2

)
f ′ (x) dx

=
f (a) + f (b)

2
(b− a)−

∫ b

a

f (x) dx.

Using substitution rules for integration and the hypothesis of g, we have the fol-
lowing identities

(2.14)
∫ b

a

f (x) g (x) dx =
∫ a+b

2

a

[f (x) + f (a + b− x)] g (x) dx

and

(2.15) Hg (t) =
∫ a+b

2

a

[
f

(
tx + (1− t)

a + b

2

)
+ f

(
t (a + b− x) + (1− t)

a + b

2

)]
g (x) dx.

Now, using the convexity of f and the hypothesis of g, the inequality[
f (x)− f

(
tx + (1− t)

a + b

2

)]
g (x)

+
[
f (a + b− x)− f

(
t (a + b− x) + (1− t)

a + b

2

)]
g (x)

≤ (1− t)
(

x− a + b

2

)
f ′ (x) g (x)

+ (1− t)
(

a + b

2
− x

)
f ′ (a + b− x) g (x)

= (1− t)
(

a + b

2
− x

)
[f ′ (a + b− x)− f ′ (x)] g (x)

≤ (1− t)
(

a + b

2
− x

)
[f ′ (a + b− x)− f ′ (x)] ‖g‖∞

holds for all t ∈ [0, 1] and x ∈
[
a, a+b

2

]
. Integrating the above inequalities over x

on
[
a, a+b

2

]
and using (2.13)− (2.15) and (1.11), we derive (2.2) .

(3) Using the convexity of f , we have

f (a)− f
(

a+b
2

)
2

≤ 1
2

(
a− a + b

2

)
f ′ (a) =

a− b

4
f ′ (a)

and
f (b)− f

(
a+b
2

)
2

≤ 1
2

(
b− a + b

2

)
f ′ (b) =

b− a

4
f ′ (b)

and taking their sum we obtain

f (a) + f (b)
2

− f

(
a + b

2

)
≤ (f ′ (b)− f ′ (a)) (b− a)

4
.
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Thus,

(2.16)
f (a) + f (b)

2

∫ b

a

g (x) dx− f

(
a + b

2

) ∫ b

a

g (x) dx

≤ (f ′ (b)− f ′ (a)) (b− a)
4

∫ b

a

g (x) dx.

Finally, (2.3) follows from (1.10) , (1.11) and (2.16). This completes the proof.

Remark 3. Let g (x) = 1
b−a (x ∈ [a, b]) in Theorem 2. Then Hg (t) = H (t)

(t ∈ [0, 1]) and Theorem 2 reduces to Theorem B.

In the following theorems, we point out some inequalities for the functions
H,Hg, G, Lg, Q considered above:

Theorem 4. Let f, g,G,Hg be defined as above. Then we have the following Fejér-
type inequalities:

(1) The following inequality holds for all t ∈ [0, 1]:

(2.17) Hg (t) ≤ G (t)
∫ b

a

g (x) dx.

(2) The following inequality holds:

2
∫ a+3b

4

3a+b
4

f (x) g

(
2x− a + b

2

)
dx ≤ 1

2

[
f

(
3a + b

4

)
+ f

(
a + 3b

4

)] ∫ b

a

g (x) dx

≤ (b− a)
∫ 1

0

G (t) g ((1− t) a + tb) dt

≤ 1
2

[
f

(
a + b

2

)
+

f (a) + f (b)
2

] ∫ b

a

g (x) dx.(2.18)

(3) If f is differentiable on [a, b] and g is bounded on [a, b] , then, for all t ∈
[0, 1] , we have the inequality

(2.19) 0 ≤ Hg (t)− f

(
a + b

2

) ∫ b

a

g (x) dx ≤ (b− a) [G (t)−H (t)] ‖g‖∞

where ‖g‖∞ = sup
x∈[a,b]

|g (x)| .

Proof. (1) Using simple techniques of integration and the hypothesis of g, we have
that the following identity holds on [0, 1]:

(2.20) G (t)
∫ b

a

g (x) dx =
∫ a+b

2

a

[
f

(
ta + (1− t)

a + b

2

)
+ f

(
tb + (1− t)

a + b

2

)]
g (x) dx.

