
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJIES.2021.3112124,

IEEE Open Journal of the Industrial Electronics Society

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier XX.XXXX/YYY.20XX.ZZZZZZZ

femtoCore: An Application Specific
Processor for Vertically Integrated High
Performance Real-Time Controls

Filippo Savi1, (Student Member, IEEE), Jayakrishnan Harikumaran3, (Student Member, IEEE),

Davide Barater2, (Senior Member, IEEE), Giampaolo Buticchi1, (Senior Member, IEEE) Chris

Gerada1,3, (Senior Member, IEEE), Pat Wheeler3, (Fellow, IEEE),
1
Key Laboratory of More Electric Aircraft Technology of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100

2
Università degli studi di Modena and Reggio Emilia, Modena, Italy

3
University of Nottingham, Nottingham, United Kingdom

Corresponding author: Filippo Savi (e-mail: filippo.savi@nottingham.edu.cn).

This work is supported by Ministry of Science & Technology under National Key R&D Program of China, under Grant 2021YFE0108600.

This work is supported by Ningbo Science and Technology Bureau under S&T Innovation 2025 Major Special Programme with grant No. of

2019B10071.

This work is supported by the Key International Cooperation of National Natural Science Foundation of China under Grant 51920105011

ABSTRACT In applications that require a high availability and high performance (for example

aerospace),modular power electronics and multi-phase machines represent an advantageous choice. In this

framework, a control system able to handle a high number of PWM signals and communication interfaces as well

as featuring a high computational power is required. This paper proposes a novel HDL plus soft-core approach to

be implemented on System-on-Chip hardware which allows for the efficient and modular implementation of the

modern control techniques with strong guarantees in terms of determinism. The proposal lies in the adoption of

a very simplified and optimized floating-point soft-core, the femtocore (fCore) and its tool-chain, which allows

C-like implementation of complex algorithms in a HDL-design power electronics control framework. Several

fCore units can be arranged for parallel processing to handle the time requirements of a complex modular

system even with low sampling time (100 kHz or more). The proposed architecture is experimentally validated

in a proof-of-concept, six-phase electric machine including a comparison against a traditional method.

INDEX TERMS Digital signal processors, Control system implementation, Current control, Machine drive

I. INTRODUCTION

A
DVANCES in the field of static power conversion and

machine drives have started to put a lot of strain on the

traditional architectures used for their control systems. The

first of several factors contributing to this issue is the advent

of wide-bandgap devices, Silicon Carbide (SiC) and Gallium

Nitride (GaN) transistors, which can be operated at very high

switching frequencies in the range of hundreds of kilohertz

to megahertz range [1], [2], without significant increases in

switching losses, reducing the need for bulky and expensive

filtering components. Another trend exacerbating this issue is

the ever growing adoption of modern high performance con-

trol techniques, such as Model Predictive control (MPC) [3],

[4] where a mathematical model is used to predict the effect

that the controller actions will have on the physical system,

one or more cycles in the future. This allows not only to

achieve the desired action from the system, but also minimize

(or maximize) other performance metrics, that are typically

not actively controlled in simpler control systems, through

their inclusion in the cost function. The main drawback of

these methods, is the large computational complexity, as a

mathematical model needs to be evaluated multiple times per

period. Last but not least, there is a heavier focus on fault tol-

erance due to a strong push toward transport electrification. In

this field, failure of fundamental systems, can have extremely

severe consequences, that are not typically encountered in

an industrial automation setting. In fields like marine and

offshore drilling [5] or aerospace [6]–[8], a failure in one of

the critical mission components can easily have catastrophic

consequences, like the loss of a vehicle, large oil spills and

potentially even loss of lives. For these reasons, both reliabil-

ity and fault tolerance are key design specifications in such

mission critical applications. To address this need, machine

and converter architectures [9], [10] that can tolerate one or

IEEE OPEN JOURNAL OF THE INDUSTRIAL ELECTRONICS SOCIETY. VOLUME XX, 20XX 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJIES.2021.3112124,

IEEE Open Journal of the Industrial Electronics Society

Savi et al.: femtoCore: An Application Specific Processor for Vertically Integrated High Performance Real-Time Controls

more faults, are being studied. The introduction of redun-

dancy at multiple levels, has the unwanted side effect of fur-

ther increasing the computational needs of control systems.

The net effect of all these trends, is a growing inadequacy

of the traditional control system architecture [11], where

a monolithic microcontroller (MCU) is directly in charge

of the whole system. Vertical and horizontal scaling has

been proposed as a solution, by silicon manufacturers, which

propose both high frequency and multi-core microcontroller

designs. These techniques, although effective in increasing

computational power of these platforms, have the drawback

of decreasing the overall system determinism and execution

time consistency, as jitter increases. As high frequency de-

signs need to employ caches and deeper pipelines in order to

hit the required frequencies, and multi-core processors, while

utilizing unaltered cores, need to deal with the problems

brought about by inter process communication (IPC) and

shared resource access contention,with similar effects [12]–

[14]. While these trade-offs might be acceptable in most

applications, they are not acceptable for mission critical hard

real-time. In such a setting a significant amount of execution

time jitter increase cost; as computational resources need

to be over-provisioned to a degree where deadline overrun

are certifiably avoided in the worst case scenario. Field Pro-

grammable Gate Arrays (FPGA) have also been proposed for

the full implementation of control systems, as in [15]–[17].

While these type of devices and architectures can scale to

massive systems with very high computational capabilities,

they are much more complex to realise due to the diffi-

culty of HDL (Hardware definition Language) development

as opposed to software development. Finally, commercial

Hardware-in-the-Loop (HIL) systems can be used to im-

plement the whole control system, as in [18], [19] directly

from simulation models, in a black box manner, typically

using conventional processors, with some FPGA assistance.

