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In this paper, triple diffusive natural convection under Darcy flow over an inclined plate embedded in a 

porous medium saturated with a binary base fluid containing nanoparticles and two salts is studied. The model 

used for the nanofluid is the one which incorporates the effects of Brownian motion and thermophoresis. In 

addition, the thermal energy equations include regular diffusion and cross-diffusion terms. The vertical surface 

has the heat, mass and nanoparticle fluxes each prescribed as a power law function of the distance along the wall. 

The boundary layer equations are transformed into a set of ordinary differential equations with the help of group 

theory transformations. A wide range of parameter values are chosen to bring out the effect of buoyancy ratio, 

regular Lewis number and modified Dufour parameters of both salts and nanofluid parameters with varying angle 

of inclinations. The effects of parameters on the velocity, temperature, solutal and nanoparticles volume fraction 

profiles, as well as on the important parameters of heat and mass transfer, i.e., the reduced Nusselt, regular and 

nanofluid Sherwood numbers, are discussed. Such problems find application in extrusion of metals, polymers and 

ceramics, production of plastic films, insulation of wires and liquid packaging. 

 

Key words:  triple diffusive, natural convection, nanofluid, binary base fluid, porous medium, solutal 
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1. Introduction 

 
 Research on convective heat transfer in porous media has grown steadily during the past several 

decades due to its wide applications in civil, mechanical, and chemical engineering. These applications 

include crude oil extraction, food processing and storage, thermal energy storage, geophysical systems, 

electro- chemistry, metallurgy, underground disposal of nuclear or non-nuclear waste, cooling system of 

electronic devices, etc. Excellent reviews of the topics can be found in references by Nield and Bejan [1], 

Pop and Ingham [2] and Ingham and [3]. 

 Convective heat transfer can be enhanced passively by changing the flow geometry, boundary 

conditions, or by enhancing thermal conductivity of the fluid. It is well known that conventional heat transfer 

fluids, including oil, water, and ethylene glycol mixture are poor heat transfer fluids, since the thermal 

conductivity of these fluids is low. A recent technique to improve the thermal conductivity of these fluids is 

to add nano-sized metallic particles such as aluminum, titanium, gold, copper, iron or their oxides in the fluid 

to enhance its thermal properties. The term Nanofluids (nanoparticle fluid suspensions) was coined by Choi 

and Eastman [4] in 1995, to describe this new class of nanotechnology-based heat transfer fluids that exhibit 

thermal properties superior to those of their base fluids or conventional particle fluid suspensions. The 

particles are different from conventional particles (millimeter or microscale) in that they keep suspended in 

the fluid and no sedimentation occurs. Choi et al. [5] and Masuda et al. [6] showed that even with the small 
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volumetric fraction of nanoparticles (usually less than 5%), the thermal conductivity of the base liquid can be 

enhanced by 10-50%. The enhanced thermal conductivity of a nanofluid together with the thermal dispersion 

of particles and turbulence induced by their motion contributes to a remarkable improvement in the 

convective heat transfer coefficient. 

 A comprehensive survey of convective transport in nanofluids was made by Buongiorno [7]. He 

proposed a mathematical model to capture the nanoparticle/base fluid slip by treating the nanofluid as a two 

component mixture with Brownian diffusion and thermophoresis as the important factors in the convective 

transport process in a nanofluid, which were introduced in the conservation equations for mass and energy. 

Research in natural convective heat transfer in nanofluids have found a fast pace in the last few years.  

Kuznetsov and Nield [8] extended the classical problem of natural convection of a regular fluid over an 

isothermal vertical plate to the flow with a nanofluid taking into account the combined effects of heat and 

mass transfer in the presence of Brownian motion and thermophoresis as proposed by Buongiorno [7] and 

later by Nield and Kuznetsov [9] and Cheng-Minkowycz problem [10]. Khan and Pop [11] studied the steady 

boundary layer flow of a nanofluid past a stretching sheet and Khan and Aziz [12] investigated the boundary 

layer flow of a nanofluid past a vertical plate with prescribed heat, solute and nanopartilces flux using the 

Buongiorno [7] model. Kuznetsov and Nield [13] considered double-diffusive (in reality a triple diffusive) 

natural convection process from a vertical surface to a binary base fluid containing solute (e.g., salt) as well 

as nanoparticles. Rana et al. [14] studied the mixed convection boundary layer flow of a nanofluid along an 

inclined plate embedded in a porous medium. Murthy et al. [15] also investigated the double-diffusive free 

convection flow over an inclined plate embedded in a non-Darcy porous medium saturated with a nanofluid. In 

a very recent paper, Khan et al. [16] studied a triple convective-diffusive fluid mixture embedded in a porous 

medium saturated by a nanofluid on a horizontal plate heated from below and salted from above and below. 

