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background: The functional reproductive alterations seen in women with type 1 diabetes (T1D) have changed as therapy has
improved. Historically, patients with T1D and insufficient metabolic control exhibited a high prevalence of amenorrhea, hypogonadism
and infertility. This paper reviews the impact of diabetes on the reproductive axis of female T1D patients treated with modern insulin
therapy, with special attention to the mechanisms by which diabetes disrupts hypothalamic–pituitary–ovarian function, as documented
mainly by animal model studies.

methods: A comprehensive MEDLINE search of articles published from 1966 to 2012 was performed. Animal model studies on experi-
mental diabetes and human studies on T1D were examined and cross-referenced with terms that referred to different aspects of the go-
nadotropic axis, gonadotrophins and gonadal steroids.

results: Recent studies have shown that women with T1D still display delayed puberty and menarche, menstrual irregularities (especially
oligomenorrhoea), mild hyperandrogenism, polycystic ovarian syndrome, fewer live born children and possibly earlier menopause. Animal
models have helped us to decipher the underlying basis of these conditions and have highlighted the variable contributions of defective
leptin, insulin and kisspeptin signalling to the mechanisms of perturbed reproduction in T1D.

conclusions: Despite improvements in insulin therapy, T1D patients still suffer many reproductive problems that warrant specific
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diagnoses and therapeutic management. Similar to other states of metabolic stress, T1D represents a challenge to the correct functioning of
the reproductive axis.

Key words: type 1 diabetes mellitus / fertility / puberty / menopause / ovary

Introduction
Type 1 diabetes (T1D) has a sustained increasing incidence world-
wide, of 2–3% every year, reaching the highest rates in Finland and
Newfoundland, Canada, with 40 new reported cases every 100 000
children younger than 14 years old per year (Vehik and Dabelea,
2010). As discussed in this review, up to 40% of these female patients
will display menstrual disturbances, hyperandrogenism or early meno-
pause at certain moment of their life, thus representing a significant
health problem.

Admittedly, the reproductive problems of patients with T1D have
experienced dramatic changes recently along with improvements in
therapy. Prior to the use of insulin therapy, severe hypogonadism
and low fertility rates were observed in T1D patients. After the intro-
duction of insulin in 1923, menstrual cycles and fertility improved in
T1D women, but primary and secondary amenorrhea and severe pu-
bertal delay remained (Gilbert and Dunlop, 1949; Bergqvist, 1954).
Before 1993, the standard therapy for T1D patients consisted of
twice-daily insulin injections, a treatment that frequently did not
attain optimal metabolic control and was associated with a high preva-
lence of the aforementioned reproductive problems (Griffin et al.,
1994; Mestman, 2002; Codner and Cassorla, 2009).

The publication of the landmark Diabetes Control and Complications
Trial showed that intensive insulin treatment with the aim of achieving
near-normal glucose prevents the onset and progression of chronic
complications (The Diabetes Control and Complications Trial
Research Group, 1993). However, different abnormalities in gonadal
function associated with sub-optimal blood glucose levels and non-
physiological insulin replacement are still observed in T1D patients
(Eyzaguirre and Codner, 2006; de Beaufort et al., 2007).

Intensive insulin therapy, with multiple daily insulin injections or con-
tinuous subcutaneous insulin infusion and intensive education, has
become the standard therapy, allowing improvement in metabolic
control and reproductive function in women with T1D.

This paper reviews the current knowledge of the reproductive pro-
blems observed in T1D patients and examines recent developments,
coming mostly from animal studies, on the mechanistic basis of these
reproductive abnormalities that affect different levels of the hypothal-
amic–pituitary–ovarian axis. In addition, reproductive function
changes during different life stages of women with T1D will be sum-
marized, as most research in the area has focused in the female.

Methods
A systematic review of the literature was conducted in September 2011
and updated on March 2012. A MEDLINE search of articles published
from 1966 to 2012 was performed. The MESH terms included for the
animal studies were: hypothalamus, hypothalamic hormones/GnRH,
gonadotrophins/pituitary, FSH, LH, insulin, Kiss1/kisspeptin, leptin, adipo-
kines, ovary, gonadal steroid hormones, estrogens, ovulation, puberty,

sexual maturation, menopause and hypogonadism. This literature search
was cross-referenced with an additional search on experimental diabetes
mellitus, streptozotocin diabetes and alloxan diabetes.

The following MESH terms were included for the clinical studies: gona-
dotrophins/pituitary, FSH, LH, KISS1/kisspeptin, leptin, insulin, ovary,
gonadal steroid hormones, testosterone, androgens, estrogens, ovulation,
puberty, menarche, fertility, menopause and hypogonadism. This literature
search was cross-referenced with an additional search on T1D (including
several synonyms).

Mechanistic studies on the
metabolic control of
reproduction: implications for
T1D
Reproductive impairment in poorly controlled T1D results from per-
turbations at different levels of the gonadotropic axis, including the
hypothalamus/pituitary and ovary (Codner and Cassorla, 2009).
Such perturbations stem from the combined effects of insulin defi-
ciency and hyperglycaemia that disrupt the physiological functioning
of various metabolic signals participating in the regulation of the repro-
ductive system (Fernandez-Fernandez et al., 2006; Hill et al., 2008; Roa
et al., 2010).

Overview of the hypothalamic–pituitary–
gonadal axis, focusing on the control of
gonadotrophins
Reproduction is governed by the joint action of several neural and hor-
monal signals (Roa et al., 2008). In this neurohormonal system, a
scarce neuronal population in the hypothalamus, which releases the
decapeptide gonadotrophin-releasing hormone (GnRH), forms the
major hierarchical node for the central control of reproduction (Con-
stantin, 2011). Pulsatile secretion of GnRH drives the function of
downstream elements of the hypothalamus–pituitary–gonadal
(HPG) axis by dictating the secretion of pituitary gonadotrophins,
LH and FSH. These hormones, acting in concert, are the major
driving force for gonadal development and function in both males
and females. In turn, gonadal hormones, mainly sex steroids but also
peptides provide feedback to the upper levels of the HPG axis to dy-
namically regulate the function of this neurohormonal axis (Fig. 1; Roa
et al., 2008; Uenoyama et al., 2009; Garcia-Galiano et al., 2012).

GnRH neurons integrate and transmit the biological messages con-
veyed by many key modulators of reproduction, including neurotrans-
mitters, peripheral hormones and environmental cues (Fig. 1; Roa
et al., 2008; Constantin, 2011; Roa et al., 2011). Kisspeptins, products
of the Kiss1 gene, are central regulators of puberty and reproduction
because of their ability to potently activate GnRH neurons. Kisspeptin
neurons have been described in the hypothalamus. In rodents, two
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major groups of hypothalamic Kiss1 neurons have been mapped: one
in the arcuate nucleus (ARC); another in a more rostral location,
mainly in the anteroventral periventricular nucleus (AVPV; Roa et al.,
2008; Oakley et al., 2009).

Peripheral hormones participate also in tuning GnRH neurosecre-
tory activity. These include gonadal hormones, but also numerous
metabolic factors from key tissues, such as adipose tissue, and the
pancreas and gut. These metabolic signals are essential for the joint
regulation of energy homeostasis and reproduction (Fernandez-
Fernandez et al., 2006; Roa et al., 2008; Pralong, 2010; Roa and Tena-
Sempere, 2010). Among these, insulin is an important regulator of the
HPG axis. Animal models of neuronal-specific insulin receptor deletion
display severe metabolic disruption, hypogonadotropic hypogonadism
and infertility (Bruning et al., 2000); the latter being due to GnRH de-
ficiency. Studies using primary hypothalamic cultures and cell lines have
suggested that insulin can directly stimulate GnRH secretory activity
(Salvi et al., 2006; Pralong, 2010). Murine studies using hyperglycaemic
clamps have shown that increased insulin can stimulate LH secretion,
regardless of the associated eu-, hyper- or hypo-glycaemic condition
(Burcelin et al., 2003). Thus, insulin may directly target GnRH
neurons to modulate their secretory function and, therefore, the go-
nadotropic axis.