While this last option massively simplifies implementation,

but is also fairly limited for high speed application, where the

latency of these platform becomes a bottleneck, in addition to

their high cost.

In this paper a novel control system implementation ar-

chitecture is presented, based on a FPGA/SoC platform

containing programmable logic and a dual core processor in

the same package (Xilinx Zynq or equivalent), it includes a

custom processor core, specifically developed to assist in the

implementation of digital control systems. It features:

• Deterministic and constant execution time.

• Purely software based control system implementation.

• Intermediate FPGA architecture between soft-core and

full HDL.

• Cost-effective industrial deployment capability.

In Section II the overall system architecture is presented,

in Section III the custom processor core is detailed, in Sec-

tion IV the proposed core and architecture are compared with

a traditional implementation. In Section V a real world sys-

tem is presented to experimentally validate the architecture

HMI LAYER

MANAGEMENT LAYER

CONTROL LAYER

SoC USER PC

FIGURE 1. System Layers diagram.

performance and then conclusions are drawn in Section VI.

II. SYSTEM ARCHITECTURE

The proposed system architecture is constituted by three

separate layers, as shown in Fig. 1, each one responsible for

a subset of functionalities, starting from the top we find the

HMI (Human Machine Interface) layer, that translates the

users commands to a form that can be easily acted upon

by the underlying layers. The management layer offloads

the most common tasks like configuring the FPGA with

the correct bitstream and programming the processing core,

along with being in charge of storing all user and application

specific information. The lowest layer, the control layer, is

the one where all the hard real-time control functions are

implemented.

The HMI is running directly on the user PC, leveraging

modern web standards, through a web application, allowing

easy provisioning of the whole system, with no additional

software installation required. All other layers, that form

the backend server to the application, are implemented in a

System on Chip (SoC) that is comprised by a programmable

logic (PL) part, which contains a FPGA fabric, and a dual

core ARM cortex A9 processor system, with relative pe-

ripherals. Client and server can thus be connected through

a standard wired or wireless network connection capable of

supporting TCP/IP standards.

A. CONTROL LAYER

The control layer, shown in Fig. 2 is responsible for the

hard real-time aspects of the whole system. It interfaces with

external sensors, calculates the required control actions and

then passes them along to the rest of the system. The first

step is fulfilled through several standard interfaces (SPI, I2C,

etc.) that connect the main SoC with the external ADCs and

sensors. The raw data is then processed with ad-hoc logic

and DSP blocks to perform calibration and filtering. Then the

treated samples are inserted through Direct Memory Access

(DMA) in the register space of the processing core, that

calculates the required control actions. Once this is complete,

another DMA engine will extract the result and push them

out to the communication units, so that the information can

2 IEEE OPEN JOURNAL OF THE INDUSTRIAL ELECTRONICS SOCIETY. VOLUME XX, 20XX

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJIES.2021.3112124,

IEEE Open Journal of the Industrial Electronics Society

Savi et al.: femtoCore: An Application Specific Processor for Vertically Integrated High Performance Real-Time Controls

DATABASE

REST API

SERVER

HIGH

LEVEL

DRIVER

OUTPUT

COMMS

SENSOR

INTERFACE

TIMEBASE

fCore

INPUT DMA

MASTER

DMA OUT

MASTER

PROGRAM

MEMORY

POWER

CELL #1

POWER

CELL #2

POWER

CELL #N

KERNEL

DRIVER

Linux

Kernel

XILINX ZYNQ

PROCESSOR SYSTEM PROGRAMMABLE LOGIC

FIGURE 2. SoC architecture diagram.

be pushed out to to each power cell for actuation. A highly

configurable timebase module is used to synchronise all the

logic in the system, enabling arbitrary variation in frequency

and timing of the various phases.

B. MANAGEMENT LAYER

The main purpose of this layer is to abstract away the com-

plexity of the hardware platform, providing a stable interface

that the HMI layer can build upon. To this effect, the layer

performs multiple tasks. Being a pure software component,

without hard real-time constraints, several implementation

options are possible. On one hand, a certified real-time OS

(RTOS) can be used, if needed for safety related regulatory

reasons. On the other hand, if permitted, a standard Linux

system can deliver better security, thanks to a much more

audited code base, ease of use, with a standard compliant,

secure and fully featured networking stack and access to a

range of other technologies. To ease deployment and increase

manageability, the whole layer makes heavy use of container-

ization. A side benefit of this approach is the establishment of

a clear and distinct interface between the HMI and other user

facing components, that could potentially be connected to the

internet, and the rest of the system. This separation allows

easy authentication and enhance system security, through the

use of firewalls, and the application of a defense in depth

technique, where multiple independent layers of protection

need to be breached to fully gain control of the system.

The first and only user facing component of this layer

is a REST server that acts as the back-end for the HMI

application and functions as a gateway between it and the rest

of the system. All application specific and configuration data

is stored in a separate database that allows the whole system

to be self contained, and completely independent from the

client machine. Finally, the driver component communicates

with the server and upon its commands acts on the control

layer accordingly. This is comprised of two separate parts:

the first is a lower level loadable kernel module (LKM) which

abstracts away all the platform dependent functionalities,

such as bus and DMA access. The second is a high level

C++ driver, implemented as a regular user mode application

that does all the low level data processing, such as sorting,

filtering, and so on.

C. HUMAN MACHINE INTERFACE

This component, implemented as a standard client side web

application, allows the user to interact with the control system

in the most natural way possible, allowing on the fly change

of parameter, triggering of actions and facilitating data vi-

sualization, with a real-time display of selected parameter

gathered in the control layer, such as sensor readings, error

variables, desired control actions, etc.

