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Abstract: Launch Vehicles are subject, at lift-off and during flight ascent, to acoustic and aeroacoustic loads, which are 
random in nature. Because electronic units are very sensitive to mid and high frequency loads, it is important to 
numerically predict and specify the vibration levels to be applied to units for qualification test. The general objective of 
the activity presented in this paper is to develop a methodology to predict mid and high frequency structure-borne 
transmissions in launch vehicles. As the loads of interest are random, it has been chosen to investigate energy-based 
modeling approaches, combined with the Finite Element Method. For energy-based modeling, the structure is divided into 
subsystems. For high frequency predictions, the purely numerical Power Injection Method, derived from Statistical 
Energy Analysis, is used to estimate the Coupling Loss Factor between structural subsystems. For the mid frequency 
predictions, an approach close to Statistical Energy Analysis, called Statistical Energy Analysis-Like (SEA-like), is 
investigated. In this approach, a relation between total energies of subsystems and input powers is established, by 
identifying a matrix composed of Energy Influence Coefficients. The objective of the study is to establish the 
methodology to compute with accuracy, using the Finite Element Method, Coupling Loss Factors and Energy Influence 
Coefficient. It is shown that the excitation of subsystems by ‘Rain on the Roof’ loads defined by the ‘Influence Circle’ 
and the Optimal Latin Hypercube methods provide accurate coupling data. A validation of the methodology on academic 
and industrial cases is presented. 

1. INTRODUCTION 

 Launch vehicles are subject to several types of broadband 
loads such as acoustic loads due to rocket engines, at lift-off, 
and aeroacoustic loads due to the external aerodynamic 
environment during flight ascent. Those excitations are 
random. The induced random acoustic and vibration 
environment may create physical discomfort or damage to 
the structures and electronic equipment. Consequently, it is 
very important to use reliable and predictive tools to estimate 
the response of launch vehicle structures to those loads. The 
specification of random vibration qualification levels to be 
applied to equipment during qualification tests before flights 
is an activity of great importance, given the severity of the 
in-flight environment. 

 The frequency band of interest ranges from 20 Hz up to 
2000 Hz. Consequently, several vibroacoustic methods have 
to be used in order to cover the full domain. For the low 
frequency regime, a mode by mode analysis is for example 
used [1], using the Finite Element Method, the fluid being 
represented by Green’s function. In the high frequency  
domain, where high modal overlap occurs, SEA [2, 3], is 
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better suited [4]. A predicting gap exists in the mid 
frequency domain. Moreover, structure-borne transmissions 
are not well predicted. To bridge this mid frequency gap, a 
SEA-Like method [5], is proposed. 

 This paper focuses on structure-borne transmissions in 
the mid and high frequency domains for structural 
configurations subject to normal excitations, such as pressure 
fields. Very few closed formulations are available to 
estimate structure-borne transmissions between coupled 
structures encountered in industrial real life, except, for 
example, structure-borne transmissions between 
perpendicularly coupled homogeneous plates [6]. 

 In this paper, we propose to perform this estimate using a 
purely numerical PIM method in the high frequency range 
[7-9], and a SEA-Like method in the mid-frequency range. 
The PIM method is an experimental method to estimate CLF 
of SEA by exciting the structure. This method has been 
investigated, described and justified in the literature [7-9]. 
But, as described in paragraph III, we intend to apply it to 
purely numerical models, as the real structure is not always 
available for experimental measurements. 

 In the mid frequency range, hybrid FEM/SEA 
approaches have already been investigated, using for 
instance classical modal analysis [4, 10], the influence of 
modal overlap has been shown and several cases where the 
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indirect CLF had to be taken into account were pointed out. 
To solve those problems, we introduce in paragraph IV, the 
SEA–Like methodology to compute the Energy Influence 
Coefficients (EIC) between the structures. 

 After a general presentation of the classical SEA 
analysis, the methodology combining the Finite Element 
Method and energetic method, such as SEA for high 
frequency predictions and SEA-Like for mid frequency 
predictions, is presented in this paper, and validated on 
academic and industrial cases. The choice of SEA-Like 
method for predicting mid frequency responses is discussed 
in section 4. FEM is used to provide key parameters for SEA 
and SEA computations. As in the experimental PIM, the 
FEM model has to be correctly excited by forces to 
determine accurate CLF for SEA on one hand, and EIC for 
SEA-Like on the other hand. In our approach the FEM 
model is excited by a so-called ‘Rain on The Roof’ force 
field. However, the way of applying the forces is not 
standardized and we have adopted the method described in 
[7]. In this paper, it is stated that a number of three point 
loads are sufficient to obtain accurate coupling data whereas 
it is of course not sufficient to excite all modes of the 
structures in the mid frequency domain. 

 The key and innovative points of our method described in 
this paper are: 

•  The methodology proposed for exciting the FEM 
model to obtain accurate CLF for SEA and EIC for 
SEA-Like, based on the ‘Influence Circle’ method 
and on OLH method, in order to have a rational basis 
to estimate EIC and CLF. The ‘Influence Circle’ is 
presented later. The way of exciting the structure is a 
problem of great importance, because all modes in the 
frequency bands of concern have to be excited 
simultaneously in order to obtain accurate results. 

•  The computation in the time domain using an explicit 
code and its use in the context of energy methods. 
Indeed, explicit codes allow easy computations in 
time domaine, and provide mid & high frequencies 
results (via adequate post-processing) with reasonable 
computation times for industrial structural 
configurations. 

•  The application of the methodology presented to real 
industrial case. 