By Lemma 1, the following inequality holds for all x ∈
[
a, a+b

2

]
:

(2.21) f

(
tx + (1− t)

a + b

2

)
+ f

(
t (a + b− x) + (1− t)

a + b

2

)
≤ f

(
ta + (1− t)

a + b

2

)
+ f

(
tb + (1− t)

a + b

2

)
.
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It holds when

A = ta + (1− t)
a + b

2
, C = tx + (1− t)

a + b

2
,

D = t (a + b− x) + (1− t)
a + b

2
and B = tb + (1− t)

a + b

2
in Lemma 1. Multiplying the inequality (2.21) by g (x) , integrating both sides over
x on

[
a, a+b

2

]
and using identities (2.15) and (2.20), we derive (2.17) .

(2) As for (1), we have the following identities:

(2.22) 2
∫ a+3b

4

3a+b
4

f (x) g

(
2x− a + b

2

)
dx

=
∫ a+b

2

a

[
f

(
x

2
+

a + b

4

)
+ f

(
3 (a + b)

4
− x

2

)]
g (x) dx;

(2.23)
1
2

[
f

(
3a + b

4

)
+ f

(
a + 3b

4

)]∫ b

a

g (x) dx

=
∫ a+b

2

a

[
f

(
3a + b

4

)
+ f

(
a + 3b

4

)]
g (x) dx;

(b− a)
∫ 1

0

G (t) g ((1− t) a + tb) dt

=
b− a

2

[∫ 1

1
2

f

(
ta + (1− t)

a + b

2

)
g (ta + (1− t) b) dt

+
∫ 1

2

0

f

(
ta + (1− t)

a + b

2

)
g ((1− t) a + tb) dt

+
∫ 1

2

0

f

(
tb + (1− t)

a + b

2

)
g ((1− t) a + tb) dt

+
∫ 1

1
2

f

(
tb + (1− t)

a + b

2

)
g (ta + (1− t) b) dt

]

=
∫ a+b

2

a

1
2

[
f

(
x + a

2

)
+ f

(
2a + b− x

2

)
+ f

(
b + x

2

)
+ f

(
a + 2b− x

2

)]
g (x) dx;(2.24)

and

(2.25)
1
2

[
f

(
a + b

2

)
+

f (a) + f (b)
2

] ∫ b

a

g (x) dx

=
∫ a+b

2

a

[
f

(
a + b

2

)
+

f (a) + f (b)
2

]
g (x) dx.

By Lemma 1, the following inequalities hold for all x ∈
[
a, a+b

2

]
.

(2.26) f

(
x

2
+

a + b

4

)
+ f

(
3 (a + b)

4
− x

2

)
≤ f

(
3a + b

4

)
+ f

(
a + 3b

4

)
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holds when A = 3a+b
4 , C = x

2 + a+b
4 , D = 3(a+b)

4 − x
2 and B = a+3b

4 in Lemma 1.

(2.27) f

(
3a + b

4

)
≤ 1

2

[
f

(
x + a

2

)
+ f

(
2a + b− x

2

)]

holds when A = x+a
2 , C = D = 3a+b

4 and B = 2a+b−x
2 in Lemma 1.

(2.28) f

(
a + 3b

4

)
≤ 1

2

[
f

(
b + x

2

)
+ f

(
a + 2b− x

2

)]

holds when A = b+x
2 , C = D = a+3b

4 and B = a+2b−x
2 in Lemma 1.

(2.29) f

(
x + a

2

)
+ f

(
2a + b− x

2

)
≤ f (a) + f

(
a + b

2

)

holds when A = a, C = x+a
2 , D = 2a+b−x

2 and B = a+b
2 in Lemma 1.

(2.30) f

(
b + x

2

)
+ f

(
a + 2b− x

2

)
≤ f

(
a + b

2

)
+ f (b)

holds when A = a+b
2 , C = b+x

2 , D = a+2b−x
2 and B = b in Lemma 1. Multiplying

the inequalities (2.26) − (2.30) by g (x) , integrating both sides over x on
[
a, a+b

2

]
and using identities (2.22)− (2.25), we derive (2.18) .