In order to allow the user to act on meaningful control

variables, rather than having to work directly on the register

values exposed by the control layer, whose values need to be

parsed and pre-processed through a set of simple operations,

like re-scaling, addition of offset, conversion to other formats

etc. A simple scripting system has been introduced, that

allows the user to program all this required steps. Upon a user

triggering of a pre-defined and configurable event, this code

will be run, with the results being sent for action to the lower

layers. This strikes a balance between complexity of the layer

and usability, allowing the user to work with familiar values

and parameters, while not requiring a complete redesign of

the HMI component structure for each different application.

III. FEMTOCORE PROCESSOR

The implementation of control systems on FPGA can take

two routes: the fully custom logic, which can attain much

higher operating frequencies, at the cost of a long and com-

plex implementation and verification process, or the serial,

through some kind of processor or finite automata. This

second choice allows the use of a much quicker software

development model, as opposed to the HDL one, with the

main drawbacks being longer cycle times and potentially

a lack of determinism. The frequency trade off does not

impact the considered application as modern FPGA working

frequencies are high enough to allow the calculations to

take up to few thousand cycles while still respecting the

required deadlines. The issue of determinism is much more

problematic for mission critical applications, as it brings

about all the problems inherent in real-time low jitter safety

critical software development, and the related certifications.

Upon close examination of the desired use case, it is

apparent that the implementation of most control systems

can be reduced to the solution of one or more equations,

and provided that all required data is made available by the

rest of the system, the processing core’s only responsibility

is to perform a series of arithmetic and logic operations in

order to obtain the required control action. To take advantage

of this characteristic of the application, a custom instruction

set (ISA) and processor core has been specifically designed

in order to allow the implementation of the control system

calculations as software, while retaining a fully deterministic

execution.

IEEE OPEN JOURNAL OF THE INDUSTRIAL ELECTRONICS SOCIETY. VOLUME XX, 20XX 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJIES.2021.3112124,

IEEE Open Journal of the Industrial Electronics Society

Savi et al.: femtoCore: An Application Specific Processor for Vertically Integrated High Performance Real-Time Controls

`

INSTRUCTION
MEMORY (ROM)

CONTROL UNIT
PROGRAM
COUNTER

DECODE EXECUTE WRITE BACK

REGISTER FILE
DMA

ENDPOINT

FIGURE 3. High level fCore architecture diagram.

A. PROCESSOR ARCHITECTURE

The high level architecture of the designed processor, shown

in Fig. 3. The design is fairly traditional, loosely following a

harvard architecture, yet with few unconventional character-

istics: the base is a simple three stage pipeline with a decoder,

an execution unit and finally result write-back. It is derived

from the classic five stage RISC pipeline, eliminating the in-

struction fetch stage, as all instructions have a fixed size, and

the memory access, not needed in this architecture. The core

utilizes a single pool of memory, denominated register file, to

hold all intermediate values, the size of which is limited by

the width of the operand and destination register specified in

the ISA. In the currently proposed implementation this con-

sists of thirty-two 32-bit general purpose registers (r1 to r31)

and a single zero register (r0), that holds the constant value

of zero and is used internally to implement several virtual

operations, such as register to register data movement and the

no operation (also known as nop). The current structure of the

ISA, also allows extension of the memory pool to 512 words

while keeping a 32 bit instruction word, through 9 bit register

addresses. A control unit starts the linear flow of execution

upon reception of an external trigger signal and halts it when

reaching either the stop instruction or the end of the program

memory. This unit also contains the program counter that is

advanced once for each execution cycle. A DMA endpoint is

also present that allows the external logic to load the inputs

directly in the register file, at the appropriate location, and to

extract the results once the done signal is issued. Each one of

the available operations, listed in Tab. 1, can be encoded in

a single 32-bit wide instruction, except for the constant load

which takes two. The most important feature of this core is

the lack of any control flow instruction, such as conditional

or unconditional jumps. This guarantees that the duration of

each execution of a single program to be exactly identical

completely eliminating jitter by design. This allows also to

easily evaluate ahead of time, during compilation, how long

a specific program will take to complete execution, and of

consequence its maximum operating frequency.

In a trade off between functionality and resource consump-

tion, the implementation of full floating point division is

excluded from the ISA. In its place a reciprocal operation

is included allowing the calculation of the 1/x fraction, to

be multiplied by the desired divided. It should be noted that

these two operations are not strictly equivalent, as rounding

can lead to differing results between the two. As shown

in [20], the error is at most 1.5 Units of Least Precision

Arithmetic Logic Conversion Saturation miscella-
neous

addition and From
integer

saturate
max.

greater than

subtrac-
tion

or To integer saturate min. load constant

product not
reciprocal

TABLE 1. Available operations

(ULP), a value small enough to be overshadowed by the

much larger uncertainties introduced in feedback control

system by noise and other sources of error in sensors or

during the analog to digital processing.

In order to reach a reasonable clock frequency, the execu-

tion of a single floating point operation is implemented as a

five stage pipeline, that once filled, can process an instruction

every clock cycle. It should be noted that in traditional design

a long pipeline is undesirable since it might need to be flushed

upon a jump or branch instruction, leading to uncertainty in

the run time and decreasing throughput. In the femtoCore,

the execution time is largely independent from the pipeline

length, that, once full, will never be flushed, leading to a fully

deterministic execution time.

The only minor downside from the multi cycle operation

of the execution unit is the need for delay slots in the program

to avoid data hazards when the next adjacent instructions are

co-dependent. This addition can be performed either by the

compiler/assembler, through a simple static analysis pass, or

in hardware, with a small increase in front-end complexity.