2. PRESENTATION OF THE SEA METHOD 

 Energy based methods are often applied to the 
characterization of the vibrating behaviour of structures in 
the high frequency domain. The most common approach is 
the SEA, Lyon [2, 3]. The method consists of decomposing a 
complete system into subsystems in order to estimate their 
total mean energy, averaged in time and space. This method 
is based on the energy equilibrium equation: the sum of the 

dissipated power in a given subsystem and the power 

exchanged with the other coupled subsystems is equal to the 

power supplied by the external loads to this subsystem. An 
important issue is the definition of a proper SEA model. 

From the point of view adopted in this paper, a proper SEA 
model must satisfy the following four conditions: 

 The first condition is that the connected structural 
subsystems must have similar dynamic properties. The 
second condition is that the modal overlap criterion must be 
satisfied. This criterion for subsystem i can be written as: 

ni ii 1             (1) 

 The third condition is that no indirect coupling occurs 
between structural subsystems. This condition leads to the 
absence of coupling between not directly coupled 
subsystems. 

 The fourth condition is that “weak coupling” condition 
has to be satisfied. The weak coupling hypothesis is the 
subject of large discussion in the SEA literature. However, 
we share the view of B. Mace [5], in that two coupled 
subsystems are in weak coupling condition, if the 
transmission, in the frequency band of concern, they involve 
local modes, and, as a consequence, do not involve global 
modes of the coupled subsystems. 

 The power flow between subsystems can be written as a 
relation between DLF, CLF and the modal densities of the 
subsystems. In the case of n coupled subsystems, a relation 
between the input powers and the total energy of the 
subsystems can be written in a matrix form, as follows: 

 

1tot 12 1n

21 2tot 2n

n1 n2 ntot

E1

n1

E2

n2

En

nn

=

P1,inj

n1

P2,inj

n2

Pn,inj

nn

             (2) 

 The input powers Pi,inj  are assumed to be known and 

characterized. Power inputs due to aero-acoustic loads are 
difficult to identify because the broadband pressure field has 
to be characterized with accuracy [4]. The characterization of 
the power inputs is out of the scope of this paper. If the 
modal densities of the subsystems, the DLF and the CLF, are 
known, the total energies of subsystems can be determined. 
The Dissipation Loss Factors are experimentally identified in 
most cases or extracted from a database. The modal densities 
of subsystems and the CLF per frequency bands must be 
estimated for solving the SEA matrix system (2). For 
estimating CLF between simply connected structures, the 
vibrational field in structures is represented by incoherent 
plane waves. The high frequency CLF are then obtained by 
computing the transmission coefficient between subsystems, 
averaged over all angles of incident plane waves [6]. 
However, this methodology does not provide satisfactory 
results if the connections are complex. An alternative 
method has, consequently, to be investigated. The methods 
of interest in this paper are the numerical PIM and the SEA-
Like methods, for the high frequency and mid frequency 
domain respectively. 
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3. THE PIM METHOD 

 For more complex structures, the CLF and DLF are often 
determined using an experimental approach such as the 
Power Injection Method (PIM). This approach has been 
largely investigated in the literature [7, 9]. Once the vibrating 
total averaged energies and the power inputs are measured, 
an inverse energetic approach by writing SEA equations and 
inverting the SEA matrix of total energies can be applied. 
But a prototype of the structural configuration of interest is 
not always available to carry out such an experimental 
analysis. Consequently, the idea is to replace the 
experimental PIM by a numerical PIM, by combining FEM 
and SEA. This approach is called in this paper the hybrid 
FEM/SEA approach. The hybrid FEM/SEA approach is 
based on experimental PIM and consists of estimating the 
energies and the power injected by a FEM. 

 Let us consider a structural configuration composed of n 
subsystems, of which a Finite Element Model has been 
realized. The conditions mentioned in paragraph II, in order 
to be a proper SEA model, are assumed to be satisfied. By 
using the reciprocity relation: 

ijni = jin j              (3) 

 The matrix system defined in Eq. (2) can be rewritten: 

*

1tot j1 n1

ij jtot nj

1n ... ntot

*

E1

E j

En

=
P1

Pj

Pn

         (4) 

 The numerical PIM consists in numerically exciting the 
subsystems one after each others using predefined forces. 
The total energies of the subsystems, the time and space 
averaged power injected are estimated by forced response 
analysis using a FEM. 

 First, only subsystem 1 is excited. The injected power is 

denoted P1 . By normalizing the total energies by the injected 

power, the matrix system defined in Eq. (4) becomes: 

*

1tot j1 n1

ij jtot nj

1n ... ntot

*

E11

E j1

En1

=
1

0

0

         (5) 

where: 

Ei1 = Ei1

P1

 

 The n-1 other subsystems are then excited one by one 
and the following matrix system is obtained: 

1i 21 ... n1

12 2i ... ...

... ... ki ...

1n ... ... ni

*

E11 E12 ... E1n

E21 E22 ... ...

... ... Ekk ...

En1 ... ... Enn

= 1
*

1 0 ... 0

0 1 ... ...

... ... ... ...

0 ... ... 1

        (6) 

With: 

Eij =
Eij

PJ

            (7) 

 The coupling loss factors can be obtained by inversing 

the matrix Eij : 

1i 21 ... n1

12 2i ... ...

... ... ki ...

1n ... ... ni

= 1
*

E11 E12 ... E1n

E21 E22 ... ...

... ... Ekk ...

