DOCUHEMT RES日E

AOTH OR
TITLE

INSTITOTION SPORS AGENCY POB DATE GRANT note

EDRS PRICE DESCRIPTORS

Ott. Hary Diederich
Female Engineering Students-Attitudes, Characteristics, Expectations, Respcnses to Engineering Education. Final Refort. Cornell Univ., Ithaca, N. Y. Coll. ©f Engineering. National Science Foundation, Hasington, $\mathrm{C} . \mathrm{C}$. Jun 78
NSF-SHI-75-18013-A-01
95p.; Contains occasioral light and Eroken type
MF-\$0.83 HC-\$4.67 Flus Fcstage.
Attitudes; Career Educaticn: Ccilege Students;
*Engineering Education; 索females; *Eigher Education; *National Surveys; Needs Assessment; *Research; Science Education

ABSTRACT
The major purpose cf this study was to determine the characteristics and needs of new female engineering students and to develop or modify programs to neet their needs. The atudy surveyed a nationwide sample of male and female engineering students of 16 selected universities and colleges to identify differences ketween these two groups of students and to ccilect accurate enrolluent and retention data for this sample. Included are six chapters: (1) an overview of the study; (2) a sumary cf the survey results; (3) an analysis of enrollments and of retenticr; (4) a comparison of the survey population with the population of the onited states' university freshmen; (5) a comparison cf black wcmen and white women enqineering freshmen; and (6) policy inplicaticnsfor engineering colleges. A list of references, published reports cf the frcject, and reports submitted to ERIC are also presented. (Bu)

[^0]
femple engineerific ftudents --

Atitiudes, Characteristics,

Ehpectations. Responses to

Engineering educhtion

- DEFETMENT OF HEALTH. 3. DEFAMMENT WFLFARE WATIOWAL INSTITUTEOF EDUEATIOH

THIS DOCUMENT HAS BEEN REPROT: DUEED EXACTLY AS RECEIVED FROM DUCED EXACTLY AS RECEIVED FROM THE PERSONTOAORGANIZATION ORIGIN ATING IT POINTS OF VIEW OR OPINIONS STATED DO HOT NECESSARILY REPRE: SENT OFFIGIAL NATIONAL INSTITUTE OF OUCATION POSITION OR POLICY
"PERMISSION TO REPRODUGE THIS MATERIAL HAŚ bEEN GRANTED BY

Mary D. Oft

TO THE EDUEATIONAL RESOURCES INFÖAMATION CENTER (EAICI AND USERS OF THE ERIC SYSTEM.'

Mary Diederleh Ott

College of Engincering

Cornell Universlty

```
    FEMALE ENGINEERING SIUDENTS--
        \therefore
ATTITUDES,' CHARACTERISTICS, EXPECTATIONS,
RESPONSES TO ENGINEERING EDUCATION
    .
            FINAL REPORT
        National Science Foundation
        Grant No. SMI 75-18013 A01
```

 June 1978
 Mary Diederich Ott
 College of Engineering
 Cornell Univerjity
 Ithaca, \(\mathrm{N}^{-14853}\)
 ?
 \(\therefore 3\)

ACKNOWLEDGMENTS

We gratefully acknowleage the cooperation of the staff members at the schools in the sample who obtained retention information and encouraged student participation in the surveys. Their assistance and that of tne students was vital to the success of the project.

In addition to the author, the research group at Cornell included Malcolm S. Burton, Robert E.,Gardner, David C. Johnson, Howard Kramer, Judith Long Laws, and Lawrence Williams. David Chapman was the statistical consultant.
Page
Acknowiedgments iii

1. An Overview 1
A. Survey Schedules 2
B. Population 2
C. Sample 3
D. Survey Participation 5
E. Survey Analyses 7
F. Generalizability of the Survey Results 9
2. Charecteristics of Men and of Women Engineering Students 11
A. Fall Surveys of Incoming Freshmen 11
B. Spring Surveys of Freshmen 19
C. Selected Differences Between Fall 1975 and Fall 1976 Freshman Populations 27
D. The Spring 1977 Sophomore Survey 28
3. Analysis of Enrollments and of Retention 31
A. Enrollments 31
B. Retention 33
C. Relationships Between Enrollments and Retention Rates 49
4. A Comparison of the Survey Population with the Population of U.S. Univergity Freshmen 51
A. Comparisons 51
B. Conclusions 62
5. A Comparison of Black Women and White Women Engineering Freshmen 65
A. Method 66
B. Results 68
C. Discussion 68
6. Policy Implications for Engineering Colleges 75
A. Implications of Survey Results 75
B. Special Tmplications for Educating Black Women 79
C. Implications of Retention Results 80
References 81
Bibliography of Project Reports 85
$\Rightarrow \quad-\mathbf{V}=$ 5

FIGURES

Page

1. Survey sehedule 2
2. Retention rates for students in sample at each school, by sex of student 35
TABLEG
3. Schools in the population 4
4. Schools participating in surveys 6
5. Survey fopulation sizes, sample sizes, numbers of respondents, and response rates 8
6. Responsec indicating differences in backgrounds of men and women 12
7. Responses indicating differences in expectations of men and women 14
8. Responses indicatins differences in activities of men and women 15
9. Responses indicating differences in attitudes of men and women 17
10. Responses indicating differences in freshman year experiences of men and women 20
11. Students' assessment of relative academic performance in spring 1976 22
12. Responses indicating differences in career plans of men and women 25
13. Total first=time fréshman enrollments, number and percentage of women at.each school in the sample, for fall 1975 and iall 1976 32
14. Responses which distinguish between the retention and non-retention. groups for men 39
15. Responses which distinguish between the retention and non-retention groups for women 42
16. Reported destinations of survey respondents who were not retained 48
17. Correlation between fall 1975 freshnan enrollments and retention rates of women $(n=16)$ 50
18. Estimated proportion of fall 1976 freshmen in each racial/ethnic category 52
19. Distributions of ACT scores 54
1C. Distributions of SAT scores 56
20. Estimated proportions of fall 1976 freshmen having A averages in high school 58
21. Highest degree planned by men and women in the engineering and CIRP populations 61
22. Estimeted population proportions of Whites and of Blacks among women engineering freshmen 67
23. Responses indicating differences between White women and Black women 69
24. Major sources of college financial support, fall 1975 73

FEMALE ENGINEERING STUDENTG--ATHITUDES, CHARACTERISTICS, EXPECTATIONS, RESPONSES TO ENGINEERING EDUCATION

1. AN OVERVIEW

This study resulted from an interest in the charecteristics and experiences of women students in engineering. Women were only about 1% of engineering students until the early 1970's. At the start of this decade, however, women began to enroll in engineering at steadily increasing rates. The increase in the number of women in engineering colleges presented both an opportunity and a challenge to engineering education. The opportunity was to diversify and increase the engineering student population through the addition of a talented group of new students. The challenge was to determine the characteristics and needs of these new women students and to develop or modify programs to meet their needs.
; This study had two major objectives. The first was to identify the characteristics and needs, both academic and non-academic, of incoming men and women students, and the changes in these areas after one and two years in an engineering program. The second was to collect açurate enrollment and . retention data for male and female engineering students at each one of a probability sample of institutions. Thus the study focused on the determine= tion of students' characteristics and experiences (see chapters 2 through 5 of this report). Based on our findings, we also made recommendations to engineering colleges for new or mudified programs (chapter 6).

The study surveyed a nationwide sample of male and female engineering students to assess the differences between these two groups of students. We also obtained enrollment and retention data for this sample. We turn now to
a description of the research methodology.

A. Survey Schedule

Two entering ciasses of first-time engineering freshmen were surveyed, the fall 1975 and fall 1976 entering classes. Surveying two classes allowed us to identify (1) those differences between men and women that were the same for two classes, and (2) the differences between the fall 1975 and fail 1976 classes. In both years, freshmen were surveyed at the beginning and at the end of the dcadenic year in order to determine characteristics at college entry, freshman year experiences, and changes in student characteristics during the fresiman rear. Tho students who entered in fall 1975 were also surveyed at the end oi their sophomore year in an attempt to determine changes in student characteristics between the end of freshman year and the end of the sophomore year.

The survey schedule and the populations surveyed are listed in figure 1 .

Figure 1. Survey Schedule.

Survey	Period	Population
1	Fall 1975	Fall 1975 entering class
2	Spring 1976	Fall 1975 entering class
3	Fall 1976	Fall 1976 entering class
4	Spring 1977	Fall 1976 entering class
5	Spring 1977	Fall 1975 entering class

B. Population

We wanted to include in the study all colleges and universities which enrolled a substantial number of freshman women in engineering. We decided to use "thirty Ireshman women enrolled for bachelor's degree programs in engineering in fall 1975" as the minimum requirement for including a school. $\stackrel{\square}{4}$

Only 41 schools met this requirement (Engineering Manpower Commission of Engineers foint Council, i975). In addition, we included a predominantly Black institution because minority students were of special interest in the survey phase of the study. Consequently, the survey population consisted of all first-time engineering freshmen who entersd one of these $4 \hat{2}$ institutions in the 1975 or 1976 fall term. These 4 ? institutions are listed in table 1 . Forty of the institutions in the population are universities or branches of universities; the other two are professional schools.
C. Sample

A probability sample of sixteen of the forty-two schools was selected for inclusion in the study. Four were chosen with certainty because of characteristics which were of interest, e.g, the racial background of the studente and special educational programs. Four others were chosen with certainty because they en rolled the largest numbers of women in 1974. At these eight certainty schools, all women freshmen in engineering and ten per cent of the men were : included in the sample. The male students were selected randomly from class İists or admission lists. The eight schools selected with certainty are selfrepresenting schools: That is, in computing survey estimates, the students in the sample from these schools only represent other students at their own school, rather than representing students at other schools as well.

The remaining thirty-four institutions were divided into four strata which were approximately equal in total female enroliment. Two institutions were then selected at random from each stratum, giving a total of eight randomly selected schools. The four strata were defined in two grouping operations, the first based on size of female enrollment and the second based on region. The students at the eight randomly selected schools represent the other schools in their stratum. This representation is based on the overall student selection probabilities. All of the women freshmen and a proportion of

Table 1. Schools in the Population
Certainty Schools
Due to Special Characteristics
Cornell University
General Motors Institute
Howard University University of Puerto Rico, Mayaguez Campus

Due to Size of Female Enrollment
Texas A \& M University, Main Campus Purdue University, Main Campus Pennsylvaria State University, Main Campus. University of Illinois, Urbena Campus

Non-Certainty Schools
Larger Female Enrollment

Coasts
Georgia Institute of Technology, Main Campus
Carnegie-Mellon University
University of Pittsburgh, Main Campus
Virginia Polytechnic Institute and State University
University of California at Berkeley
University of California at Davis

Central

Ohio State University, Main Campus University of Michigan at Ann Arbor Michigan Technological University Iowa State University of Science and Technology
Michigan State University
University of Texas at Austin University of Tennessee at Knoxville

Smaller Female Enrollment

Coasts

University of Washington
University of Virginia, Main Campus
Rensselaer Polytechnic Institute Lehigh University
University of California at Los Angeles
Duke University
University of Arizona
Princeton University
North Carolina State University at Raleigh
State University of New York at Buffalo, Main Campus
Stanford University

Central

University of Colorado at Boulder Montana State University Vanderbilt University
University of Missouri at Columbia University of Missouri at Rolla Northwestern University
Washington University (St. Louis) University of Wisconsin at Madison Colorado School of Mines University of Illinois, Chicago Circle Campus.
the men comprised the sample at these schools. The proportion of men selected at each school depended on the number of schools in the stratum. The sampling rate used for men at each school was determined in such a way that each man in the sample was selected with a probability of 10%. Therefore, each man selected into the sample represented himself plus nine other men from the schools in his stratum.