The adipose hormone, leptin, signals the level of body fat and par-
ticipates in the integral control of energy balance and reproduction.
Leptin deficiency, as observed in animals genetically null for leptin or
its receptor, is associated with severe hypogonadism. The reproduct-
ive effects of leptin at the central hypothalamic levels are predominant-
ly permissive (Cunningham et al., 1999; Tena-Sempere, 2007). This
permissive nature is clearly illustrated at puberty, when threshold
leptin levels are required for puberty to proceed (Cunningham
et al., 1999; Tena-Sempere, 2007) but leptin per se does not
operate as the trigger of puberty.

Reproductive impairment in animal models
of T1D
Genetic and pharmacological models of T1D in rodents have allowed
the definition of the reproductive deficits of uncontrolled diabetes and
their potential underlying mechanisms. In this context, rodent models
of T1D induced by acute administration of streptozotocin (STZ),
which causes the rapid and selective elimination of pancreatic b cells
and severe insulinopenia, have revealed that male and female
animals with uncontrolled diabetes display a profound hypogonadotro-
pic state, characterized by low basal levels of gonadotrophins and sex
steroids, reduced LH pulsatility and defective gonadotrophin
responses to gonadectomy, an index of disturbed negative-feedback
responses (Katayama et al., 1984; Spindler-Vomachka and Johnson,
1985; Bowton et al., 1986; Steger et al., 1989; Chandrashekar et al.,
1991; Dong et al., 1991; Valdes et al., 1991; Kienast et al., 1993;
Steger et al., 1993; Sexton and Jarow, 1997; Steger and Rabe, 1997;
Chang et al., 2005; Castellano et al., 2006, 2009). In diabetic
females, disruption of positive-feedback effects of estradiol, delayed
or absent pre-ovulatory LH surges and anovulation are observed
(Katayama et al., 1984; Spindler-Vomachka and Johnson, 1985;
Bowton et al., 1986; Valdes et al., 1991; Kienast et al., 1993; Steger
et al., 1993). These abnormalities are at least partially reversed after
insulin administration (Bestetti et al., 1987; Steger et al., 1989).

Figure 1 Neuroendocrine regulation of the HPG axis, with special
attention to the roles of gonadal and metabolic factors and the involve-
ment of Kiss1 neurons. The pituitary gonadotrophins LH and FSH are
the major driving force of ovarian development and cyclic function
from puberty onwards. In turn, pulsatile secretion of gonadotrophins
is driven by the hypothalamic decapeptide GnRH, whose release is sti-
mulated by kisspeptins produced by discrete populations of Kiss1
neurons (among other factors). Ovarian steroids, mainly estradiol
(E2) and progesterone (P) but also testosterone (T) and peptides
such as inhibins, provide feedback to the upper levels of the HPG
axis and dynamically regulate GnRH and/or gonadotrophin secretion;
sex steroids have negative- or positive-feedback effects depending on
the stage of the cycle. Other secretory products of the ovary include
AMH, which provides a reliable estimate of small, growing follicles. In
turn, metabolic hormones, such as leptin from white adipose tissue
(WAT) and insulin from the pancreas, participate in the control of
the HPG axis. Many of the effects of these metabolic factors are
mediated at the central (hypothalamic) level, where leptin, either dir-
ectly or indirectly, modulates Kiss1/kisspeptin expression (the indirect
leptin action is denoted by as yet uncharacterized neurons up-stream of
the Kiss1 neurons). Moreover, Kiss1-independent actions of leptin on
the GnRH neurons have been suggested (not depicted). In turn,
insulin may directly regulate the function of GnRH neurons. In addition,
the direct ovarian effects of leptin and insulin may contribute to the
metabolic regulation of female gonadal function. Note that the different
populations of Kiss1 neurons (i.e. ARC versus AVPV) are not distin-
guished in this scheme. Note also that other important neuronal popu-
lations and neurotransmitters, including glutamate, GABA, NPY and
POMC-derived peptides, are involved in the neuroendocrine control
of the HPG axis but for the sake of simplicity are not depicted here.
For further details, see Sections ‘Overview of the hypothalamic–pitu-
itary–gonadal axis, focusing on the control of gonadotropins’ and ‘Re-
productive impairment in animal models of T1D’.
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Compelling evidence suggests that some of the reproductive deficits
associated with T1D may stem from alterations in the ovary. Abnor-
malities in follicular growth and survival, including increased follicular
and granulosa cell apoptosis, as well as impairment of
oocyte-to-granulosa communication, oocyte maturation and ovarian
follicular development occur in animal models of T1D (Chang et al.,
2005; Chabrolle et al., 2008). Perturbation of ovarian steroidogenesis
and ovulation was also observed in diabetic female mice. In addition,
insulin deficiency has been associated with defective ovulation, which
can be reversed by insulin treatment in diabetic rodents (Powers et al.,
1996; Poretsky et al., 1999). Glycation of ovarian proteins has been
described in non-diabetic hamsters and mice (Chaplen et al., 1998;
Diamanti-Kandarakis et al., 2007a) and has a potential impact on
ovarian ageing in mice (Tatone et al., 2010). The above observations
suggest direct deleterious effects of low insulin levels and hypergly-
caemia on ovarian functions.

Metabolic sensing and reproduction: roles of
kisspeptins and leptin in T1D and other
conditions of metabolic stress
As stated above, body energy stores and metabolism influence
puberty onset and fertility, but how this occurs had remained conten-
tious (Hill et al., 2008; Castellano et al., 2010a; Roa and Tena-
Sempere, 2010). Compelling evidence has now demonstrated that un-
controlled T1D (Castellano et al., 2006, 2009) and other conditions of
metabolic stress and negative energy balance, such as short-term
fasting in rodents and primates (Castellano et al., 2005, 2010b; Kala-
matianos et al., 2008; Wahab et al., 2011), chronic dietary restriction
in sheep (Backholer et al., 2010a) and acute inflammation in rats (Cas-
tellano et al., 2010b), can cause hypogonadism due to suppression of
hypothalamic Kiss1/kisspeptin expression, suggesting that Kiss1
neurons are sensitive to changes in metabolic status.

In STZ-treated male and female rats, uncontrolled diabetes is linked
to suppressed hypothalamic expression of the Kiss1 gene (Castellano
et al., 2006, 2009). Notably, acute kisspeptin administration is suffi-
cient to normalize gonadotrophin secretion in diabetic rats, and tes-
tosterone levels in diabetic males (Castellano et al., 2006, 2009).
Similarly, chronic treatment with kisspeptin-10 significantly ameliorates
several long-term reproductive deficits in diabetic male rats (Castel-
lano et al., 2006). These findings suggest that defective Kiss1 tone in
the hypothalamus is a major contributing factor to the hypogonado-
tropic hypogonadism state frequently observed in poorly controlled
T1D (Fig. 2).

Pharmacological studies of (Fig. 1) central insulin or leptin infusion
in long-term, STZ-induced diabetic rats have searched for the meta-
bolic signals responsible for altered Kiss1 expression and/or function
in T1D (Castellano et al., 2006). Leptin administration was justified
given the profound hypoleptinaemia of diabetic rats and the putative
stimulatory actions of leptin on hypothalamic Kiss1 expression.
These analyses revealed that central infusion of leptin, but not
insulin, restores defective hypothalamic Kiss1 gene expression and
ameliorates or normalizes various reproductive parameters, including
LH and sex steroid levels, in STZ-treated rats (Castellano et al.,
2006). These observations suggest that, while defective insulin levels
are responsible for the metabolic perturbations in this T1D model,
the hypoleptinaemia linked to persistent negative energy balance is

seemingly the ultimate cause of suppressed Kiss1 expression and
hypogonadotropism in STZ-treated rats. Exogenous kisspeptin admin-
istration is apparently sufficient to normalize gonadal steroidogenic
function in STZ-treated male rats, which strongly suggests a dominant
central component to the reproductive failure mechanisms observed
in preclinical models of uncontrolled T1D (Castellano et al., 2006).

