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FEM Based Statistical Data-Driven Modeling

Approach for MFT Design Optimization
Marko Mogorovic, Member, IEEE, Drazen Dujic, Senior Member, IEEE

Abstract—This paper proposes a novel class of neural-network
inspired statistical data-driven models, especially derived for
the purpose of design optimization of medium frequency trans-
formers. These models allow for an efficient (3 − 5 orders of
magnitude faster compared to FEM), yet sufficiently accurate
(within 5 − 10% error relative to FEM) and numerically stable
estimation of the complex effects, with otherwise impractically
high computational cost and/or convergence issues. The applica-
tion of the proposed modeling framework is described in detail
on two characteristic examples of the complex electromagnetic
phenomena occurring within the medium frequency transform-
ers. The performance of the derived models is verified both with
detailed FEM simulations and experimental results.

Index Terms—MFT, modeling, design, optimization, power
electronics

NOMENCLATURE

H Magnetic field

W Magnetic field energy

A Core limb width

B Core window area width

C Core window area height

D Core depth

MLT Equivalent mean length turn of the center of

weight of the magnetic energy

PW,SW Primary and secondary winding, respectively

IWA Minimal rectangular area around the windings

dw1 Winding 1 width

dw2 Winding 2 width

dw1c Winding 1 to core horizontal clearance distance

dw2c Winding 2 to core horizontal clearance distance

dw1w2 Winding 1 to winding 2 clearance distance

hw1 Winding 1 height

hw2 Winding 2 height

hw1c Winding 1 to core vertical clearance distance

hw2c Winding 2 to core vertical clearance distance

dX Horizontal offset between the centers of the

IWA and the core window area

dhw2 Vertical offset between the centers of the IWA

and SW

Ct2c Turn-to-core parasitic capacitance

Ct2t Turn-to-turn parasitic capacitance

Dt2c Turn-to-core distance

Dt2t Turn-to-turn distance

The initial version of this paper has been presented at ECCE 2019 in
Baltimore and has been substantially extended.

The authors are with the Power Electronics Laboratory, École Polytech-
nique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland (e-mail:
marko.mogorovic@epfl.ch; drazen.dujic@epfl.ch).

Wt Turn width

Ht Turn height

Rt Turn edge radius

N Number of winding turns

E Electric field

V Electric field potential

Vm Voltage pulse magnitude

t Time

ai1...in Multi-variable polynomial coefficients

xi Normalized variables

xi Vector of normalized variables

fi(x) Multi-variable polynomial function

I. INTRODUCTION

Any design optimization relies on some form of mathe-

matical description of the relevant underlying physics. The

quality of the whole process boils down to the right trade-off

between accuracy and execution speed of the utilized models.

A qualitative and principal comparison of different available

classes of models, in this respect, is given in Figs. 1 and 2. On

the one side, finite elements method (FEM) provides a detailed

and very precise modeling framework, but its computational

cost and numeric convergence issues are often prohibitive

when dealing with complex geometries featuring coupled

multiphysics. On the other side, analytic models usually have

a very low computational cost, but offer acceptable accuracy

only for a very narrow set of phenomena that can be well

analytically described or approximated, as displayed in Fig. 1a.

Without any better alternative, some of the oldest ana-

lytic models [1]–[3], developed well before the computational

power was sufficiently evolved to allow the numeric solution of

partial differential equations via FEM, are now experiencing

a renaissance within design optimization applications. Com-

putationally light analytic models perform extremely well as

long as the necessary approximations/assumptions hold within

reasonable accuracy limits.

Unfortunately, both electromagnetic and heat transfer equa-

tions in 3D have an exact closed-form analytic description

only for a very limited class of special problems, featuring

either full concentric symmetry or extreme relative ratios of

certain dimensions that can be considered infinite and edge

effects neglected in the averaging. In order to extend the

validity range, any other more complex geometry of interest is

interpreted as a reduced and approximated equivalent which

fulfills one of the two aforementioned properties. However,

depending on the strength of the involved assumptions, the

estimation errors introduced as a side-effect of this reduction

are often a limiting factor.
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Fig. 1. Qualitative analysis of the properties of various classes of models: (a)
Analytic and FEM; (b) Inclusion of various correction factors into analytic
models to compensate for simplifications and approximations and improve
the estimation accuracy for a number of isolated cases. (c) Inclusion of the
proposed FEM-based statistical data-driven models (SDDM) allows modeling
complex phenomena with inherent accuracy almost as good as FEM (within
< 5% error) yet with execution speed comparable to analytic models (3− 5
orders of magnitude faster than FEM).