- D. Survey Participation

"Schools which participated in the surveys are listed in table 2 . All of the eight schools selected with certainty participated in the first survey (survey of freshmen in fall 1975). However, two of the randomly selected : schools in one stratum (Iowa State University and the University of Texas at Austin) declined to participate and were replaced by back-up schools from their stratum (Michigan State University and the University of Tennessee at Knoxville). In selecting back-up schools an attempt was made to choose schools from the stratum whose characteristics were most like those of the non-partivipating schools.

The second survey (survey of freshmen in spring 1976) included students at fifteen of the sixteen schools that panticipated in the fall 1975 survey. One of the eight randomly selected schools (the University of Tennessee at Knoxville) did not participate in this and subsequent gurveys.

The third and fourth surveys involved a new population, i.e., freshmen who entered engineering at the 42 institutions in fall 1976. Fourteen schools, including thirteen of the original sixteen schools which comprised the fall 1975 sample, participated in the fall 1976 freshman survey. *Michigan Tech \rightarrow nological. University replaced the University of Tennessee at Knoxvilie. However, one of the eight schools selected with certainty (Texas A\&M University) and one of the eight randomy selected schools (Vanderbilt University) did not participate in fall 1976.

* Surveys 1,2 , and 5 involved the first cohort of students (fall 1975 freshmen). Surveys 3 and 4 involved the second cohort (fall 1976 freshmen).
* Schools 1 to 8 are certainty schools. Schools 9 to 17 are randomly selected schools. Michigen State University and the University of Tennessee at Knoxville were back-up schools for the two randonly selected schools which declined to participate: Michigan Technological University replaced the University of Tennessee at Knoxville in fall 1976.

Thirteen schools participated in the fourth survey (of freshmen in spring 1977). These included all but one of the fourteen schools which parti'cipated in the fall 1976 survey. Unfortunately, the survey responses from Howard University were apparently lost in the mail.

Finally, fourteen schools participated in the fifth survey. This survey of sophomores in spring 1977 included the students who were fall 1975 entrants. The fourteen schools included the fifteen which participated in the second survey- excepting Howard University.

Table 3 gives the estimated survey population sizes, the survey sample sizes, the number of respondents, and the response rates for each of the five surveys. For comparisons between students' responses to surveys 1 and 2 , the population includes ail students who enrolled in fall 1975 and remained in school in spring 1976. For such comparisons, the population and sample are those given in table 3 for survey 2. Similarly, for comparisons involving surveys 1 or 2 with survey 5, the population and sample are thóse given in table 3 for survey 5. Finally, for comparisons between students' responses to surveys 3 and 4, the population and sample are those given in table, 3 for survey 4.
E. Survey Analyses =

Data were analyzed in terms of estimates of the proportions of men and of women in the population who would have given a particular response to a question. In order to make valid estimates of these population proportions, the data were subjected to statistical weighting procedures. Each respondent was assigned a weight having two components. The first was based on the overall student selection probability and adjusted the sample to represent all students in the populatiof. The second component was an adjustment for student noriresponse, For those surveys in which fewer than sixteen schools participated, the weight had a third component to adjust for non-participation of the school or schools.

* The sample was selected from 16 schools for Survey \#1, 15 for survey \#2, 14 for Surveys \#3 and \#5; and 13 for Survey \#4.
** The response rates are based only on student participation in cooperating schools. These rates do not peflect any nonparticipation of schools.

16
\therefore The precision of the estimated proportions was gauged by obtaining estimates of the standard errors of these estimated proportions. The standard error of an estimated proportion is a measure of the variability that the estimated proportion would have in repeated samples of the same type from this population. We also estimated the precigion of the difference between the estimated proportions for men and women. By comparing the difference in the estimated proportions for men and women with the estimated standard error of the differ- ence, we determined whether a difference in estimated proportions was statistically significant: In this report, 01 will generally be taken as the level of significance. Significance at the . 01 level means that there was only about one chance in a hundred that the magnitude of the difference in estimated proportions would be as high or higher than that found, if the population proportions were equal.

Complete results of each survey have been submitted to the ERIC system. The reports and their ERIC document reproduction service numbers are listed in the Bibliography of Project Reports. The survey results for the population are discussed in subsequent sections of this report.

For each school in the sample, we analyzed the unweighted responses of ; men and of women to each survey question using chi square analysis. These results have been provided to the participating schools. They are far too . voluminous for inclusion in this report.

F. Generalizability of the Survey Results

The survey results are generalizable only to the 42 schools in the population and not to other schools. In particular, they should not be generalized to two-year and four-year colleges, because of differences both in type of \because institutions and in the college environment when the proportion of women is substantially smaller than at the institutions in the study population.

2. CHARACTERISTICS OF MEN AND OF WOMEN ENGINEERIIVG STUDENTS

This chapter presents a summary of the survey results. The rosults are organized as follows: (a) fall surveys of incoming freshmen; (b) spring surveys of freshmen; (c) selected differences between the fall 1975 and fall 1976 freshman populations; (d) spring 1977 sophomore survey.

A. Fall Surveys of Incoming Freshmen

The questionnaire administered in the fall of 1975 consisted of Part I of the College Student Questionnaire developed by the Educational Testing Service (200 items) and a thirty-item questionnaire designed for this study. The questionnaire administered in the fall of 1976 consisted of 80 items, including a number of items adapted from the College Student Questionnaire, with the permission of the Educational Testing Service. Single copies of the questionnaires are available from the author :

The fall 1975 and fall 1976 surveys werefirst analyzed separately. $/$ In tables 4 to 7 ,we report differences between the responses of men and of women students which were statistically significant at the 01 level for both the fali 1975 and fall 1976 survey populations. These differences. appear to be stable since they were significant differences in both years. Results are categorized as follows: (1) background, (2) expectations, (3) activities, and (4) attitudes.

Differences in Background (Table 4). Women students, who tended to be younger, than the men, had first considered engineering for their major field somewhat later than men had. Women's parents tended to be somewhat more highly
educated than men's, as indicated by the fact that high school was the highest level of education for larger proportions of men's parents than of women's.

Table 4, Kesponses Indicating

Differences in Backgrounds of Men and Women

\cdots. .		Estimated Probortions			
! . \quad \%	Survey:	Fall 1975		Fall 1976	
RESPONSES	Group:	Men	Women	Men	Women
1. Seventeen years old or younger		22\%	28\%	13\%	20\%
2. First considered majoring in engineering					
in last' two years		48	66	38	52
3. Highest level of father's education					
Finished nigh school		20	15	21	16
4. Highest level of mother's education:					
$\therefore \quad$ Finished high school		36	25	36	32
Some college		16	19	16	21
5. Subject most enjoyed in high school:					
Mathematics		38	49	32	49
Sciences.		39	32	40	27
\because Shop or commercial	- - - - -	* 3	1	6	1

6. Subject least enjoyed in high school:

English	30	19	32	20
Foreign language(s).	28	17	27	12
Physical education	$6=$	13	5	12

7. High school class standing:

There were a number of differences in attitudes toward courses taken in s high school. Most important is the fact that women tended to prefer mathematics courses to science courses in high school, whereas men tended to prefer science courses. It is evident that women students were superior students in high school.

Differences in Expectations (Table 5) The only consistent difference in major field choice was that about twice as large a proportion of men as of women \% planned to major in electrical engineering.

Students differed in regard to expectations for their freshman year in college. In particular it is interesting that langer proportions of male students than of females expected to rank in the top 10% of their class; and larger proportions of men than of women expected' to obtain an a average. These results, when compared with the actual superiority of women's high school grades, seem to indicate greater levels of self=confidence among the men students. Furthermore, larger proportions of men than of women expected to do better than other students, whereas larger proportions of women than of men expected to perform equally with others.

Students differed in the persons expected to be the greatest influence in their freshman year. Women tended to expect greater influence from women than did men, and men expected greater influence from men than women did.

Differences in Activities (Table 6) Students differed by sex in high school participation in activities and in interest in participating in activities. Women were less likely than men to have received high school athletic awards or to ?ie devoted much time to automotive activities. Women were more likely than men to have participated in music or literary activities. Smaller pro= portions of women than of men were interested in participating in athletics, and larger proportions of women than of men were interested in participating in school spirit or preprofessional organizations. .

Estimated Proportions

RESPONSES

Survey: Fall 1975.
Group: Men Women Men Women
Fal1 1976
20%
8% field
2. Expect greatest personal satisfaction from becoming acquainted with wide variety of students
3. Expect greatest' problem to be meeting and/or relating to members of opposite sex 9
4. Expect to rank in top 10% of freshman class, relative to other engineering students.
$26 \quad 17$
21.15

18 . 10
15
9
5. Expect freshman grade average of A
6. Expected academic performance in comparison with engineering students of own sex:

Better than most
Equal
7. Expected academic performance in comparison with engineering students of opposite sex:

Better than most		44	12	48	18
Equal		50	15	46	69°

8.* Expect most infiuence from: ."

$39 \quad 19$
56
74
55
68

Table 6. Responses Indicating E: ffeloncos in Activities of Hen and Women

Estimated Proportions
Survey: Fall 1975
Fall 1976

Group: Men	Women	Men	Women	
	43%	62%	45%	59%
ds:	43			

2. Spent an hour or less per week on automobile activities

61 .. 89
56 87
3.: Did not participate in:

5. Preferred outside reading:

7. Receives a lot of pleasure from classical $\begin{array}{llllllllll}\text { music } & 41 & 61 & 38 & 56\end{array}$
8. Enjoys reading poetry

39
71
$41 \quad 72$
9. Almost always consults with friends on $\begin{array}{llllll}\text { important personal decisions } & 12 & 24 & 16 & 28\end{array}$
10. Usually or almost always consults with parents on important personal decisions: $47: 59: 65$ -123
\because Students differed radically in preferred extracurricular reading, and tn interest in modern art, classical music, and reading poetry. Finaily, larger proportions of women than of men consulted their friends or family concerning important personal decisions.