The molecular mechanism whereby leptin regulates Kiss1 expres-
sion may involve the mammalian target of rapamycin (mTOR), a ubi-
quitous cellular energy sensor. At the ARC, mTOR signalling is

Figure 2 A tentative model of the pathophysiological alterations in
the HPG axis that involve the hypothalamic Kiss1 system, as eluci-
dated by mechanistic studies in preclinical models of uncontrolled
T1D. A putative sequence of major perturbations observed in this
condition is provided. (1) T1D is associated with severely decreased
insulin, which induces a catabolic/negative energy balance state that
results in medium- and long-term decreases in body weight and a
state of hypoleptinaemia (2). Decreased leptin suppresses, either dir-
ectly or indirectly, the hypothalamic Kiss1/kisspeptin tone (3), which
in turn decreases GnRH/gonadotrophin secretion. These conditions
define a state of hypogonadotropism that ultimately hampers proper
gonadal function (hypogonadism). In addition, the lack of direct insulin
action on GnRH neurons may (moderately) contribute to the GnRH
secretory disruption in T1D (4). Similarly, the absence of direct
trophic insulin action at the ovarian level may participate in the hypo-
gonadism state observed in models/patients with uncontrolled T1D
(5). For further details, see Section ‘Metabolic sensing and reproduc-
tion: roles of kisspeptins and leptin in T1D and other conditions of
metabolic stress’.
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thought to transduce leptin’s effects on feeding and energy homeosta-
sis. Central mTOR signalling also regulates Kiss1 expression and may
contribute to the functional coupling between energy balance and
gonadal activation and function. Thus, the permissive effects of
leptin on puberty onset are blocked by central inhibition of mTOR,
which also results in defective Kiss1 expression and low gonadotrophin
levels. This finding suggests a tenable leptin-mTOR-kisspeptin pathway
that directly or indirectly regulates the GnRH axis (Roa et al., 2009). In
addition, interactions between Kiss1 and NPY or POMC neurons may
be involved in integrating metabolism and the gonadal axis, as illu-
strated by studies in rodents and sheep (Luque et al., 2007; Backholer
et al., 2010b; Fu and van den Pol, 2010; Kim et al., 2010). Some of the
pathophysiological mechanisms mentioned above are integrated into
Fig. 2.

T1D and ovarian function:
insights from clinical studies

Pathophysiology of the reproductive axis in
patients with T1D
Pituitary-hypothalamic function
Similar to animal studies, hypogonadotropic hypogonadism is present
in women with uncontrolled T1D (Fig. 3) (Djursing et al., 1985b;
Griffin et al., 1994). Studies performed in the 1980s showed that
patients with primary or secondary amenorrhea and insufficient meta-
bolic control exhibit low LH, FSH and estradiol levels (Fig. 3) (La
Marca et al., 1999; Djursing et al., 1982; Djursing et al., 1983) that
are frequently associated with a lack of residual insulin secretion

(Prelevic et al., 1989). These perturbations are explained by the
poor metabolic control observed in some of these patients (Arrais
and Dib, 2006). The hypogonadotropic hypogonadism observed in
amenorrheic T1D women is similar to that linked to other forms of
metabolic stress, such as anorexia nervosa and strenuous exercise
(Griffin et al., 1994). This hypothesis has been confirmed by studies
in preclinical models (summarized in Section ‘Mechanistic studies on
the metabolic control of reproduction: implications for T1D’).
However, O’Hare et al. (1987) have described a group of patients
with T1D and secondary amenorrhea due to hypogonadotropic hypo-
gonadism who did not recover after improvement of metabolic
control, thus suggesting that there is a particular group of T1D patients
that is prone to hypogonadism.

The hypothalamic origin of the decreased gonadotrophin levels
observed in patients with T1D and amenorrhea has been demon-
strated. Abnormalities in the GnRH pulse generator have been postu-
lated based on studies of LH pulses, which are an indicator of the
secretory activity of GnRH neurons. These studies have shown a
decreased number of LH pulses, a decreased pulse amplitude and
wider pulses in T1D patients with amenorrhea compared with
those with normal menstrual cycles (Djursing et al., 1985a; South
et al., 1993).

Most studies have shown that the pituitary in T1D patients
responds normally to exogenous administration of GnRH, further sug-
gesting that the hypogonadism is secondary to a hypothalamic disrup-
tion (South et al., 1993; La Marca et al., 1999). South et al. (1993) have
found a greater total and incremental LH response to GnRH stimuli in
T1D patients compared with healthy controls. Some boys with poor
metabolic control show changes in their biological-to-immunological
LH ratios (Nishimura et al., 2007). However, other studies have

Figure 3 Pathophysiology of the reproductive axis in patients with T1D. Modified from Codner and Cassorla. Puberty and ovarian function in girls
with T1D mellitus. Horm Res 2009;71:12–21 (Codner and Cassorla, 2009)]. †Catabolism and leptin deficiency secondary to severe insulin deficiency
has been observed in patients with ketoacidosis (Fluck et al., 1999; Soliman et al., 2002) *Findings that have been demonstrated in animals.
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shown some degree of decreased LH response to GnRH stimuli (Dis-
tiller et al., 1975; Djursing et al., 1983) to be associated with higher
fasting glucose (Distiller et al., 1975) or more severe insulin deficiency,
as shown by the presence of negative C-peptide levels (Volpi et al.,
1998).

A toxic effect of hyperglycaemia on the hypothalamic neurons has
also been suggested by observations of the diminished LH response
to GnRH stimuli with increasing diabetes duration (Volpi et al.,
1998) and by abnormalities in GnRH secretion and increased apop-
tosis in an immortalized GnRH cell line exposed to hyperglycaemia
(450 mg/dl; Pal et al., 2007).

These data suggest that chronic hyperglycaemia may induce gluco-
toxicity in GnRH neurons. However, central nervous system media-
tors, such as increased dopaminergic tone (Djursing et al., 1983),
opioidergic activity (O’Hare et al., 1987; Volpi et al., 1998) and cat-
echolamine levels (Christensen, 1970), may also be involved in the
pathophysiology of hypogonadism in T1D patients (Arrais and Dib,
2006).

Ovarian function
With the advent of modern intensive T1D treatment, a decrease in
the prevalence of hypogonadism has occurred, as shown by the de-
crease in the prevalence of amenorrhea (Table I), from .20 to
,10%, and the delay of menarche, from several years to some
months (discussed later). Unfortunately, an increased incidence of re-
productive abnormalities due to insulin excess, especially hyperandro-
genism, polycystic ovaries and excessive weight gain, has taken place.
When the pancreas secretes insulin into the portal circulation under
physiological conditions, the liver is the organ exposed to the
highest insulin concentrations, and it eliminates an important fraction
of the secreted insulin (Polonsky et al., 1988). In T1D patients,
insulin administered to the subcutaneous tissue is absorbed into the
systemic circulation, omitting this hepatic first-pass step (Rizza et al.,
1980; Kryshak et al., 1990; Shishko et al., 1992; Bolli, 2001) and expos-
ing the peripheral tissues to supraphysiological insulin levels (Rizza
et al., 1980; Shishko et al., 1992).