En1 ... ... Enn

1

    (8) 

 The matrix system defined in Eq. (8) can be written in a 
simplified form as follows: 

[ ] = 1
* E

1
           (9) 

 The inversion of the total energies matrix can involve 
numerical errors due to ill-conditioning of the matrix and 
may lead to non-physical results. According to the main 
hypothesis of a proper SEA model, no indirect coupling 
exists. As a consequence, the CLF between two connected 
subsystems can be determined by extracting the two 
subsystems from the complete model and by exciting these 
two subsystems one by one. The application of the Lalor 
development [11] consists in solving two separate systems 
for the DLF and the CLF. The CLF can be written as: 

ij = 1 E
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 In the case of weak coupling, ie: 

 
Eij
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 Eq. (10) can be simplified as follows: 
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 Eqs. (10) and (11) use time and space averaged total 
energies of the subsystems divided by the mean power input: 

ij = 1 E ji

n

,s

Eii

n

,s
. E jj

n

,s

        (12) 

 The vibrational velocities uk at any node k of the 
subsystem can be computed with the FEM method. Total 

averaged energy E
s
 of subsystems s in a frequency band 

is then obtained as follows: 

E
s

= 2
mk uk

2

k=1

N

         (13) 

 Eq. (13) is accurate in the high frequency domain. This 
equation is not acceptable in the mid frequency domain, but 
has been used as a first step to estimate the total energies, 
though the RADIOSS software can provide the kinetic and 
potential energies, and consequently, an accurate estimate of 
the total energies. 

4. THE SEA-LIKE METHOD 

 In the mid frequency domain, the conditions to get a 
proper SEA matrix are not satisfied for the following 



48    The Open Acoustics Journal, 2009, Volume 2 Troclet et al. 

reasons: indirect coupling between non connected structures 
can occur, and the subsystems damping have a strong 
influence on the CLF, according to the SEA assumptions. At 
high frequencies, the intrinsic structural damping has no 
significant influence on power flow between subsystems. In 
the high frequency domain, the intrinsic damping becomes 
low. On the contrary, in the mid frequency domain, the 
damping has a great role on energetic transfer between 
subsystems. Consequently, in the mid frequency range, the 
damping cannot be separated from the coupling factors, as it 
is in SEA equations. In references [12] and [13], the 
Energetic Influence Coefficient EIC method is presented. 

 The approach consists, as in SEA, in considering N 
isolated structures (subsystems) and to assemble them, in 
order to constitute the complete structure. The 
eigenfrequencies and modes shapes of the total system are 
calculated. Under some assumptions [12]: 

•  The loads applied to subsystems j and l are 
uncorellated, if j and l are different, 

•  The loads applied to each subsystem are 
deltacorrelated, 

•  The space and time variables can be separated, 

it is shown that the column matrix of subsystems kinetic 
energies is equal to the product of two matrices: a column 
matrix, the terms of which are the EIC, and a matrix of 
power spectral densities of forces applied to subsystems. 

 The SEA-Like method is very close to the EIC method, 
but the kinetic energy is replaced by the total energy. 

 The SEA-like approach can be combined with FEM in 
the same way as presented before. Direct FEM computations 
in the time or frequency domain can provide inputs to SEA-
Like approach. In this case, all the subsystems are part of a 
Finite Element Model and the forced response of the whole 
system is computed with the FEM. 

 In the SEA-Like method, the subsystem total energies 
and input powers are related by: 

E[ ] = A[ ] P[ ]           (14) 

where the A matrix is composed of Energy Influence 
Coefficients (EIC), Aij . 

E1

...

En

=
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An1 ... Ann

P1

...

Pn

        (15) 

 By exciting numerically the subsystems one by one, the 
following matrix system is obtained: 

E11 E12 ... E1n

E21 E22 ... ...

... ... Ekk ...

En1 ... ... Enn

=

A11 A12 ... A1n
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... ... Aktot ...
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*
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    (16) 

 Consequently, the EIC Aij  can be computed: 

A11 A12 ... A1n

A21 A22 ... ...

... ... Aktot ...

An1 ... ... Ann

=

E11 E12 ... E1n

E21 E22 ... ...

... ... Ekk ...
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 At high frequencies, the following matrix relation has to 
be asymptotically satisfied: 

A11 A12 ... A1n

A21 A22 ... A2n

... ... A jj ...

An1 ... ... Ann

= 1

1i 21 ... n1

12 2i ... ...

... ... ki ...

1n ... ... ni
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  (18) 

 This equation is written: 

A[ ] = 1
* [ ] 1

          (19) 

 This approach has been performed using the classical 
modal analysis by C. R. Fredö [10], and B. Mace [5]. B. 
Mace has shown the influence of the modal overlap on the 
coupling terms and has pointed out the cases in which the 
indirect CLF need to be taken into account. It is important to 
note that, in the methodology developed in this paper, the 
SEA-Like (mid frequency predictions) subsystems and the 
SEA (high frequency prediction) subsystems are the same. 

5. LOADING OF THE STRUCTURAL FINITE 
ELEMENT MODEL 

 The main difficulty of the methodology lies in the 
loading of the structure. The question is to know how to 
excite the structural Finite Element Model to obtain accurate 
CLF and EIC for energetic methods of concern, such as SEA 
and SEA-Like respectively. It has been chosen to apply to 
the Finite Element Model ‘rain on the roof’ excitations, to 
estimate unknown quantities. The ‘rain on the roof’ loading 
consists in impulse forces randomly distributed both in time 
and space over the surfaces of the subsystems defined as 
follows in the time domain: 

F = fi (t ti ) (x xi )
i=

         (20) 

fi (t ti )  gives the time dependency of the force during the 

impact with ti  the peak time of the i -th impact, and xi  the 

location of the i -th impact. In the frequency domain, the 
‘rain on the roof’ excitation is represented by a white noise, 
with random relative phases, applied to nodes of the mesh. 
This loading is compatible with SEA deep assumptions: the 
forces applied to subsystems have to be steady, random and 
of constant spectral densities. Of course, ‘rain on the roof’ 
excitation is very far away from real excitations encountered 
during launch vehicles flights. The problem of taking into 
account real excitations, such as aero-acoustic excitations is 
under investigations [14, 15]. 