- fferences in Attitudes (Table 7) Students differed to some degree in attitudes toward graduate study and work. Increased earning potential was important to larger proportions of men than of women as a reason for planning to. attend graduate school. Students differed somewhat in preferred work situation and expected source of job satisfaction. In addition, larger proportions of men than of women considered administrative responsibility a very important o work requirement.
- As indicated in table 7 , men and women differed in attitudes toward certain sociai issues. In addition to issues of national political interest, they differed insegard to campus issues. That is, larger proportions of women than of men believed that colleges should provide assistance to minorities and to women in developing peer support groups. Larger proportions of men than of women indicated that no special assistance should be given to women engin-- eering studente.

Finally, men and women expressed different attitudes concerning plans for combining careers and marriage. Not only were there differences between men's and women's prefererices for themselves. "In addition, women's preferences for their future roles differed substantialy from men's preferences for their spouse's roles.

In addition to the items discussed here, there were others which were included on the fall 1975 or the fall 1976 survey, but not on both. A number: of these items, relating to characteristics such as Scholastic Aptitude Test . scores and parents" income, are discussed in Chapter 4 of this report,

Table 7. Responses Indicating Differences in Attitudes of Men and Women

Estimated Proportions"

\bigcirc ' .	Survey:	Fall 1975		Fall 1976	
. RESPONSES	Group:	Men	Women	Men	Women
Expectation of increased earnings as					
important reason for graduate study		10\%	4\%	11\%	3%

2. Preferred type of work situation:

Own business . '9
耍
Public or private research organization 13

9	4	12	4
3	21	12	19

3. Most important source of future job satisfaction:

Prospects of above average income 13.71
To be helpful to others and/or useful
to society
14 26 9-19
A stable, secure futurer
17
' 8
25
14
4. Consider it essential or very important to
have administrative responsibility " 32.26 . $34 . .21$
5. Probably or definitely plan to join Peace Crops or VISTA, $7: 14$, 73
6. Fairly or very well informed about political affairs. . . $61 \quad 39 \quad * 68$
7. In favor of abolition of capital punishment 3146 . 25 . 45
8. Coņcerned about chilldren having access to obscene literature. $\quad 39 \quad 69 \quad 44 \quad 58$
9. Opposed to decision to bomb Hiroshima . 19. $41 \quad 22.49$

Table 7 (continued): Responses Indicating Differences in Attitudes of Men and Women

Estimated Proportions:

Survey: Fall 1975
RESPONSES

Group: Men Women

F2211 1976
Men Women
10. Support college sponsored peer support groups to assist minority engineering students. $\quad 10 \%$ * $16 \% \therefore 8 \% \quad 17 \%$
11. Support special assistance for female engineering students in terms of:

| Peer support groups | | 7 | 16 | 8 | 14 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| None of the areas | \therefore | 53 | 37 | 42 | 28 |

12. Preferred situation for self in ten years:

| Married, no children, full-time job | 23 | 31 | 29 | 44 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Married, children, full-time job | 59 | 21 | 52 | 19 |
| Married, children, part-time job | 1 | 25 | 2 | 19 |
| Married, children, unemployed | 1 | 8 | 0 | $5:$ |

13. Preference for man's role:

Married, no children, full-time job $\begin{array}{lllll}23 & 32 & 29 & 44\end{array}$
14. Preference for woman's role:

Married, no children, full-time job 12
31
$15 \therefore 44$
Married, children, full-time job
7
21
$4 \quad 19$
Married, no children, part-time job
$9 \quad 2$
$12 \quad 2$
Married, children, ünemployed
31
${ }^{26}-5$

The questionnaires administered to freshmén in spring 1976 and spring 1977 focused on students' freshman year experiences and on career plans, They " consisted of sixty items designed for this study. These items included a number adapted from the College Student Questionnaire, with the permission of the Educational Testing Service. The questionnaires generally took less than thirty minutes to complete. Only those freshmen who had completed the fail survey and who continued in engineering at their original institution were eligible to complete the spring survey.

The spring 1976 and spring 1977 freshman surveys were analyzed separately. In tables 8 and 10 we report those differences between the responses of men and of wofen students which were gignificant at the . 01 level for both the spring - 1976 and spring 1977 survey populations: Since these differences were \rightarrow statisticaily significant for both years, they appear to be stable. Differences were found both in freshman year experiences and iñ career plans.

Freshman Year Experiences (See Table 8) At the end of the freshman year, the students indicated how well they thought they had performed academically, both in relation to students of the same sex and to students of the opposite sex. Once again, men evaluated their work more confidentily than women did. Larger proportions of men than of women indicated that they had done better than most other students, whether men or women. Women again tended to rate their performance as being equal to that of other students. Further, larger proportions of men than of women said that they were not anxious during exams.

Since the grades for their first semester courses reported by men and women indicated equal performance levels, these results indicate differences in perceptions of performance, not differences in actual performance. It is helpful to explore these results further.

In table '9 we compare students' responses in spring 1976 concernifg' their academic performance in relation to students of the same sex and to

Differences in Freshman Year Experiences of Men and Women
 Estimated Proportions

\qquad

RESPONSES -

1. Academic performance was better than that of most others of ones sex
2. Academic performance was better than that of most students of other sex
3. Not anxious during course exams
4. Number of enginjering students among threę closest female friends:

None
Two
5. Consults with close friends on important decisions:

Almost always	13	32	15	23	
Seldom	30	19	33	24	
Almost never	$:$	13	4	12	7

Table 9. Students' Assessment of Relative Academic Performance in Spring 1976.

		$\stackrel{ }{*}$	Significance Level
Category	Men	Women	of Difference
1. Performince with respect,			\because
to members of own sex			
rated higher than with re-	7.9\%	15.4\%	. 01
spect to members of other			
sex.			
2. Performance rated the same ${ }^{\circ}$			
with respect to both sexes.	82.3\%	76.2\%	. 05
3. Performance with respect to			
members of own sex rated lower	8.6\%	6.9\%	not'significant
than with respect to members			at . 01 or .05
of other sex.			

students of the opposite sex. Results were similar for the spring 1977 freshman survey. We show the relative proportions of men and of women in three categories: those who (1) rated their performance more highly in comparison with that of students of their own sex than in comparison with students of the opposite sex; (2) rated their performance the same in comparison with both groups; and (3) rated their performance lower in comparison-with that of students of their own sex than in comparison with students of the opposite sex. Greater proportions of men than of wothen considered their academic performance to be the same as that of other men and women. Thus, greater proportions of men than of'women appear to consider the two sexes' academic performance to be equal. On the other hand, greater proportions of women than of men had a higher estimate of their academic achievement in relation to that of their own sex than in relation to that of the opposite sex. Thus, greater proportions of women than of men appeared to have a higher opinion of the academíc achievement of the opposite sex than that of their own sex. Considering the faet that men's and women's academic achievement did not differ, it is apparent that greater proportions of women than of men underestimated the academic performance of students of their own sex. This result is similar to a finding by Farley that women undergraduates reported themselves to be less intelligent than men rated themselves, although the women received higher grade point averages (Farléy, 1974).

Friendship patterns differed by sex. Larger proportions of men than * of women had no friends in engineering among their three closest female friends. Also, women were more likely than men to have engineering students as two of their closest female friends. Women students indicated a greater tendency than men to consult with their friends about important decisions.

A larger proportion of men than of women had not participated at all in preprofessional organizations. Women were more olikely than men to have participated in these organizations to a small degree.

Persons who were the greatest influence on the students during the freshman year differed by sex. Larger proportions of women then of men indicated that female engineering students or other female friends on campus were the greatest influence. Larger proportions of men than of women said male friends on campus were most influential.

Men were more likely than women to indicate that the proportion of men amons engineering students was too large, whereas women tended to indicate that the proportion was just right.

Men and women differed in types of materials preferred for non-required reading, as they had when they entered college.

Career Plans (See Table 10).
Three results concerning careers from the surveys completed at the start of freshman year were obtained at the end of freshman year as well. Larger proportions of men than of women planned to major in electrical engin-- eering. For a larger minority of men than of women, high earnings were the most important reason for their career choice. Also, women were less likely than men to prefer to own their own businesses.

A larger proportion of men than of women agreed that they had understood the nature of an engineering career before they started college.

It appears that the degree of motivation to be engineers changed for larger proportions of women than for men. That is, larger proportions of men than of women were neutral when asked whether they were more strongly motivated to be engineers than they were a year earifer.

- Students were asked to indicate a major in engineering or in another area. A larger' proportion of women students than of men did not indicate any, major field choice in engineering, although there was no single field outside engineering which women chose more often than men did.

Table 10. Responses Indicating Differences in Career Plans of Men and Women

Estimated Proportions
Survey: Spring 1976
Spring 1977
RESPONSES

1. Electrical engineering as major

2. High earnings as most important $\begin{array}{llllll}\text { reason for career choice } & 8 & 3 & 9 & 2\end{array}$
3. Own business as preferred professional work situation 13 . 17
4. Agree or strongly agree they understood nature of engineering career before college $\quad 42 \quad 34 \quad 46 \quad 36$
5. Neutral when asked if more strongly motivated to be an engineer than a year $\begin{array}{lllllll}\text { earlier } & 26 & 16 & 28 & 21\end{array}$
6. 21 to 23 as age to first start fulltime professional work $\quad 47$. 63 .
7. Age to first start part-time professional work:

21 to 23	24	14	18	8
30 to 32	0	6	0	4

Table 10 (continued). Responses Indicating Differences in Career Plans of Men and Women

Estimated Proportions

RESPONSES

Survey: Spring 1976 Spring 1977
Group: Men Women Men Women
9. Age to first stop working for six months:

24 to 26	2%	8%	3%	8%	
27 to 29		3	18	2	17
39 years old or older	33	14	33	12	

10. Age to return to full-time work:

33 to 35		1	8	2	8
36 to 36		1	7	1	8

11. Age preference for having first child:

Never
4
$9 \quad 4$
13

Women tended to be interested in starting full-time professional work earlier than the men were. Larger proportions of mer than of women were interested in starting part=time professional work from 21 to 23 years of age, at the age when most women were interested in starting full-time work. A larger minority of women than of men were interested in starting part-time work from 30 to 32 years of age.

Larger proportions of women than of men were interested in first stopping work from ages 24 to 29, whereas larger percentages of men than women did not want to stop working until they were 39 years old or older. Furthermore, larger proportions of women than of men were interested in returning to fulltime work between the ages of 33 and 38.

Finaliy, a larger minority of women than of men did not plan to have any children. .
C. Selected Differences Between Fall 1975 and Fall 1976 Freshman Populations

An important difference between the two populations is that there was a larger percentage of women students in the fall 1976 population than in the fall 1975 population (16.0% vs. 15.1%). There were also differences in the major field selections of the two populations. These differences may be actual, may be due to sampling error, or to differences in the questions used on the surveys. In fail 1975, students chose from a list of eight engineering fields and a number of non-engineering fields. In fall 1976, spring 1976, and spring 1977, the list of major fields included sixteen engineering fields, as well as other fields.