The importance of insulin action on reproductive function in
humans is highlighted by insulin receptor expression in most tissues,
including the hypothalamus, pituitary, uterus and ovaries (Poretsky
and Kalin, 1987; Poretsky et al., 1999). Insulin binds the insulin and
insulin-like growth factor-I (IGF-I) receptors in the ovary, including
on theca, granulosa and stromal cells, and acts mainly through the
tyrosine kinase signalling pathway (Poretsky and Kalin, 1987; Bergh
et al., 1993; Poretsky et al., 1999). Insulin stimulates androgen secre-
tion via theca cells and increases the activity of several steroidogenic
enzymes (Poretsky and Kalin, 1987; Cara and Rosenfield, 1988; Por-
etsky et al., 1999; Codner and Escobar-Morreale, 2007). This re-
sponse is greatly enhanced when the cells are simultaneously
exposed to LH and insulin, which indicates that insulin may act as a
co-gonadotrophin (Poretsky and Kalin, 1987).

Insulin enhances follicular development and ovarian steroidogenesis,
via insulin receptors in granulosa cells (Poretsky et al., 1999; Sirotkin,
2011). Insulin potentiates FSH-stimulated steroid secretion, as shown
by increased estrogen secretion in granulosa cells simultaneously
exposed to insulin and FSH (Willis et al., 1996). In addition, the go-
nadotropic effect of insulin on folliculogenesis enhances the recruit-
ment and growth of pre-ovulatory follicles (Poretsky et al., 1999),

suppresses apoptosis and atresia in ovarian follicles and promotes
follicle maturation, ovarian growth and eventual cyst formation
(Poretsky et al., 1992; Hsueh et al., 1994; Poretsky et al., 1999;
Kezele et al., 2002). These numerous actions are the basis for the po-
tential impact of disturbed insulin secretion (from null levels to hyper-
insulinaemia) on ovarian development and function.

Folliculogenesis in T1D patients has been evaluated by determining
anti-Müllerian hormone (AMH) levels, which correlate with the
number of small follicles and may be used as an index of ovarian
reserve. AMH is elevated in prepubertal girls with T1D, suggesting
that insulin stimulates the growth of small follicles (Codner et al.,
2011b). The growth of these small follicles, usually observed in the
prepubertal ovary, depends on the presence of local factors that act
through autocrine and paracrine mechanisms (Knight and Glister,
2001). The elevated AMH observed in prepubertal girls with T1D sug-
gests that more small follicles are present in their ovaries, likely in re-
sponse to insulin treatment.

The effect of T1D on folliculogenesis changes with the pubertal ac-
tivation of the gonadal axis. After puberty, AMH levels in women with
T1D are similar to those of healthy women (Codner et al., 2007,
2011b). The first phase of ovarian folliculogenesis, involving the non-
cyclic recruitment of primordial follicles up to the small antral stage
(�2–5 mm), is gonadotrophin independent. After the onset of
puberty, the second phase of folliculogenesis, the cyclic recruitment
stage, occurs under the control of gonadotrophins and other metabol-
ic signals. Insulin acts as a co-gonadotrophin, stimulating the recruit-
ment and growth of larger follicles (Poretsky et al., 1992; Gougeon,
1996; Fulghesu et al., 1997), which only secrete a small amount of
AMH. Therefore, we postulated that before puberty, insulin stimulates
the growth of small follicles, but with the presence of pubertal or adult
levels of gonadotrophins, insulin may act as a co-gonadotrophin and
enhance the maturation of large follicles, which produce less AMH
(Codner et al., 2007, 2011b).

Hyperglycaemia is another factor that may affect reproductive func-
tion in T1D patients. Elevated blood glucose induces peripheral insulin
resistance (Amiel et al., 1986), which is a process known as glucose
toxicity (Rossetti et al., 1990; Vuorinen-Markkola et al., 1992). The
existing hyperinsulinaemia and insulin resistance, as observed in T1D
girls (Szadkowska et al., 2008), lead to polycystic ovaries more fre-
quently than either condition alone (Poretsky et al., 1992). Hypergly-
caemia may also affect ovarian function through the presence of
advanced glycation receptors and products. These receptors have
been detected in the granulosa and theca cells of healthy women
(Diamanti-Kandarakis et al., 2007b).

In summary, several factors may be involved in altering ovarian
function in T1D patients. Insulin deficiency may lead to lower go-
nadotrophin levels due to decreased GnRH secretion. In addition,
hyperglycaemia may affect the ovary, both directly and through indu-
cing insulin resistance. Finally, higher serum insulin may lead to over-
stimulation of the insulin and IGF-1 receptors in the ovary, increasing
androgen secretion and fostering the development of PCOS.

Childhood
Childhood is characterized by a quiescent reproductive axis, with low
gonadotrophin levels and the predominance of FSH over LH secretion.
In children aged 6–8 years, adrenarche occurs due to maturation of
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Table I Menstrual irregularities in T1D women.

Author, country, year published T1D
Patients
(n)

Age at
study
(years)

Prevalence of
menstrual
irregularities (%)

Oligomenorrhea
(%)

Secondary
amenorrhea (%)

Polymenorrhea
(%)

Factors associated with
menstrual abnormalities

Adolescence

Adcock, UK, 1994 24 12–20 54 21 Metabolic control, higher BMI, lower
SHBG

Yeshaya, Israel, 1995 100 32 Prepubertal onset of T1D, late
menarche

Snajderova, Czech Republic, 1999 43 13–19 28 15 0.5 15 Presence of certain types of ovarian
autoantibodies and autoinmune
thyroiditis. Metabolic control

Schroeder, USA, 2000 46 10–18 19 15 2.1 Metabolic control

Escobar-Morreale, Spain, 2000 85 17–28 18.8 Prepubertal onset of T1D

Strotmeyer, USA, 2003 143 ,20 78.7 24.8 NR

Codner, Chile, 2006 42 22–24 19 Intensive insulin treatment

Gaete, Chile, 2010 56 13–17 81 58.9 10.7 39.3 Metabolic control, higher insulin
doses

Deltsidou, Greece, 2010 100 12–18 49.3 37 Metabolic control (higher HbA1c
and higher frequency of
hypoglycemia)

Bizarri, Italy, 2011 54 15–25 11.1 Metabolic control, intensive
treatment

Adult women

Bergqvist, Sweden, 1954 62 20–39 30.6 9.7 19.4 Prepubertal onset of T1D

Kjær, Denmark, 1992 245 18–49 21.6 10.6 8–10 7.3 Prepubertal onset of T1D

Strotmeyer, USA, 2003 143 30–39 67.5 11.9 NR

Snell-Bergeon, USA, 2008 293 19–55 30.5 22 16.6 NR

NR, not reported.
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the reticularis zone of the adrenal gland (Auchus, 2011). This process
leads to adrenal androgen secretion (Williams et al., 2011). Excessive
androgen secretion by the adrenal glands and increased AMH levels
during childhood have been described in patients at risk for developing
PCOS later in life (Ibanez et al., 1993, 1997, 1998; Sir-Petermann
et al., 2006; Maliqueo et al., 2009).

Few studies have evaluated ovarian function during childhood in girls
with T1D. To determine whether these patients exhibit a similar
endocrine profile to other groups of girls at risk for PCOS, we
studied sexual steroid, gonadotrophin, AMH and inhibin-B levels in
20 prepubertal girls with T1D and 24 healthy controls aged 5–7
years (Codner et al., 2011b). The girls with T1D had higher levels
of AMH and inhibin B. The prepubertal T1D patients had higher
AMH levels than other groups of children at risk for developing
PCOS later in life (Ibanez et al., 2000; Sir-Petermann et al., 2006,
2007). The gonadotrophin, estradiol and testosterone levels were
similar in both groups.

Although the precocious appearance of pubic hair has not been
reported in girls with T1D, adrenal steroids, either in plasma or as
urinary metabolites, are elevated in TD1 patients during childhood.
Remer et al. (2006) studied urinary steroid metabolites in a group
of prepubertal children and pubertal girls with T1D and found elevated
levels of total adrenal androgens, dehydroepiandrosterone (DHEA)/
dehydroepiandrosterone sulphate (DHEAS) and androstenedione in
T1D girls during childhood and puberty compared with the control
group. Similarly, we have reported that prepubertal girls with T1D
have significantly higher DHEAS and almost significantly higher levels
of androstenedione than normal girls. The above data suggest that
some degree of elevated adrenal androgen is present during the
prepubertal period but not enough to be associated with an increased
incidence of precocious pubic hair, and that the effects of T1D on the
gonads and adrenal reticularis begin during childhood and that these
girls exhibit an endocrine profile similar to that of other groups at
risk for PCOS.