 This paper is here focused on the accurate application of 
‘rain on the roof’ excitation for needs of the energetic  
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methods of interest, SEA and SEA-Like, in the case of 
flexural loading. The number of ‘rain of the roof’ loads to be 
applied to the subsystems, and the distribution of the ‘rain of 
the roof’ loads on a subsystem in order to excite all modes of 
the subsystems are the key problems to solve. The number of 
'rain on the roof' forces required to excite all modes of the 
structures in the frequency band of concern, which is the 
main point of discussion, is not discussed a lot in the open 
literature. D. A. Bies [7], has written that a number of three 
loads per subsystem is sufficient to excite the modes. A more 
objective criterion, “Influence Circle” criterion [4], is 
proposed here for defining the number of excitations points. 

A. “Influence Circle” Method 

 The key point is to define a loading, which excites all 
flexural modes. As mentioned before, the loads are punctual, 
and spatially and temporally uncorrelated. The main question 
is the number of point loads to be applied to the structure to 
excite all flexural modes. The idea is to estimate the area of 
the structural zone influence by a point load. Let us consider 
a circular plate subject to a perpendicular point force. The 
solution of the flexural motion equation of this plate subject 
to a point force is a Bessel function, which has a pseudo-
period [16]. Let us define the spatial influence zone of this 

point load as the value of this pseudo period. The radius inf  

of the circle of influence, which depends on the frequency, is 
defined as follows [16]: 

inf =
s

D

          (21) 

 This formulation is valid at high frequencies where the 
surface of the plate are much higher the surface of the 
influence zone. In the case of circular plate of radius a, it 

leads: 
s

D

a
2 . It follows: 

a
2 s

D

 

 The idea is to determine the optimal number of loads 

nbloadsoptim  by dividing the subsystem total surface Splate  by 

the spatial influence zone, called “influence circle” surface: 

nbloadsoptim 2 inf = Splate         (22) 

 It is not sufficient to define the optimal number of point 
loads to excite all structural flexural modes. The point loads 
have to be uniformly distributed all over the surface of the 
subsystem to be excited. The distribution of the point loads 
over the surface is defined using the OLH method. 

B. OLH Loads Distribution 

 In order to achieve a set of of ‘rain on the roof’ 
excitations to the FEM model which excites all modes of the 
structure, we use an OLH (Optimal Latin Hypercube) 
scheme (Hyperstudy/Dss sampling module [17]). 
Classically, a “Monte Carlo” simulation is used to obtain a 
random distribution (N stochastic variables, ie coordinates) 
of the samples which are chosen from their own distribution 
independently from each other. This method is not fully 

satisfactory and does not provide a coverage of all excitation 
modes. The main drawback [18], is that samples may be 
unevenly distributed, very close to each other in one region 
and not enough density elsewhere. 

 The purpose of LH is to divide space into regions of 
equal probability (squares if the number of variable is 2, 
cubes if 3) depending on the desired number of samples. The 
LH algorithm makes sure that all regions have at least one 
sample. The OLH method adds an algorithm that allows, by 
measuring distances, an optimal repartition among a number 
of LH distributions, thus ensuring that not only the coverage 
is evenly distributed, but that it is also optimal in the 
“geographic” sample positions selected. 

 The definition of an OLH distribution is a two steps 
process. The first one consists in defining p stochastic 
variables (with given distributions) as inputs to characterize 
the loaded subsystem surface geometry (lengths, or radius 
for instance). Once the OLH computation is done, the output 
leads to N excitations locations, where N is the number of 
samples. Clustered samples situation is avoided using 
descriptive sampling, which consists of setting the grid. Each 
square (if p = 2) has equal probability. Final point 
coordinates are the centers of these areas. Therefore the 
problem becomes discrete and will be solved using 
optimized OLH. Calculation of OLH is only dependant on 
the number of samples (N) and the number of variables (p): 

Considering points Xi{ }
i=1

N
 with integer coordinates in the 

interval 1, ..., N[ ]  in p space dimensions. The coordinates of 

the points can be arranged in the following L-matrix: 

 

L =
X1

XN

=
x11 x1p

xN1 xNP

        (23) 

 The points constitute a LH if each column in L is a 

permutation of 1, ..., N{ } . For OLH, two criteria can be used 

to describe the optimal repartition: 

 The first is the minimum distance between points: 

d L( ) = min
1 i, j N ,i j

Xi X j          (24) 

where ||.|| represents the Euclidean norm of a vector. 
Between two samples L1 and L2, the highest minimum 

distance is kept (if d L1( ) > d L2( )  then L1 is better than 

L2). 

 The second is the total number of times a minimum 
distance occurs is taken into account, denoted n(L), Between 
two samples L1 and L2 which have the same minimum 

distance, L1 is considered better if n L1( ) < n L2( ) . 

 The process to generate a random LH is as following. 

The first column of the L-matrix is chosen to 1, ..., N{ } . 