Therefore, a great deal of scientific effort has been directed

into improving many of the aforementioned inherited legacy

models - a significant number of corrections (e.g. correction

factors) has been developed over the years to compensate

for these errors and improve the accuracy of the specific,

especially important models, as can be seen in Fig. 1b.

While it is the best when a certain model has an analytic

closed form description, there are still problems that cannot be

analytically approximated within reasonable accuracy limits.

In these cases FEM is normally used. In general, due to high

computational cost and problems with numeric stability, these

models are usually used for final design verification and its

correction through several last iterations outside of the main

design optimization loop. This paper proposes a new class of

models, FEM based statistical data driven models (SDDM),

inherently featuring the high precision of FEM (within < 5%
error compared to FEM) yet with execution speed comparable

to analytic models (3−5 orders of magnitude faster than FEM),

as displayed in Fig. 1c. With this type of modeling framework

it is now possible to include very complex and sophisticated

simulations, otherwise impractically slow or numerically un-

stable, into the main optimization loop.

Inspired by neural networks, this methodology uses regres-

sion to train the models based on the results of the extensive

FEM simulations of the representative generalized geometry

details. Models are expressed as multi-variable polynomials,

providing a powerful generalized modeling format for a wide

spectrum of phenomena with low computational cost.

For the sake of illustration, the approach can be compared to

early analytic empirical models, such as Steinmetz equation [2]

and many others, with the two key differences: (i) the format

of the model is standardized, yet very flexible thus providing a

very efficient modeling framework that is applicable to a very

wide range of models; (ii) the data gathering cost is very low.

In contrast to series of real experiments, relevant data can be

obtained through excessive systematically-parametrized FEM

simulations and verified with only a few experimental results.

This paper is structured as follows. Two representative

application examples of the proposed SDDM modeling frame-

work are provided, on the electromagnetic phenomena that

cannot be properly analytically modeled. Section II describes
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Fig. 2. Modeling principles: (a) Full numeric modeling, e.g. 3D FEM
multiphysics, (b) Full analytic modeling, (c) SDDM modeling.

the application of the SDDM methodology on the modeling

of the leakage inductance of medium frequency transformers

(MFTs) with asymmetric winding structures. The identification

and normalization of the representative generalized geometry

details and the derivation of the multi-variable polynomial

models is described in detail. Section III shows how SDDM

can be used for modeling of local electrostatic fields for the

purposes of insulation coordination of MFTs. Both resulting

models are verified with detailed FEM simulations and ex-

perimentally on a multi-winding MFT prototype, as provided

within the corresponding sections. Section IV provides general

conclusions and an outlook based on the presented results.

II. SDDM LEAKAGE INDUCTANCE MODELING OF

ASYMMETRIC WINDING STRUCTURES

In solid state transformer (SST) [4] applications, a proper

design of the MFT electric parameters, especially the MFT

leakage inductance, is important for the proper converter

operation [5]. While it is possible to quite accurately model

the leakage inductance of the typical symmetric 2-winding

transformer geometries, using light-weight analytic models

[6]–[8], in case of frequently encountered asymmetric multi-

winding structures [9], [10], such as shown in Fig. 3, all of

the available methods (e.g. FEM, Roth [11] etc.) resort to

some type of computationally intensive numeric techniques.

These methods offer excellent accuracy, but their execution

time and numeric stability are often limiting factors when it

comes to overall multi-variable optimization. To that end, this

paper proposes the SDDM as a methodology to generate a

computationally efficient DC leakage inductance model for

multi-winding transformers with acceptable accuracy.

