
 
 
 
 

Heriot-Watt University 
Research Gateway 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

FEMOS

Citation for published version:
Zhao, S, Yang, Y, Shao, Z, Yang, X, Qian, H & Wang, C-X 2018, 'FEMOS: Fog-Enabled Multi-tier
Operations Scheduling in Dynamic Wireless Networks', IEEE Internet of Things Journal, vol. 5, no. 2, pp.
1169-1183. https://doi.org/10.1109/JIOT.2018.2808280

Digital Object Identifier (DOI):
10.1109/JIOT.2018.2808280

Link:
Link to publication record in Heriot-Watt Research Portal

Document Version:
Peer reviewed version

Published In:
IEEE Internet of Things Journal

Publisher Rights Statement:
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

General rights
Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and /
or other copyright owners and it is a condition of accessing these publications that users recognise and abide by
the legal requirements associated with these rights.

Take down policy
Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research
Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact open.access@hw.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 27. Aug. 2022

https://doi.org/10.1109/JIOT.2018.2808280
https://doi.org/10.1109/JIOT.2018.2808280
https://researchportal.hw.ac.uk/en/publications/171439ae-0c33-4ecb-957d-b1e0b812baad


1

FEMOS: Fog-Enabled Multi-tier Operations

Scheduling in Dynamic Wireless Networks
Shuang Zhao, Yang Yang, Ziyu Shao, Xiumei Yang, Hua Qian, and Chengxiang Wang, Fellow, IEEE

Abstract—Fog computing has recently emerged as a promising
technique in content delivery wireless networks to alleviate
the heavy bursty traffic burdens on backhaul connections. In
order to improve the overall system performance, in terms
of network throughput, service delay and fairness, it is very
crucial and challenging to jointly optimize node assignments
at control tier and resource allocation at access tier under
dynamic user requirements and wireless network conditions.
To solve this problem, in this paper, a fog-enabled multi-tier
network architecture is proposed to model a typical content
delivery wireless network with heterogeneous node capabilities
in computing, communication and storage. Further, based on
Lyapunov optimization techniques, a new online low-complexity
algorithm, namely “Fog-Enabled Multi-tier Operations Schedul-
ing" (FEMOS), is developed to decompose the original compli-
cated problem into two operations across different tiers. Rigorous
performance analysis derives the tradeoff relationship between
average network throughput and service delay, i.e., [O(1/V),
O(V)] with a control parameter V, under FEMOS algorithm
in dynamic wireless networks. For different network sizes and
traffic loads, extensive simulation results show that FEMOS is
a fair and efficient algorithm for all user terminals (UTs) and,
more importantly, it can offer much better performance, in terms
of network throughput, service delay, and queue backlog, than
traditional node assignment and resource allocation algorithms.

Index Terms—Fog Computing, 5G, Internet of Things (IoT),
Quality of Experience (QoE), Throughput, Delay.

I. INTRODUCTION

I
N recent years, global mobile data traffic has experienced

explosive growth. It is expected to grow to 49 exabytes

per month by 2021, a sevenfold increase over 2016 [2].

Current wireless technologies, such as 4G and WiFi, do not

have localized data analysis and processing capabilities so

that they cannot handle such a bursty traffic increase. As

machine-type communications (MTC) have been adopted in

future 5G networks [3]–[5], new flexible network architec-

tures and service strategies are desperately needed to support

Shuang Zhao, Yang Yang and Xiumei Yang are with Shanghai Institute
of Microsystem and Information Technology, Chinese Academy of Sciences
(CAS), CHINA. Ziyu Shao is with ShanghaiTech University, CHINA. Hua
Qian is with Shanghai Advanced Research Institute, CAS, CHINA. Chengx-
iang Wang is with Heriot-Watt University, UK. Shuang Zhao is also with
the University of Chinese Academy of Sciences. Corresponding author: Yang
Yang (yang.yang@wico.sh).

This work was supported in part by the National Natural Science Foundation
of China under Grant No. 61671436 and the Science and Technology
Commission Foundation of Shanghai under Grant No. 16511104204.

Part of this work will be presented at IEEE Global Communications
Conference (Globecom), Singapore, Dec. 2017 [1].

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

more and more data-centric and delay-sensitive Internet-of-

Things (IoT) applications [6], such as smart city, environment

surveillance, intelligent manufacturing, and automatic driving.

For future 5G and IoT applications in complex environments,

raw measurement data of multiple radio channels at different

communication scenarios can be found at an open-source

website: www.wise.sh. If only centralized cloud computing

architecture is applied to those various IoT applications, it

is envisaged that the underlayer communication networks,

especially backhaul connections, will face heavy bursty traffic

burdens and experience dramatic performance degradation. On

the other hand, the Moore’s Law has significantly driven down

the prices of computing and storage devices, more and more

smart network nodes and user terminals are deployed and con-

nected into modern communication networks. They provide a

rich collection of ubiquitous local computing, communication

and storage resources. In view of this technological trend, the

concept of fog computing is proposed to enable computing

anywhere along the cloud-to-thing continuum [7], [8]. In other

words, fog-enabled network architecture and services can ef-

fectively leverage those local resources to support fast-growing

data-centric and delay-sensitive IoT-applications in regional

environments, thus reducing backhual traffic transmissions and

centralized computing needs, and at the same time, improving

the overall network throughput performance and users’ quality

of experience (QoE) [9]–[11].

Without loss of generality, let us consider a content delivery

wireless network consisting of heterogeneous smart nodes with

different computing, communication and storage capabilities.

As user terminals (UTs) are moving around and can make

requests of any contents at anytime anywhere, it is obvious

that popular contents should be placed in multiple neighboring

nodes of a UT according to their resources and capabilities.

In doing so, most content delivery requests are handled in

local network segments, service delay and backhaul traffic

transmission can be greatly reduced, thus minimizing the needs

for expensive centralized computing resources. Besides traffic

localization and service delay, the overall network throughput

and fairness among different UTs are crucial performance

metrics for network operators and service providers, and

therefore need to be analyzed and improved simultaneously.

As an interesting and promising way to relieve the backhaul

pressures and reduce the service latency, the cache-enabled

content delivery networks have been widely studied. Bastug

et al. in [12] explored the significant gains in terms of the

outage probability and the average delivery rate by having

cache-enabled small base station. Li et al. in [13] designed

distributed caching optimization algorithms via belief propa-
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gation to minimize the downloading latency. Liu et al. in [14]

studied the cache placement problem in Fog-Radio Access

Network (F-RAN) and developed transmission aware cache

placement strategies. Most of those works mainly focus on file

placement in the design of content delivery networks, while

dynamic association between the UTs and access nodes were

rarely investigated, which also directly affects UTs’ QoE, and

therefore is the focus of this research.