Despite these possible sources of variation in responses, it appegrs that in 1975-76 there wes an actual difference in the percentages of freshman men and women planning to major in mechanical engineering, and no difference in the proportions in 1976-77. For the students who entered engineering in fall 1975, a significantly larger proportion of men than of women planned to

$$
\because-235
$$

major in mechanical engineering (14.7% of men, 5.5% of women). For this same population, there was a similar difference in the spring of the freshman year. At that time, 18.7% of men and 7.5% of women were interested in mechanical engineering. Both differences between men and women were significant at the .Ol level. For the class which entered in fall 1976, there was also a difference in the proportions of men and women choosing mechanical engineering, but, these proportions only differed at the .05 level. In this-class, 14.5% of menand 9.1% of women chose mechanical engineering. However, in spring of the freshman year, there was no significant difference (at the .05 level) between the proportions of men and women in this class who chose mechanical engineering (16.1% for men, 13.9% for women).

1
$=$ Thus, it appears that there was a difference in the proportions of men and women choosing mechanical engineering as a major for the population which entered in fall 1975, but little if any such difference for the population which entered in fali 1976.

D. The Spring 1977 Sophomore Survey

The questionnaire administered to sophomores in the spring of 1977 consisted of 50 items designed by the research team. A number of the questionnaire items were adapted from Part I of the College Student Questionnaire, with the permission of the Educational Testing Service. The questionnaire generally took less than thirty minutes to fomplete.

In order to be eligible to complete this survey, students had to have continued in engineering at their original school in spring 1977, and to have completed both the fall 1975 survey and the spring 1976 survey. The survey population, however, included all students who continued to enroll in engineering at their original" schools. Thus, although approximately 71% of the men and 77% of the women who were eligible completed the survey, this wals only 27% of the men and 38% of the women in the original fall 1975 sample who continued in engineering.

These overall response rates are too low to justify estimating popula= tion response proportions for the survey items, or testing the significance of the difference between estimated proportions of men and of women giving a particular response to a question. Similarly, an analysis of changes in students' responses from freshman through sophomore year does not appear to be warranted.

The spring 1977 sophomore survey results may be said to characterize the survey respondents, rather than the intended survey population. Complete results of the spring 1977 sophomore survey are available from the author of this report and from ERIC.

3. ANALYSIS OF ENROLLMENTS AND OF RETENTION

One of the two major objectives of the study was the collection of accurate enrollment and attrition data for male and female engineering students , at representative institutions. We will first discuss enrollments and then retention.

A. Enrollments

The enrollment information obtained includes two types of information-enrollments at the institutions in the sample, and estimates of enrolments for the population of 42 schools. Table 11 presents the total first-time freshman enrollments, and the number and percentage of women freshmen, for the schools in the sample for both fall 1975 and fall 1976. These data were schools'in total freshman enrollment, numbers of women, and percentages of women.

Purdue University had the largest total freshman enrollment each year, and the largest number of women. Due to criteria for including schools in the population, only Howard University had fewer than 30 women in either freshman class.,

General Motors Institute had the largest percentage of women in its freshman class each year. Of the schools which provided the enrollment information, the schools having the lowest percentage of women freshmen were the University of Puerto Rico, the University of Tennessee, and the . University of Illinois in 1975, and Michigan Technological Institute, the University of Illinois, and the University of Puerto Rico in 1976.

Estimates of the total numbers of men and women first-time freshmen in engineering in the population of 42 schools have been developed, based $-31-$

Table 11. Total First-time Freshman Enrollments, Number and
Percentage of Women at Each School in the Sample, for
Fell 1975 and Fall 1976.

Fall 1975
School

1. Cornell University
2. General Motors
3. Howard University
4. University of Puerto Rico
5. Texas A\&̀M University
6. Purdue University
7. Pennsylvania State University 591 at Urbana 1103
$117 \quad 10.6$ 9. Carnegie-Melion Univ= ersity \quad : 419
8. University of California at Berkeley " $\quad 350$
9. Michigan State University 636
10. University of Tennessee at Knoxville 408 43 10.5
11. University of Virginia $341 \quad 19.6$
14.: Lehigh University
12. Vanderbilt University

284
16. Colorado School of Mines

17: Michigan Technological. University
8. University of Illinois

Total N Women $\%$ Women
$648=78 \quad 12.0 \%$
$233 \quad 60 \cdots 25.8$
$137 \quad 20 \quad 14.6$

767
976
1477
$214 \quad 14.5$
$95 \quad 16.1$
541
541,2153
Total IN Women \% Women
$654 \quad 82 \quad \overline{12.5 \%}$
$361 \cdots 104-28.8$
$111 \quad 26 \quad 23.4$
$559 \quad 66 \quad 11.8$
-=- $-\underset{=}{-}$
$1752 \quad 236 \quad 13.5$

361
63. 17.5
on the enrollments at the schools in the sample. These estimated enroll= ments have been given in table 3 of chapter 1.

B. Retention

Retention has been a topic of concern in engineering education for many years. Studies of retention in engineering have generally included only male students (Elton \& Rose, 1967; Elton \& Rose, 1971), or have not distinguished between men and women in the analysis (Elkins \& Luetkemeyer, 1974; Foster, 1976; Hanson \& Taylor, 1970). Recently, retention has received renewed attention because of the dramatically increased number of womenstudents in engineering, Comparisons of the retention of men and of women "students at individual schools have appeared (Davis, 1975; Gardner, 1976; Nemeth, 1975), as has a controversial analysis of the retention of a national eample of students who enrolled in 1968 (Kaufman; 1977). 'However, no analysis has previously appeared of a large population of engineering students which has a substantial proportion of women students.

This section of the report presents estimated retention rates after

* $1 / 2$ years of college for a population of men and women engineering stidents who entered college in fall 1975. Further, it presents an analysis of student characteristics related to retention for men and women students who did not continue to study engineering at their original schools.

Method

Population and Sample. The population consisted of all first-time engineering freshmen who entered one of the 42 institutions in the survey popula= tion in the 1975 fall term. Women comprised an estimated 15.1% of the pop= ulation of approximately 19,300 freshman engineering students.

All studentş selected from the 16 schools chosen for the fall 1975. survey sample who actually enrolled were included in the retention analysis.

This sample included all freshman women in engineering at the sixteen schools and a random sample of the men at these schools. : In total, there were 1637 men and 1276 women in the fall 1975 sample.

Results

Retention Rates for Men and Women. Students were considered to be retained if they registered in engineering as freshmen fin fall 1975 and remained at the same institution in engineering throughout the spring 1976 term and at the beginining of the spring 1977 term (1 1/2 years). "These students will be referred to as the retention group: AIl other students will be referred to as the non-retention group.

Each of the sixteen schoofs in the sample reported the names of students in the sample who were not retained. From this data we developed estimates of the population retention proportions for men and women. In calculating these estimates, student weights based on the student selection probbabilities were used. The estimated proportions retained at all 42 schools in the population at the start of the spring term of the sophomore year were $\mathbf{7 3 . 3}$ for men, and 67.8% for women. These estimated proportions are signif= icantly different at the . Ol level of signifieance. Thus there was only about one chance in a hundred that the observed difference in proportions would be this large or larger if the population proportions were equal.

The retention rates for the samples at each of the sixteen schools are shown in figure 2. There was clearly a great deal of variation in the retention rates at the various schools. However, most schools had higher retention rates for men than for women. The rates were equal for men and women at orie school, higher for women than for men at two schools, and higher for men than than for women at thirteen schools. This difference in the number of schools having higher retention rates for women and those having higher Yrates for men is significant at the 05 level (sign test).

Thus based on the sample results, there was a difference in retention rates for men and women in the population, and most of the schools in the sample had somewhat lower rates of retention for women than for men. It is useful to compare the student charadteristics at college entrance of the retention and non-retention groups, and to determine the destinations of students who lefteengineering at their original schools. These areas will now be discussed.

Summary of the Comparisons of Student Characteristics. : Student characteristics were determined by means of the fall 1975 freshman survey which was completed by students in the sample at the beginning of the freshnan year. Of the students contained in the sample, $55.3 \%(i . e ., 905 / 1637)$ of the men and $60.6 \%(i, e ., 773 / 1276$) of the women completed the survey. As discussed, earlier, the survey consisted of Part I of the College Student Questionnaire developed by the Educational Testing Service, and additional items developed for this study.

Because of the large number of differences between the characteristics of men and women at college entrance, we first compared the retention group with the non-retention group for men and women separately. We then contrasted the results for men and women.

One hundred seventy-six of the male survey respondents and 200 of the female survey respondents were in the non-retention group. Their résponses to the fall 1975 survey were weighted in an attempt to reflect all of the students in the population of 42 schools who did not continue in engineering at their original schools. Seven hundred twenty-nine of the men and 573 of the women survey respondents were in the retention group. Their responses were weighted'in' an attempt to represent all of the students in the population who were retained.

For each sex; the responses of the retention group and of the nonretention group were compared for 37 questions and for two scales, each of
which was based on 10 items from the survey. These questions and scales were selected because previous research had identified many of the areas, such as achievement in high school and parental income, as correlates of attrition. We compared the estimated population proportions of students in the retention ond in the non-retention groups who would give a specific response to a survey question. The difference in the estimated proportions 'for the two groups was compared with the estimated standard error of this difference to determine whether the difference in response proporitions was significant at the .01 level. This level was used in order to be almost certain that differences in the sample really reflect differences in the popatation.-For-men there were statistically significant differences at the .01 level for 18 of the comparisons. For women there were 13 such differences.

The survey items which did not produce statistically significant differences for men or women included a number which were similar to items that other studies have identified as related to attrition. These items were the following: expected employment during college (Kolstad, 1977); parental income and time when the student first considered engineering (Foster, 1976); years of higher education desired (Elkins \& Luetkemeyer); and mother's highest degree (Davis). Other items which did not produce differences meeting the criterion included the guidance counselor's reaction to choice of engineering, the size of the high school graduation class, "and the scales giving level of cultural interest and social attitudes. It is possible that, even though the sample differences were not, significant at the . 01 level for these items, there were s.till differences in the population proportions. Also, it is possible that some of these items would have adequately distinguished between the retention and non-retention groups if students who transferred and students who left due to academic failure had beer compared separately with the retention group (Hanson \& Taylor; Vaughan, 1968).
:h was based on 10 items from the survey. These questions and scales : selected because previous research had identified many of the areas, 1 as achievement in high school and parental income, as correlates of ition. We compared the estimated population proportions of students she retention gnd in the non-retention groups who would give a specific Jonse to a survey question. The difference in the estimated proportions the two groups was compared with the estimated standard error of this Serence to determine whether the difference in response proportions was ificant at the ol level. This level was used in order to be almost ;ain that differences in the sample really reflect differences in the 1甘tion-For men there were statistically significant differences at . 01 level for 18 of the comparisons. For women there were 13 such Perences:

The survey items which did not produce statistically significant dif= nces for men or women included a number which were similar to items ; other studies have identified as related to attrition. These items the following: expected employment during college (Kolstad, 1977); sntal income and time when the student first considered engineering (Foster, j): years of higher education desired (Elkins \& Luetkemeyer); and mother's rest degree (Davis). Other items which did not produce differences meetthe criterion included the guidance counselor's reaction to choice of ineering, the size of the high school graduation class, and the scales lng level of cultural interest and social attitudes. It is possible \therefore, even though the sample differences were not significant at the 01 31 for these items, there were stili differences in the population prosions. Also, it is possible that some of these items would have adequately singuished between the retention and non-retention groups if students transferred and students who left due to academic failure had been pared separately with the retention group (Hanson \& Taylor; Vaughan, 1968).