Then, to generate each of the remaining columns, the process 
is as follows: the new element is chosen randomly among 

1, ..., N{ } , same for next element, but this one is checked to 

be not the same as the previous elements in the same 
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column. If this one is different, it is used; otherwise a new 

number is taken among 1, ..., N{ }  and again compared with 

previous ones. To illustrate on a p=2 (2 dimensions) example 
with N=4 samples. The grid is set by dividing both axis in 
four equal probability zones. A sixteen cells grid is obtained. 
The L-matrix first column is completed as following: 

 

L =

1

2

3

4

…

…

…

…

          (25) 

 On the second column, the element to be randomly 
chosen can be 1, 2, 3 or 4, the next one is also randomly 
picked among 1, 2, 3 and 4, but will be kept only if different 
from the previous elements of the same column. In the end, 
the L matrix is completed, for example as below: 

L =

1

2

3

4

3

2

4

1

          (26) 

 Here is a random LH sampling. These coordinates are 
mapped using the real variables dimensions and the type of 
random distribution to obtain the real coordinates. For OLH, 
a step for distance comparisons is added before the mapping 
step. Figs. (1-3) compare the three distributions with hundred 
samples each. The first chart shows a Monte Carlo 
distribution, the middle one stands for a LH and the last for 
OLH. This last one is the best solution to obtain an optimal 
stochastic repartition for “rain on the roof” excitation 
modeling. 

 

Fig. (1). Monte Carlo stochastic distributions of a 100 points 
sample for 2 variables. 

 

Fig. (2). LH stochastic distributions of a 100 points sample for 2 
variables. 

 

Fig. (3). OLH stochastic distributions of a 100 points sample for 2 
variables. 

6. APPLICATION TO ACADEMIC CASES 

 Two types of academic cases have been considered in 
this paper: a two plate case and a three plates case. 

6.1. Two Plates Case 

 The first step of the feasibility study of purely numerical 
PIM approach is performed on a simple case, for which the 
coupling loss factors CLF can be estimated by closed 
formulations. The example consists of two aluminum plates 
with the same thickness and coupled by a line junction, as 
shown in Fig. (4). 

 The total energy of a subsystem is assumed to be equal to 
two times the kinetic energy. This hypothesis is reasonable at 
high frequencies, frequency range where the PIM method 
works. 
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 The coupling between subsystems flexural modes of 
these two coupled plates is here investigated. The validity of 
the purely numerical PIM is investigated by comparing the 
results provided by the numerical PIM to closed formulation 
established by R. H. Lyon and E. Eichler [6], for the flexural 
coupling loss factor between plates perpendicularly 
connected. In [6], the Coupling Loss Factor is obtained using 
a waves approach. It is obtained analytically by considering 
the subsystems as semi-infinite. The vibrational field is 
assumed to be diffuse in the subsystems, and it is represented 
by incoherent plane waves. The Coupling Loss Factor is then 
obtained by estimating the transmission coefficient between 
subsystems, which is averaged over all angles of incident 
plane wave [6, 7]. In the case of two coupled plates, the 
analytical CLF is expressed as follows: 

 

Fig. (4). Academic case: « Two Plates » Finite Element Model. 

ij =
kb Lij ij

Ai

          (27) 

 For two coupled plates manufactured in an identical 
material and having the same thickness, an analytical 
approach can provide the mean transmission coefficient [6]: 

ij = 1

3
.           (28) 

 The hypothesis of diffuse field implies that the 
subsystems have a sufficient number of resonant incoherent 
modes in the frequency band of interest. The dimensions of 
the plates are chosen in order to have a relatively large modal 
density over all third octave frequency bands of interest. The 
junction is 0.5 m long and the lengths of the plates are 
respectively 0.75 m and 1 m for the two subsystems. This 
Finite Element Model has more than 5 modes per frequency 
band for the two subsystems over the whole frequency range 
of interest: from 200 Hz to 2500 Hz, which allows the use of 
energetic methods. L. D. Pope et al. has written that 7 modes 

per one third octave bands is required to ensure a sufficient 
modal overlap [19, 20]. 5 modes is consequently the lower 
limit. 

 The mesh of the two plates has been defined using a 
classical wave length criterion. The Finite Element Model is 
realized in order to estimate the forced response of the 
structure for a frequency range from 100 Hz to 3500 Hz. The 
wave number criterion used here takes the form of 

lmesh / 5 , which is a reasonable criterion in the case of 

steady state excitations. This criterion leads, for our case of 
interest, to a number of 8575 quadrilateral shell elements, 
(Fig. 4). Because of the difficulty to realize simply supported 
boundary conditions in an experimental study, free-free 
boundary conditions have been chosen in order to allow 
comparison with experimental data. 

 The forced response of the complete structure can be 
estimated by different approaches, the classical modal 
approach, widely used in the low frequency domain for 
industrial problems, the direct frequency domain resolution, 
which uses a direct inversion of the dynamic stiffness matrix 
in the frequency domain, the time domain resolution, using 
explicit analysis. The modal approach is faster, but leads to 
large errors on the structural natural frequencies in the mid 
and high frequency domains. 

 Explicit codes allow computations at higher frequencies 
than implicit codes with a reasonable computation time, we 
have chosen to perform calculations in the time domain 
using the RADIOSS software of Altair Development France. 
Calculations in the time domain using the RADIOSS 
software have already been carried out [14]. We have chosen 
here to use the numerical PIM validation by performing 
computations in the time domain, using an explicit solver 
(RADIOSS software). FEM computations provide, among 
all possible results, velocities at nodes. According to [15], 
the normalized total energies of subsystems are computed, 
and the Lalor formula described in Eq. (11) is used to obtain 
CLF values to be used in SEA analysis. 