On the other hand, the topic about taking the advantages of

available computing and storage resources at network edges

has attracted significant attentions recently. Mao et al. in

[15] provided a comprehensive survey of the state-of-the-art

mobile edge computing (MEC) research with a focus on joint

radio-and-computational resource management. In [16] a joint

radio and computational resource management algorithm for

multi-user MEC system is proposed, which efficiently utilized

the powerful computation resource at the MEC server. Shan-

mugam et al. in [17] focused on minimizing the transmission

delay through taking advantages of the distributed storage

capacities at the network edges. Shih et al. in [18] intro-

duced the F-RAN architecture which can provide ultra low-

latency service. Pang et al. in [19] studied the latency-driven

cooperative task computing in F-RAN networks, where the F-

RAN node can offload its computation tasks to the nearby

load-free F-RAN nodes. Different from previous research

works, which mainly focused on improving the utilization of

computing or storage resources at network edges, this research

applies the concept of fog computing to deal with a more

complex multi-tier network architecture with heterogeneous

node capabilities and dynamic network resources, in terms of

computing power, storage capacity, transmission power, and

communication bandwidth.

Specifically, in this paper, the content delivery wireless

network is modeled with access tier and control tier, where (i)

a node in access tier is typically located close to the UTs and

is called “fog access node" (FAN). An FAN caches a subset

of popular contents depending on its limited computing and

storage capabilities. Due to restricted transmission power and

dynamic wireless environment, the communication channels

between an FAN and its neighboring UTs are unreliable and

time-varying. (ii) a node in control tier manages a group of

FANs through reliable but expensive backhaul connections,

and is called “fog control node" (FCN). An FCN is much more

powerful in terms of computing power and storage capacity

than FAN. However, the FCN is physically not possible or

economically not feasible to communicate directly with any

UTs. It is more efficient for an FCN to execute control

operations for achieving regional performance objectives with

a centralized approach. Under this realistic multi-tier system

model, it is very challenging to simultaneously address the

following problems in real-time.

(1) When popular contents are randomly cached at different

FANs, how to identify the most feasible FAN for every

UT’s request in order to maximize network throughput

and global fairness?

(2) Under dynamic wireless network conditions and fading

channel characteristics, how to effectively allocate com-

munication bandwidth for associated FAN-UT pairs in

order to minimize service delay?

In particular, our main contributions are summarized as fol-

lows:

• Based on the concept of fog computing, a fog-enabled

multi-tier network architecture is proposed to model a

content delivery wireless network, which takes full advan-

tages of heterogeneous node capabilities in computing,

communication and storage.

• Based on this network model and Lyapunov optimization

techniques, an online (real-time) low-complexity fog-

enabled multi-tier operations scheduling (FEMOS) algo-

rithm is developed to jointly optimize node assignments

at control tier and resource allocation at access tier.

Specifically, the inherent mixed nonlinear integer pro-

gramming problem in this multi-tier network architecture

is fully investigated and its structural information is

exploited to decompose the original complicated problem

into two operations, i.e. centralized assignment of access

node (CAAN) scheme at the FCN and dynamic online

bandwidth allocation (DOBA) scheme at FANs.

• A general analytical framework is then developed to eval-

uate the performance of FEMOS algorithm and, more im-

portantly, to characterize the tradeoff relationship between

average network throughput and service delay. Compared

with traditional node assignment and resource allocation

algorithms, simulation results show that FEMOS can offer

much better performance, in terms of network throughput

and service delay.

The rest of this paper is organized as follows. The system

model is presented in Section II. Under the fog-enabled

network architecture, the problem is formulated and the re-

sponding analytical framework is developed in Section III. The

online fog-enabled multi-tier operations scheduling algorithm

is proposed in Sections IV. The performance analysis for the

proposed algorithm is conducted in Section V and simulation

results are shown in Section VI. Section VII concludes this

paper.

II. SYSTEM MODEL

FAN I

FCN

Backhaul link

Wireless link

Cached contents
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Fig. 1: A sample fog-enabled multi-tier network with three fog

access nodes (FANs) and five user terminals (UTs).
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Fig. 2: Illustration of dynamic FAN assignment.

We consider a fog-enabled multi-tier network with hetero-

geneous nodes as shown in Fig. 1, which involves a fog

control node (FCN) tier, a fog access control node (FAN)

tier and a set of multiple stationary or low-mobility UTs

in the region under consideration. Each UT possesses small

storage capacity, minor communication ability and little or

no computation ability. UTs request files to be downloaded

from FAN tier through wireless links. Due to the restricted

transmission power and dynamic wireless environment, the

communication channels between a FAN and its neighboring

UTs are unreliable and time-varying. Each FAN in FAN tier is

equipped with limited storage capacity, medium computation

ability but strong communication ability. All of them cached a

subset of popular files. Through reliable backhaul links, FANs

are connected with a FCN, which is next to the cloud and

core network, has the global information about the network

and is the server of the file library. The FCN has both

sufficient storage capacity and powerful computation ability.

We emphasize here that in our model, the backhaul links

transmit control information from the FCN to FANs and files

cached at each FANs are only refreshed at off-peak times. To

be clear, if the UT requested file is not cached on the FANs, the

FAN will not fetch the file from the operation center through

the backhaul link. Under these conditions, we can see more

clearly the benefit of dynamic assignment of FAN and resource

scheduling.

Denote the set of FANs as H , the set of UTs as U, and the

file library as F . The large scale fading and small scale fading

coefficients seen by each FAN are assumed to be mutually

independent. We assume that the network operates in a slotted

system, indexed by t ∈ {0, 1, 2, . . .} and the time slot length

is T . Take Fig. 1 along with Fig. 2 as an example, where

H = {I, II, III}, U = {1, 2, 3, 4, 5}. During each slot, UT

u broadcasts its content request for file with only one type

f ∈ F , to the FAN tier. The arrived but not yet served requests

will be queued in the request buffers at the FCN, as shown

in Fig. 2. The FCN determines the dynamic FAN assignment

for UTs at beginning of each slot, to optimize the network

throughput in a memoryless pattern, based on the network

states, request queue length and disregarding all such previous

decisions. Each UT requested files will be then transmitted by

its associated FAN through the wireless link. The queue length

of current unserved request buffers will in turn influence the

FCN’s decision about FAN assignment in the next slot. Each

FAN then independently implements its per-slot scheduling

policy including the bandwidth and service rate allocation over

the UTs associated with it. Consistent with the above setting,

the requested file f can only be downloaded from the FAN that

has cached it. The service rate would be zero if the requested

file is not cached on the FAN that the UT is associated with.