Table 12. Responses which Distinguish Between the Retention and Non-Retention Groups for Men

$\frac{\text { Estinated Proportion }}{\text { Giving Response }}$
Retention Non-Retention
Group. Group.
Estimated Standard
Error of Difference
Retimated
Proportions
Rithonsen the Civen Response

1. In top 90 to 94 percentile of high sthool class
23%
16\%

$$
2.3 \%
$$

80%
2. In top 95 to 97 percentile
of high school class
21
8
2.4

88
3. Had A- or A dverage in
high school 52

34
5.3

81
4. Had A or A average in

- senior year

62
40
2.7

81
5. Had $B-$ to $B+$ average in senior year
6. Had Ct or lower average in senior year
7. Expect ot or lower average

In Preshwan year
15 \qquad 28 $3 \quad i \quad 3.0$
 60
B.' Plan to attend graduate school
in order to increase earningg 12 6 1,6

85

Table 12 （cont．）．Responses which Distinguish i Between the Retention and Non－Retention Groups for Men

Giving Response
，retention Non－Retention
Group Group

Estimated Standard
1 Pryor of Difference
in Response Proportions ：with the Given Response

9 Interested in professional
life（doctor，lawyer，etc．）
65% ． 57%
2.9%
76%
10, stable，secure future as
most important source of
future job satisfaction
18
13
1.8

79

11．rose from 4 or more fields
in selecting engineering
12．Fairly important to parents

15 \qquad 24
2.9
65
that one attends college．
15 24
13．Expect to rank in top 5 to
IO O of class

10\％of class
14．Expect to do better than．

$$
\text { student e of same sex } \quad 42 \text {, } 30
$$

4.3

15．Expect to do better than
students of opposite sex 48
16．Expect to do 的 well as

Rable 13. Responses which Distinguish Between the Retention and Non-Retention Croups for Women

1. Fad A= or A average in :
high schooi
Had $A-$ or A average in
senior year
80
63% ${ }^{1.0 \%}$
3.7

72
3. Had B- to $\mathrm{B}+$ average
in high schiool
; 26
36
2.2

61
4. Had Be to B+ average
in shenior year 20

34
4,1
55
5. In top 80-89 percentile of high, schoon classt
6. Working with ideas ds most important reason for choosing engineering.
7. Chose from 2 fields in
selecting-engineering
33
42
3.1

62
8. Chose from ' 3 fields in

41
32
2.8

73

Table 13 (cont.), Responses wish Distinguish Between the Retention and Non=Retention Groups for Women

the men in the non-retention group left due to academic failure and dismissal. However, substantial numbers of the most highly qualified men students were not retained. The men who had been in the top 2 percent of their high school class were just as likely not be to retained as were other men. To a large extent, these highly qualified men who were not retained were probably inter= nal transfers (Elton \& Rose; 1971). .

There was also a relationship between prior academie achievement and retention for women. Women who had received A averages in high school or in their senior year of high school were more likely to be retained than were other women. Women who had B averages in high school or in their sentor year or were in the top $80-89$ percentile of their high school class were less likely to be retained than were other womeñ. These women had lower class standings than 80% of the women freshman engineering students. Thus the women who had lower retention rates tended to have been at the lower end of the achievement spectrum of women engineering students, although | their absolute levels of achievement in secondary school were high. Thus one might expect that academic failure would be a less likely reason for these women to leave engineering than for the men, and that women who left would be more likely than men to transfer into a different curriculum. The destination of non-retained students is discussed in the next section.

Self-confidence also appears to be related to retention for men. Men who thought they would rank in the top 5 to 10% of their class had a higher retention rate than did other men. Those men who thought they would do better than other men in engineering or women students in engineering had a higher retention rate than did other men, whereas those who thought they would do as well as women students had a lower retention rate than other men. For women, expectations of ones success in relation to men or to other women apparently did not differentiate between the retention and non-retention groups.

Certain background characteristics differentiated between the students in the retention and non-retention groups, although these characteristics : differed for ment and women. For men, we found that those who had graduated from a public high school had higher retention rates than men who did not. do so. This agrees with the results of a study of freshmen at the University of Maryland (Eikins \& Luetkemeyer). However, there was no significant difference in retention rates for women who had graduated from public or non-public high schools. For women, but not for men, we found that the highest degree received by the father of the student, and the student's race were related to retention rates. Women whose father's highest degree was a bachelor's degree had higher rates of retention than other women. This difference was significant also for men, at the .05 level of significance, but not at the . 01 level. Women who indicated that they were Caucasian had a higher estimated retention rate than that of other women. No significant difference in retention rates for Caucasians and others was found for men. These results point out the possibility that women engineering students who are members of minority groups may encounter special diffi= culties (Ott, 1978).

We found that parents' attitudes to college attendance of the student were related to retention, as has been noted in earlier studies (Tinto). For men, those who said their parents considered college attendance only fairly important were less likely to be retained than were other men. A similar result was found for women. A larger proportion of women who indicated that their pa ts considered college attendance extremely important were retained than were other women. The retention rate was higher for 'men whose favorite high school subject was mathematics than for other men. The retention rate was higher for women who did two or more hours of homework a day in high school than it was for other women.

The number of fields from which students selected in choosing engineering was related to retention rates. For men, the retention rates were lower for those who had selected from four or more fields than they were for men as a whole. For women, the retention rates were lower for those who had selected from two fields, and higher for those who had selected from three fields, than the retention rates for all women.

Retention rates were higher for women who planned to be married, have children, and work part-time at a time ten years into the future than for other women. Women who had indicated that they planned to be married and have children and work full-time had lower retention rates. The difference in proportions giving this latter response in the retention and non-retention groups was significant at the .05 level; but not at the . 01 level.

Finally, differences in motivation also appear to be related to differences in retention rates. Those men who were interested in attending, graduate school in order to increase their earnings (Foster, 1975) had a higher retention rate than men as a whole. Men who were interested in a professional life, and those for whom a stable, secure future was the most important source of future job satisfaction, had a higher retention rate than men did as a whole. Women who indicated that working with ideas was the most important reason that they selected engineering had a higher retention rate than other women. (This latter result is in contrast with Elton and Rose's finding (1967;1971) that male stuc. at the University of Kentucky who transferred from engineering scored higher than did persisteors on personality scales which indicated they liked reflective thought.) Thus motivation was related to retention, although different motivations differentiated between the retention and non-retention groups for men and for women.

Thus prior academic achievement and expectations, self-confidence, type 'of secondary school, parents' attitudes toward college attendance,
favorite high school subject, number of fields from which one selected in choosing engineering; and motivation were related to retention for men. Prior academic achievement, father's highest degree, race, time spent on homework in high school, family-career plans, number of fields from which one selected in choosing engineering, and motivation were related to retention for women.

Destinations of Students

We have identified certain characteristics which distinguished between the students who were retained and those not retained. We will now discuss the destinations of the students whö, were not retained in engineering. Only those students who completed the survey were included in the analysis of student destinations.

The schools reported the destinations of 136 of the 176 men (77.3\%) and of 155 of the 200 women (77.5%) in the non-retention group who completed the survey. Destinations were categorized as follows:

1. Temporary leave of absence.
2. External transfer, engineering (at another school, but in engineering).
3. External transfer, other (at another school, not in engineering).
4. Internal transfer (seme school, not in engineering).
5. Academic failure and dismissal.
6. Leaving school without academic failure.

The unweighted percentages of men and of women in each of these categories are given in table 14.

From table 14 it is evident that the destinations of men and of women : were quite different. A majority (68%) of the women students who were not retained were internal transfers, as were 43% of the men. Academic failure, and dismissal directly accounted for the non-retention of a larger proportion of the men than of the women. This:differs from Davis' finding that twice

Table 14. Reported Destinations of Survey Respondents Who Were Not Retained

Destination	Men $(n=136)$	Women $(n=155)$
1. Temporary leave of absence	5%	3%
2. External transfer--engineering	3	2
3. External transfer-other	7	8
4. Internal transfer	43	68
5. Academic failure	24	10
6. Leaving without academic failure	18	10

Table 15. Correlation Between Fall 1975
Freshman Enrollments arid Retention Rates of Women ($n=16$)
Variables

Retention rates of women
and number of women in
freshman class
Retention rates of women
and percentage of women
in freshman class

\[

\]

4. A COMPARISON GF THE SURVEY POPULATION WITH THE POPULATION OF U.S. UNIVERSITY FRESHMEN

This study has investigated the characteristics of men and women engineering freshmen in a population of 42 schools, 40 of which are universities. We will now discuss the ways in which these engineering students are typical or atypical in relation to other students at $U . S$, universities. In particular, we will discuss the similarities and differencefs between the women engineering freshmen and other women students at uniyersities.

Universities, rather than two-year or four-yean colleges; are used as the comparison group so that differences which are obtained can be attributed to academic major rather than to type of institution. The sources of the comparative data, unless otherwise noted, are the cooperative Institutional Research Program's (CIRP) national norms for fall 1975 and for fall 1976 freshmen at universities (Astin, King \& Richardson, 1976 and 1977). These norms are weighted estimates which represent all first-time, full-time freshmen at U, S. universities. Women were approximately 12% of the students at universities who indicated on the 1976 CIRP survey that they would probably major in engineering.
A. Comparisons

We will now compare the freshmen in the survey population to those in the CIRP population with respect to individual characteristics, family characteristics, and college plans. Individual Characteristics Race/Ethnicity The CIRP survey and the eng neering survey used similar racial/ethnic categories in fall 1976 but not in fall 1975. Thus we will only compare racial/ethnic data for fall 1976 freshmen (see table 16). The estimated proportion of White students in the engineering survey population

Table 16. Estimated Froportions of Fall 1976 Freshmen in each Racial/Ethnic Category

Estimated Proportions

Racial/Ethnic	Engineering Survey		CIRP	
Category*	Population		Population	
-	Men	Women	Men	Women
White, non-Hispanic	86.5\%	84.4\%	91. 4%	89.0\%
Black, non-Hispanic	2.5	4.8	5.5	- 8.4
American Indian	0.0	0.3	0.7	0.6
Asian	2.9	3.7	1.5	1.4
Hispanic	3.7	2.9	0.7	0.7
Other *	2.0	1.9	1.4	1.0

* Categories are those used in the fall 1976 engineering survey. The CIRP used the following categories: White/Caucasian; Black/Negro/Afro-American; American Indian; Oriental; Mexican-American/Chicano; Puerto Rican-American; Other. CIRF results for Mexican-American/Chicano and for Puerto Rican-Amsrican are combined as Hispanic in this table.
in fall 1976 was somewhat lower than in the university population. We estimated that the engineering population also had a smaller proportion of Black students than did the university population, and Blacks comprised a larger proportion of the women students than of the men in each population. Although the proportions were small, we estimated that larger proportions of Asian American and of hispanic students were in the engineering population than in the university population as a wole.