Puberty
An in-depth review of the mechanisms of puberty and age of menar-
che have recently been published (Codner and Cassorla, 2009;
Codner et al., 2012), and a brief summary of these topics will be pre-
sented here. Several decades ago, girls with T1D frequently exhibited
severe pubertal delay associated with poor metabolic control
(Mauriac, 1930; Bergqvist, 1954). Studies performed in the 1980s
and 1990s, at a time when children were treated with the conventional
insulin protocol of two daily doses, found that severe pubertal delay
was rare but that a delay of 6 months to 1 year in the onset of
breast development was described (Clarson et al., 1985; Salardi
et al., 1987; Du Caju et al., 1995). Other series that evaluated pubertal
development during the same period showed no delay, although they
compared the timing of puberty with that of historical controls pub-
lished in 1969 by Marshall and Tanner (Salerno et al., 1997; Ahmed
et al., 1998).

Two studies evaluating pubertal development in girls with T1D
treated with modern insulin therapy have been published in the last
two decades [reviewed in (Codner and Cassorla, 2009)]. Our group
observed a similar age of puberty onset in girls with T1D and the
control group, but one and a half years earlier than Chilean historical

controls. We concluded that both groups followed the secular trend
towards earlier onset of puberty, which has also been described in
the general US population (Parent et al., 2003). Rohrer et al. found
that thelarche in girls with T1D occurred 6 months later than in histor-
ical controls studied in the 1980s, although the average age was within
the normal range for both groups. These data suggest that the onset of
puberty in girls with T1D treated with multiple daily insulin doses
occurs within a normal age, especially in those with lower HbA1c
(Rohrer et al., 2007), and follows the secular trend towards an
earlier onset that has been observed in the general population
(Codner et al., 2004; Codner and Cassorla, 2009). Similarly, only a
delay of 2–6 months in reaching the final stages of breast development
(Codner et al., 2004; Codner and Cassorla, 2009) and pubic hair
growth (Codner et al., 2004; Rohrer et al., 2007; Codner and Cas-
sorla, 2009) has recently been reported.

In contrast to the few studies evaluating the final stages of develop-
ment, several publications have reported the effect of T1D on the age
of menarche. A significant menarche delay was described during the
first half of the 20th century. In the 1940s and 1950s, menarche oc-
curred 2 years later in girls with T1D than in the general population,
and a significant proportion of the T1D patients exhibited primary
amenorrhea into their late teens (Bergqvist, 1954; Tattersall and Pyke,
1973). Girls diagnosed with T1D in the 1970s or 1980s displayed a
1-year delay in the average age of menarche compared with controls
(Schriock et al., 1984; Kjaer et al., 1992a; Strotmeyer et al., 2003;
Schweiger et al., 2010). With the advent of intensive insulin therapy in
the 1990s, only a mild delay in menarche in girls with T1D, ranging
from 2 to 9 months, has been reported in countries in Europe and
North and South America (Strotmeyer et al., 2003; Codner et al.,
2004; Danielson et al., 2005; Picardi et al., 2008; Rohrer et al., 2008;
Lombardo et al., 2009; Deltsidou, 2010; Schweiger et al., 2010). The
clinical significance of the delay in menarche depends on its magnitude.
Late menarche is associated with irregular menses and other gynaeco-
logical disturbances in T1D women (Kjaer et al., 1992a; Adcock et al.,
1994; Yeshaya et al., 1995; Danielson et al., 2005). The association of
late menarche, amenorrhea and menstrual irregularities with estrogen
deficiency could play a role in the cardiovascular complications observed
in women with T1D (Codner, 2008).

The hormonal mechanisms involved in delayed puberty have not
been studied thoroughly, but several pathophysiological mechanisms
may be involved. The first is related to a delay in the activation of go-
nadotrophin secretion. Lower insulin doses have been associated with
delayed menarche in T1D (Rohrer et al., 2008), which may be
mediated by the action of insulin on the central nervous system and
therefore on the activation of gonadotrophin secretion. However,
no longitudinal studies have examined whether this process is retarded
in T1D.

Another hormonal finding that may explain abnormal puberty in
T1D patients is the appearance of hyperandrogenism at the final
stages of pubertal development (Meyer et al., 2000; Remer et al.,
2006). We have studied androgen levels and ovarian responses to a
GnRH agonist in pubertal girls with T1D; we found a higher propor-
tion of abnormally located hair, suggesting some degree of hirsutism,
and increasing free androgen levels throughout puberty in the girls
with T1D. In addition, the girls had an ovarian response to GnRH
that suggested the presence of ovarian hyperandrogenism by the
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end of puberty, together with larger ovaries and increased LH/FSH
ratios, which may be associated with PCOS (Codner et al., 2005).

Other mechanisms that may play some role in the pubertal delay of
girls with T1D are the occasional presence of ovarian antibodies (Snaj-
derova et al., 1999), increased advanced glycation end products (Berg
et al., 1997), exacerbation of the insulin resistance of puberty (Szad-
kowska et al., 2008) and higher SHBG at the onset of puberty,
leading to decreased steroid bioavailability (Codner et al., 2005;
Codner and Cassorla, 2009).

Adolescence
After menarche, girls with T1D have greater risks for several metabol-
ic and reproductive complications than do boys with T1D. Excessive
weight gain, deteriorating metabolic control, menstrual irregularities,
unplanned pregnancies and the appearance of microvascular complica-
tions make this a difficult period for young women with T1D (Du Caju
et al., 1995; Danne et al., 1997; Ferrante et al., 1999; Riihimaa et al.,
2000; Bryden et al., 2001; Codner et al., 2004; Codner, 2008; Iniguez
et al., 2008; Codner and Cassorla, 2009). The abnormal insulin sensi-
tivity pattern and deteriorating metabolic control during adolescence
may contribute to the abnormalities of reproductive function observed
in girls with T1D. Difficulties in glycemic controls frequently observed
during puberty intensify at the end of the growth period, especially in
girls (Tylleskar et al., 2001; Codner et al., 2004). Whereas non-
diabetic girls become more insulin sensitive during puberty than
boys, T1D girls become more insulin resistant than boys (Arslanian
et al., 1991; Szadkowska et al., 2008). Furthermore, whereas in
healthy girls the progression of insulin resistance during puberty is atte-
nuated after they complete growth, this insulin resistance continues to
increase with age in girls with T1D (Moran et al., 2008; Szadkowska
et al., 2008).

Menstrual irregularities are a prevalent problem during adolescence
for individuals with T1D and should be included in the list of critical
problems for adolescent girls with T1D (Table I). T1D, especially
when associated with insufficient metabolic control, leads to longer
menstrual cycles, making oligomenorrhoea the most prevalent men-
strual cycle abnormality observed in T1D adolescents. The prevalence
of menstrual irregularities varies among series and depends on the cri-
teria used to define these abnormalities. As menstrual periods are
longer during adolescence, a normal menstrual cycle interval has
been defined as 21–45 days in the first 5 years following menarche
(American Academy of Pediatrics et al., 2006; American College of
Obstetrics and Gynecology, 2006). Studies that apply the adult criteria
for menstrual irregularities to adolescence have found a prevalence
ranging from 20–30% (Snajderova et al., 1999; Schroeder et al.,
2000) to 50% (Adcock et al., 1994; Deltsidou et al., 2010) and even
80% (Strotmeyer et al., 2003). We have recently applied the adoles-
cent criteria for menstrual irregularities to girls with T1D and have
observed longer menstrual cycles compared with the control group
(48 and 32 days in the T1D and control groups, respectively). Sixty
percent of the T1D patients experienced at least one episode of oli-
gomenorrhoea during the 6-month observation period, which was sig-
nificantly higher than the 20% observed in the control girls (odds
ratio ¼ 5.9; Gaete et al., 2010). Despite the presence of menstrual ir-
regularities, adolescents with T1D and healthy girls have similar rates

of ovulation (Codner et al., 2011a; discussed further in Section ‘Young
adult women’).