SDDM is based on multi-variable polynomial fitting of the

results of the FEM analysis of the two representative gener-

alized winding geometry primitives, as given in Fig. 4. Thus

the proposed model keeps the inherent precision of the FEM

as the most precise modeling approach, whereas its execution

comes down to several low order matrix multiplications, as

one of the most primitive computation functions, resulting in

very fast execution.
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Fig. 3. Considered multi-winding transformer with asymmetric winding
structure. (a) Horizontal cross-section showing two axis of MFT geometric
symmetry. MFT geometric symmetry detail inside (b) and outside (c) of the
core window area.

A. Proposed Modeling Method

While full 3D coupled multiphysics FEM modeling is

usually out of the question for optimization of systems with

higher complexity, the decoupled simulation of various details

is still quite computationally efficient and numerically robust,

especially in case of the 2D models. Therefore, the first step

of SDDM modeling is the electromagnetic FEM analysis that

allows the identification of the effects of various geometric

parameters on the transformer DC leakage inductance and

the analytic decomposition of the model. As shown in [12],

the total (3D) leakage inductance of the transformer can be

very well estimated using two 2D models, representing the

magnetic field energy inside and outside of the core widow

area, as depicted in Fig. 3. Therefore, the estimation of the

total (3D) leakage boils down to accurate estimation of the

magnetic energy in these two 2D geometries.

The two representative 2D generalized geometry primitives

are defined and parametrised, as described in Fig. 4, and

normalized, as shown in Tables I and II. As can be seen, they

are fully defined with eight and seven normalized parameters,

respectively. Due to the largely linear effect on the leakage

inductance, relative winding widths can be considered as
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Fig. 4. Two generalized geometry details describing the magnetic energy of
the winding cross-section inside (a) and outside (b) of the core window area.

constant. Based on the preservation of the total magnetic

energy (SW ), a winding geometry equivalence with infinitely

thin windings can be derived, as given in Fig. 5. The effect of

the winding (dw1 and dw2) and inter-winding (dw1w2) widths

on the leakage inductance can be merged into an equivalent

inter-winding distance (1).

dw1w2.eq = dw1w2 +
1

3
(dw1 + dw2) (1)

Using this equivalence, any winding width configuration can

be transformed into any other, while preserving the total

magnetic energy and consequently the resulting leakage in-

ductance. Of course, in case of the discussed asymmetric

winding arrangement, this equivalence is an approximation.

However, this is a very good approximation that yields a very

accurate result within a large range of different winding widths

- covering most of the practical designs.

This is one of the main advantages of SDDM compared to

analytic modeling - the decomposition of the initial problem

to several simple details is done with no or very little loss

of accuracy, as illustrated in Fig. 2. Unlike the analytic

models which can be applied only to a very limited class of

geometry details with special features, almost any geometry

can be solved with FEM. Thus the strong assumptions and

approximations (which can significantly affect the modeling

accuracy) that are necessary to transform the given geometry

up to the point when it can analytically be solved are relaxed.

However, it is still important to non-destructively decompose

the model to the simplest possible representative details, as

applying the SDDM to the full 3D FEM model would again

yield all of the original problems with computation cost and

numeric stability.

A 2D magnetostatic FEM parametric sweep has been per-

formed, generating the set of leakage inductance estimations

(approximately 50’000 simulations) within the geometry range

of interest according to Tables I and II, covering all of the

practically relevant geometry ratios, as displayed in Figs. 6a

and 6b.

Based on these results, and taking into account the minimum

vector of influential variables (x), as summarized in Tables I

and II, a multi-variable polynomial fitting is done variable

by variable, as shown in Fig. 7, allowing to always choose

the minimum adequate polynomial order while inherently
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Fig. 5. Winding geometry equivalence in respect to total magnetic energy
(SW ) preservation: (a) Standard 2-winding example (b) Theoretical equiva-
lence with infinitely thin windings.
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TABLE I: Definition of the normalized variables based on the generalized winding geometry detail, as shown in Fig. 4a

Norm. Vars. / / x1 x2 x3 x4 x5 x6

Definition dw1

hw1

dw2

hw1

dw1w2

hw1

hw2

hw1

2dhw2

hw1−hw2

B
dw1+dw1w2+dw2

C
hw1

2dX
B−dw1−dw1w2−dw2

Range 0.1 0.1 [0, 0.7] [0.2, 1] [0, 1] [1, 2] [1, 2] [−1, 1]

Note that hw1 is taken as a reference when defining the geometry ratios. Winding widths (dw1 and dw2) are fixed as their
effect on the leakage is quite linear and can be taken into account through a correction of dw1w2.