These differences in the reacial/ethnic composition of the two populations reflect (1) the underrepresentation of Blacks in engineering (Alden, 1977); (2) the overrepresentation of Asian Americans in engineering; and (3) the inclusion of the University of Puerto Rico in the engineering survey sample but not in the CIRP sample.

Religion About 20% of the students in the survey population and 12% of those in the university population indicated that they had no formal religion. Catholics were represented in about the same proportions in both populations * (31\%). Based on our estimetes, there were smaller proportions of Jewish students and of Protestants in the engineering survey population than in the university population.

Age The average age of the women students in the two populations was slightly less than that of the men. There were somewhat more women than men freshmen who were 17 years old or younger, and somewhat more men than women who were 19 years old or older.

ACT Scores: Forty=two per cent of the men and women in the engineering survey population in fall 1976 reported scores on the American Oollege Testing Program examination (ACT). These students reported scores for the Mathematics subtest and the Natural Science subtest, as well as the composite score. These scores, along with corresponding scores of 10% of all students who took the ACT in 1975-76 are summarized in table 17 . For each of these

Table 17: Distributions of ACT Scores*

Standard Score			Fall 1976		
	1975-76 Students		Engineering Population		
Matheriatics Subtest	Men	Women	Men		Women
31 to 36	5\%	1\%	34\%		34%
25 to 30	27	16	54		54
19 to 24	22	19	11		11
Below 19	46	64	1		2
Hatural Science Subtest					
31 to 36	11\%	4\%	42\%		38\%
25 to 30	28	21	40		39
19 to 24	28	/ 30	17		19
Below 19.	33	45	1	s	4
Composite Score					
31 to 36	1%	1\%	16\%		"19\%
25 to 30	20	13	59		54.
19 to 24	33	27	23		25
Below 19	45	59	2		2

* Besed on a 10% sample of all high school students tested in 1975-x6 (ACT Research Services, undated), and on the data for the 42% of men and women in the engineering survey population who reported scores.

64
scores, the engineering survey population had very superior scores in compar= ison with all students who took the ACT in 1975-76 (ACT Research Services, undated). For example, 34% of the engineering population who reported scores had scored from 31 to a perfect score of 36 on the Mathematics subtest. Oniy 5% of all the men and 1% of all the women taking the ACI had obtained such high scores.

Among all students in the nation who took the ACT, men tended to have higher scores than women did for the three scores discussed here. In the engineering survey population, men tended to heve slightly higher scores than women did on the Natural Science subtest, and essentially the same distribution of scores as women did on the Mathematics subtest and on the * composite score: :

Thus engineering students in the survey population achieved high scores on the ACT Math and Natural Seience subtests, and a hié composite score, in relation to all students who took the ACT. Scores of men and women in the engineering survey population were more similar than were scores of all men and all women who took the ACT.

SAT Scores Seventy-two per cent of the students in the engineering survey in fall 1976 reported Scholastic Aptitude Test (SAT) Mathematics and Verbal scores. These scores, along with those for all 1976 graduates who took the test, are summarized in table 18. The scores for the students in the engineering survey population were considerably better than the scores of the total group of high school seniors graduating in 1976 who took the test (Admissions Testing Progrem of the College Entrance Examination Board, 1976).
" Eight per cent of all the men and women who took the sAT obtained Verbal SAT scores of 600 or above, in contrast with an estimated 36% of the mennand 44% of the women in the engineering survey population who reportéd scores. The median Verbal SAT score for men engineers was in the range

Table 10. Distributions of SAT Scores*

*Based on scores of high school seniors of the class of 1976 (Admissions Testing Frogram of the College Entrance Examination Board, 1976); and on the data for the 72% of the students in the engineering survey who reported SAT scores.

540 to 560 ; for women engineers it was in the range 570 to 590 . The median score for all seniors who took the test was in the range 400 to 450 for both men and women.

Twenty-three per cent of the men and 10% of the women seniors who took the SAT received Math SAT scores of 600 or above, in contrast with 85% of the men and 79% of the women in the engineering survey population who reported scores. The median score for men engineers was in the range 660 to 680. For women engineers the median was in the range, 630 to 650. In contrast, a the median score for all men in the nation who took the test was approximately 500, whereas that for women was about 440.

Overall, one sees that based on our survey estimates "the engineering survey population had very high SAT scores in comparison with all high school seniors who took the SAT. In the engineering population, women tended to have somewhat higher scores on the Verbal SAT than men did, although this was not true for the total group of high school seniors. Among students in the engineering survey population, a smaller percentage of women than of men obtained scores of 600 or above on the Math SAT. However, the difference in proportions between men and women obtaining such scores was smaller in the engineering survey population than in the hfgh school senior population.

High school grade average In both the engineering survey and CIRP populations, larger proportions of women than of men had $A-$ averages or above in high school. However, the survey population had significantly larger estimated proportions of students with $A \ddot{A}$ averages than did the university fresh $=$ man population (see tabie 19). Few females and only about 4% of the males In the engineering survey population had $C+$ or lower averages. Approximately 13% of the men and 6% of the women in the university population had $\mathrm{C}+$ or lower average in high school. Thus the students in the engineering survey population, and the women-in particular, were very high achievers

Table 19. Estimated Proportions of Fall 1976 Freshmen Having, A Averages in High School

CIRP Population
Engineering Survey Population

Men	$\frac{\text { Women }}{3}$
30%	38%
55%	$\cdot 74 \%$

in high school, in comparison with all university freshmen.

Family Characteristics

Parents' Educational Levels The distributions of educational levels of the fathers of men and women university freshmen and of men in the engineering population were very similar. However, the fathers of women in the o engineering population tended to be more highly educated than were the other fathers. Similarly, the mothers of women in the engineering population tended to be more highly educated thian were the mothers of the other students. Larger proportions of the cther students' mothers than of women. engineers' mothers had only finished high school. Larger proportions of the women engineers' mothers than of the others had obtained some college education.

Parent an Engineer In fall 1976, but not in fall 1975, students in the engineering survey sample were asked whether their parents were engineers. Of this group, an estimated 27% of the men and 32% of the women had fathers who were engineers. This was much larger than for students in the population of untversity freshmen in 1976 " (about 11%). Thus a much larger pro- y portion of both men and women in "the engineering survey population than of those in the university freshman population had fathers who were engineers. In both populations, only about 0.1% of students' mothers were engineers. Parental Income Parental income was indicated by engineering survey respon- " dents in fall 1975, but not in fall 1976. We will only discuss comparisons for the fall 1975 freshmen. For the students who responded to this question (approximately 14% of students in the engineering sample gave no response), the distributions of parental income were quite similar for the two sexes and for the two populations. Thus the engineering survey population was 7 typical of all university freshmen in this respect.

College. Plans
Highest Degree Planned In fall 1976, but not in fall 1975, students who
completed the engineering survey were asked to indicate the highest degree that they planned to obtain. A similar question was asked on the CIRP: survey. The responses to this question are sumarized in table 20. In the U.S. university freshman population, men were more interested than women in obtaining doctoral degrees or professional degrees in medicine, law, and so forth. A larger proportion of women than of men in the CIRP population planned a bachelor's degree as their highest degree. In the engineering survey population in fall 1976, there was essentially no difference in the proportions of men and of women planning to obtain these degrees.

Comparing the two populations, we found that the engineering survey population was more interested in obtaining master's degrees and less interestedin obtaining professional degrées (e.g., in medicine or law) than were the men and women in the university population. Expect Average of B or above Approximately 47% of the men and women stu dents in the university population believed that their chances of obtaining a B average or above in college were good. In contrast, approximately 77\% of the men and women in the engineering survey population expected B averages or above in their freshman year in college. Although the two sürveys asked questions referring to different lengths of time, it appears that engineering students were more likely than the overall university freshman population to expect B averages.

As discussed in Chapter 2, larger proportions of men than of women in the engineering survey population expected. A averages in their freshman year: This information is not available for the CIRP population. Plans to Join a Fraternity or Sorority Perhaps due to the fact that women who study engineering are entering a traditionally masculine field, there has been interest in learning whether these women are more or less likely than other women to join a sorority (o'Bannon, 1975). In the university survey population, about 17% of the men and 21% of the women indicated that

Table 20. Highest Degree Planned by Men
and Women in the Engineering
and CIRP Populations

chances were very good that they would join a sacial fraternity or sorority. Nearly 30% of the male students in the engineering survey population and $.20 \%$ of the female students in this population hoped to join a fraternity or sorority.

Thus the greatest level of interest in fraternity/sorority membership was among men in the engineering survey population. Women engineering students were no more or less inclined to become sorority members than were other women in the university population.

E. Conelusions

Differences Retween CIRP and Engineering Populations.

Based on our survey estimates, the engineering survey population as a whole differed from the university freshman population in terms of race, ACT and SAT scores, high school averages, numbers of fathers who were engineers, level of degree desired, grades expected, and possibly relígion.: There were no apparent differences between the two populations as a whole in distributions of ages or of parental income.

The differences in race are probably attributable to the racial composition of the engineering student population in the U.S. (Alden) rather than to special characteristics of the engineering survey population. However, the larger proportion of Hispanics in the engineering survey population apparently due to the inclusion of the University of Puerto Rico in this survey but not in the CIRP survey.

The differences in high school averages, grades expected, advanced degrees desired, and numbers of fathers who are engineers are probably due to the differences in major fields of students in the two populations, rather than differences in schools included in the populations.

There were differences which were similar for both the CIRP and engineering survey populations between the characteristics of men and of women:
(1) Blacks comprised a larger proportion of the women students than of the men in each population
(2) Women's ages averaged slightly less than men's.
(3) Larger proportions of women than of men attained A averages in high school, and smallér proportions of women than of men had c+ averages. or lower in high school:
(4) Lerger proportions of men than of women obtained high scores on the Natural. Seience subtest of the ACT, and on the Math SAT.

Differences Characteristic of Women Engineering Students

There were other characteristics which differentiated women engineering students from the other students:
(1) Women engineering students' parents tended to be more highly educated than the parents of the other students:
(2). Women engineering students had extremely good high school grade averages.