When dealing with uncoupled multi-channel systems, as

in the intended application, the same program will need

to be executed multiple times, once for each channel. To

benefit this use case, the core has support for automated

Single Instruction Multiple Data (SIMD) execution. When

this mode is enabled, the execution is interleaved, execut-

ing each instruction on every channel before advancing the

program counter, the Register file is also expanded to have

a full complement of thirty-two registers for each channel.

A channel counter helps to select the active partition of the

full register file. When operating in this mode since no data

dependency is present between channels, less delay slots are

needed. When more than six channels are present the pipeline

latency is completely masked requiring no additional delay

slots.

B. ISA

The principal distinctive feature of this architecture is the

restricted Instruction Set Architecture (ISA), which plays

a fundamental role, along with processor architecture and

implementation in achieving the goal of a completely deter-

ministic and consistent execution time. A careful design of

the allowed operations, can ensure bounded execution time,

while not impeding software development for the targeted

application. The main manifestation of this philosophy is

4 IEEE OPEN JOURNAL OF THE INDUSTRIAL ELECTRONICS SOCIETY. VOLUME XX, 20XX

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJIES.2021.3112124,

IEEE Open Journal of the Industrial Electronics Society

Savi et al.: femtoCore: An Application Specific Processor for Vertically Integrated High Performance Real-Time Controls

the lack of ISA support for branching or procedure call,

ensuring a linear, predictable and constant flow of execution.

Another side benefit of this limitation is the enablement of

pure instruction counting as an execution time measurement

technique, without having to make any assumptions on inputs

or state of memory. Allowing the toolchain, once clock

frequencies and deadlines have been evaluated, to detect

and report potential overruns at compile time. The unified

memory structure also eliminate the need for most data han-

dling operations, as the whole memory pool can be directly

accessed by the execution units, leaving the load constant as

the only operation in this class.

From a physical perspective all instructions have a very

similar structure with a 5-bit opcode followed by a series

of optional 6-bit arguments representing the addresses of

operands and destination. In particular four different struc-

tures, shown in Fig. 4, are used.

• Independent instructions: This structure is used for

a varied class of instructions mainly needed to control

the execution flow of the program. The instructions are

composed by the opcode only, with the remaining bits

zeroed.

• Load Constant: This structure, used for the load con-

stant instruction only, here the opcode is followed by

a destination address, with all other bits zeroed. The

constant to load needs to be placed as a complete 32-

bit word after this instruction, interleaving it with the

instruction stream.

• Unary instructions: This structure is used for instruc-

tion that act on a single operand, and is used for con-

version between float and integer number formats. For

these the opcode is followed by operand and result

destination addresses.

• Binary instructions: This structure is used for arith-

metic, logic and comparison instructions that act on

two operands and return a result. Here the opcode is

followed by the two operand and destination addresses.

C. TOOLCHAIN

Complementing the femtoCore processor, a software/-

firmware development tool-chain has been developed, which

greatly simplifies the task of translating the desired con-

trol techniques to executable machine code. The first of its

components is an Assembler, which can be used to extract

the most performance out of the architecture, through hand

written assembly code. Few high level features have been im-

plemented simplify the development, such as named variable,

to avoid having to directly allocate registers or automatic

floating point constant conversion. The second component of

the tool-chain is a higher level compiler, aimed at a more

general developer audience, that can be used with a strict

subset of the C language, supporting all possible features

given the limitations of the hardware. While a debugger is

also usually provided, with all general purpose compilers, to

allow single stepping through the code in order to verify its

behaviour, its usefulness for the application targeted by this

paper, as halting execution of a hard real-time control system

will lead to hardware faults or even damage. In its place,

an emulator developed in MATLAB is supplied instead, that

reads and executes the same machine instructions used in the

real hardware, allowing single step debugging through the

code. Last but not least HDL simulation can be used, to verify

the cycle accurate behaviour of the core when integrated in

a larger system. To aid in this process the tool-chain can

directly produce verilog memory initialization files to pre-

populate the instruction memory, avoiding the need to use a

dedicated AXI Bus Functional Model (BFM) to emulate the

ARM processor to femtocore interface

IV. COMPARATIVE ANALYSIS

The first, in Fig. 6a, is the use of separate FPGA and proces-

sor, on the same circuit board connected together through the

processor external bus interface. This solution is typically the

least flexible and slowest of the four, the external interface

severely limits the maximum frequency of the communica-

tion, the synchronisation of the two elements can also be

challenging when bidirectional information flow is required.

Due to these limitations, when this solution is adopted, the

programmable logic device is only used to implement the

final modulation. Consequently the control tasks are per-

formed completely by the processor. As such the advantages

and disadvantages for this solution are the same as for the

traditional single MCU implementation. The second solution,

in Fig. 6c, consists of integrating the processor directly inside

the FPGA using a softcore IP, these are available both from

FPGA vendors (Xilinx Microblaze and Intel Nios II) or third

parties (ARM cortex M1 and M3). The integration of both

components on the same die allows much higher bandwidth

between the two components and makes synchronisation of

the different parts of the design much simpler, allowing some

degree of acceleration of computationally intensive tasks by

the FPGA. The third architecture, in Fig. 6b, replaces the

softcore processor with a hard macro processor, realised in

silicon on the same die of the FPGA, and connects them with

a communication bus (typically AMBA AXI). This solution

allows the use of a much more performing processor core,

like the Cortex A9 running at several hundred megahertz on

the Zynq. This change comes however with some stark dis-

advantages. While the softcore processor can be configured

to minimize the amount of execution time jitter, by removing

caches, disabling branch prediction, where present and so on;

the hard processor system on the SoCs is optimized for raw

throughput, as opposed to latency or low jitter, forcing the

adoption of large timing margins to compensate, negatively

affecting the achievable performance. The last Architecture,

the one proposed in this paper, shown in Fig. 6d is closely

related to the second one, where the general purpose softcore

processor is replaced by the femtoCore processor. The main

advantage of this arrangement is easy synchronization, since

the core execution can be started with an external signal and

the run-time is constant.