TABLE II: Definition of the normalized variables based on the generalized winding geometry detail, as shown in Fig. 4b

Norm. Vars. / / x1 x2 x3 x4 x5

Definition dw1

hw1

dw2

hw1

dw1w2

hw1

hw2

hw1

2dhw2

hw1−hw2

dw1c

dw1+dw1w2+dw2

C
hw1

Range 0.1 0.1 [0, 0.7] [0.2, 1] [0, 1] [0, 1] [1, 2]

Note that compared to the geometry detail inside the core window area (Fig. 4a), the leakage
inductance is in this case fully defined by five normalized variables. Instead of x4 and x6 from
Table I, it is enough to define x4 as given in Table II.
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Fig. 6. An example of the 2D magnetostatic FEM simulation of the magnetic
field inside (a) and outside (b) of the core window area.

ensuring convergence. This is done using a custom made

algorithm that employs the polyfit function from the numpy

python library for single-variable polynomial fitting, based on

minimum square error method. Several transformations of the

normalized variables, employing typical fitting functions, such

as ex, log(x) and 1/x are used to linearize the data sets as

much as possible in order to achieve a better fit. The final

result of this fitting is a multi-dimensional array of polynomial

parameters. For the sake of illustration, an example of the

described model, for a two variable case is shown in (2).

L′

σ.fit =

[

x1

1

]T [

a1.3 a1.2 a1.1 a1.0

a0.3 a0.2 a0.1 a0.0

]











x3

2

x2

2

x2

1











(2)

As can be seen, the evaluation of the model boils down to

a simple low-order matrix multiplication. While this operation

executes very fast on the processor, depending on how many

variables (N ) are involved, and what are the orders of the

polynomial fittings (ni), there is
∏N

i=1
ni polynomials to be

solved. Although this model is still executing very fast for the

case of 6-variables, described by Fig. 4 and Tables I and II
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Fig. 7. Multi-variable polynomial fitting of the MFT leakage inductance to
the results of the 2D FEM sweep (approximately 50’000 simulations).

(three orders of magnitude faster compared to FEM), it is

possible to further optimize the model. Rearranging the order

in which the polynomial is executed based on the algorithm

allows for a part of the multi-variable polynomial, involving

variables that have been defined, to be pre-calculated and

only execute the part of the model dealing with optimization

variables within the optimization loop. Doing this, in case that

not all of the variables (x) are being actively changed in the

most nested optimization loop, it is possible to even further

improve the overall execution time.

The resulting multi-variable polynomial models of the two

geometric primitives from Fig. 4 have been compared to the

results of the FEM sweep, as displayed in Fig. 8. As can

be seen, the errors are very low (below 4% for any practical

design), confirming the good precision of the model.

While the estimation time is a parameter which strongly

depends on the computer hardware and allocated computation
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Fig. 8. Histograms of the relative leakage inductance estimation error,
referred to the FEM results (approximately 50’000 test samples).

TABLE III: Computation times Fig. 14c

Model 3D FEM 2D FEM SDDM Analytic

Ex. [sec] 11.6 2.16 5.6 · 10
−4

7.2 · 10
−5

Except for 3D FEM, each execution time is derived as the average time
of 50’000 executions, in order to remove any pre-processing/compile
time. To get a fair comparison, each application was run as a single-
thread. Note that analytic (Dowell’s) model is just used for the sake of
execution time comparison - as aforementioned analytic models are not
suitable for this type of highly asymmetric geometries.

resources, just for the sake of illustration, the execution times

of the 3D FEM, 2D FEM, SDDM and analytic Dowell’s

[3] model are provided in Table III, confirming the afore-

mentioned execution time scale. Note that analytic (Dowell’s)

model is just used for the sake of execution time comparison.

B. Application of the Model

The application of the derived model is demonstrated on

a nine-secondary multi-winding transformer prototype, as dis-

played in Fig. 10, with a geometry profile, as shown in Fig. 3.