For ease of reference, we list the key notation of our system

model in TABLE I.

TABLE I: Summary of key notations

Notation Description

U Index set of the UTs
H Index set of the FANs
F Index set of the files

E(Ẽ) UT-FAN (FAN-File) association set
M Maximum connectable UTs for each FAN in one time slot
t Index set of the time slots
T The length of one time slot
xuh(t) Association indicator between UT u and FAN h in time slot t
yh f Association indicator between FAN h and file f

Au (t) Requested files amount by UT u in time slot t
Iu f (t) File requested indicator in time slot t
Cuh(t) Maximum achievable service rate over link (u, h) in time slot t
νuh(t) Allocated bandwidth proportion for UT u in time slot t
µu (t) Achievable service rate for UT u in time slot t
µu f (t) Allocated service rate for requested file f in time slot t

A. FAN Assignment and File Placement

Define the FAN assignment (UT-FAN association) as a

bipartite graph G = (U,H, E), where E contains edges for

the pairs (u, h) such that there exists a potential transmission

link between FAN h ∈ H and UT u ∈ U. We assume G

varies in different time slots. Let X(t) denote a |U| × |H |

association matrix of G between UTs and FANs in time slot

t, where |U|(|H |) denotes the cardinality of the set U(H),

X(t) ,
[
xuh(t)

]
u,h

. Here xuh(t) = 1 if (u, h) ∈ E, and 0

otherwise.

Define the file placement (FAN-File association) as a bi-

partite graph G̃ = (H,F , Ẽ), where edges (h, f ) ∈ Ẽ indicates

that files with type f are cached in FAN h. The file set cached

at each FAN is N , N ⊆ F , with |N | different file types.
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In this paper, we focus on dynamic FAN assignment and

the resource scheduling problem. As said before, the backhaul

updates the storages at a time scale much larger than the time

scale of UTs placing file requests. Therefore, assuming fixed

file placement (FAN-File Association) is justified. Let Y de-

note a |H |× |F | file placement matrix of G̃ and Y ,
[
yhf

]
h, f

.

Here, yhf = 1 if (h, f ) ∈ Ẽ, and 0 otherwise.

We assume that each UT can be associated with at most

one FAN and each FAN can associate with at most M UTs in

one time slot. Thus X(t) should be chosen from the feasible

set A,

A =

{
X(t) ∈ {0, 1} |U |× |H |

�����

∑
u∈U xuh(t) ≤ M, ∀h ∈ H ;∑
h∈H xuh(t) ≤ 1, ∀u ∈ U.

}
.

(1)

B. UT Traffic Model

All UTs are assumed to generate file request traffic ran-

domly in each time slot, and this traffic generation is indepen-

dent of the FCN’s operation.

Let A(t) denote the request arrival vector in time slot t

and A
T (t) , [A1(t), · · · , A |U |(t)], where random variable Au(t)

(with the unit kbits) denotes the requested amount in time slot

t and the operation (·)T denotes vector transposition. Here we

assume that Au(t) is i.i.d. with E{Au(t)} = λu, and there exists

a positive constant Amax such that 0 ≤ Au(t) ≤ Amax.

Let I(t) denote the |U| × |F | requested file type matrix

in time slot t and I(t) ,
[
Iu f (t)

]
u, f

. Here Iu f (t) = 1 if the

requested file type by UT u is f in time slot t, and 0 otherwise.

We assume that each UT can request at most only one type

of file in one time slot, which means that the row weight of

I(t) is at most 1. The requested probability of each file f ∈ F

is subject to Zipf distribution [20].

C. The Transmission Model

The wireless channels between UTs and FANs are assumed

to be flat fading channels [21], and all FANs transmit at

constant power. We assume that the additive white Gaussian

noise (AWGN) at the UTs follows Gaussian distribution with

N(0, σ2). Note that the maximum service rate of UT u can

be obtained if it has been allocated the total bandwidth by

its associated FAN. Then the maximum backlog that can be

served in time slot t over link (u, h) ∈ E is given by

Cuh(t) =

TBh(t) · E

[
log2

(
1 +

Phghu(t)|shu |
2

σ2
+

∑
h
′
∈H\h Ph

′gh
′
u(t)|sh′u |

2

)]
, (2)

where Bh(t) is the total bandwidth of FAN h in time slot

t, Ph is the transmit power of FAN h, ghu(t) is the large

scale fading from FAN h to UT u which contains pathloss and

shadow, and shu is the small scale fading which follows the

Rayleigh distribution. For simplicity, currently implemented

rate adaption schemes [22] [23] are consistent in assuming,

slowly varying pathloss coefficients ghu(t) change across slots

in an i.i.d. manner, and each FAN h being aware of ghu(t) for

all u ∈ U at the beginning of each time slot t.

We also assume that each FAN h serves its associated UTs

by using orthogonal FDMA or TDMA, which is consistent

with most current wireless standards. Let νuh(t) be the pro-

portion of bandwidth allocated to UT u by FAN h. Then νuh(t)

satisfies 0 < νuh(t) ≤ 1 when xuh(t) = 1, otherwise νuh(t) = 0.

Denote ν(t) ,
[
νuh(t)

]
u,h

as the bandwidth allocation matrix,

which is chosen from the feasible set B,

B =

{
ν(t) ∈ R

|U |× |H |
+

�����

∑
u∈U νuh(t)xuh(t) ≤ 1;

νuh = 0 if xuh = 0, ∀h ∈ H .

}
. (3)

Let µu(t) denote the amount of backlog that can be

served for UT u in time slot t with maximum value

µmax, which is called service rate hereafter. Define µT(t) ,

[µ1(t), . . . , µ |U |(t)]. Note that each UT can associate with at

most one FAN in a time slot, thus µu(t) can be expressed as

below:

µu(t) =
∑

h∈H

Cuh(t)νuh(t)xuh(t),∀u ∈ U. (4)

D. Queueing

In each time slot, the arrived requests of all UTs will be

queued in the request buffers at the FCN. We assume that

FCN has |F | request buffers for each UT u ∈ U. Denote the

queue length of the amount of request for file with type f at

the beginning of the tth time slot as Qu f (t). Define Qsum
u (t) ,∑

f ∈F Qu f (t) and denote QT (t) = [Qsum
u (t), · · · ,Q

sum
|U |
(t)] as the

queue length vector. We assume that all queues are initially

empty, i.e., Qu f (0) = 0,∀u ∈ U, f ∈ F .