The first of these characteristics suggests that more highly educated parents are more supportive of fieir daughter's intention to magor in a fiela such as engineering. The second characteristic indicates that women engineering students are among the best qualified students at U.S. universities.

$$
73
$$

5. A COMPARISON OF BLACK WOMEN AND WHITE WOMEN ENGINEERING FRESHMEN

There is currentiy a great deal of interest focused on minorities and women within the professions; such as engineering. However, studies of minorities or of women in engineering have not generally considered women minorities separately, Nevertheless, women who are members of minority groups may face special problems when they aspire to a career in engineering, fór they are unilke the majority of engineering students both in regard to race and in regard to sex (Malcom, Hall \& Brown, 1976). Therefore, as part of this study, we compared data obtained from Black and from White women for the fail 1975 and fall 1976 surveys.

There were a number of reasons for focusing on Black women, rather than other minorities. Blacks, who comprised about 11.1% of the U.S. population in 1970, were only about 1.2% of all professional engineers, making Blacks the most underrepresented nacial or ethnic minority in engineering in the United States (Planning Commission for Expanding Minority Opportunities in Fngineering, 1974). Moreover, a larger number of Black women than mem= bers of other minority groups participated in the survey project. In fact, the numbers of responises from other minority students were too small to aliow for the calculation of reliable estimates of population response proportions. White women, rather than all non-Blacks, were used as a comparison group because Whites constitute the majority group among women engineering students. We will disquss those estimated proportions which were found to be significantly different for Black and for white women. These differences have implications for student recruitment and for the provision of supportive services.

Participation Rates and Estimated Hopulation Proportions

In fall 1975, 773 women completed the survey, including 682 who identified themselves as Caucasian. Forty women identified themselves as Negro, including 14 from the predominantiy Black institution. In fall 1976, 852 women completed the survey, including 686 who identified themselves as White, non-Hispanic, and 57 as Black, non-Hispanic. Ten of these Black women were from the predominantly Black institution. Thus the total number of Black women who were survey respondents was 97. (The question identifying race was changed for the fall 1976 survey to conform with HEW racial/ethnic categories,)

Women comprísed an estimated 15.1% of the survey population of approximately 19,300 students in fall 1975, and an estimated 16.0% of the survey, population of approximately 21,400 students in fall 1976. Estimates of the proportions of these women who were White and the proportion Black for these two populations are giveh in table 21.

Analysis

The fall 1975 and fall 1976 surveys were analyzed separately. Data were analyzed in terms of estimates of the proportions of Black and of White. women in the population (42 schools) who would have a given response to a question: In order to make valid estimates of these population proportions, the data were weighted, including adjustments (1) to reflect overall selection probabilities; (2) to account for student nonresponse; and (3) in fall 1976, to account for non-participation of two schools.

We calculated the estimated standard errors of the differences between the estimated proportions for Black and for White women giving a certain survey response. By comparing the difference in the estimated proportions of Black and of White women giving a certain response with the estimated standard error of the difference, we determined whether the differences in estimated proportions were statistically significant at the ol level. We

Teble 21. Estimated Population Proportions of Whites and of Blacks among Women Engineering Freshmen.
\cdot

\circ
will discuss only those differences in estimated proportions which were statistically significant at the 01 level for both the fall 1975 and fall 1976 surveys.

B. Results

The estimated weighted proportions of Black and of White women giving a certain response to a question are given in table 22 for those items for which there were significant differences both in fall 1975 and fall 1976 . In brief, these results indicate:
(1) Fathers were more influential in the student's decision to pursue engineering for White women than for Black women.
(2) Guidance counselors were more aware of, and supportive of, the engineering interest of the Black women than of the White women.
(3) Black women were more likely than White women to support special assistance for minority engineering students.
(4.) Fathers of White women were more likely than those of Black women to have graduated from college.
(5) The majority of Black women had high school grade averages ranging 'from $\mathrm{B}-$ to $\mathrm{B}+$, whereas the majority of White women had averages of $\mathrm{A}-$ to $\mathrm{A}+$. C. Discussion

These results have implications for the recruitment of Black women, and for the provision of supportive services.

Recruitment
The major avenues available for recruiting Black women and White women for engineering are parents and other family members, high school personnel, college personnel, other students or acquaintances in eagineering, and promotional aḍvertising. In this study, we have found differences between . Black women and White women in the effectiveness of two of these sources-students' fathers and high school guidance counselors.

Table 22. Responses Indicating Differences
Between White Women and Black Women
Estimated Weighted Proportions
Survey:
Fall 1975
Fall. 1976

Group: White Women
Black Women
RESPONSES

1. Student's father was most
influential person in choice of
engineering as majof
26.0%
3.2%
35.9%
3.4%
2a. Guidance counselor was largely unaware of student's interest in engineeríng

2b. Guidance counselor mildly or
largely supported student.'s
interest in engineering
64.6
87.1
60.1
74.3
3. Do not support special assistance
. for minority engineering students
in academic skills, laboratory
skills, study skills, career
guidance, academic enrichment or
colilege sponsored peer support
groups
40.7
8.7
33.2
3.6
4. Student's father graduated from
college
61.1
13.5^{5}
61.9
32.6

5a. High school grade average of $B-$,
B , or $\mathrm{B}+$
26.5
74.2
24.2
63.4

5b, High school grade, average of A-,
A, or A+
72.5
23.4
75.1
30.2

As indicated in table 22, fathers of white women were more likely than fathers of Black women to have been the most influential person in the selection of engineering as a major field. This difference is largely explanned by the fact that a' much larger proportion of White women's than of Black women's fathers were engineers. In fall 1976, the estimated proportions whose fathers were engineers were 35.5% for White women and $1.2{ }_{6}^{\%}$ for Black women. Furthermore, of the White women who indicated that their fathers were most influential in their choice of engineering, 69.4% had fathers who were engineers. Thus the fathers who influenced white women to study engineering tended to be engineers themselves.

Whereas White women may be recruited to study engineering by fathers who are engineers, it is clear that this method would be'largely ineffective for Black women. Therefore, greater efforts are needed from high school or college personnel to identify and encourage Black women to study enginearing. In addition, there appears to be a special need for engineers to. visit junior and senior high schools to discuss their profession with Black student es.

It is important in this regard that the Black women in the survey population appear to have found support from their high school guidance counsetors in their decisions to pursue engineering. The data in table 22 concorning guidance counselors seem to indicate that few Black women chose to study engineering who did not. receive the interest and support of their high school guidance counselors. Whichever way one interprets these results, it is clear that guidance counselors played a more important role for the Black women than for the White women engineering freshmen.

College Support Services

In regard to support services, it is important to recognize that there are both formal and informal channels of support which may assist students.

White students may have greater access than minority students to informal channels of suppert, such as fathers who are engineers, other engineering students, and faculty and other professional engineers. These informal channels can provide information on the nature of engineering, help'in connecting theoretical subject matter with the practice of "engineering, and guidance in obtaining jobs. Such information can provide a framework into which students can fit their college experience and may carry them through dry periods. Minority students, on the other hand, may need the help of formal supportive services in these areas because the informal channels are not as available to them. It is possible that the informal networks are also more accessible to male students than to females, placing minority females in a particularly difficult position.

The majority of both Black. women and White women supported the idea of assistance for minority engineering students, in areas such as academic 'skills, laboratory skills, study skills, career glidance, academic enrichment, or college sponsored peer support groups. Few Black women were opposed to special assistance for minority students. Thus it appears that the provision of special support services for minority students would be viewed very favorably by Black women, although many White women máy be opposed " to the offering of special services to minorities.

In terms of two types of assistance generally provided by collegesfinancial aid and tutorial assistance-responses to the surveys indicate that Black women in the population had greater needs than White women.

A smaller proportion of Black women's fathers than of Whice women's had graduated from college: (It is interesting to note that the proportion of mothers who were college graduates did not differ significantiy by race. About 35% of the students' mothers had graduated from college.) The difference in the educational levels of the fathers of the students points toward possible e" differences "in the ability "ff a students' families to pay college
expenses. This possibility is borne out by students' responses to a question on the fall 1975 gurvey concerning their major source of financial support (table 23). It appears that financial aid is more crucial to Black women than to White women for entrance and continuation in an engineering program.

Finally, on the average, the White women in the survey population received higher high school grades than did the Black women. The majority of White women attained A averages; the majority of Black women attained B averages. The reason for this difference in grade averages is unclear. It may be that few White women with B averages are encouraged to consider engin= eering as a career. Whatever the reason for the difference, it appears that A larger proportion of Black women then of White women engineering students may require tutorial assistance in college.

Table 23. Major Sources of College Financial Support, Fall 1975

Sources of Support		Group
	White Women	Black Women
Parents	164.8%	6.7%
Scholarships	17.1%	76.7%

6. POLICY IMPLICATIONS FOR ENGINEERING COLLEGES

The survey and retention results which have been presented have important implications for engineering colleges, since a substantial proportion of today's engineering students are women. The differences between men and women engineering students which were found in this study indicate that women students have many positive characteristics which should benefit and diversify the profession. However, to accommodate the differences between men and women in interests, experiences, expectations, and so forth, engineering colleges will need to change. We will now discuss the implications of the survey and retention results.

A. Implications of Survey Results

Recruitment
Women engineering students tended to first consider majoring in engineering in their junior or senior year of high school. Thus one might consider focusing a recruitment program on girls in the llth and l2th grades. However, it is likely that many giris with the aptitude to study engineering do not do so because they stop taking mathematics early in high school (Sherman \& Fennema, 1977). Then if they consider engineering as a career, they do not have the required mathematics background.

Therefore it appears that a two stage process would be more effective for recruiting high school girls into engineering. The first stage would acquaint 9 th and loth grade girls with the value of mathematics for pursuing a wide range of careers, including engineering. The second stage would focus on girls in the lith and 12 th grades. It would acquaint them wi.th engineering as a field of study and as a career.

Women studente tended to be very high achievers and hard workers in high sehool. However, at the beginning of the freshman year, women tended to have lower expectations for performance in college than men had. Moreover, at the end of the freshman year, greater proportions of women than of men underestimattd the academic performance of engineering students of their own sex.

Since women indicated more frequently than men that they consult with close friends about important decisions, peer support groups such as the Society of Women Engineers, which provide contact with other women engineering students and opportunities for leadership, may be effective in helping women become more self-confident. Increased efforts to acquaint women students with each other are clearly needed, since about 40% of the women had no close friends among women students in engineering.

Non-Technical Courses

Women students' interest in the arts and in reading novels, poetry, and other literary works indicates that there may be a particular need to provide continued opportunities to take courses in the humanities. Most engineering colleges provide adequate opportunities for students to take these courses as electives. However, a few schools' curricula are rather narrowly confined to technical subjects. These schools need to broaden thrir allowed courses to accommodate the non-technical interests of many of their women students.