Calculation of the total 3D leakage inductance boils down to

a few simple steps. First, the dimensions of the two geometric

profiles of the MFT, as seen in Fig. 4, need to be identified

and transformed using (1) according to Tables I and II. This

leads to

dw1w2.eq01 = dw1w2 +
1

3
(dw1 + dw2 −

2

3
0.1hw1) (3)

where dw1w2.eq01 is the equivalent inter-winding dielectric

distance of the generalized geometry primitive with selected

constant normalized winding widths (0.1hw).

Taking into account (3), the two multi-variable polynomial

models (f1 and f2), describing the magnetic energy inside and

outside of the core window area are evaluated leading to per-

length permeances, i.e. leakage inductances per-square-turn

L′

σ.in = f1(x1) (4)

1 2 3 4 5 6 7 8 9

Normalized Leakage Inductance [μH/m]

0.4
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Outside
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Fig. 9. An example of the per-length per-square-turn primary to i-th sec-
ondary winding leakage inductance calculation of a multi-winding transformer
with a geometry profile, as shown in Fig. 3, in case of nine secondary
windings, according to the prototype, as given in Fig. 10.

Fig. 10. A multi-winding transformer prototype for experimental verification
[13].

L′

σ.out = f2(x2) (5)

where x1 and x2 are the normalized variable vectors from

Tables I and II, respectively. Weighted sum of these two values

in respect to the portions of the MLT inside and outside of

the core window area (see Fig. 3a) leads to the equivalent

per-length permeance, i.e. leakage inductance per-square-turn

L′

σ.eq =
1

A+D
(DL′

σ.in +AL′

σ.out). (6)

For the sake of illustration, plots of these values are provided

in Fig. 9, for the given transformer prototype.Finally, the total

leakage inductance referred to the primary winding of the

transformer can be calculated, as shown in (7).

Lσ.total = N2

1
(MLT )L′

σ.eq (7)

Depending on the design task, beside the direct estimation,

this fast executing model also facilitates simple and numer-

ically efficient inverse calculation of any single or arbitrary
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Fig. 11. (a) Plots of the measured and estimated (both with the 3D FEM
and the proposed SDDM) total primary to i-th secondary winding leakage
inductance of the multi-winding transformer prototype from Fig. 10 referred
to each secondary winding. (b) Plots of the relative estimation errors of the
3D FEM and the proposed SDDM referred to the measurements.

combination of geometric dimensions x (e.g. dw1, dw1, dw1w2)

in order to match the reference leakage inductance.

C. Experimental Verification

The presented modeling is verified with a full 3D FEM

model and measurement on a muti-winding transformer pro-

totype [13], as displayed in Fig. 10, with geometry profile,

as shown in Fig. 3, with nine secondary windings. All of

the geometric dimensions, construction details and leakage

inductance measurement between each secondary and primary

winding can be found in [13].

Plots of the measured and estimated total leakage inductance

between the primary and each of the secondary windings and

relative estimation errors are displayed in Fig. 11. Estimation is

done both with proposed statistical data-driven model (SDDM)

and full 3D FEM for comparison purposes. A slight under es-

timation of the total leakage can be observed for both models.

This is most likely due to a small additional leakage inductance

of the extended termination of the windings and connection

cables. As expected the proposed SDDM performs within the

5% error compared to FEM, achieving good accuracy with

less than 9% error compared to the measurement even in case

of such extreme geometry ratios.

III. MODELING OF THE LOCAL ELECTRIC FIELD WITHIN

THE MFT INSULATION

Similar to the previous, this section proposes the SDDM as

a methodology to derive a suficiently-accurate (error < 5%
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Fig. 12. (a) Standard 1.2/50 µs full-wave lightning impulse profile, accord-
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voltage distribution over the transformer winding turns during fast ”ringing”
transients where: V0 is the initial voltage distribution at t = 0; Vtm is
the maximum theoretical turn voltages during subsequent ”ringing” transient;
Vinf is the voltage distribution after the fast transient response has transpired.