 In the hybrid FEM/SEA approach, the usual high 
frequency SEA decomposition into subsystems is kept. The 
CLF are quantified, to be used in the SEA analysis. The 
expression of the power exchanged between subsystems is 
obtained in classical SEA under several hypotheses 
regarding the nature of the excitation, which have to be 
random and broadband. 

6.1.1. Influence of the Number of Loads and their 
Distribution 

 In this feasibility study, the excitations are ‘rain on the 
roof’ excitations, defined using the “Influence Circle” 
method and the OLH distribution. To illustrate the results 
improvements using these methods, two analyses have been 
made, the analysis of the influence of the increasing number 
of the excitation loads up to the optimal number provided by 
the “Influence Circle” method, and the influence of the loads 
random distribution, by comparing results provided by OLH 
and by Monte-Carlo methods. For the “two plates” model, 
the optimal number of loads per plate has been calculated 
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and is 19 on the first plate and 25 on the second plate for the 
computation of the highest frequency. 

 The computation cases will be noted as follows: Model # 
a (x, y), where a is an indice for the computation case, x 
denotes the number of point loads applied to plate 1, and y, 
the number of point loads applied to plate 2. Consequently, 
this computation case is denoted Model # 4 (19; 25). Five 
other couples of number of loads have been investigated, 
from (5; 7) loads up to (38; 50). For each of them, a 
distribution of random loads was obtained with the OLH 
algorithm. Fig. (5) displays the six Finite Element Models 
with the loads repartitions (arrows). Fig. (6) displays CLF 
values obtained by numerical PIM computation between two 
plates against third octave frequency bands; from 100 Hz to 
3200 Hz. Closed formulation values of CLF, obtained using 
Eq. (19), are plotted in bold red. Focusing on mid-high 
frequency results (Fig. 6), from third octave band of central 
frequency 250Hz, it becomes that, when models are 
sufficiently excited, i.e. from (19; 25) loads, a significant 
improvement of correlation occurs between numerical and 
closed formulation of CLF values. Fig. (7) shows the loads 
distribution over “Two Plates” model resulting from Monte-
Carlo and OLH computations (number of loads are the same 
for each model). Fig. (8) displays numerical PIM results of 
CLF values between two plates, depending on loads 
distribution over the surface of the plates, compared to CLF 

closed formulation values. Green curve is for CLF obtained 
with loads distribution using a Monte-Carlo scheme, brown 
curve obtained with OLH scheme, bold red line is for closed 
formulation values. These results show a better agreement 
with analytical values, when OLH scheme is used to define 
the point loads distribution. 

6.1.2. General Interpretations 

 Fig. (9) shows a satisfactory agreement between the 
numerical PIM and closed formulation in the high frequency 
domain (“model#4” is the computation case using optimal 
number and distribution of loads provided by the “Influence 
Circle” method and the OLH scheme). The error is less than 4 
dB from 200 Hz up to 3500 Hz. Below the third octave band 
of central frequency 250 Hz, significant discrepancies between 
the computed values and the analytical results are observed. In 
those frequency bands, each plate has a low number of modes 
and the modal overlap becomes too low to have a proper SEA 
model. Furthermore, the hypothesis of diffuse field for the 
application of CLF analytical formulation described at Eq. 
(27) is not valid. The comparison between the two approaches 
can not, consequently, lead to conclusions on the validity of 
the hybrid FEM/SEA approach. In the mid-frequency range 
(100 Hz to 200 Hz), PIM method, which is based on SEA, is 
not available, but SEA-Like approach provides accurate 
results. 
 
 

Fig. (5). Plates academic case. Computation cases with different point loads numbers. 
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Fig. (6). Plates academic case. Computed CLF values versus the point loads numbers. 

 

Fig. (7). Two plates academic case. Distribution of 30 point loads per subsystem using Monte Carlo and OLH distribution schemes. 

 

Fig. (8). Two plates academic case. CLF values depending on point loads distribution. 
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6.2. Three Plates Case 

 A three plates configuration has been investigated as a 
further step toward industrial cases. The reason why the 
three plates case is investigated is that this case allows the 
analysis of the indirect coupling. 

 This model (Fig. 10) is identical to the two plates model, 
but another (0.5 m x 1 m) plate has been added, 
symmetrically, to the 0.5 m x 0.75 m) plate. Excitations are 
applied to the plates, as explained before, by using the 
Influence Circle criterion and OLH process. 

 

Fig. (10). View of the « Three Plates » Finite Element Model. 

 The Finite Element Model computations provide, among 
all results, the velocities of each node of the model. Energy 

and input power are computed to raise Eij  matrix, 

which is inversed to obtain CLF matrix as in Eq. (8). Fig. 
(11) shows CLF values (between subsystems “1” and “2”) 
obtained in the case of “Two Plates” and “Three Plates” 
models versus analytical plates CLF formulation. The results 
are quite different between CLF values computed for the 
cases of “Two Plates” and “Three Plates” models, whereas 
analytical formulation, for same input data (two plates are 
coupled), provides, of course, the same results. 

 At high frequencies, these discrepancies are small and 
acceptable, but are more important in the mid-frequency 
range. Of course, due to the third plate presence, global 
modes indirect coupling effects occur. 