IEEE OPEN JOURNAL OF THE INDUSTRIAL ELECTRONICS SOCIETY. VOLUME XX, 20XX 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJIES.2021.3112124,

IEEE Open Journal of the Industrial Electronics Society

Savi et al.: femtoCore: An Application Specific Processor for Vertically Integrated High Performance Real-Time Controls

0 4 10 16 22 31

Independent Instruction OPCODE RESERVED

Load Constant OPCODE DESTINATION RESERVED

OPCODE DESTINATIONOPERAND A RESERVEDUnary operation

Binary operation OPCODE OPERAND A DESTINATIONOPERAND B RESERVED

FIGURE 4. Physical instruction structures.

C sources

fCore
Optimizing
Compiler

Asm
sources

fCore
assembler

HARDWARE

MATLAB emulator

HDL Simulator

Verilog memory
initialization file

Binary
image file

FIGURE 5. Structure of the femtocore tool-chain

HARD

PROCESSOR
FPGA

(a) Separate FPGA and DSP.

FPGA
STANDARD

SOFTCORE

(b) SoC with Hard processor and
FPGA.

HARD

PROCESSOR
FPGA

(c) FPGA with softcore processor.

FPGA fCore

(d) FPGA with propose core.

FIGURE 6. Architecture considered in the comparison.

In table 2 it is shown a more detailed qualitative com-

parison of few key features and metrics between the four

solutions. The + symbol denotes a strength of the archi-

tecture, a − signifies a weakness and an = shows where

the solution is average. In the clock frequency category the

hard processor shows its definite advantage. Both softcore

and the proposed solution are average and the separate IC

topology is considered weak, as in this last architecture, the

separate components might be able separately to run at high

frequencies, however the communication bottleneck between

A B C D

Clock frequency − = + =
Determinism − − − +

Programming complexity = = − +
Hardware complexity + + − −

TABLE 2. Metrics Comparison between the solutions

them limits the overall system effectiveness. As shown in the

previous section, only the proposed solution can claim a truly

deterministic execution time, for the control algorithm that

can be known in advance. In the category of programming

complexity solution, (C) is weak, as the processors found in

these type of systems are designed with compatibility with

modern operating systems in mind, making them a lot more

complex to use with respect to all other architectures that

use microcontroller architectures specifically designed to be

used in a bare metal context. The proposed solution on the

other hand can be easily developed for since, for the targeted

application, only a relatively short sequence of mathematical

operations are required, as all other I/O and timing tasks are

carried out by the custom logic outside of the core. When

looking at hardware complexity, we see solution (A) and (B)

having a clear advantage with respect to the remaining two as

solution (C) requires dealing with the data exchange between

hard core and FPGA portion, while the proposed solution

requires external logic to handle sensor sampling and data

movement.

V. CASE STUDY

A. SYSTEM DESCRIPTION

In order to validate the claims, a case study has been set up,

in order to compare the proposed architecture with a more

traditional one. The target application is a multi-phase drive,

the target motor, a permanent magnet synchronous machine,

is composed by two set of threephase winding, radially offset

by a 30° electrical angle. The neutral points of the two stars

can be connected together or kept separate, depending on

whether galvanic isolation or better performance under fault

are prioritised.

With regards to power electronics and control, two differ-

ent systems have been used, the first, implemented following

the proposed architecture, uses a six phase distributed design,

where single phase cells, composed of a half bridge inverter

sub-section, control each winding, with a digital communi-

cation network connecting them to the central controller, as

shown in Fig. 7. The second system used in this comparison

follows a more traditional architecture where the two three-

phase sets of the machine are kept completely separate,

neutral connection included, and driven by two identical

monolithic three-phase diode clamped NPC inverters. The

control system is implemented with a single Texas Instru-

ments (TMS320F377D) Microcontroller/DSP that takes care

off everything, from the analog to digital conversion of the

6 IEEE OPEN JOURNAL OF THE INDUSTRIAL ELECTRONICS SOCIETY. VOLUME XX, 20XX

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJIES.2021.3112124,

IEEE Open Journal of the Industrial Electronics Society

Savi et al.: femtoCore: An Application Specific Processor for Vertically Integrated High Performance Real-Time Controls

MACHINE

CONTROL SYSTEM

FIGURE 7. Diagram of the hardware and control system configuration used in

the case study with the proposed architecture.

Current

Controller

NP

Balance

Controller

EM
PWM

Modulator

Iabc

Rotor

Angle

Estimator

Position

Feedback

PWM

Signals
Modulation

Signals

Vdc

θ

Iabc-ref

FIGURE 8. Diagram of the hardware and control system configuration used in

the case study with the traditional architecture.

sensor signals to the PWM output generation. The use of two

different power electronics platforms was necessary, given

the incompatibility of the interfaces between them and the

relative control logic boards. To make the comparison as

valid as possible, the same current control technique has

been implemented, following the exact same structure using

floating point math, on both the traditional and the proposed

architecture. From an hardware control perspective, the only

difference between the two systems is the presence of a

neutral point controller in the NPC inverter control system.

The execution time used in this task was not included in

the measurements. All other differences, including Switching

frequency, power devices topology, etc. are inconsequential

to the result of the comparison, as a functionally equivalent

portion of code executed by the two processors (femtoCore

and TI DSP), and only a single switching cycle is considered.