Voltage [%]
0 50 100

T
u
rn

 I
n
d
ec

x

9
8
7
6
5
4
3
2
1

V
0

V
inf

V
t.m

V [%]

100

  0

 80

 20
 40
 60

(a)

E [V/m]

54.1

0.0

43.2

21.6
32.4

10.8

(b)

Fig. 13. 2D electrostatic FEM simulation of a representative MFT cross-
section example, excited with a theoretical BIL approximation (Heaviside
step function) at the moment of incidence (t = 0): (a) voltage distribution
and (b) E-field distribution.

referred to 2D FEM) models for parasitic capacitance and

local E-field maximum estimation within the MFT dielectric

material, specially designed for very fast execution - more than

four orders of magnitude faster compared to 2D FEM.

Insulation coordination is an essential step in the design

process of any medium (MV) or high (HV) voltage power

transformer that ensures its proper and safe operation. This

task is especially challenging in case of medium (MF) and

high (HF) frequency transformers operating within power

electronics converters - increasingly popular SST concept

[14]. Whether it is a fast rising front of the basic lightning

impulse (BIL) test waveform, as shown in Fig. 12a, or very
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fast switching of the new generation SiC semiconductors,

parasitic capacitances of the transformer windings will affect

the voltage and electric (E)-field distribution over the winding

turns during these fast transients, as displayed in Figs. 12b

and 13, and therefore cannot be neglected [15], [16].

However, due to high complexity, computational cost and

need for customization of FEM models, very precise models

such as described in [15], [16] are not suitable for overall

multi-variable design optimization, but rather for final design

verification and its correction through several iterations [5],

[14], [17], [18]. In contrast to this, the computationally-

efficient and numerically-stable SDDM models, that are de-

rived in this section allow for a proper inclusion of the

insulation coordination considerations within the design op-

timization process.

For the purposes of design optimization, the BIL is ap-

proximated with a Heaviside step function as a worst case

scenario, as displayed in Fig. 12a. This approximation allows

the reduction of the complex HF winding model, to a network

of parasitic capacitances, as shown in Fig. 14a, which can be

analytically solved in closed form, as given in

V (i) = V
sinh(αi)

sinh(αN)
where α =

√

Ct2c

Ct2t

(8)

where i is the winding turn index, N is the total number of

turns and Ct2c and Ct2t are the turn-to-core and turn-to-turn

parasitic capacitances, respectivelly.

The voltage and E-field distribution over the transformer

winding excited with Heaviside step function, at the moment

of the pulse incidence (t = 0), are shown in Figs. 13a

and 13b, respectively. It can be seen that the initial voltage

distribution over the winding turns (V0) is uneven - the first

turns are experiencing turn-to-turn voltages drastically above

the nominal value. Moreover, some turns experience high,

above-nominal, absolute voltage levels during the fast transient

on natural frequency of the winding (Vtm). This causes high

local E-field magnitude-peaks that may lead to gradual (or in

extreme cases instant) annihilation of the insulation material

if not properly accounted for.

A good understanding of the main parameters governing this

phenomena is necessary for the proper insulation coordination.

From a design point of view, reliable modeling is paramount

in order to avoid massive and costly over-sizing.

A. Proposed Modeling

A detailed electrostatic finite elements method (FEM) anal-

ysis is performed to identify the critical regions, where the

insulation material is experiencing the highest dielectric stress.

As can be seen in Fig. 13b, the maximum local E-field magni-

tude peaks are occurring somewhere along the conductor edge.

These local E-field maximums are a function of the geometry

and voltage distribution. On the other hand, assuming the

Heaviside step excitation, the voltage distribution is purely a

function of turn-to-core and turn-to-turn parasitic capacitances,

which again depend only on the geometry. Therefore, in order

to predict the maximum local E field peaks, it is necessary to:

(i) Model the parasitic capacitances, based on the known

design geometry

TABLE IV: Definition and range of the normalized parameters, according to
Fig. 14c

Norm. Var. x1 x2 x3 x4 x5

Definition
Ht

Wt

Dt2t

Wt

Dt2c

Ht

Rt

min(Ht,Wt)

Ut2t

Ut2c

Range [0.25, 4] [0.01, 4] [0.01, 4] [0.02, 0.5] [0, 1]

Note that these are very extensive ranges, covering most of designs

(a) (b)

H
t

H
t

D
t2t

W
t

D
t2c

D
t2c

R
t

(c)

Fig. 14. (a) Full parasitic capacitance model of a generalized MFT geometry
cross-section. (b) Simplified geometry equivalence. (c) Minimal generalized
geometry detail.
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46.4
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Fig. 15. 2D electrostatic FEM simulation of the minimal generalized geom-
etry detail.