 It should be, however, mentioned that Nield and Kuznetsov [9, 17] observed that nanoparticles are 

suspended in the nanofluid using either surfactant or surface charge technology. It is very important to 

explain how a nanofluid flow is possible in a porous medium. Without special precautions, nanoparticles will 

be simply absorbed by the porous matrix. Basically, the porous matrix will work as a filter for nanoparticles. 

This situation has been very well described, explained, and modeled in the recent papers by Wu et al. [18, 

19]. The physical situation described in shows that the work on porous media filled by nanofluids are not just 

a mathematical exercise, but are based on deep physical understanding of nanofluid flows. 

 Recently, Rionero [20] showed that the presence of more than one chemical dissolved in fluid 

mixtures is required for describing natural phenomena (contaminant transport, underground water flow, acid 

rain effects, warning of the stratosphere). The present paper investigates a triple convective-diffusive fluid 

mixture flow on an inclined plate salted from above and below embedded in a porous medium filled by a 

water-based nanofluid containing two salts with heat, mass and nanoparticle fluxes. The objective of this 

study is to investigate cross-diffusion in nanofluids, with the aim of making a detailed comparison with 

regular cross diffusion effects and the cross-diffusion effects peculiar to nanofluids, and at the same time 

studying the interaction between these effects when the base fluid of the nanofluid contains two different salts.  
 

2. Mathematical analysis 
 

 Consider a two-dimensional, incompressible, steady, laminar boundary layer natural convection of a 

nanofluid past an inclined plate embedded in a porous medium saturated with two different salts having 

different properties, with an acute angle   to the vertical. The x-axis is along the plate and the y-axis is 

normal to the plate. The plate is imposed to the surface heat flux, solutal flux of two different salts and the 

nanoparticle flux, each are prescribed as functions of the distance along the plate (x). The flow in the 

homogeneous porous medium with the porosity   and the permeability K is considered as a Darcy flow, and 

the Oberbeck-Boussinesq approximation is employed. The porous medium and the nanofluid are assumed in 

the local thermal equilibrium. In addition, the thermal energy equations include regular diffusion and cross-

diffusion terms for components of salts having concentration, C1 and C2.  Following Rionero [20], we assume 

that two different chemical components (“salts”) Sm (m=1, 2) are dissolved in the fluid-saturated porous 

medium, which have concentrations Cm (m=1, 2) respectively. At the large distance from the plate y   
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the temperature, solutal concentrations of both salts and the nanoparticle concentration are represented by 

, ,1 2T C C    and  , respectively. Defining the stream function   such that 

 

  ,  u v
y x

 
  
 

,                                                (2.1) 

 

the continuity equation is automatically satisfied. The five field equations representing the conservation of 

momentum, thermal energy, both solutes and nanoparticles for nanofluids over a heated surface embedded in 

a saturated porous medium, can be written as 
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where, the boundary conditions are given as follows 
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 Using dimensionless variables as  
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 with the local Rayleigh number defined as 
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 Using the similarity transformation Eqs (2.10), the governing Eqs (2.2)-(2.6) reduce the following 

four coupled, nonlinear ordinary differential equations 
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 The transformed boundary conditions are 
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where prime denotes the differentiation with respect to ‘ ’. The various parameters are defined as 
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 The quantities of physical interest are the local Nusselt number, the Sherwood number corresponding 

to salts S1 and S2 and the nanofluid Sherwood number, which are defined by 
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 In terms of dimensionless variables, these local numbers are written as a modified Nusselt number, 

modified Sherwood numbers and the modified nanofluid Sherwood number, respectively and can be written 

as 

  

   

 
/

,

 Ra Nu Nu ,  Ra Sh Sh ,    

Ra Sh Sh , Ra Sh Sh .
( )