The main parameters for both systems are shown in table 3.

The overall goal of the system is to have a completely fault

tolerant actuation solution, where upon one or more phase

faults, the system can react, isolating the damaged part and

Parameter Value

Switching/sampling frequency (proposed architecture) 60 kHz
Switching/sampling frequency (Traditional architecture) 15 kHz

DC-Link voltage 270V
Peak output current 20A
machine pole pairs 4

machine speed 1000 rpm

TABLE 3. Main system parameters

reconfigure itself, either statically or at run-time, to run as

a lower phase count system. This will allow, in mission

critical applications, to keep the potentially damaged actuator

running, once appropriate de-rating factors are applied, for

long enough to reach a safe global system condition, where

the actuator can be safely excluded from operation, until

serviced.

While the power electronics hardware for the two systems

is different, the exact same control strategy is used in both

cases, making the comparison of the two implementations

fair. For fault tolerance reasons it has been decided against

the use of a more traditional field oriented control, using

Vector Space Decomposition (VSD) and rotating reference

techniques, due to potential instability in the fault mode

transition.

Instead, a Proportional Integral Resonant (PIR) approach

is used to directly control each phase current in a static

reference frame, where the controllers, can track sinusoidal

signals, thanks to the resonant elements, that gives the closed

loop system, potentially infinite, gain at the operating fre-

quency.

To test the performance of the system current control, a

standard testing rig, shown in figure 9 has been used, with the

controlled motor mechanically coupled to a second machine

that is used to load the first one. During the test the load was

controlled by a commercial drive to keep a constant rotational

speed, while the test machine, generated an constant torque

opposing the rotation.

An example of output current quality resulting from the

aforementioned control can be seen in figure 10. The cur-

rents, after being sensed by six LEM LA55P-SP1 closed

loop hall effect transducers, have been simultaneously sam-

pled by six independent 14-bit analog to digital converters

(LTC2313-14), each one running at 240 kSps. The resulting

data as captured has been saved and plotted without any

further post-processing step.

A quantitative comparison between the two solutions has

been performed in order to show the relative performance

gains attainable with the proposed architectures.

B. PROPOSED ARCHITECTURE TIMING ANALYSIS

Since the proposed architecture behaviour is fully deter-

ministic, its performance can be evaluated through a cycle

accurate simulation of the system, including the control layer,

communications and the power cell control logic. This route

IEEE OPEN JOURNAL OF THE INDUSTRIAL ELECTRONICS SOCIETY. VOLUME XX, 20XX 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJIES.2021.3112124,

IEEE Open Journal of the Industrial Electronics Society

Savi et al.: femtoCore: An Application Specific Processor for Vertically Integrated High Performance Real-Time Controls

(a) Proposed architecture experi-
mental setup.

Control

Board

Power/Gate

Driver Boards

Measurement

Board

Resolver

Board

(b) Traditional architecture experimen-
tal setup.

(c) Controlled machine.

FIGURE 9. Pictures of the experimental setups.

0 0.01 0.02 0.03 0.04 0.05

−20

−10

0

10

20

FIGURE 10. Experimental Current Waveforms.

has been chosen as opposed to runtime measurement since

it can provide visibility of the whole system state without

any additional performance penalty, as opposed to the intro-

duction of instrumentation points for dynamic analysis. To

perform the simulation, the FPGA vendor toolchain (Xilinx

in this instance), has been used, hooking the top level module

of the design with a set of Functional models that emulate in

cycle accurate fashion the external sensing components, and

run at a clock frequency of 100MHz.

The latency from ADC sampling to PWM modulators con-

trol register update is 5.81 µs,supporting, on suitable hard-

ware, a switching frequency of 172 kHz, of which, 710 ns

constitute the pre-calculation time, from when the sampling

command is issued to when the femtoCore starts running,

the complete execution time is 3.31 µs, 520 ns per channel.

Delay type Traditional Proposed

pre-execution 128 79

execution
total 608 331

per phase 150 55

TABLE 4. Comparison of the number of clock cycles needed for the execution

of the current control with the traditional and proposed architecture.

Lastly 1.79 µs is the post execution time, that covers from the

conclusion of the execution to the update of the modulators,

whose most important factor is the communication transmis-

sion latency.

C. TRADITIONAL ARCHITECTURE TIMING ANALYSIS

The evaluation of the performance of the proposed traditional

architecture, unlike the proposed one must be carried out on

hardware at runtime, as neither simulation nor instruction

counting can fully capture the complex dynamics of a mod-

ern processor system. To capture timing information with

the lowest impact possible several runs are made each one

measuring the duration of a different portion of interest in the

code. In particular a single GPIO pin is toggled at the start of

a task and then again upon completion. An oscilloscope is

used to measure the duration of the resulting pulse.

For a core clock frequency of 200MHz, the total end-to-

end delay in this architecture is 3.64 µs, of which 640 ns are

of pre-execution time, comprising the ADC measurement;

while the remaining portion comprises the execution of two

controllers for each three phase winding, as the third phase

reference is derived as the algebraic sum of the other two.

D. TIMING COMPARISON

For the comparison between the two architectures to be

completely fair, few factors need to be accounted for, first

and foremost is the difference in the clock frequency the

two systems are run at. In order to compensate for this,

the duration of the various phases is shown in amount of

clock cycles instead of absolute time. Also the traditional

architecture controls only two phases for each set, four in

total, with the third reference being generated as the algebraic

sum of the other two in order to obtain a balanced set, while

on the proposed architecture all six controllers are run. To

compensate for this difference the execution time is shown

in number of clock cycles per phase, as well as globally.