Let µu f (t) denote the service rate for the requested file

f scheduled by the FCN according to a certain queueing

discipline [24], such as FIFO, LIFO or Random discipline.

We adopt fully-efficient scheduling policy given in [24] for

queues, which means:
∑

f ∈F

µu f (t) = µu(t), (5)

where µu(t) is defined in (4) and µu f (t) = 0 if yhf = 0.

The queue length Qu f (t) is updated in every time slot t

according to the following rules:

Qu f (t + 1) =
[
Qu f (t) − µu f (t)

]
+

+ Au(t) · Iu f (t), (6)

where [x]+ = max{x, 0}.

The queueing process Qu f (t) is stable if the following

condition holds [25]:

Q
sum

u = lim
t→∞

1

t

t−1∑

τ=0

E[Qsum
u (τ)] < ∞. (7)

III. PROBLEM FORMULATION AND ANALYTICAL

FRAMEWORK

In this section, we will first introduce the performance met-

rics in subsection III-A, namely, the time-averaged throughput

of the network and the average delay per UT experiences. An

average throughput maximization problem with file request

queues stability constraints will then be formulated in sub-

section III-B. In subsection III-C, we will give the analytical

framework based on Lyapunov optimization techniques.
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A. Performance Metrics

We focus on the total throughput of the network. Therefore,

we adopt the time-averaged sum service rate of different UTs

in the network as the performance metric, which is defined as

follows:

φav , φ(µ) =
∑

u∈U

µu, (8)

where µu(t) is the averaged expected service rate of UT u,

i.e., µu = limt→∞
1
t

∑t−1
τ=0 E[µu(τ)].

To support for transmission latency sensitive applications,

i.e., online video, service delay is a key metric needs to be

considered [26]. According to Little’s Law [27], the average

service delay experienced by each UT is proportional to the

averaged amount of its unserved requests waiting at the FCN,

which is sum of queue length for different files. Thus, the

average delay per UT can be computed as the ratio between the

average queue length and the mean traffic arrival rate, which

is shown as follows,

Λav ,

∑
u∈U Q

sum

u∑
u∈U λu

. (9)

B. Average Network Throughput Maximization Problem

The system objective is to find a feasible FAN assignment

X(t) and bandwidth allocation ν(t) to maximize the average

network throughput while maintaining the stability of all

the queues in the network. The average network throughput

maximization problem can be formulated in P1:

P1 : max
X(t),ν(t)

φ(µ) (10)

s.t. Q
sum

u < ∞, ∀u ∈ U,

X(t) ∈ A, ν(t) ∈ B ∀t,

where the requirement of finite Q
sum

u corresponds to the strong

stability condition for all the queues [25]. Queueing stability

implies that the buffered file requests are processed with finite

delay. We will show that our proposed algorithms guarantee

upper bounds for Qu f and thus achieve the bounded service

delay.

Remark 1: It is not difficult to identify that P1 is a highly

challenging stochastic optimization problem with a large

amount of stochastic information to be handled (including

channel conditions and request buffer state information) and

two optimization variables to be determined, which requires

to design an online operation and scheduling scheme for such

a network. Besides, to maximize the network throughput, it

is essential to jointly optimize the FAN-UT association and

the resource allocation, which is always a complicated mixed

integer programming problem. Further, the optimal decisions

are temporally correlated due to the random arrival traffic

demands. Furthermore, the FCN needs to reduce the delay per

UT while maintaining the average network throughput, which

requires the FCN to maintain a good balance between network

throughput and average delay.

C. Lyapunov Optimization Based Analytical Framework

In the following, we focus on solving this challenging

problem P1 by using the Lyapunov optimization technique

[25], with which we can transfer the challenging stochastic

optimization problem P1 to be a deterministic per-slot prob-

lem in each time slot.

We first define a quadratic Lyapunov function as follows:

L(Q(t)) ,
1

2
QT(t)Q(t) =

1

2

∑

u∈U

(Qsum
u (t))

2. (11)

We then define a one-slot conditional Lyapunov drift

∆(Q(t)) as follows:

∆(Q(t)) , E{L(Q(t + 1)) − L(Q(t))|Q(t)}. (12)

Accordingly, the one-slot conditional Lyapunov drift-plus-

penalty function is shown as follows:

∆V (Q(t)) = ∆(Q(t)) − VE{φ(µ(t))|Q(t)}, (13)

where V > 0 is the policy control parameter. We first establish

the upper bound of ∆V (Q(t)) under any feasible policy X(t)

and ν(t), as specified in Lemma 1.

Lemma 1: For any feasible control decision X(t) and ν(t)

for P1 such that X(t) ∈ A, ν(t) ∈ B, ∆V (Q(t)) is upper bound

by

∆V (Q(t)) ≤ K − E

{ ∑

u∈U

[
V +Qsum

u (t)
]
µu(t)

��Q(t)
}

+E

{ ∑

u∈U

Qsum
u (t)Au(t)

��Q(t)
}
, (14)

where K is a constant.

Proof : Please refer to Appendix A. �

Lemma 1 provides the upper bound for the conditional

Lyapunov drift-plus-penalty function ∆V (Q(t)), which plays

a significant role in the FEMOS.

IV. FOG-ENABLED MULTI-TIER OPERATIONS

SCHEDULING ALGORITHM

In this section, we introduce the fog-enabled multi-tier oper-

ations scheduling (FEMOS) algorithm, which mainly consists

of two stage operations in per time slot: centralized assign-

ment of access node (CAAN) and dynamic online bandwidth

allocation (DOBA). We present the DOBA in subsection IV-

A and describe the CAAN in subsection IV-B. In subsection

IV-C, we propose the FEMOS algorithm and provide the

corresponding computation complexity analysis.