1 1

1 13 3
x x x x

1

1

2 2 1 33
x x x x n

2

1 1
r r

0 0

1 1
r rn

0 0

   
 

   
 

 (2.22) 

  

3. Numerical implementation 

 
3.1. Finite Element Method 

 

 The Finite Element Method (FEM) is a computer-based and numerical scheme which is used for 

solving a different kind of practical engineering problems that occur in many fields, such as heat transfer, fluid 

mechanics [21], chemical processing [22], rigid body dynamics [23], solid mechanics [24], and many other 

fields. The system of ODE given by Eqs (2.12)-(2.16) and (2.17), (2.18) is solved using the FEM, which is a 

robust technique for numerical simulation. Assuming 
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the system of Eqs (2.12)-(2.16) reduces to 
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and the corresponding boundary conditions are 
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             , , , , ,    at 1 2f 0 0 h 0 1 0 1 0 1 0 1 0 1 0                   ,    (3.7) 

 

  , ( ) ,  ( ) , ( ) , ( )    as 1 2h 0 0 0 0 0              .                       (3.8) 

 

 The weighted residual formulation associated with Eqs (3.1)-(3.6) over a typical quadratic element is 

given by 
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where W1, W2, W3, W4, W5 and W6 are arbitrary test functions. Assuming that a typical dependent variable is 

of the form 
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 Substituting Eq.(3.16) into the weighted residual formulations Eqs (3.9)-(3.14) of the given 

differential equations. The finite element model of the equations thus formed is given by  
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4. Validation of the proposed method 

 
 An extensive mesh testing procedure was conducted to ensure a grid-independence solution of a 

given boundary value problem. The present code was tested for grid independence by calculating the reduced 

Nusselt, reduced Sherwood and reduced nanofluid Sherwood number on the wall of the sheet. Different 

combinations of the mesh were explored for . , , ,  , , , ,1 2 1 20 5 Ld 1 d 2 Ln 2 Le 1 Le 2
6


        

.1Nd 0 1 , . , , , . , . , .2 1 2Nd 0 2 Nc 1 Nc 2 Nb 0 3 Nt 0 2 Nr 0 1      , as shown in Tab.1. It has been observed 

that in the same domain the accuracy is not affected even if the number of elements is increased or the size of 

the elements is decreased. This serves only to increase compilation times and does not enhance in any way 

the accuracy of the solutions. Thus, for computational purposes, 6000 elements (he = 0.001) are taken for 

presentation of the results. It was verified that the same grid size (0.001) ensures the grid independent 

solution for all functions. For computational purposes, the region of integration  is computed as 0 to  =6, 

where   corresponds to   which lies very well outside the momentum and thermal boundary layers. 

It has been observed that for the moderate values of  (>6.0), there is no appreciable effect on the results. 

Therefore for computational purposes, infinity has been set as 6.0. 

 

Table 1.  Reduced Nusselt number, Sherwood number of both salts and nanofluid Sherwood number when 

 = 0.5;   = / 6; Ld1 = 1; Ld2 = 2; Ln = 2; Le1 = 1; Le2 = 2; Nd1 = 0.1; Nd2 = 0.2; Nc1 = 1;  

Nc2 = 2; Nb = 0.3; Nt = 0.2; Nr = 0.1. 

 
step size Nur Shr1 Shr2 Shrn 

   = 4        = 6       = 8   = 4   = 6     = 8   = 4     = 6    = 8   = 4     = 6    =8 

0.2 1.109771 1.128634 1.1546700.941184 0.956687 0.9803731.139247 1.165449 1.2030621.596625 1.648856 1.721340

0.1 1.147628 1.161983 1.1692080.975086 0.987258 0.9939931.192962 1.213800 1.2244311.700656 1.741782 1.762074

0.04 1.169524 1.172829 1.1764140.995569 0.997505 1.0008761.225093 1.229780 1.2350551.761945 1.772133 1.782144

0.02 1.176730 1.178239 1.1788281.002473 1.002729 1.0032381.235726 1.237748 1.2386021.782007 1.787096 1.788750

0.01 1.180367 1.180067 1.1808001.006074 1.004550 1.0052361.241060 1.240420 1.2414671.791876 1.792009 1.793952