Secondary amenorrhea has become increasingly infrequent during
recent decades and is currently observed in only 5–10% of T1D
patients, which is nonetheless higher than in the general population
(Snajderova et al., 1999; Gaete et al., 2010). Prolonged or heavy
bleeding and polymenorrhea are not prevalent problems in adoles-
cents with T1D (Strotmeyer et al., 2003) and have been only rarely
described (Snajderova et al., 1999). Teens with T1D can show
increased variability in their menstrual cycles (Gaete et al., 2010).

Metabolic control is the most important determinant of menstrual
irregularities in adolescents with T1D (Adcock et al., 1994; Schroeder
et al., 2000; Deltsidou et al., 2010; Gaete et al., 2010). We have found
HbA1c to be the only factor significantly associated with menstrual
cycle length in T1D patients; a regression analysis demonstrated that
menstrual cycle duration was prolonged by 5.1 days for each one
percent increase in HbA1c (Gaete et al., 2010). Deltsidou et al.
(2010) have shown that for each one percent increase in HbA1c,
the risk of oligomenorrhoea increased by 4.8-fold. Moreover, Gaete
et al. found that girls with optimal metabolic control (HbA1c lower
than 7.6%) had a prevalence of oligomenorrhoea twice that of con-
trols (OR ¼ 4.7). These data suggest that even if menstrual irregular-
ities are increasingly frequent with HbA1c above 10% (Adcock et al.,
1994; Schroeder et al., 2000), they are still observed in patients with
optimal or suboptimal metabolic control (Gaete et al., 2010).

Hyperandrogenism may be another factor explaining the presence
of menstrual cycle abnormalities in patients with good metabolic
control. Adcock subsequently showed that almost 80% of adolescents
with irregular menstrual cycles had polycystic ovaries, decreased
SHBG and an elevated LH/FSH ratio, which are frequent findings in
PCOS (Adcock et al., 1994). Virdis et al. (1997) studied ovarian func-
tion in girls with T1D and oligomenorrhoea and found elements of
ovarian hyperandrogenism in 50% of them. Recently, a French group
studied adolescents with T1D and irregular menstrual cycles and
found that oligomenorrhoea was associated with hyperandrogenism
and with higher testosterone, androstenedione, LH and free androgen
levels compared with the T1D group without menstrual irregularities
(Samara-Boustani et al., 2012). However, there is scarce information
about the prevalence and severity of hyperandrogenism in adolescents
with T1D, irrespective of their menstrual status.

Young adult women
Menstrual cycles
Although the prevalence of menstrual irregularities is lower than in
adolescents, a significant proportion (20–40%, Table I) of adult
women with T1D still experience these problems (Kjaer et al.,
1992a; Yeshaya et al., 1995; Escobar-Morreale et al., 2000; Strotmeyer
et al., 2003; Codner et al., 2006; Codner and Escobar-Morreale, 2007;
Snell-Bergeon et al., 2008). Menstrual irregularities in non-diabetic
women are linked to increased cardiovascular and metabolic dysfunc-
tion (Weiss et al., 1994; Solomon et al., 2001; Solomon et al., 2002),
which are also common in women with T1D (Snell-Bergeon et al.,
2008). Snell-Bergeon et al. (2008) have shown that T1D women
with a history of menstrual irregularities had increased coronary
artery calcification progression, suggesting that menstrual irregularities
may represent a marker for cardiovascular risk in these patients just as
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in healthy women. These authors suggested that the increased cardio-
vascular risk observed in T1D women with menstrual dysfunction may
have been explained by underlying hypo-estrogenism (Snell-Bergeon
et al., 2008), which has been observed in T1D women with amenor-
rhea (Djursing et al., 1985b) and with regular menstrual cycles (Salonia
et al., 2006; Codner, 2008).

Fluctuations in plasma glucose associated with the menstrual cycle
are a prevalent complaint in T1D. Only certain women are prone
to this abnormality; although the patients have heterogeneous blood
glucose profiles during their menstrual cycles, a pattern that is repro-
ducible from cycle to cycle tends to occur in each woman (Goldner
et al., 2004). The most prevalent complication is hyperglycaemia
during the luteal phase or bleeding period, which is observed in
40–70% of the patients in some series (Widom et al., 1992;
Cawood et al., 1993; Lunt and Brown, 1996) and which is still
observed in some women using oral contraceptives (Lunt and
Brown, 1996). Some reports have observed that hypoglycaemia may
be associated with the bleeding period.

Hyperglycaemia associated with the menstrual cycle is frequently
managed with self-adjustments in insulin treatment protocols, but
cases of extreme difficulty in controlling glycaemia at specific stages
of the cycle have been described. In these ‘catamenial’ stages,
extreme hyperglycaemia and recurrent ketoacidosis occur monthly
in association with menstruation (Walsh and Malins, 1977; Letterie
and Fredlund, 1994; Herring and Gearhart, 1996; Li Voon Chong,
2010; Sennik et al., 2010). Walsh et al. (1977) described an increased
prevalence of ketoacidosis in women during the perimenstrual period.
These catamenial reactions were treated with GnRH analogues,
increased insulin, or low doses of combined oral contraceptives
(Sacerdote and Bleicher, 1982; Letterie and Fredlund, 1994; Sennik
et al., 2010).

Variations in glucose levels during the menstrual cycles of T1D
patients may be related to diminished insulin sensitivity or excessive
craving for sweets as part of the premenstrual cycle syndrome.
Widom et al. (1992) have shown that women who had hypergly-
caemia in the premenstrual period had decreased insulin sensitivity
associated with higher estrogen during the luteal phase, when com-
pared with the follicular phase. However, other studies have shown
non-significant decreases in luteal phase insulin sensitivity (Scott
et al., 1990; Moberg et al., 1995).

Premenstrual syndrome is not a frequent complaint in T1D patients,
but glucose irregularities have been observed more frequently in
patients with these symptoms than in patients without them
(Cawood et al., 1993), which may be explained by a craving for
sweets that contributes to the hyperglycaemia associated with
menstruation.

Ovulation and fertility
Few studies have evaluated ovulatory function in women with T1D.
More than 50 years ago, Bergqvist showed that adult women with
T1D displayed signs of ovulation, such as variations in basal tempera-
ture, despite menstrual irregularities (Bergqvist, 1954). Steel (1984)
showed a delay in ovulation in 11 adult women with T1D who
were trying to become pregnant, suggesting a longer follicular phase.
The only thorough prospective study of ovulation was recently
reported by our group. We comparatively followed a group of non-
hyperandrogenic adolescents with T1D (n ¼ 31) and a group of

healthy girls (n ¼ 52; Codner et al., 2011a). Each girl was followed
for an average of five cycles, and ovulation was assessed by measuring
salivary progesterone. Ovulation was not decreased in the girls with
T1D. The fraction of ovulatory cycles was similar in the T1D and
control groups (34.5 and 36.3%, respectively). Metabolic control
had a slight effect on the ovulation rate. A higher percentage of ovu-
latory cycles and an increased rate of ovulation every 100 days were
observed in the T1D girls with optimal metabolic control than in
the T1D girls with insufficient metabolic control. However, some of
the girls with high HbA1c levels still had a considerable number of ovu-
latory cycles.