A. Dynamic Online Bandwidth Allocation (DOBA)

To solve Problem P1 based on the Lyapunov optimization

method [25], it needs to design an algorithm to minimize

the upper bound of the Lyapunov drift-plus-penalty term in

each time slot. Ignoring the constant components in the upper

bound of ∆V (Q(t)) and rearranging them, the upper bound

minimization problem is converted to:

min
X(t)∈A,ν(t)∈B

−
∑

u∈U

[
V +Qsum

u (t)
]
µu(t). (15)
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Note that Qsum
u (t) is observed at the beginning of each time

slot, which can be viewed as constant per time-slot. Therefore

the upper bound minimization only depends on µu(t), which

involves the FAN assignment and bandwidth allocation. For

convenience, we define Wuh(t) , [V + Qsum
u (t)]Cuh(t), which

is constant per time-slot. From the definition of µu(t) in (4),

the upper bound minimization of ∆V (Q(t)) is transferred to

the following equivalent problem:

PAR : max
X(t)∈A,ν(t)∈B

∑

h∈H

∑

u∈U

Wuh(t)νuh(t)xuh(t) (16)

PAR is a joint optimization problem of access node assign-

ment and bandwidth allocation. The main idea of the proposed

FEMOS algorithm is to solve the deterministic optimization

problem PAR in each time slot. By doing so, the amount of

request waiting in the queues can be maintained at a small

level and the network throughput can be maximized at the

same time.

Note that PAR is a nonlinear integer programming problem,

for which the computational complexity of the brute-force

search is prohibitive. By exploiting the structure information

of PAR, we transfer problem PAR to the following problem

P ′
AR

, which is proven equivalent with PAR:

P ′AR : max
X(t)

∑

h∈H

∑

u∈U

Wuh(t)xuh(t) (17)

s.t.
∑

u∈U

xuh(t) ≤ 1, ∀h ∈ H,

∑

h∈H

xuh(t) ≤ 1,∀u ∈ H, xuh(t) ∈ {0, 1},

and the corresponding bandwidth allocation for each UT u ∈

U can be expressed as follow:

νuh(t) =

{
1 xuh = 1,∀h ∈ H,

0 otherwise.
(18)

Lemma 2 : The FAN assignment solution obtained by the

transformed problem P ′
AR

along with the bandwidth allocation

given by (18) coincides with the solution for PAR.

Proof : See Appendix B. �

Through the equivalent problem transformation described

above, the solution to joint optimization of FAN assignment

and bandwidth allocation are decoupled in two stage oper-

ations: centralized assignment of access node (CAAN) and

dynamic online bandwidth allocation (DOBA). Specifically,

the CAAN will be executed at FCN with powerful computation

ability by solving P ′
AR

. Once the CAAN is established, the

FANs will executed DOBA as (18) independently.

B. Centralized Assignment of Access Node (CAAN)

The dynamic assignment of FANs in each time slot can be

obtained by solving the problem P ′
AR

. Note that the constraint

of maximum connectable UTs for each FAN in PAR is M,

while it reduces to 1 in P ′
AR

. To further understand the

dynamic FAN assignment scheme under the constraints of

P ′
AR

, we take Fig. 3 as an example, where the colored dash

lines represent the UT-FAN association in time slot t = 1, 2, 3

and the shadowed queues represent the responding UTs didn’t

access the network in those time slots. In time slot t = 1,

UT 2, UT 3 and UT 5 are associated with FAN I, III and II,

respectively and all of them obtained the total bandwidth. The

arrival requests of not associated UTs (UT 1 and UT 3) will

be queued in request buffers at the FCN, waiting for being

served in the next time slot.

I II III

1 2 3 4 5

III

II

I

I

III

I

II

II

III

...

...

...

...

...

FAN Tier:

t

UT Tier:

t = 1

t = 2

t = 3

FCN Tier:

Queue1 Queue5

Fig. 3: Illustration of dynamic FAN assignment scheme under

the constraints in P ′
AR

.

To solve P ′
AR

efficiently, we demonstrate that the problem

P ′
AR

can be formulated as the maximization of a normal-

ized modular function subject to intersection of two partition

matroid constraints in the following. This structure can be

exploited to design computationally efficient algorithms for

Problem P ′
AR

with provable approximation gaps. The def-

initions of matroid and submodular function are given in

Appendix G.

First, we define E as ground set E = {(u, h)|u ∈ U, h ∈ H},

that consists of all possible tuples and where each tuple (u, h)

denotes an association of UT u to FAN h. Further, we define

set Eu = {(u, h)|h ∈ H}, which consists of all tuples for each

UT u ∈ U, along with set Eh = {(u, h)|u ∈ U}, which consists

of all tuples for each FAN h ∈ H . Next, we proceed to show

that P ′
AR

can be solved by a simple greedy algorithm. Towards

this end, we defineWE ,
∑
(u,h)∈EWuh(t), where E ⊆ E. We

also define a family of sets I, as the one that includes each

subset E of E such that the subset meets the UT-FAN limits

in P ′
AR

. Specially,

I =

{
E ⊆ E

���
��E ∩ Eu

�� ≤ 1, ∀u;
��E ∩ Eh

�� ≤ 1, ∀h

}
. (19)

Then, we offer the following result.

Lemma 3: The problem P ′
AR

can be formulated as the

maximization of a normalized modular function subject to two

partition matriod constraints on ground set E.

Proof : See Appendix C. �

As a consequence of Lemma 3, we can leverage the famous

result in [28], which shows that a simple effective greedy algo-

rithm yields a constant factor approximation for the problem

of maximizing a normalized non-negative modular set function

subject to matroid constraints. Specializing the approximation

guarantee of [28] to our case with two matroid constraints, the

problem P ′
AR

can be approximately solved using greedy FAN

assignment algorithm with a constant-factor 1
2

approximation

guarantee.
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Algorithm 1 The Greedy FAN Assignment Algorithm

1: Initialize Ê = ∅, E ′ = E

2: Repeat Determine (u⋆, h⋆) ∈ E \ Ê as the solution to

max
Ê∪(u⋆,h⋆)∈I

Wu⋆h⋆ (t)

3: Update Ê = Ê ∪ (u⋆, h⋆)

4: Update E ′ = E ′\(u⋆, h⋆)

5: Until E ′ = ∅

6: Output Ê

The greedy FAN assignment algorithm is described in

Algorithm 1. It starts with an empty set Ê = ∅ and E ′ = E.

It iteratively adds the element (u⋆, h⋆) with highest marginal

value while satisfying the matroid constraints in each step.