0.001 1.181629 1.181007 1.1813151.007401 1.005525 1.0057901.242874 1.241774 1.2422001.795077 1.794422 1.795217

0.0001 1.182736 1.182001 1.1819881.008680 1.006626 1.0065431.244401 1.243171 1.2431381.797504 1.796756 1.796761

 

 In the present study, the reduced Nusselt number Nur, reduced local Sherwood number of both salts 

Shr1, Shr2 and reduced nanofluid Sherwood number Shrn, defined in Eq.(2.22), are the important 

characteristics. The numerical values of Nur, Shr1, Shr2, Shrn are exhibited in Tabs 1-5. 
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Table 2.  Comparison of the reduced Nusselt number Nur for free convection along a vertical at plate in a 

porous medium saturated with nanofluids when  = -0.5;   =0 ; Ld1 = Ld2 = 0; Nc1 = Nc2 = 0; Nd1 

= Nd2 = 0. 
 

 

Table 3.  Effects of the nanofluid, buoyancy ratio and the modified Dufour parameters on the dimensionless 

heat transfer rates for aiding flows when  = 0.5;   = / 6; Ld1 = Ld2 = 0.2; Ln = 2; Le1 = Le2 = 

1.0; Nd2 = 0.2; Nc2 = 5. 

 

     Nr     Nb  Nt Nd1 = 0.2  Nd1 = 0.4  Nd1 = 0.6 

   Nc1 = 3        Nc1 = 5    Nc1 = 3       Nc1 = 5 Nc1 = 3       Nc1 = 5 

0.1 0.1 0.1 1.456337 1.558528 1.336233 1.428332 1.235013 1.318645 

  0.2 1.424249 1.526410 1.307561 1.399620 1.209034 1.292611 

  0.3 1.392251 1.494303 1.278982 1.370927 1.183124 1.266578 

 0.2 0.1 1.436034 1.537985 1.318800 1.410684 1.219821 1.303256 

  0.2 1.406351 1.507931 1.292192 1.383749 1.195617 1.278766 

  0.3 1.375709 1.477037 1.264796 1.356114 1.170761 1.253676 

 0.3 0.1 1.416099 1.517772 1.301620 1.393278 1.204786 1.288022 

  0.2 1.387014 1.488280 1.275512 1.366797 1.181021 1.263908 

  0.3 1.356961 1.457910 1.248608 1.339598 1.156585 1.239189 

0.2 0.1 0.1 1.451750 1.554510 1.332122 1.424724 1.231288 1.315367 

  0.2 1.417543 1.520529 1.301530 1.394318 1.203567 1.287793 

  0.3 1.383432 1.486570 1.271044 1.363941 1.175918 1.260219 

 0.2 0.1 1.432568 1.534947 1.315694 1.407957 1.217013 1.300786 

  0.2 1.401756 1.503925 1.288095 1.380154 1.191917 1.275500 

  0.3 1.370112 1.472130 1.259775 1.351699 1.166232 1.249661 

 0.3 0.1 1.412973 1.515043 1.298827 1.390821 1.202266 1.285802 

  0.2 1.383158 1.484891 1.272066 1.363762 1.177914 1.261165 

  0.3 1.352437 1.453928 1.244557 1.336024 1.152927 1.235954 

 

 

Nb Nt  Nr = 0.1    Nr = 0.3  

  Ln = 10  Ln = 50  Ln = 10  Ln = 50 

  Noghrehabadi Present  Noghrehabadi Present  Noghrehabadi Present  Noghrehabadi Present 

  et al. [25] results  et al. [25] results  et al. [25] results  et al. [25] results 