(ii) Solve the parasitic capacitance network to obtain the

voltage distribution

(iii) Model the local E-field maximum, based on the known

geometry and voltage distribution

While (ii) comes down to a simple evaluation of (8) in

case of Heaviside step-function excitation, (i) and (iii) remain

numerically challenging.

A full parasitic capacitance network can be seen in Fig. 14a.

Taking into account that both the core and secondary winding

are at the ground potential, the secondary winding can also

be seen as a straight wall boundary at the ground potential,

as shown in Fig. 14b. Note that, all conductive parts of the

transformer, including any other winding except the one being

excited by the test pulse, are grounded at all terminals during

the BIL test, as recommended by IEEE Std 4-1995 and IEEE

Std C57.98-1993. Finally, based on the geometric symmetry

and periodic structure of the winding, a minimal generalized

geometry detail, capable of capturing all of the phenomena of

interest, is identified and parametrised, as given in Fig. 14c

and Table IV.

A 2D FEM parametric sweep is performed on the gen-

eralized geometry detail (Fig. 15), as defined in Table IV,

extracting the turn-to-core and turn-to-turn parasitic capac-
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Fig. 16. Plots of families of curves, exposing the effects of various parameters, as given in Table IV, on: (a) turn-to-core Ct2c = f1(x1, x2, x3, x4),
(b) turn-to-turn Ct2t = f2(x1, x2, x3, x4) parasitic capacitances and (c) the local E-field magnitude peak along the edge of the turn conductor Emax =
f3(x2, x3, x4, x5), as highlighted with Line 1 in Fig. 15.
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Fig. 17. Relative estimation error histograms (approximately 40’000 simulations) of the proposed data-driven statistical models for computation of: (a)
turn-to-core parasitic capacitance, (b) turn-to-turn parasitic capacitance and (c) maximum local E-field magnitude peak.

itances and maximum local E-field peaks at approximately

40’000 points within the parameter ranges of interest. Sample

plots of this data, illustrating the effects of various parameters

on the modeled values are shown in Fig. 16. Taking into

account the minimum vector of influential variables (x), as

summarized in Table IV, a multi-variable polynomial fitting is

performed on these data sets in the same fashion, as described

in Section II, thus generating the corresponding data-driven

statistical models

Ct2c = f1(x1, x2, x3, x4) (9)

Ct2t = f2(x1, x2, x3, x4) (10)

Emax = f3(x2, x3, x4, x5) (11)

with inherent high accuracy of FEM simulations and very

low computational cost, characteristic for simple arithmetic

operations (matrix multiplications) needed for evaluation of

polynomials.

As described in Section II, the evaluation of these models

boils down to simple low order matrix multiplications which

execute very fast on the processor. In case of 4-variables, as

described by Fig. 14c, Table IV, and Fig. 16, these models

execute more than four orders of magnitude faster than 2D

FEM.

All three models ((9), (10) and (11)) are derived under

assumption of surrounding vacuum. A different insulation

material can easily be taken into account with a simple mul-

tiplication/division with its relative permittivity εr. Moreover,

note that the formula for local E-field maximum is a function

of the voltage distribution and therefore covers all relevant

voltage distributions that may be encountered during normal

(Vinf ) or transient operation (V0 and Vtm).

B. Simulation Results

Relative estimation errors of the three earlier mentioned

multi-variable polynomial models referred to the 2D FEM

simulation results are given in Fig. 17. It can be seen that

a very good accuracy can be achieved, with errors practically

below 5%. Equations (8)-(11) together formulate a framework

for a computationally efficient estimation of the local E-

field maximums allowing the study of separate influences on

insulation coordination and overall design optimization.