(3) By integration by parts, we have

t

∫ a+b
2

a

[(
x− a + b

2

)
f ′

(
tx + (1− t)

a + b

2

)
+

(
a + b

2
− x

)
f ′

(
t (a + b− x) + (1− t)

a + b

2

)]
dx

= t

∫ b

a

(
x− a + b

2

)
f ′

(
tx + (1− t)

a + b

2

)
dx

= (b− a) [G (t)−H (t)] .(2.31)

Now, using the convexity of f and the hypothesis of g, the inequality[
f

(
tx + (1− t)

a + b

2

)
− f

(
a + b

2

)]
g (x)

+
[
f

(
t (a + b− x) + (1− t)

a + b

2

)
− f

(
a + b

2

)]
g (x)

≤ t

(
x− a + b

2

)
f ′

(
tx + (1− t)

a + b

2

)
g (x)

+ t

(
a + b

2
− x

)
f ′

(
t (a + b− x) + (1− t)

a + b

2

)
g (x)
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= t

(
a + b

2
− x

) [
f ′

(
t (a + b− x) + (1− t)

a + b

2

)
− f ′

(
tx + (1− t)

a + b

2

)]
g (x)

≤ t

(
a + b

2
− x

) [
f ′

(
t (a + b− x) + (1− t)

a + b

2

)
− f ′

(
tx + (1− t)

a + b

2

)]
‖g‖∞

holds for all t ∈ [0, 1] and x ∈
[
a, a+b

2

]
. Integrating the above inequality over x on[

a, a+b
2

]
and using (2.31) and (1.11), we derive (2.17) . This completes the proof.

Remark 5. Let g (x) = 1
b−a (x ∈ [a, b]) in Theorem 4. Then Hg (t) = H (t)

(t ∈ [0, 1]) and Theorem 4 reduces to Theorem C.

Theorem 6. Let f, g,G,Hg, Lg be defined as above. Then we have the following
results:

(1) Lg is convex on [0, 1] .
(2) The following inequalities hold for all t ∈ [0, 1]:

G (t)
∫ b

a

g (x) dx ≤ Lg (t)(2.32)

≤ (1− t)
∫ b

a

f (x) g (x) dx + t · f (a) + f (b)
2

∫ b

a

g (x) dx

≤ f (a) + f (b)
2

∫ b

a

g (x) dx;

and

(2.33) Hg (1− t) ≤ Lg (t) ;

(2.34)
Hg (t) + Hg (1− t)

2
≤ Lg (t) .

(3) The following bound is true:

(2.35) sup
t∈[0,1]

Lg (t) =
f (a) + f (b)

2

∫ b

a

g (x) dx.

Proof. (1) It is easily observed from the convexity of f that Lg is convex on [0, 1] .

(2) As for (1) in Theorem 4, we have that the following identity holds on [0, 1]:

(2.36) Lg (t) =
1
2

∫ a+b
2

a

[f (ta + (1− t) x) + f (ta + (1− t) (a + b− x))

+ f (tb + (1− t) x) + f (tb + (1− t) (a + b− x))] g (x) dx.

By Lemma 1, the following inequalities hold for all x ∈
[
a, a+b

2

]
.

(2.37) 2f

(
ta + (1− t)

a + b

2

)
≤ f (ta + (1− t) x) + f (ta + (1− t) (a + b− x))
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holds when A = ta+(1− t) x, C = D = ta+(1− t) a+b
2 and B = ta+(1− t) (a + b− x)

in Lemma 1.

(2.38) 2f

(
tb + (1− t)

a + b

2

)
≤ f (tb + (1− t) x) + f (tb + (1− t) (a + b− x))

holds when A = tb+(1− t) x, C = D = tb+(1− t) a+b
2 and B = tb+(1− t) (a + b− x)

in Lemma 1. Multiplying the inequalities (2.37)− (2.38) by g (x) , integrating them
over x on

[
a, a+b

2

]
and using identities (2.20) and (2.36), we derive the first inequal-

ity of (2.32). Using the convexity of f and the inequality (1.10), the last part of
(2.32) holds. Again from the convexity of f , we get

Hg (1− t) =
∫ b

a

f

(
(1− t)x + t

a + b

2

)
g (x) dx(2.39)

=
∫ b

a

f

(
ta + (1− t) x

2
+

tb + (1− t) x

2

)
g (x) dx

≤ Lg (t)

and (2.33) is proved. From (2.17) , (2.32) and (2.33) , we get (2.34) .

(3) Using (2.32) , the inequality (2.35) holds. This completes the proof.

Remark 7. Let g (x) = 1
b−a (x ∈ [a, b]) in Theorem 6. Then Hg (t) = H (t)

(t ∈ [0, 1]) , Lg (t) = L (t) (t ∈ [0, 1]) and Theorem 6 reduces to Theorem D.
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