 0.1 0.53523 0.535191 0.54514 0.545016 0.52809 0.527827 0.54364 0.543601

 0.2 0.50476 0.504583 0.51536 0.515175 0.49568 0.495416 0.51345 0.513365

0.1 0.3 0.47474 0.474701 0.48519 0.485004 0.46451 0.464364 0.48304 0.482819

 0.4 0.44505 0.444823 0.45454 0.454440 0.43433 0.434210 0.45230 0.452217

 0.5 0.41555 0.415402 0.42336 0.423113 0.40493 0.404808 0.42115 0.411001

 0.1 0.51256 0.512424 0.53280 0.532800 0.50792 0.507717 0.53173 0.531676

 0.2 0.48406 0.484009 0.50365 0.503556 0.47916 0.478949 0.50252 0.502431

0.3 0.3 0.45568 0.455555 0.47404 0.473888 0.45073 0.450604 0.47290 0.472818

 0.4 0.42732 0.427238 0.44389 0.443847 0.42251 0.422509 0.44278 0.442701

 0.5 0.39888 0.398617 0.41315 0.413131 0.39436 0.394115 0.41210 0.411990

 0.1 0.49087 0.490707 0.52082 0.520717 0.48688 0.486787 0.51983 0.519703

 0.2 0.46356 0.463504 0.49214 0.492055 0.45962 0.459515 0.49116 0.491005

0.5 0.3 0.43625 0.436041 0.46297 0.462882 0.43246 0.432212 0.46203 0.461822

 0.4 0.40885 0.408802 0.43325 0.433113 0.40531 0.405234 0.43236 0.432007

 0.5 0.38130 0.381254 0.40291 0.402849 0.37807 0.377956 0.40210 0.402073
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Table 4.  Effects of Lewis numbers on the dimensionless mass transfer rates of both salts and nanoparticles 

for aiding flows when λ=0.5; δ = π / 6; Ld2=0.2; Nc1=Nc2=3; Nd1=0.4; Nd2=0.2; Nb=0.3; Nt=0.2; 

Nr=0.1. 
 

Le1 Le2 Ln  Ld1 = 0.2    Ld1 = 0.4  

   Shr1 Shr2 Shrn  Shr1 Shr2 Shrn 

1 1 1 1.571477 1.571477 1.282409 1.460606 1.600526 1.308128 

  3 1.574553 1.574553 2.644511 1.462636 1.603747 2.684946 

  5 1.574579 1.574579 3.619065 1.462345 1.603789 3.669251 

 3 1 1.428570 2.816647 1.165602 1.338507 2.869389 1.200049 

  3 1.432154 2.823437 2.442142 1.341060 2.876341 2.494790 

  5 1.432058 2.823791 3.361329 1.340674 2.876839 3.426053 

 5 1 1.394974 3.693484 1.141650 1.311425 3.759370 1.177920 

  3 1.398634 3.702581 2.394352 1.314050 3.768698 2.450158 

  5 1.398482 3.703231 3.297930 1.313609 3.769586 3.366647 

3 1 1 2.827505 1.432798 1.173352 2.676978 1.445940 1.185597 

  3 2.834218 1.436302 2.464986 2.682721 1.449460 2.484634 

  5 2.834508 1.436169 3.394514 2.682421 1.449343 3.419066 

 3 1 2.517420 2.517419 1.007277 2.388144 2.544280 1.026994 

  3 2.525435 2.525435 2.183759 2.395411 2.552300 2.213883 

  5 2.525344 2.525344 3.040493 2.394801 2.552339 3.077182 

 5 1 2.430632 3.299892 0.971774 2.312121 3.333055 0.993362 

  3 2.438764 3.310502 2.114235 2.319506 3.343691 2.147411 

  5 2.438444 3.310537 2.949205 2.318673 3.343929 2.989594 

 

Table 5.  Effects of Nt, and Ln on the dimensionless heat, solutal mass of salts 1 & 2 and nanoparticle mass 

transfer rates for aiding flows when  = 0.5; Ld1 = 1; Ld2 = 2; Le1 = 1; Le2 = 2; Nd1 = 0.1; Nd2 = 

0.2; Nc1 = 1; Nc2 = 5; Nb = 0.3; Nr = 0.1. 
 