The results of the comparison are shown in Tab. V-D, where

it is clearly shown that the proposed architecture is able to

execute an equivalent control task in roughly a third of the

time with respect to a regular controller, while retaining the

benefits of a programmed system. When comparing the pre-

execution times, the gain of moving to a completely custom

logic solution are more limited, as its lower bound is given

by the ADC used.

VI. CONCLUSION

In this paper an implementation architecture for high perfor-

mance real-time control systems is proposed, constituting an

8 IEEE OPEN JOURNAL OF THE INDUSTRIAL ELECTRONICS SOCIETY. VOLUME XX, 20XX

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJIES.2021.3112124,

IEEE Open Journal of the Industrial Electronics Society

Savi et al.: femtoCore: An Application Specific Processor for Vertically Integrated High Performance Real-Time Controls

intermediate step between both full HDL and software based

implementations, retaining the determinism and execution

time consistency of the first, while adopting the faster and

more accessible software development paradigm. A novel

custom designed floating point processor is proposed. The

completely deterministic execution time, and specifically

designed Instruction Set Architecture allows an effortless

translation of even complex algorithms with minimal loss

of precision. Automatic parallelization through SIMD execu-

tion further simplifies software development for multi-phase

systems. The proposed system has also been experimentally

compared to a traditional MCU based one, showing a much

better efficiency, implementing the same control technique in

just a third of the number of cycles.

REFERENCES

[1] H. Schefer, L. Fauth, T. H. Kopp, R. Mallwitz, J. Friebe, and M. Kurrat,

“Discussion on electric power supply systems for all electric aircraft,”

IEEE Access, vol. 8, pp. 84 188–84 216, 2020.

[2] A. K. Morya, M. C. Gardner, B. Anvari, L. Liu, A. G. Yepes, J. Doval-

Gandoy, and H. A. Toliyat, “Wide bandgap devices in ac electric drives:

Opportunities and challenges,” IEEE Transactions on Transportation Elec-

trification, vol. 5, no. 1, pp. 3–20, 2019.

[3] S. Vazquez, J. I. Leon, L. G. Franquelo, J. Rodriguez, H. A. Young,

A. Marquez, and P. Zanchetta, “Model predictive control: A review of its

applications in power electronics,” IEEE Industrial Electronics Magazine,

vol. 8, no. 1, pp. 16–31, 2014.

[4] S. Vazquez, J. Rodriguez, M. Rivera, L. G. Franquelo, and M. Noram-

buena, “Model predictive control for power converters and drives: Ad-

vances and trends,” IEEE Transactions on Industrial Electronics, vol. 64,

no. 2, pp. 935–947, 2017.

[5] N. Vedachalam and G. A. Ramadass, “Reliability assessment of multi-

megawatt capacity offshore dynamic positioning systems,” Applied Ocean

Research, vol. 63, pp. 251–261, 2017.

[6] J. W. Bennett, G. J. Atkinson, B. C. Mecrow, and D. J. Atkinson, “Fault-

tolerant design considerations and control strategies for aerospace drives,”

IEEE Transactions on Industrial Electronics, vol. 59, no. 5, pp. 2049–2058,

May 2012.

[7] F. Savi, D. Barater, M. D. Nardo, M. Degano, C. Gerada, P. Wheeler, and

G. Buticchi, “High-speed electric drives: A step towards system design,”

IEEE Open Journal of the Industrial Electronics Society, vol. 1, pp. 10–21,

2020.

[8] J. Harikumaran, G. Buticchi, G. Migliazza, V. Madonna, P. Giangrande,

A. Costabeber, P. Wheeler, and M. Galea, “Failure modes and reliability

oriented system design for aerospace power electronic converters,” IEEE

Open Journal of the Industrial Electronics Society, vol. 2, pp. 53–64, 2021.

[9] B. A. Welchko, T. A. Lipo, T. M. Jahns, and S. E. Schulz, “Fault tolerant

three-phase ac motor drive topologies: a comparison of features, cost, and

limitations,” IEEE Transactions on Power Electronics, vol. 19, no. 4, pp.

1108–1116, 2004.

[10] L. Costa, G. Buticchi, and M. Liserre, “A fault-tolerant series-resonant

dc–dc converter,” IEEE Transactions on Power Electronics, vol. 32, no. 2,

pp. 900–905, 2017.

[11] G. Migliazza, G. Buticchi, E. Carfagna, E. Lorenzani, V. Madonna, P. Gi-

angrande, and M. Galea, “Dc current control for a single-stage current

source inverter in motor drive application,” IEEE Transactions on Power

Electronics, vol. 36, no. 3, pp. 3367–3376, 2021.

[12] M. Westmijze, M. J. G. Bekooij, G. J. M. Smit, and M. Schrijver, “Eval-

uation of scheduling heuristics for jitter reduction of real-time streaming

applications on multi-core general purpose hardware,” in 2011 9th IEEE

Symposium on Embedded Systems for Real-Time Multimedia, 2011, pp.

140–146.

[13] H. Kim, A. Kandhalu, and R. Rajkumar, “A coordinated approach for

practical os-level cache management in multi-core real-time systems,” in

2013 25th Euromicro Conference on Real-Time Systems, 2013, pp. 80–89.

[14] P. De, V. Mann, and U. Mittaly, “Handling os jitter on multicore mul-

tithreaded systems,” in 2009 IEEE International Symposium on Parallel

Distributed Processing, 2009, pp. 1–12.

[15] F. Sobrino-Manzanares and A. Garrigos, “Bidirectional, interleaved, mul-

tiphase, multidevice, soft-switching, fpga-controlled, buck–boost con-

verter with pwm real-time reconfiguration,” IEEE Transactions on Power

Electronics, vol. 33, no. 11, pp. 9710–9721, 2018.