6.3. Validation of SEA-Like Method 

 To validate SEA-Like results in the mid frequency range, 
we know from Eq. (18) that EIC matrix must asymptotically 
converge to the inverse CLF matrix divided by the radian 
frequency according to Eq. (19). As a validation criterion, to 
point out this convergence, the CLF matrix is obtained using 
PIM method and Lalor Eq. (10). Diagonal terms of CLF 
matrix are then classically found with the following relation: 

ji = j + ji

i j

         (29) 

and: 

j = 1 1

E jj

          (30) 

 Four representative curves are displayed on Figs. (12-15) 
comparing EIC and terms of right side of Eq. (19) obtained 
by the numerical PIM. The plotted curves have the same 
dependency with frequency, but do not tend to each other for 
high frequencies, remaining parallel. The computations have 
been performed not at frequencies high enough so that the 
convergence can be observed. 

 We can say however that the convergence criterion is 
satisfied. We may note as a result that indirect coupling is 
negligible in this model, therefore SEA-Like and numerical 
PIM provide very close results. 

7. APPLICATION TO AN INDUSTRIAL CASE 

7.1. Vehicle Equipment Bay (VEB) Finite Element Model 

 In order to perform a industrial feasibility study of SEA-
Like method, the SEA-Like approach has been applied to the 
Vehicle Equipment Bay (VEB) of the ARIANE 5 Launch 
Vehicle. The ARIANE 5 VEB is divided into five 
subsystems, as shown in Fig. (16). Excitation forces have  
 

 

Fig. (9). Two plates academic case. CLF values comparison between analytical formulation and numerical PIM results. 
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Fig. (11). Three Plates and Two Plates Academic Case. Comparison between CLF obtained from closed formulation and CLF using 
numerical PIM for « Two Plates » and « Three Plates » models. 

 

Fig. (12). Energy Influence Coefficients from SEA-Like versus Energy coefficients computed with numerical PIM according to the equation 
19: results of plate 1 when plate 1 is loaded. 

 

Fig. (13). Energy Influence Coefficients from SEA-Like versus Energy coefficients computed with numerical PIM according to the equation 
19: results of plate 2 when plate 1 is loaded. 
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been applied to 30 nodes per subsystem. In this approach, 
structural subsystems are structural parts between physical 
boundary conditions. Making this, all structural modes are 
taken into account in the computations. Dividing a structural 
part between physical boundary conditions into a greater 

number of subsystems would lead to a truncation of the 
modal basis: the global modes would be lost. 

 The loads are “rain on the roof” loads, spatially and 
temporally non-correlated. In order to obtain the locations, 
where the “rain on the roof” loads have to be applied to each 

 

Fig. (14). Energy Influence Coefficients from SEA-Like versus Energy coefficients computed with numerical PIM according to the equation 
19: results of plate 3 when plate 1 is loaded. 

 

Fig. (15). Energy Influence Coefficients from SEA-Like versus Energy coefficients computed with numerical PIM according to the equation 
19: results of plate 1 when plate 2 is loaded. 

 

Fig. (16). On the left: ARIANE 5 VEB (industrial case) original Finite Element Model. On the right: ARIANE 5 VEB model decomposition 
into subsystems (PARTS) 
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subsystem, as well as the computation duration, we have 
used an OLH distribution and applied the “Influence Circle” 
method, which ensure an optimized distribution of the 
excitation loads all over the subsystems surfaces, Fig. (17), 
and a sufficient number of point loads, respectively. Such 
load distribution is the key point to excite all flexural modes 
of the subsystems. The applied loads are Dirac excitations, 
as shown in Fig. (18). The computations are carried out in 
the time domain by using an explicit code. The duration of 
each computation is 51.2 ms and the output samples from the 
explicit code are stored every 0.1 ms. This allows a correct 
coverage of the bandwidth of industrial interest, up to 5000 
Hz. For each computation run, a different subsystem is 
loaded in order to compute EIC coefficients. For ARIANE 5 
VEB, 5 computation runs have then been performed. 

7.2. CLF and EIC Extraction Process 

 The computations are carried out according the following 
two steps: first a PIM estimate of the CLF between the 
structural subsystems is performed, and then a SEA-Like 
estimate of the EIC between the structural subsystems is 
conducted. After each computation run, a Fast Fourier 
Transform (FFT) of the velocities of all the nodes of each 
subsystem is carried out. The vibrational energies and 
injected powers of each subsystem are then calculated using 
respectively the following relation: 

E = M < v
2 >           (31) 

where M is total mass of the subsystem and < v
2 >  is the 

mean of the squared nodal velocities. The injected power is 
computed from nodal velocities of nodes and from the 

injected force expressed in the frequency domain, according 
to the following equation: 

Pinj = Re(FV )           (32) 

 For each run, once energies and injected powers are 
computed, they are spatially averaged over each part or 
subsystem of the structural model. They are then averaged 
per each one third octave band. After this, energies are 
normalized, dividing them by the injected power. Performing 
5 computations run (five subsystems for the ARIANE 5 

VEB case), a 5 by 5 matrix of total energies Eij  of Eq. 

(17) is consequently obtained. PIM analysis is used to extract 
the CLF using Eq. (8). In the SEA-Like analysis, the EIC 
matrix from Eq. (17) is directly obtained from normalized 
total energies matrix. To check the validity of this matrix, it 
is verified that the EIC converge to the energy coefficients 
from PIM, according Eq. (18) and Eq. (19). The CLF values 
are those obtained using PIM and Lalor Eq. (11). 