t      Nur  Shr1  Shr2  Shrn 

  Ln = 5 Ln = 15  Ln = 5 Ln = 15  Ln = 5 Ln = 15  Ln = 5 Ln = 15 

0.1 0 1.296269 1.316955 1.039764 1.036154 1.275138 1.268796 3.567438 6.486363 

 / 6 1.231761 1.252439 0.992472 0.989245 1.218271 1.211820 3.405421 6.196226 

 / 3 1.145822 1.166370 0.929671 0.926354 1.142514 1.135902 3.189316 5.809114 

 / 2 1.011557 1.031879 0.831695 0.828202 1.024290 1.017391 2.850863 5.200802 

0.3 0 1.229170 1.251327 1.054892 1.051274 1.304875 1.298065 3.045969 5.857219 

 / 6 1.164621 1.186721 1.007865 1.004488 1.248447 1.241550 2.912429 5.603363 

 / 3 1.078642 1.100440 0.945392 0.941875 1.173382 1.166248 2.734505 5.264864 

 / 2 0.944328 0.965588 0.848037 0.844273 1.056473 1.048919 2.456405 4.733886 

0.5 0 1.161883 1.184412 1.071913 1.068378 1.338292 1.331253 2.711381 5.442550 

 / 6 1.097317 1.119716 1.025254 1.021855 1.282549 1.275464 2.598992 5.219003 

 / 3 1.011359 1.033183 0.963302 0.959721 1.208557 1.201187 2.449586 4.921312 

 / 2 0.877130 0.897932 0.866924 0.863054 1.093695 1.085844 2.217014 4.455858 

 

 The influence of Nb, Nt, Nr and Ln on the reduced Nusselt number is shown in Tab.2. Further, the 

results are compared with those reported by Noghrehabadi et al. [25]. The comparisons in all the cases are 

found to be in good agreement. 
 

5. Results and discussions 
 

 Numerical computations have been carried out for different values of the parameters involved, 

namely the Prandtl number (Pr), regular Lewis number (Le1, Le2), modified Dufour parameters of both salts 

(Nd1, Nd2), buoyancy ratio of both salts (Nc1, Nc2), Dufour-solutal Lewis number of salts 1 and 2 (Ld1,Ld2), 
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angle of inclination, nanofluid buoyancy ratio (Nr), nanofluid Lewis number (Ln), the Brownian motion 

parameter (Nb) and thermophoresis parameter (Nt). The effects of the flow controlling parameters on the 

dimensionless velocity, temperature, solutal concentrations of both salts, nanoparticle concentration, the rate 

of heat and mass transfer are investigated and presented graphically in Figs 1-10. 

 The numerical values of the reduced Nusselt number Nur, reduced local Sherwood number of both 

salts Shr1, Shr2 and reduced nanofluid Sherwood number Shrn are given in Tabs 3-5 for various values of 

parameters. Table 3 depicts the effect of nanofluid buoyancy ratio, nanofluid, and the modified Dufour 

parameters on the dimensionless heat transfer rates for assisting flow. The results in this table indicate that 

the increase in the Brownian motion parameter, the thermophoresis parameter, or the buoyancy ratio 

parameter decreases the heat transfer rates. This table shows that an increase in the modified Dufour 

parameter increases the heat transfer rates. The variations of the heat transfer in Tab.3 reveal that the effects 

of the nanofluid parameters on the heat transfer rate are more than that of the nanofluid buoyancy ratio 

parameter. The effects of the regular and nanofluid Lewis number on the dimensionless mass transfer of both 

salts and nanoparticles rates are shown in Tab.4. It can be noticed that mass transfer rates of salts 1 & 2 and 

nanoparticles depend upon their respective Lewis numbers. 

 The variation of the reduced Nusselt number, Sherwood number of both salts and nanofluid 

Sherwood number with the thermophoretic parameter Nt, inclination angle  and nanofluid Lewis number 

Ln is presented in Tab.5 for aiding flows only. Clearly, the heat transfer rate and mass transfer rate of both 

salts and nanoparticles decreases with an increase in the angle of inclination  . The heat and mass transfer 

rate is larger for the case of vertical surfaces (  0  ) as compared to the horizontal surfaces (  / 2   ). 

 Figure 1 shows the profiles of stream function, temperature, solutal concentration of salt 1 & 2 and 

nanoparticle concentration for selected parameters. Figure 2 depicts the effects of all the three types of 

diffusion on the reduced Nusselt number (dimensionless heat transfer rates) and a comparison of diffusion is 

also shown in this figure. It can be seen that in the case of a regular fluid (without nanofluids and salts), the 

dimensionless heat transfer rate is smaller than other diffusions. After the inclusion of nanofluids and salts, the 

rate of heat transfer increases due to an increase in the thermal conductivity and rate of diffusion of both salts. 