While these formulas fully cover the simplest case of single

layer windings, discussed in this wok, additional formulas

would have to be derived to take into account more complex

cross-layer turn-to-turn parasitic couplings of the multi-layer

winding structures. Finally, while these models facilitate the

inclusion of many insulation coordination considerations into

design optimization, they are still a simplified representation

of the transformer and a detailed 3D FEM analysis is still

advised as a final verification prior to prototyping.
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Fig. 18. Relative estimation error histograms of the proposed data-driven
statistical models for computation of: (a) turn-to-core parasitic capacitance,
(b) turn-to-turn parasitic capacitance and (c) maximum local E-field magnitude
peak.

C. Experimental Verification

For the purposes of experimental verification, the same

multi-winding transformer prototype has been used, with the

winding arrangement, as displayed in Fig. 3 - a single primary

and the secondary winding split into 11 partitions. While it is

not possible to obtain the measurements of the local electric

field peaks, the parasitic capacitance models can be verified

on such a prototype.

Unfortunately, the separate parasitic couplings, as described

by (9) and (10) cannot be directly measured. Only the total ca-

pacitance including all of the couplings can be experimentally

obtained between any two elements. Bode 100 vector network

analyzer is used to measure the total parasitic capacitance

between each secondary and the primary winding, as well

as between each secondary and the middle (6th) secondary

winding of the multi-winding transformer prototype, as given

in Fig. 10.

The estimated value of these total coupling parasitic ca-

pacitances can be obtained from the total winding parasitic

capacitance network, as shown in Fig. 14a, using the Krone

reduction on its admittance matrix. With this operation the

total capacitance matrix can be reduced to one equivalent

capacitance between any two given nodes. These total parasitic

couplings are a function of the separate parasitic couplings

described by (9) (turn-to-core and turn-to-primary winding)

and (10) (turn-to-turn) and therefore only as accurate as the

associated SDDM models.

The plots of the aforementioned total secondary-to-primary

and secondary-to-secondary parasitic capacitance measure-

ments and their estimation are shown in Fig. 18. It can be

seen that, as expected, the SDDM models are within the 5%
error range compared to FEM results. Moreover, the relative

error referred to the measurement results is below 20% which

is a good result considering the very low value and sensitivity

of these parameters.

IV. CONCLUSION

While analytic models can solve a significant set of prob-

lems, still many electromagnetic phenomena cannot be accu-

rately described in that way. A computationally efficient, yet

sufficiently accurate, statistical data-driven modeling frame-

work based on FEM simulations of simple geometry details

and muti-variable polynomial fitting is presented in this paper.

The proposed modeling framework has been described in

detail on two representative application examples, showing

how it is possible to transform, generalize and normalize

a numerically difficult problem up to the point where a

sufficiently small set of significant influences (variables) can

be very efficiently captured via a neural-network inspired

multi-variable polynomial model. Although already very fast

(three-four orders of magnitude compared to simple 2D FEM

models), these models can also be reorganized for most

optimal execution depending on the specific design optimiza-

tion algorithm and potentially achieve an even more drastic

speed improvement. Moreover, a good estimation accuracy is

achieved, with errors less than 5% relative to the 3D FEM and

less than 10% relative to the measurement.

Even beyond these specific models, this type of modeling

framework allows the inclusion of complex effects, which can-

not be analytically approximated within reasonable accuracy

limits or numerically solved within reasonable time, within the

main design optimization loop, thus ensuring the best quality

solution of the global optimization.
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[16] T. Župan, B. Trkulja, R. Obrist, T. Franz,

B. Cranganu-Cretu, and J. Smajic, “Transformer

windings’rlcparameters calculation and lightning

impulse voltage distribution simulation,” IEEE

Transactions on Magnetics, vol. 52, no. 3, pp. 1–4,

Mar. 2016.
[17] G. Ortiz, “High-Power DC-DC Converter Technologies

for Smart Grid and Traction Applications,” PhD thesis,

ETH Zurich, Switzerland, 2014.

[18] M. Mogorovic and D. Dujic, “Sensitivity Analysis of

Medium Frequency Transformer Designs for Solid State

Transformers,” IEEE Transactions on Power Electron-

ics, pp. 1–1, 2018.

Marko Mogorovic Marko Mogorovic (M’15) re-
ceived the B.S. degree in electrical engineering from
University of Belgrade, Belgrade, Serbia, in 2013
and M.S. degree in smart grid science and technol-
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