One of the schools in the study which does not offer non-technical majors has developed a program to permit students to take a year's leave of absence during the sophomore year in order to enroll in non-technical courses at another university. Both men and women students have taken advantage of this program.

Women students tended to prefer mathematics to science in high school. Moreover, a much lower proportion of women than of men were interested in majoring in electrical engineering. These two characteristics signal a need for women to develop more positive attitudes toward laboratory work. One cause of negative attitudes toward laboratory work may be little practical experience with mechanical and electrical skills. An improvement of attitudes toward laboratory work may be accomplished by means of a brief, concentrated course in basic electrical and mechanical skills, such as those offered at Cornell University (Hall \& Hall, 1975) and at Purdue University (Butler, et, al., 1977).

Field Choice

The fact that much smaller proportions of women students than of men choose to $\mathrm{mg} / \mathrm{jor}$ in electrical engineering indicates a need for studies to determine causes of this situation and remedies for it. In fact, there is a need to study' reasons for decisions about field choice for both men and women students.

Academic Counseling and Career Guidance

Women students' degree of motivation to be engineers was more changeable than was men's. This is probably a reflection of the fact - that a significantly larger proportion of women than of men decided to study engineering within two yeurs of college entrance. Also, men indi${ }^{3}$ cated more often than women did that they had understood the nature of an engineering career before entering college. Women students, it appears, may have been less certain of their choice of engineering when they entered, and thus more subject to changes in motivation.

Therefore, women students may be in particular need of academic counseling and of opportunities to work in engineering jobs while under-
graduates. Cooperative work-study programs may be of particular benefit to women. Special programs such as Project VIEW at Cornell University are also important. Project VIEW is a program in which sophomore women and minority students spend a week visiting an engineering company. The visit reinforces the technical and professional interests of minority and women students.

Career Placement

As far as specific plans for careers are concerned, it appears that women and men have somewhat different time frameworks in mind. Although many women seem to be planning careers which follow the traditional male career pattern, the career plans of a large number of women will require more flexibility from employers than is now common. The two major requirements for furthering the careers of these women seem to be opportunities for part-time employment, and retraining after extended leaves of absence. Engineering colleges' placement personnel should assist women students who want to locate employers who are flexible in these regards.

Work Characteristics

There were additional differences between men and women which may affect the engineering profession should they persist when these students become professional engineers. That is, women and men differed somewhat in regard to the characteristics of work which they considered important. These differences reflect the traditional role expectations of men and women -- men tended to be more concerned with income and financial security, women with aiding society. It would be interesting to determine whether these differences are maintained as men and women are socialized by their education and work experience into the role of professional enginleer.

83

This study did not throw much light on the question of role models. For example, we do not know what effect women faculty had on the aspiretions of women engineering students. However, programs which enable students to meet women engineers appear to be useful.

E. Special Implications for Educating Black Women

In addition to the implications of the research for educating women in general, there are important implications for the recruitment of Black women, and the provision of supportive services to them. These have been discussed in Chapter 5. To reiterate:

Recruitment

Many White women have been recruited to study engineering by fathers who are engineers. This method would be largely ineffective for recruiting Black women because few of them have fathers who are engineers. Therefore, greater efforts are needed from high school and college personnel to encourage Black women to study engineering.

A number of the institutions included in this project provide special programs for junior and senior high school students from minority groups. Some of the programs include the students' teachers, guidance counselors and parents. There is also a need for practicing engineers to visit junior and senior high schools to discuss the profession with Black students.

Support Services

White students ma* have greater access than minority students to informal channels of support, such as fathers who are engineers, other engineering students, and faculty and other-professional-engineers. Minor-. ity students, fad particularly women minority students, may need the help.
of formal supportive services to learn about the nature of engineering, to see the connections between the theoretical subject matter and the practice of engineering, and to receive guidance in obtaining jobs. Black women appear to have greater needs in terms of financial aid and tutorial assistance than other women have. Black women students tend to view the provision of special support services very favorably.

C. Implications of Retention Results

- The results of the retention analysis indicate that the estimated retention rates in engineering after $11 / 2$ years were significantly different for men and women (73.3% for men, 67.8% for women). Whether a difference in retention rates in engineering of about 5.5% is large enough to be of practical significance is another matter. The important point is that engin= eering college personnel ought to analyze the retention situation for men and women at their institutions. If there is a large difference in retention rates, steps should be taken to learn why such a difference exists. College personnel should elso look into reasons for the high rate of internal transfer of women in engineering, to see whether changes, need to be made in the engineering program.

One possible method for increasing retention rates is to increase the number and percentage of women students. This increase would presumably make it easier for women engineers to become acquainted with each other, In addition to support groups such as the Society of Women Engineers, another method of acquainting women engineering students with each other is "elustering" women engineering freshmen in the dormitories. Women engineering students are still a sufficiently small proportion of women students at most universities that random assignments to dormitory rooms would generally provide no more than one or two women engineers on agiven doruitory floor. Clustering is an assignment method whereby most freshman women engineering students live on dormitory floors with five or six of their peers.

ACT Research Services. ACI uigh school protile roport, 1975-76, Iowa City, The American College Esting Program, undated.

Admistions Testing Program of the College Entrance Examination Board. National report on college-iog.ad :eniors, 1975-76. Princeton, N.J., Educational Testing Service, 1976.

Alden, J.D. Enginecrinf and tectnology degrees, 1975-76. Engineering Education, 1977, 67, 111=\%20.

Astin, A.W., King; M. \mathcal{A}. , \& Iichardson, G.T. The American freshman: national norms for fall 1975. Los Angeles, Cooperative Institutional Recearch Frogrtun, U.C.l.A. , 1977.

Astin, A.W., King, M.K., B Richnrison, G.T. The American freshman: national norms for fell 1276 . Los Angeles, Cooperative Institutional Research Progrem, U.C.L.A., 1977.

Butler, B.R. et. al: An action research proposal to provide educational equity opportunities for women in engineering. Proceedings of the 1977 Frontiers in Education Conference, 1977, 131-139.

Davis, S.0. A researcher's-eyo view: women students, technical majofs, and retention. IEEE Transactions on Education, 1975, E-18, 25-29/.

Elkins, R.L., \& Luetkemeyer, R.L. Characteristics of suecesful freshmen engineering students. Engineering Education, 1974, 65, 189-1.91.

Elton, C.F., Rose, il. A. Personality characteristics of studerts who transfer out of engineering. Personnel and Guidance Journap, 1967,45 , 911-915.

Elton, C. $\mathrm{t} . \mathrm{B}$ Rose, H.A. Student: who leave engineering. Engineering Education, $1971,62,30-32$.

Engineering Manpower Comnission of Engineers Joint Council. Engineering and technology enrollmerits, fall 1974. New York, Apri1 1975, 61-63.

Farley, J. Coeducation and college women. Cornell Journal of Social Relations, $1974,2,87-97$.

Foster, R.J. Differences between persistors and nonpersistore in engineering prograns. Paŋer presented at ASEE Annual Conference, Ft. Collins, Colorado, June 1975.

Foster, R.J. Retention characteristics of engineering freshmen. Engineering Education, 1976, 66, 724-728.

Gardner, R.E. Women in engineering: the impact of attitudinal differences on educational institutions. Engineering Education, 1976, 67, 233-240.

Hall, ${ }^{2}$. Hall, C. Basic laboratory skills course at Cornell. In Ott, M. \bar{D}. \& Reese, N.A., editors, Women in Engineering... Beyond Recruitment, Ithaca New York, College of Engineering, Cornell University, 1975, 89-93.

Henson, G.R., \& Taylor, R.G. interaction of ability and personality: another look at the drop-out problem in an Institute of Technology. Journal of Counseling Psychology, 1970, 17, 540-545.

Kaufman, H. Women engineering students: many switch out, many transfer in. New Engineer; "Feb. 1977, 19-22. See also letters to the editor in the New Engineer, May 1977.

Kolstad, A. Attrition from college: the class of 1972 two and one-half years after high school graduation (DHEW Publication No. (NCES) 77-266). Washington, D.C.: U.S. Government Printing Office, 1977.

Malcom; S.M., Hall, P. R. \& Brown, J.W. The double bind: The price of being a minority woman in science. Washington; D.C.: American Assoc"iation for the Advancement of Science, $1976,2$.

Nemeth, S.E. Women at General Motors Institute. "IEEE Transactions on Education, 1975, E-18, "36-37.

O'Bannon, $H=B$. The social scene: isolation and frustration. In Ott, M.D.
 New York, College of Engineering, Cornell University, 1975, 69-75.

Ott, M.D. The men and women of the class of '79. Engineering Education, 1976, 67; 226-232.

Ott, M.D. A comparison of Black women and White women engineering freshmen. Engineering Education, 1978, 68, 758-760.

Planning Comission for Expanding Minority Opportunities in Engineering, Minorities in engineering: a blueprint for action. New York: The Alfred P. Sloan Foundation, 1974, 2.

Sherman, J. \& Fennema, E. The study of mathematics by high school girls and boys: related variables. American Educational Research Journal, 1977, 14, 159-168.

Tinto, V. Dropout from higher education: a theoretical synthesis of recent research. Review of Educational Research, 1975, 45, 89-125.

Vaughan, R. College dropouts: dismissed vs, withdrew. Personnel and Guidance Journal, 1968, 46, 685-689. .

Published Reports

Ott, M.D. The men and women of the class of '79.' In the Annals of Engineering Education, Engineering Lducation, 1976, 67, 226-232. Errata in Engineering Education, 1978, 68, 338.

Ott, M.D. Experiences, aspirations, and attitudes of male and female freshman engineers. Engineering Education, 1978, 68, 326-333, 338.

Ott, M.D. Women students' plans for eareers in engineering. Proceedings of the 1978 College Industry Education Conference, 1978, 62-64.

Ott, M.D. A comparison of Black women and White women engineering freshmen.

- Engineering Education, 1978, 68, 758-760.

Ott, M.D. Sex differences in backgrounds, expectations, activities and attitudes of freshrian engineers, Journal of College Student Personnel, 1978, 19 (in press).

Ott, M.D. Sex differences in experiences and career plans of freshman engineering students. IEEE Transactions on Education, 1978, E-21 (in press). Ott, M.D. Retention of men and women engineering students. Research in Higher Education (in press).

Reports Submitted to ERIC

1. Ott, M.D. Results of fall 1975 survey of engineering freshmen (revised). (April 1977) ED 141231 :
2. Ott, M.D. Results of spring 1976 survey of engineering freshmen. (April 1977) (T) 138480 .
3. Ott, M.D. Results of fall 1976 survey of engineering freshmen. (May 1977) ED 141131 .
4. Ott, M.D. Results of Spring 1977 survey of engineering freshmen. (August 1977)
5. Ott, M.D. Results of spring 1977 survey of engineering sophomores. (August 1977)

[^0]: ***