The marginal value of an element (u⋆, h⋆) is defined as the

gain of adding (u⋆, h⋆) into the UT-FAN association set Ê,

given by Wu⋆h⋆ (t), when Ê ∪(u⋆, h⋆) ∈ I. In our greedy FAN

assignment algorithm, once the element (u⋆, h⋆) is added to Ê,

it should be deleted from set E ′. The greedy FAN assignment

algorithm stops until E ′ becomes ∅ during the iteration.

C. Fog-Enabled Multi-tier Operations Scheduling (FEMOS)

Algorithm

The proposed FEMOS algorithm is summarized in Algo-

rithm 2, which will be implemented at both FCN tier and

FAN tier in practice. Specifically, in each time slot, within

the global network information and queue length of each

request buffer, the FCN will execute CAAN by run the Greedy

FAN Assignment Algorithm. The assignment decision is then

transmitted to the FAN tier. Next, each FAN performs the

DOBA independently and schedule the service rate for the

associated UT under full efficient scheduling policy. Finally,

the FCN updates the request buffers for each UT, the length

of which will influence the operations scheduling in next slot.

Algorithm 2 Fog-Enabled Multi-tier Operations Scheduling

(FEMOS) Algorithm

1: Set t = 0, Q(0) = 0;

2: While t < tend, do

3: At beginning of the tth time slot, observe Au(t), ghu(t)

and Qu f (t);

4: CAAN: X
⋆(t) is obtained by run Algorithm 1;

5: DOBA:

ν⋆uh(t) =

{
1 x⋆uh(t) = 1

0 otherwise;

6: Schedule the service rates µ⋆
u f
(t) to the queues Qu f (t)

according to (5) with any pre-specified queueing disci-

pline;

7: Update {Qu f (t)} according to (6) for each UT based on

X
⋆(t), ν⋆(t) and µ⋆

u f
(t);

8: t ← t + 1.

9: end While

Remark 2 :

• Interestingly, a closer inspection of P ′
AR

reveals that in

each time slot each FAN can associate with at most only

one UT and the number of UTs that can dynamically

associate with FANs depends on the number of FANs,

which is |H |. What makes our greedy FAN assign-

ment algorithm outstanding from the common assignment

method which directly select FAN with the best channel

condition for each UT or each FAN associates with the

UT with the longest queue length is that, we provide a

quantitative analysis and selection method for UT-FAN

association.

• In each time slot, the association between UTs and FANs

depends on corresponding UT-FAN pair gain Wuh(t) =

[V + Qsum
u (t)]Cuh(t). The greedy FAN assignment algo-

rithm greedily selects the UT-FAN pair with the largest

Wuh(t) within the feasible set. For each FAN h, it will

associate with one UT with either large queue backlog or

good channel condition. If V is small, i.e., V ≪ Qsum
u (t),

both the queue backlog and the channel condition will

determine the decision on UT-FAN association. The FAN

h will associate with UT with largest Qsum
u (t)Cuh(t).

Conversely, if V is large enough, i.e., V ≫ Qsum
u (t), the

FAN h will more effectively invoke the willingness to

associate with a UT with a good channel condition Cuh(t).

Under large V , the UT with weak channel conditions can

not access the network for a long time, leading to large

accumulated queue length and influence on the UT-FAN

decision in turn.

• Therefore, the parameter V actually controls the FANs’

willingness to serve UTs, i.e., performing UT-FAN asso-

ciation. In other words, it controls the trade-off between

network throughput and transmission delay.

In each time slot, the computational complexity for FEMOS

primarily remains in the greedy-UA algorithm. According to

Algorithm 1, the computational complexity of the greedy

FAN assignment algorithm is O(|U||H |Γ⋆), where Γ⋆ denotes

the computational complexity of searching for the element

(u⋆, h⋆). The greedy algorithm starts with an empty set and at

each step, it adds one element with the highest marginal value

to the set while maintaining the feasibility of the solution.

Since the objective function is modular, the marginal value

of the elements decreases as we add more elements to the

set Ê. Thus, in one iteration, if the largest marginal value

is zero, then the algorithm should stop. In our case, there

would be at most |U||H | iterations. Each iteration would

involve evaluating the marginal value of at most |U||H |

elements. Then, the computational complexity of searching for

the element (u⋆, h⋆) is O(Γ⋆) = O(|U||H |). Thus the overall

computational complexity for the greedy FAN assignment

algorithm is O(|U|2 |H |2).

V. PERFORMANCE ANALYSIS

In this section, we provide the main theoretical results for

FEMOS, which characterize the lower bounds for average

network throughput as well as the upper bounds for the average

sum queue length of the requests of all the UTs. Additionally,

the tradeoff between the network average throughput and

average delay will also be revealed.
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Note that the greedy FAN assignment algorithm is efficient

and guarantees a tight 1
2
-approximation for P ′

AR
, i.e., the

worst case is at least 50% of the optimal solution. The

FAN assignment X(t) and bandwidth allocation ν(t) is then

a suboptimal solution to the problem PAR, which we refer to

as imperfect scheduling [29], [30]. Therefore, in each time slot,

the centralized assignment of access node and dynamic online

bandwidth allocation policy for PAR yields a transmission rate

µ(t) ∈ R that satisfies:
∑

u∈U

[
V +Qsum

u (t)
]
µu(t) ≥ β max

µ(t)∈R

{ ∑

u∈U

[
V +Qsum

u (t)
]
µu(t)

}
,

(20)

where β is constant with β = 1
2
.

The parameter β in (20) can be viewed as a tuning parameter

indicating the degree of precision of imperfect scheduling.

Notice that when β = 1 it reduces to the case with perfect

scheduling of PAR. Define φopt as the optimal average network

throughput associated with the problem P1, augmented with

the rectangle constraint R, and µ ∈ R, where R is chosen large

enough to contain the optimal time average service rate vector

µ. Let µ∗,0(t) denote the transmission rate under the optimal

solution to P1. The following β-reduced problem turns out to

be a good reference to study imperfect scheduling.

β-reduced problem:

max
X(t),ν(t)

φ(µ) (21)

s.t. µ(t) ∈ βR,

Q
sum

u < ∞, ∀u ∈ U,

X(t) ∈ A, ν(t) ∈ B, ∀t.

Let µ∗,β(t) denote the transmission rate under the optimal

solution to the β-reduced problem above and denote φ
opt

β
as

the corresponding optimal throughput. In the following Lemma

4, we will demonstrate the relationship between P1 and β-

reduced problem in terms of their optimal values.

Lemma 4: Let µ∗,0(t) be the optimal transmission rate for

the P1. Then the transmission rate to the β-reduced problem

is µ∗,β(t) = βµ∗,0(t).