 Figures 3a and 3b depict the effects of the buoyancy ratio of salt 1 and exponent  . The effect of 

changing the exponent   from 0 to 1.0 is to decrease the local (at a given value of  ) values of the surface 

temperature in both assisting and opposing flows. The buoyancy ratio of salt 1 reduces the dimensionless 

temperature and hence the thickness of the thermal boundary also reduces in the case of aiding flows, 

whereas in the case of opposing flows, it helps in increasing the surface temperature. 

 

 
 

Fig.1.  Profile of all dimensionless functions when Ld1 = 1; Ld2 = 2; Le1 = 1; Le2 = 2; Ln = 2; Nb = Nt =0.1;  

 = 0.5;   = / 6; Nd1 = 0.1; Nd2 = 0.2; Nc1 = Nc2 = Nr = 0.1. 
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Fig.2.  Effects of heat and mass diffusion on the dimensionless heat transfer rate, where TD stands for triple 

diffusion (nanofluid with both salts), DD stands for double diffusion(nanofluid with salt 1), MD 

stands for mono diffusion(regular or nanofluids). 
 

 
(a) Assisting Flows                                             (b)Opposing flows 

 

Fig.3.  Effect of the buoyancy ratio of salt 1 and on the dimensionless temperature when Ld1 = 1; Ld2 = 2; 

Le1 = 1; Le2 = 2; Ln = 2; Nb = Nt = Nr =0.1;   = / 6; Nd1 = 0.1; Nd2 = 0.2; Nc2 = 0.1; 

 

 Figures 4 and 5 show the effects of Dufour-solutal Lewis numbers and buoyancy ratio of both salts 

on their respective dimensionless concentrations in the case of assisting flows. Within the boundary layer for 

larger Lewis numbers, the dimensionless concentrations of salts 1 & 2 are found to be higher. Figures 6a and 

6b show the effect of the buoyancy ratio and nanofluid parameters on the nanoparticle volume fraction 

profile for the assisting flow. We note that increasing the Brownian motion parameter leads to a clustering of 

the nanoparticles near the plate. An increase in the Brownian motion of the nanoparticles leads to a decrease 

in the mass volume fraction profile of nanoparticles. The fast flow from the plate carries with it nanoparticles 

leading to an increase in the dimensionless concentration of nanoparticles. 
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(a)                                                                                      (b) 

 

Fig.4.  Effects of buoyancy ratios and Dufour-solutal Lewis numbers on the dimensionless concentration of 

salt 1 for the assisting flow when Le1 = 1; Le2 = 2; Nd1 = 0.1; Nd2 = 0.2; Nb = Nt = Nr = 0.1; Ln = 2;   

 = 0.5;   = / 6. 

 

 
(a)                                                                                 (b) 

 

Fig.5.  Effects of buoyancy ratios and Dufour-solutal Lewis numbers on the dimensionless concentration of 

salt 1 for the opposing flow when Le1 = 1; Le2 = 2; Nd1 = 0.1; Nd2 = 0.2; Nb = Nt = Nr = 0.1; Ln = 2; 

 = 0.5;   = / 6. 
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(a)                                                                              (b) 

 

Fig.6.  Effects of buoyancy ratios and nanofluid parameters on the dimensionless concentration of the 

nanofluid for the assisting flow when Le1 = 1; Le2 = 2; Nd1 = 0.1; Nd2 = 0.2; Nb = Nt = Nr = 0.1;  

Ln = 2; ;   = 0.5;   = / 6. 

 

 The influence of angles of inclination from the vertical,  , ranging from 0 to 
2


 on the temperature, 

solutal concentration of both salts and nanoparticle volume fraction are shown in Figs 7 and 8. An increase in 

the angle of inclination leads to enhanced temperature, concentration of both salts, and nanoparticle volume 

fraction distributions within the boundary layer region. This is due to the reduction in the buoyancy effect 

caused by an increases in .  