7.3. Industrial Case VEB 5 Subsystems Model 

 The CLF values between directly coupled subsystems are 
plotted on Fig. (19). Those values are compared to the values 
of the CLF obtained using the analytical formulation of Eq. 
(27) for perpendicular plates coupled subsystems, that have 
the same geometrical (surface) and material (mass, Young 
Modulus) properties than the Finite Element Model 
subsystems. So, the behavior of the model, composed of 
truncated cones is assumed to be close to the behavior of 
plates. It is a reasonable hypothesis at very high frequencies, 
beyond the ring frequencies. Consequently, at high 

 

Fig. (17). Industrial Case. Point Loads Distribution on subsystem #2 of the ARIANE 5 VEB Finite Element Model. 
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frequencies, computed CLF values should converge to 
closed formulation values. 

 Looking at Fig. (19), the expected convergence between 
closed formulation and numerical curves at high frequencies 
does not occur in the case of coupling between subsystems 1 
and 2. This is due to the fact that the coupling between a 
conical and a cylindrical shell is different from the coupling 
between two perpendicularly coupled plates. But, a tendency 
is observed. 

7.4. Industrial Case VEB 3 Subsystems Model 

 CLF values between each directly coupled subsystem are 
plotted on Figs. (20, 21). The convergence of the CLF values 
obtained by analytical formulation and by numerical PIM 

can be observed at high frequencies. At mid and lower 
frequencies, the CLF obtained using the numerical PIM can 
be considered as more realistic than the analytical CLF 
because the Finite Element Model can take into account the 
real geometry and junctions. The use of SEA-Like is, of 
course, especially recommended to obtain accurate results in 
those frequency regimes. 

8. CONCLUSIONS 

 This study has demonstrated the feasibility of an 
approach based on FE computations using explicit codes, 
combined with energy-based modeling, SEA-Like method 
and numerical method, to improve the estimate of structure-
borne transmissions in mid and high frequency range. It has 
been shown that the use of OLH method and influence circle 

 

Fig. (18). Definition of point loads in the time domain (on top) and in the frequency domain (on bottom). 

 

Fig. (19). Industrial Case: ARIANE 5 VEB. Comparison of CLF between subsystems 1 and 2 (directly connected) provided by numerical 
PIM and by closed formulation. 
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criterion allow the estimate of CLF and EIC with accuracy. 
This methodology has successfully been applied to an 
academic (two and three coupled plates) and to industrial 
cases (ARIANE 5 VEB). The complete process required for 
computing CLF and EIC has been industrialized. 
Computations times are reasonable (about five hours per 
computation of CLF and IEC). Further developments based 
on transient energy formulations [21-23] will be considered 
in order to address the mid-frequency range for further types 
of excitations in the mid-frequency range. 

Table 1. Rigidity of the Subsystems 

 

Subsystem Flexure Rigidity (GPa.mm
3
) 

1 – « DUMMY CU CASA » 424,94 

2 – « laminate CASA » 295,42 

3 – « EPS CONE skins » 12,00 

4 – « VEB skins » 23,41 

5 – « upper cylinder skin » 13,38 
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NOMENCLATURE 

Ai  = Area of subsystem i (m ) 

Aij  = Term of Energy Influence Coefficient (EIC)  

   matrix, raw i and column j (s) 

CLF = Coupling Loss Factor 

D  = Plate flexural rigidity (Nm ) 

DLF = Dissipation Loss Factor 

Ei = Total energy of subsystem i (J) 

EIC = Energetic Influence Coefficient EIC 

E
s
 = Averaged total energy space (J) 

Eij  = Term of space and frequency averaged  

   energy matrix, raw i and column j (J) 

EIC = Energy Influence Coefficients 

F  = Applied force (N) 

FEM = Finite Element Method 

kb  = Flexural wave number (m-1) 

LH = Latin Hypercube 

 

Fig. (20). Industrial Case: Reduced ARIANE 5 VEB (three subsystems). Comparison of CLF between subsystems 3 and 4 (directly 
connected) provided by numerical PIM and by closed formulation. 

 

Fig. (21). Industrial Case: Reduced ARIANE 5 VEB (three subsystems). Comparison of CLF between subsystems 4 and 5 (directly 
connected) provided by numerical PIM and by closed formulation. 
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Lij  = Length of coupling line between subsystems  

   i and j (m) 

lmesh  = Finite Element Model mesh average  

   distance between 2 nodes of one element (m) 

M  = Total mass of target subsystem (kg) 

km  = Mass associate d with node k (kg) 

N  = Number of nodes of target subsystem, or  
   number of samples 

ni  = Modal density of subsystem i (number of  

   modes in specified frequency band) 

nbloadsoptim  = Optimal number of loads 

OLH = Optimised Latin Hypercube 

Pi,inj  = Power input of subsystem i (W) 

p  = Number of sampling variables 

PIM = Power Injection Method 

Re = Real part of a complex number 

SEA = Statistical Energy Analysis 

Splate  = Surface of the plate (m ) 

ti  = Peak time of the i th impact (s) 

uk  = Velocity of node k  (m/s ) 

< v
2 >  = Space averaged nodal velocity (m/s ) 

V  = Complex conjugate of averaged nodal  
   velocity (m/s ) 

 = Dirac function 

ii  = Dissipation Loss Factor (DLF) of subsystem i  

ij  = Coupling Loss Factor (CLF) between  

   subsystems i  and j , i j  

itot  = Total coupling loss factor of subsystem i  

 = Flexural wavelength (m) 

inf  = Influence circle radius (m) 

s  = Plate surfacic mass (kg) 

ij  = Averaged transmission coefficient between  

   subsystems i  and j  

 = Angular frequency (rad/s) 
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