Despite these data suggesting preserved ovulation, most series have
found fewer pregnancies and live births in women with T1D, which
may be associated with the presence of diabetes-related complications
or with a voluntary choice by T1D women to have fewer children
(Kjaer et al., 1992b; Pedersen et al., 1994; Jonasson et al., 2007;
Soto et al., 2009). Whitworth et al. (2011) studied a large cohort of
Norwegian women (221 women with T1D) and showed that fecund-
ability (the probability of conception in one menstrual cycle) was
decreased by 24% compared with the general population and was
similar in women with and without menstrual irregularities.

One factor involved in the decreased fecundability of some T1D
women may be sexual dysfunction. Enzlin et al. (2002, 2003) found
that 27% of the women with T1D they studied had sexual dysfunction,
especially decreased desire, dyspareunia, and alterations of the arousal
phase, which was associated with marital problems and the presence
of depressive symptoms. Salonia et al. (2006) found decreased sexual
function and increased sexual distress during the luteal, but not the fol-
licular, phase in women with T1D compared with controls. Trials with
sildenafil have reported some degree of success in treating sexual
arousal dysfunction in women with T1D (Caruso et al., 2006a, b).

Despite decreased fecundability and sexual function, T1D is a rare
cause of consultation in infertility clinics (Thonneau et al., 1991; Healy
et al., 1994; Hargreave and Mills, 1998). Involuntary infertility has been
observed in 17% of T1D women, a rate similar to that of healthy con-
trols (Strotmeyer et al., 2003). Studies evaluating fertility treatments in
women with T1D agree that the major factor in attaining a successful
pregnancy is achieving optimal metabolic control before the use of
more invasive techniques (Taylor, 2002; Livshits and Seidman,
2009). In vitro fertilization treatments in women with T1D show
results similar to those in women without this condition only when
optimal metabolic control is attained (Dicker et al., 1992; Hovav
et al., 1995).

Polycystic ovarian syndrome and
hyperandrogenism in T1D
Although hyperandrogenism has been classically associated with T2D,
increasing evidence shows that T1D women may also exhibit this ab-
normality (Codner and Escobar-Morreale, 2007). Djursing et al.
(1985b) reported that adult women with T1D but without amenor-
rhea had high androgen levels, suggesting an ovarian origin of their an-
drogen excess. O’Hare et al. (1987) showed that intensification of
insulin treatment in amenorrheic women led to elevated testosterone.
Subsequently, a 40% prevalence of clinical or biochemical hyperandro-
genism was found by Escobar-Morreale and Codner in Spain and
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Chile, respectively (Escobar-Morreale et al., 2000; Codner et al.,
2006) and 25% prevalence in Italy (Bizzarri et al., 2011).

The most frequent hyperandrogenic symptom in these women was
hirsutism, which is present in 20–30% of the young adult women with
T1D (Escobar-Morreale et al., 2000; Codner et al., 2006; Bizzarri
et al., 2011). This prevalence is much higher than that of the
Spanish and Chilean general populations (7.1 and 3.0%, respectively)
(Tellez and Frenkel, 1995; Asuncion et al., 2000). Biochemical hyper-
androgenism was present in 20% of the young adult women in the
three series that have compared androgens in T1D patients to andro-
gens in healthy women (Escobar-Morreale et al., 2000; Codner et al.,
2006; Bizzarri et al., 2011), with testosterone and androstenedione
levels being increased in all three of the studies. The prevalence of
PCOS in women with T1D varies depending on the diagnostic criteria
employed and on the ethnicity of the population being studied. Using
the NIH criteria for PCOS, 12 and 18.8% PCOS prevalence has been
observed in T1D women from Chile and Spain, respectively, which are
much higher than the 6.5% observed by the same authors in the
Spanish general population (Asuncion et al., 2000; Escobar-Morreale
et al., 2000; Codner et al., 2006). When the Rotterdam criteria for
PCOS (which include polycystic ovarian morphology) were employed,
the prevalence of PCOS increased to 40.5%, as the combination of
hyperandrogenism and PCOS is especially common in these women
(Codner et al., 2006). However, an Italian group reported a much
lower prevalence of PCOS (7.5%) when using the Rotterdam criteria,
even though the patients in their study had even higher androgen
levels than the Spanish and Chilean subjects (Bizzarri et al., 2011).
Finally, applying the AES criteria, which require the presence of hyper-
androgenism, the prevalence of PCOS was 31% in Chilean T1D
women (Codner and Escobar-Morreale, 2007).

The ultrasonographic appearance of polycystic ovaries, also known as
polycystic ovarian morphology, is frequently observed in women
with PCOS and has been explained by the effects of insulin on folliculo-
genesis (Codner et al., 2006). Early studies reported ultrasonographic
polycystic ovaries in as many as 80% of adolescents with T1D
(Adcock et al., 1994). Increased ovarian volume and numbers of follicles
have been observed, resulting in polycystic ovaries in half of the adult
women with T1D, when compared with only 13% of age-matched non-
diabetic controls (Codner et al., 2006).

Women with PCOS and T1D exhibit phenotype and hormonal
profile differences from patients with PCOS alone (Table II). Hirsutism
is usually mild in T1D women, which may explain why this sign is fre-
quently overlooked in general clinical practice (Codner et al., 2006).
Biochemical hyperandrogenism and ultrasonographic polycystic
ovaries may be underdiagnosed if only a clinical evaluation is per-
formed (Roldan et al., 2001; Codner et al., 2006). Adult women
with T1D and PCOS usually display a milder form of hyperandrogen-
ism than do non-diabetic PCOS women, and the classical PCOS
phenotype, oligomenorrhoea and hyperandrogenism, is less frequent
in diabetic PCOS than in non-diabetic PCOS patients (30 versus
90%; Codner et al., 2007).

The hormone profiles of T1D patients presenting with PCOS are
different from those observed in non-diabetic hyperandrogenic
women (Roldan et al., 2001; Codner et al., 2007). Serum testosterone
is similarly increased in PCOS patients with and without T1D, but free
androgens are lower in T1D patients with PCOS than in non-diabetic
PCOS patients, which may be explained by normal sex hormone-
binding globulin (SHBG) levels. Decreased SHBG, a characteristic of
PCOS without T1D, has not been described in patients with PCOS
and T1D. The normal SHBG levels in women with T1D and PCOS

.............................................................................................................................................................................................

Table II Comparison of clinical, laboratory and physiopathology characteristics of polycystic ovarian syndrome in women
with T1D and PCOS vs. patients with PCOS without T1D.

T1D 1 PCOS PCOS

Childhood �AMH/Adrenal Androgens �AMH/adrenal androgens

Precocious Pubarche Not Reported Associated

Puberty Normal or Mild delay Normal or early

Onset of hyperandrogenism Late Peri-menarcheal

Onset of weight gain or increase in adipose tissue Begins during puberty/adolescence Begins during childhood

Source of hyperinsulinemia Systemic circulation Pancreas/portal vein

Insulin resistance Secondary to glucose toxicity Primary/obesity related

Tissue that are exposed to higher insulin concentration Muscle, adipose tissue Liver

Degree of Hirsutism Mild More severe

Most prevalent phenotype Hyperandrogenism clinical or biochemical Oligomenorrhea + Hyperandrogenism + PCOM

Total testosterone/androstenedione � �
Free testosterone N or � ���
SHBG levels N or � �
LH levels N �
AMH levels N �
Anovulation ? Yes

PCOM on ultrasonography Yes Yes

N, Normal; �, Elevated; ���, Very elevated; �, Diminished; ?, Unknown.
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may be related to insulin concentration at the portal vein being the
main regulator of SHBG (Yki-Jarvinen et al., 1995); in women with
T1D, insulin is subcutaneously administered to the systemic circulation
and may not result in increased portal levels, even when supraphysio-
logical doses are given. The normal SHBG levels in patients with PCOS
and T1D increase the binding of sex steroids to this protein and may
explain why free androgens are not as elevated (Codner et al., 2007)
and why hirsutism is less severe in PCOS patients with T1D than in
those without T1D.