 

 
(a)                                                                     (b) 

 

Fig.7.  Effects of the angle of inclination   and   on the dimensionless temperature and concentration of 

nanoparticles for the assisting flow when Ld1 = 1; Ld2 = 2; Le1 = 1; Le2 = 2; Ln = 2; Nd1 = 0.1; Nd2 = 

0.2; Nc1 = 1; Nc2 = 2; Nr = 0.1; Nb = 0.3; Nt = 0.2. 
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(a)                                                                   (b) 

 

Fig.8.  Effects of the angle of inclination   and   on the dimensionless temperature and concentration of 

nanoparticles for the opposing flow when Ld1 = 1; Ld2 = 2; Le1 = 1; Le2 = 2; Ln = 2; Nd1 = 0.1; Nd2 

= 0.2; Nc1 = 1; Nc2 = 2; Nr = 0.1; Nb = 0.3; Nt = 0.2. 

 

 Figures 9a and 9b show the effects of the Brownian motion parameter Nb on the reduced Nusselt 

number Nur and the reduced nanofluid Sherwood number as the nanofluid Lewis number Ln increases. 

Figures 10a and 10b depict the effect of the thermophoretic parameter Nt on the heat and nanoparticles mass 

transfer rates for a variation of the nanofluid Lewis number Ln. The extension of this problem has also been 

done with the Hybrid approach (FEM + symbolic computation) by the authors. 

 

 
(a)                                                                      (b) 

 

Fig.9. Effect of the nanofluid Lewis number Ln and the Brownian motion parameter Nb on the heat and 

nanoparticle mass transfer rates for assisting flow when Ld1 = 1; Ld2 = 2; Le1 = 1; Le2 = 2; Nd1 = 0.1; 

Nd2 = 0.2; Nc1 = 1; Nc2 = 2; Nr = 0.1; Nt = 0.3;  = 0.5;   = / 6 
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(a)                                                                 (b) 

 

Fig.10.  Effect of the nanofluid Lewis number Ln and the Thermophoresis parameter Nt on the heat and 

nanoparticle mass transfer rates for assisting flow when Ld1 = 1; Ld2 = 2; Le1 = 1; Le2 = 2;  

Nd1 = 0.1; Nd2 = 0.2; Nc1 = 1; Nc2 = 2; Nr = 0.1; Nt = 0.3;  = 0.5;   = / 6 

 

6. Conclusion 

 
 The result can be summarized as follows: 

 The addition of nanoparticles and salts in the base fluid increases the heat transfer rates. Thus, useful 

in fast cooling on the drug delivery with induction of nanoparticles. 

 Temperature decreases with the buoyancy ratio of salt 1 for assisting flows but an opposite trend is 

found in the case of opposing flows. 

 Increasing the thermophoresis parameter (Nt) increases nanoparticle concentration, whereas 

increasing the Brownian motion parameter (Nb) decreases the concentration of nanoparticles. So, 

nano mass transfer rates increase with Nb but decrease with Nt. 

 An increase in the angle of inclination of the inclined surface reduces the heat, regular mass, and 

nanoparticle mass transfer rates between the porous medium and the inclined surface. This is an 

important conclusion, for efficient drug delivery where the direction of incision has an important 

role. 

 The effect of variation of the Brownian motion or the thermophoresis parameter on the heat transfer 

rate is larger than that of the buoyancy ratio parameter, implying the effectiveness of nanofluids. 
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Nomenclature 

 
 C   concentration 

 Cp   specific heat at constant pressure 

 DS1, DS2   solutal diffusivity 

 DB   Brownian motion coefficient 

 DT   thermophoretic coefficient 

 DTC   Dufour type diffusivity 



FEM simulation of triple diffusive natural convection ... 899 

 DCT   Soret type diffusivity 

 f   dimensionless stream function 

 Ld1, Ld2   Dufour solutal Lewis number 

 Le1, Le2   modified Lewis number 

 Ln   nanofluid Lewis number 

 Nr   nanofluid buoyancy ratio 

 Nb   Brownian motion parameter 

 Nt   thermophoretic parameter 

 Nc1, Nc2   regular double diffusive buoyancy ratio 

 Nd1, Nd2   modified Dufour parameter 

 T   fluid temperature 

 u   velocity in x-direction  

 v   velocity in y-direction  

  m     thermal diffusivity 

       acute angle of plate to vertical 

       porosity (ratio of volume fraction of vascular to extra-vascular space)  

       dimensionless coordinate  

       density  

       kinematic viscosity 

 

Subscripts 

 

 f   base fluid 

 nf   nanofluid 
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