Proof : See Appendix D. �

Lemma 4 also implies the relationship between the optimal

average throughput of P1 and β-reduced problem, which is

φ
opt

β
= βφopt.

Next, we characterize the performance of FEMOS under

i.i.d. system randomness and assume there exists constants ǫ

and φǫ such that the following slater-type conditions holds:

λu − E{µu(t)} ≤ −ǫ, ∀u ∈ U, (22)

E{φ(µ(t)} = φǫ . (23)

Note that the assumptions (22) and (23) ensure the strong

stability of the queues in the system, which are generally

assumed in the network stability problems [25] and guarantee

that there exists a stationary and randomized FAN assignment

and bandwidth allocation policy.

Lemma 5: For any alternative policy including FAN assign-

ment X(t) ∈ A and bandwidth allocation ν(t) ∈ B, we have:

∆V (Q(t)) ≤ K − Vφǫ − βǫ
∑

u∈U

Qsum
u (t). (24)

Proof : See Appendix E. �

Based on Lemma 4 and Lemma 5, the performance bounds

of FEMOS are derived in the following theorem. The term

φFEMOS
av is defined as the long term expected average network

throughput of FEMOS and ΛFEMOS
av is defined as the long term

expected average service delay per UT.

Theorem 1: For the network defined in section II, the

centralized assignment of access node and dynamic online

bandwidth allocation policy obtained through FEMOS algo-

rithm achieves the following performance:

φFEMOS
av , lim inf

t→∞
φ(

1

t

t−1∑

τ=0

E{φ(µ(τ))})

≥ βφopt −
K

V
, (25)

Λ
FEMOS
av ,

1∑
u λu

lim sup
t→∞

1

t

t−1∑

τ=0

∑

u

E{Qsum
u (t)}

≤
K + V(φopt − φǫ )

βǫ
∑

u λu
. (26)

Proof: See Appendix F. �

Remark 3 : Theorem 1 shows that under the proposed fog-

enabled multi-tier operation scheduling algorithm, the lower

bound of average network throughput increases inversely pro-

portional to V , while the upper bound of average service delay

per UT experienced increases linearly with V . If a larger V is

used to pursue the better network throughput performance,

it will introduce severe service delay. Hence, there exists an

[O(1/V),O(V)] tradeoff between these two objects. Through

adjusting V , we can balance the network throughput and

service delay.

VI. SIMULATION RESULTS

We consider a network with |H | = 9 fixed FANs and

|U| = U randomly deployed UTs. Each FAN can associated

with at most M = 12 UTs. The size of the file types in the file

library is set to |F | = 1000 and the cached file types of each

FAN is set to |N | = 500. The system region has a size of 20 ×

20 m2. Each UT requests files with type f ∈ F according to

the Zipf distribution with parameter ηr , i.e., p f =
f −ηr∑
i∈F i

−ηr

[31] and ηr = 0.56 in our simulations. A FIFO queueing

discipline is applied in the simulations. The simulation results

are averaged over 3000 constant time slots with T = 100

milliseconds intervals.

We assume that each FAN operates on a Bh = 18MHz

bandwidth (100 resource blocks with 180 kHz for each re-

source block) and transmits at a fixed power level P = 20 W .

Besides, the noise power σ2 is assumed to be 2 × 10−7 W .

Based on the WINNER II channel model in small-cell sce-

narios [32], the pathloss coefficients between the FAN h

and UT u is defined by ghu(t) = 10−
PL(dhu (t))

10 , where dhu(t)

is the distance from FAN h to UT u in time slot t, and

PL(d) = Alog10(d) + B + Clog10( f0/5) + XdB , where f0 is

the carrier frequency, XdB is a shadowing log-normal variable

with variance σ2
dB

; A = 18.7, B = 46.8, C = 20, and σ2
dB
= 9

in line-of-sight (LOS) condition; A = 36.8, B = 43.8, C = 20,

and σ2
dB
= 16 in non-line-of-sight (NLOS) condition. Each
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Fig. 4: Comparison of FEMOS and other FAN assignment schemes, Amax = 100 kbits, U = 100.

link is in LOS or NLOS independently and randomly, with

probabilities of pl(d) and 1 − pl(d), respectively, where

pl(d) =

{
1 d ≤ 2.5 m

1 − 0.9(1 − (1.24 − 0.6log(d))3)1/3 otherwise.

(27)

A. Performance Comparison with Other Assignment Scheme

In this subsection, we evaluate the performance of the

proposed FEMOS algorithm and compare its Greedy FAN

assignment with the other two dynamic schemes: Select Best

Channel (SBC) and Select Longest Queue (SLQ). In SBC

scheme, each FAN associates with the UT with the best

channel condition between them in each time slot. In SLQ

scheme, in each time slot, the UTs with top-|H | queue length

access the network and each of them associates with the FAN

with the best transmission condition.

Fig. 4 first validates the theoretical results for the proposed

FEMOS algorithm derived in Theorem 1. The average network

throughput performance is shown in Fig. 4(a), while the

average service delay per UT is shown in Fig. 4(b). It can be

observed from Fig. 4(a) that the average network throughput

obtained by the Greedy FAN assignment in FEMOS increases

as V increases and converges to the maximum value when V is

sufficiently large. Meanwhile, as shown in Fig. 4(b), the aver-

age service delay experienced by per UT of FEMOS increases

linearly with the control parameter V . This is in accordance

with the analysis in remark 2 that with V increasing, the

importance of request queue backlogs decreases, which makes

the dynamic assignment bias towards good channel conditions.

Those observations verify the [O(1/V),O(V)] tradeoff between

average network throughput and average queue backlog as

demonstrated in Theorem 1 and remark 3.

Fig. 4 also compares the Greedy FAN assignment in

FEMOS with SBC and SLQ assignment schemes. We ob-

serve that the average network throughput performance of

SBC stabilizes around 1.7 × 104 kbits/slot, which approaches

to the maximum value of FEMOS. However, the average
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Fig. 5: Network throughput-delay tradeoff for FEMOS under

different caching strategies.

network throughput performance deteriorates severely under

SLQ assignment scheme for any V . The average service delay

in both SBC and SLQ assignment schemes are much larger

than that of Greedy assignment in FEMOS when V < 2000.

Specifically, when V = 1, the average delay in FEMOS

approaches to zero, but they are 5s and 45s for SLQ and

SBC schemes respectively. Those comparisons demonstrate

the advantages of the Greedy in FEMOS.