Elevated serum AMH is a typical feature of non-T1D patients with
PCOS. As discussed in Section ‘Pathophysiology of the reproductive
axis in patients with T1D’, AMH is normal in patients with PCOS
and T1D, despite an elevated number of 2–9 mm follicles. An explan-
ation for this finding may be that the increased follicle number
observed by ultrasonography in T1D patients corresponds mostly to
follicles .5 mm, which produce limited amounts of AMH (Codner
et al., 2007, 2011b). These data suggest that not all hyperandrogenic
disorders exhibit the same abnormalities in follicular development and
that some features may be observed exclusively in PCOS.

Androgen excess in T1D women appears to be mostly of ovarian
origin, given that the responses of their adrenal androgen precursors
to an ACTH stimulation test are similar to those of healthy
women (Roldan et al., 2001). An ovarian origin is also supported by
the increased 17-hydroxyprogesterone responses to GnRH agonists
found in a significant proportion of T1D adolescents (Virdis et al.,
1997; Codner et al., 2005). Similarly, LH and FSH levels are
normal in patients with T1D and PCOS, which suggests that the pitu-
itary–gonadal axis is not central to the pathophysiology of androgen
excess.

Intensive conventional insulin therapy has been associated with
PCOS in T1D women. We recently reported that 75% of the T1D
women on intensive insulin therapy had either PCOS or asymptomatic
polycystic ovarian morphology on ultrasound scans, when compared
with only 33% of the patients on a more conservative conventional
regimen of two daily insulin injections (Codner et al., 2006). Recently,
Bizzarri et al. (2011) have reported that a high body mass index and
low birthweight were related to testosterone and androstenedione
levels in young women with T1D. However, the mean daily insulin
dose received, diabetes duration and degree of metabolic control
are not significantly associated with hyperandrogenism.

Apparently, the onset of hyperandrogenism occurs later in life in
patients with PCOS and T1D than in non-diabetics (Adcock et al.,
1994; Meyer et al., 2000; Codner et al., 2005; Sir-Petermann et al.,
2009). Escobar-Morreale et al. found that developing PCOS was asso-
ciated with the onset of diabetes before menarche in T1D patients,
which led the authors to hypothesise that exogenous hyperinsulinism
at the onset of ovarian function during puberty re-programs ovarian
function towards increased androgen secretion, leading to hyperan-
drogenism and PCOS later in life (Escobar-Morreale et al., 2000;
Codner and Escobar-Morreale, 2007).

The consequences of PCOS in women with T1D are unknown at
present, but some data suggest that androgen excess may be asso-
ciated with the renal microvascular complications of diabetes, especial-
ly with the presence of microalbuminuria (Amin et al., 2003).

The best therapeutic strategy has yet to be established, although
routine screening for these conditions and subsequent treatment
should be considered. Theoretically, the addition of low-dose

non-androgenic oral contraceptives, metformin or both to an insulin
regimen should improve hyperandrogenic symptoms in these
women. Two small pilot studies, published in abstract form, have eval-
uated using metformin alone or in combination with flutamide in
hyperandrogenic adolescents with T1D and have found beneficial
effects on androgen from these treatments (Beckers et al., 2006;
Codner et al., 2009).

Premenopausal period and menopause
As women with T1D approach their thirties and forties, they face an
array of problems usually only observed in healthy women later in life.
Cardiovascular disease, osteopenia and fractures may be observed in
T1D patients during the premenopausal years, with the risk of these
complications being more elevated in female than male T1D patients
(Lloyd et al., 1996; Laing et al., 2003; Soedamah-Muthu et al., 2006;
Secrest et al., 2010). The prevalence of cardiovascular disease in
female patients with T1D during the fourth and fifth decades of life
is similar to that of men of the same age (Lloyd et al., 1996;
Orchard et al., 2006; Codner, 2008) and is several times greater
than that of healthy women. Moreover, the relative risk of death com-
pared with the general population is more elevated in women with
T1D during the premenopausal years than in men of the same age
(Secrest et al., 2010).

An earlier age of menopause, another sign of premature aging, has
also been described in T1D patients (Dorman et al., 2001). Only two
epidemiological studies have analysed the age of menopause in T1D
patients. The first, published in 2001 studied the age of menopause
in patients diagnosed at the Children’s Hospital of Pittsburgh
between 1950 and 1964 (n ¼ 265). The age of menopause reported
for T1D patients was 41.6 years, which was significantly lower than the
ages observed in their sisters and in the controls (49.9 and 48 years,
respectively). Compared with the control group, the patients with
T1D had twice the risk of early menopause, as defined the last men-
strual bleeding occurring before age 47. The study concluded that the
reproductive period is decreased by 6 years in T1D patients due to
late menarche and early menopause (Dorman et al., 2001).

However, a more recent study did not show an earlier age of meno-
pause in T1D patients without complications (Sjoberg et al., 2011).
That study evaluated a nationwide Finnish cohort of patients diag-
nosed between 1965 and 1979 that included only patients who did
not report any condition known to affect ovarian function. The
authors found the age of menopause to be 52 years, which is
similar to that of the general population, and observed that the
main risk factors for earlier menopause were the presence of severe
microvascular complications, end-stage renal disease and proliferative
retinopathy.

The mechanisms of early menopause in T1D patients have scarcely
been studied. We have recently studied ovarian reserve and steroid
levels in 33–45-year-old women with T1D (Soto et al., 2009).
Ovarian reserve has been studied using serum AMH, which diminishes
during the transition to menopause, and serum inhibin B (Sowers
et al., 2008). An earlier decline in AMH and a higher proportion of
AMH levels in the menopausal range were observed in women with
T1D than in controls. The lower AMH and the earlier decline
observed in women with T1D during the fourth decade of life
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suggest the presence of a precocious decline in the ovarian follicular
pool in these women.

In addition, an autoimmune oophoritis has been postulated as one
of the mechanisms leading to early menopause in women with T1D.
Recently, Tsigkou et al. (2008) showed that measuring inhibin B may
help to distinguish autoimmune premature ovarian failure from
natural menopause, as the levels of this hormone are elevated in
the former and diminished in the latter. Our group reported that
lower inhibin B in T1D patients than in controls, even after adjusting
for age (Soto et al., 2009). The low inhibin B observed by Soto
et al. is more compatible with non-immune-mediated follicular loss
than with the presence of autoimmune oophoritis, as serum inhibin
B levels are an index of the number of antral follicles in these patients
(Groome et al., 1996; Knight and Glister, 2001). Similarly, none of the
larger epidemiological studies mentioned above observed an associ-
ation between earlier menopause with the presence of auto-immune
diseases (Dorman et al., 2001; Sjoberg et al., 2011).

Hyperandrogenism has not been reported in women with T1D
approaching menopause. The only series that has compared the hor-
monal profiles of young adult women and those in their thirties and
forties is the aforementioned study by Soto et al., which showed
that hyperandrogenism is primarily observed in young women and
that androgen levels are within the normal range in older women.
One hypothesis explaining this observation could be that the decline
in ovarian function that occurs with age in women with T1D also
affects androgen production.

Conclusions
The effects of T1D on reproductive function in women have dramat-
ically changed during the last 50 years, but despite improvements in
therapy, these patients still face abnormalities in their pubertal devel-
opment, menstrual cycles, fertility and age of menopause, with hyper-
androgenism and oligomenorrhoea being the most prevalent problems
in young adult T1D patients. Moreover, as diabetic patients approach
menopause, earlier declines in their ovarian reserves pose another
critical problem. In addition, insulin excess caused by more intensive
therapeutic protocols has recently been associated with an increased
frequency of PCOS-like symptoms among women with T1D. In
summary, T1D is a state of metabolic stress that represents a multi-
faceted challenge to normal reproductive function throughout life. A
better understanding of the nature, evolution and underlying mechan-
isms of these reproductive complications will help to develop
improved diagnostic and therapeutic strategies for an important set
of co-morbidities affecting T1D women.
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