B. FEMOS’s Performance under Different Caching Strategies

In Fig. 5, we investigate the impact of different caching

strategies on the network throughput-delay tradeoff perfor-

mance of the proposed FEMOS algorithm. We compare the

following two caching strategies:

• Random Caching: the random caching strategy, where

each FAN caches N = 500 files randomly from the file

library F .
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Fig. 6: Network throughput-delay tradeoff for FEMOS under different parameters.

• Popular Caching: the popular caching strategy is a heuris-

tic caching strategy, where each FAN caches the most

N = 500 popular files [33].

In general, we can see that under both the random and

the popular caching strategies, the service delay increases as

network throughput increases, which indicates that a proper V

should be chosen to balance the two objects. In addition, we

can observe that the FEMOS algorithm with random caching

strategy outperforms that with the popular caching strategy,

in terms of the average delay performance. Specifically, the

FEMOS algorithm with random caching can reduce service

delay roughly 16% over the popular caching for the V value

of 2 × 104.

C. FEMOS’s Performance under Different Parameters

In Fig. 6, we further explore the relationship between

network throughput and average service delay of FEMOS

algorithm regarding to different workloads (Amax) and different

UT amount (U). Specifically, in Fig. 6(a) we explore the

average network throughput versus average service delay in

terms of different amount of workloads (Amax = 60 kbits,

80 kbits, 100 kbits and 120 kbits, respectively). The random

caching strategy is adopted here. It can be observed that for

a given control parameter V , the proposed FEMOS algorithm

with lower workload obtains better network throughput per-

formance, and experiences shorter service delay. For example,

when V = 2000, the average delay per UT experienced in

FEMOS with Amax = 120 kbits is 3.2 s, which is about twice

larger than that with Amax = 60 kbits. The average network

throughput obtained by FEMOS with Amax = 60 kbits is

1.512× 104 kbits/slot when V = 2000, while it is 1.317× 104

kbits/slot obtained by FEMOS with Amax = 120 kbits. The

reason behind these observations is, according to (25) and (26)

in Theorem 1, both the lower bound of the average network

throughput φFEMOS
av and the upper bound of average service

delay ΛFEMOS
av are determined by parameters V and K, where

K =
|U |
2
(µ2

max + A2
max). Larger workload leads to larger K,

and thus, a smaller average network throughput and a longer

average service delay are obtained.

In Fig. 6(b), we show the impacts of UT amount U on

the network throughput-delay tradeoff performance of FEMOS

algorithm. Similar phenomenon exists for the curves with

different workload. Network throughput-delay tradeoff also

exists under different UT amount. Besides, it can be observed

that by increasing U, the average service delay increases

and the average network throughput decreases for a given V .

This is also consistent with Theorem 1 that the UT amount

U influences the value of parameter K, and thus impacts

both throughput and service delay performance. Intuitively, in

this case along with different workload scenarios above, the

FCN has to fully utilize the network resources to serve UTs’

traffic demand, and either high workload or large UT amount

certainly will deteriorate both network throughput and delay

performance.

D. Fairness Comparison for FEMOS

Each UT in the network expects to gain the resource as

well as the QoE fairly. Thus fairness among the UTs is also

a significant indicator to characterize a network performance

[34]. In this part, we reveal the fairness among the UTs in

FEMOS algorithm. As to UTs, the major fairness concern

is the experienced average service delay for each of them.

We adopt the fairness index of average delay defined in [35],

which is given by

Fd =

( ∑ |U |
u=1
Λu

)2

|U|
∑ |U |

u=1
Λ

2
u

, (28)

where Λu is the average service delay experienced by UT u,

Λu = Q
sum

u /λu .

Fig. 7(a) depicts the fairness index of average delay versus

the control parameter V . On the whole, the fairness index

slightly increases as V increases, which reveals that the delay

fairness among the UTs can be improved by increasing V , at

expense of large delay per UT experienced. For instance, with
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Fig. 7: Fairness index of average delay for FEMOS.
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Fig. 8: Evolution of sum queue length of request buffers under different parameters.

Amax = 100 kbits and U = 100, the fairness index increases

from 0.62 to 0.66. In addition, with a given control parameter

V and the UT amount U = 100, it can also be observed

that the service delay fairness index as Amax increases, which

fits the intuition that under high workload, the FCN needs

to make more efforts to balance the queue length among the

UTs through dynamically adjustment of UT-FAN association.

Fig. 7(b) investigates the impacts of UT amount on service

delay fairness index. It can be observed that the fairness index

increases with the increase of UT amount U. To be more

specific, the fairness index increases from 0.59 to 0.66 when U

increases from 70 to 100, with the given workload Amax = 120

kbits and control parameter V = 2000.

E. Convergence Time Evaluation of FEMOS

Finally, we conduct numerical experiments regarding to

the convergence time under the proposed FEMOS algorithm

by tracing the sum queue length of request buffers with

different workloads, UT amount and V . Fig. 8(a) depicts

the evolution of sum queue length of request buffers under

different workload Amax and UT amount U. We can see that

all queue backlogs increase at the beginning and are stable

eventually for the simulated three cases. Besides, we see that

either large UT amount U or high workload Amax leads to a

longer convergence time. Despite that, queue backlogs for all

three cases are able to be stabilized within approximately 1000

time slots, which reveals that the proposed FEMOS algorithm

is adaptable to the scenarios with either reasonable amount of

UTs or workload.

In Fig. 8(b), We illustrate the evolution of network queue

backlogs under different control parameter V . We observe

that the stable queue backlogs increase as V increases, which

again confirms that V indeed affects the service delay. Besides,

network with large V requires more time slots to be stabilized.

Thus, a proper V needs to be chosen in practice.

VII. CONCLUSIONS

In this paper, we investigated the online multi-tier operations

scheduling in fog-enabled network architecture with heteroge-

neous node capabilities and dynamic wireless network condi-
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tions. A low-complexity online algorithm based on Lyapunov

optimization was proposed, which achieves at least 1
2

of the

optimal value. Performance analysis, as well as simulations,

explicitly characterized the tradeoffs between average network

throughput and service delay, and confirmed the benefit of

centralized assignment of access node and dynamic online

bandwidth allocation. For future work, we would like to inves-

tigate the proactive FAN assignment and resource management

problem given the availability of predictive information about

UT behaviors, content requests, traffic distributions, fading

channel statistics, and network dynamics.
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