[16] M. Sinha, J. Poon, B. B. Johnson, M. Rodriguez, and S. V. Dhople,

“Decentralized interleaving of parallel-connected buck converters,” IEEE

Transactions on Power Electronics, vol. 34, no. 5, pp. 4993–5006, 2019.

[17] J. Zhou, Y. Xu, H. Sun, Y. Li, and M. Chow, “Distributed power man-

agement for networked ac–dc microgrids with unbalanced microgrids,”

IEEE Transactions on Industrial Informatics, vol. 16, no. 3, pp. 1655–

1667, 2020.

[18] I. Hussain, R. K. Agarwal, and B. Singh, “Mlp control algorithm for

adaptable dual-mode single-stage solar pv system tied to three-phase

voltage-weak distribution grid,” IEEE Transactions on Industrial Informat-

ics, vol. 14, no. 6, pp. 2530–2538, 2018.

[19] M. Rivera, J. Rodriguez, J. R. Espinoza, and H. Abu-Rub, “Instantaneous

reactive power minimization and current control for an indirect matrix

converter under a distorted ac supply,” IEEE Transactions on Industrial

Informatics, vol. 8, no. 3, pp. 482–490, 2012.

[20] J.-M. Muller, N. Brisebarre, and S. Raina, “Accelerating

Correctly Rounded Floating-PointDivision when the Divisor

is Known in Advance,” IEEE Transactions on Computers,

vol. 53, no. 8, pp. 1069– 1072, 2004. [Online]. Available:

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00087465

APPENDIX. RESONANT CONTROLLER C CODE

const float damping = 0.005;

const float Kr = 800;

const float Ki = 0.5;

const float Kp = 0.8;

const float Ts = 1/60e3;

const float sat_max = 135.0;

const float sat_min = -135.0;

float Ki_out = 0;

float fwd_integ = 0;

float back_integ = 0;

float fwd_in = 0;

float sat(float in, float ub, float lb){

//N.B. The femtocore compiler will

//recognise this pattern and

//emit saturation instructions.

if(in > ub)

return ub;

else if(in < lb)

return lb;

else

return in;

}

float pir(float error, float omega){

/* calculate proportional action*/

float Kp_out = Kp*error;

float pir_out = Kp_out;

/* calculate integral action*/

Ki_out += Ts*Ki*error;

sat(Ki_out, sat_max, sat_min);

pir_out += Ki_out;

/* calculate resonant action */

fwd_integ += Ts*fwd_in*omega;

sat(fwd_integ, sat_max, sat_min);

back_integ += Ts*fwd_integ*omega;

sat(back_integ, sat_max, sat_min);

float s_error = (Kr*error)-fwd_integ;

fwd_in = (s_error*damping)-back_integ;

pir_out += fwd_integ;

sat(pir_out, sat_max, sat_min);

IEEE OPEN JOURNAL OF THE INDUSTRIAL ELECTRONICS SOCIETY. VOLUME XX, 20XX 9

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00087465

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJIES.2021.3112124,

IEEE Open Journal of the Industrial Electronics Society

Savi et al.: femtoCore: An Application Specific Processor for Vertically Integrated High Performance Real-Time Controls

return pir_out;

}

FILIPPO SAVI received the M.Sc. degree in Elec-

tronic Engineering from the University of Parma,

in 2017, he is currently pursuing the Ph.D. degree

at University of Nottingham.

His research interests include High speed

drives, modular and fault tolerant power electron-

ics for transportation electrification. Digital com-

munications for high performance, low latency

and jitter for high bandwidth feedback control.

JAYAKRISHNAN HARIKUMARAN received the

B.Tech degree in electronics and communication

engineering from the National Institute of Tech-

nology Calicut, Kerala, India in 2008 and M.S. de-

gree in sustainable energy technology from Delft

University of Technology, Delft, Netherlands in

2012.

He has worked in Texas Instruments (’08-’10),

Tvilight B.V (’12-’13) and Shell International B.V

(’13-’18) on various roles - semiconductor design,

embedded systems engineering, industrial control systems and electrical en-

gineering. Since 2018, he is a Marie-Curie doctoral researcher at the Institute

for Aerospace Technology, University of Nottingham, Nottingham, United

Kingdom. His research interests include design for reliability of power

converters, fault tolerant drive systems and digital controller implementation

for power converters in DSP and FPGA.

DAVIDE BARATER (S’11-M’14) received the

Master’s degree in Electronic Engineering in 2009

and the Ph.D. degree in Information Technology

in 2014 from the University of Parma Italy. He

was an honorary scholar at the University of Not-

tingham, U.K., during 2012, and a visiting re-

searcher at the University of Kiel, DE in 2015. He

is currently Associate Professor at Department of

Engineering “Enzo Ferrari”, University of Mod-

ena and Reggio Emilia, Italy. His research area is

focused on power electronics for e-mobility and motor drives. He is the

Coordinator of two European Project: RAISE, to evaluate the impact of the

high voltage gradients, introduced by the fast commutations of new wide

bandgap power devices (SiC, GaN), on the life time of electrical motor

insulation systems. AUTO-MEA that aims to develop electrical motors and

drives for next generation of electrical mobility. In particular, novel solutions

for windings structures and cooling systems for improved power density,

efficiency and increased frequency operation. He is Associate Editor of IEEE

Transactions on Industry Applications and author or co-author of more than

60 international papers.

GIAMPAOLO BUTICCHI (S’10-M’13-SM’17)

received the Master degree in Electronic Engi-

neering in 2009 and the Ph.D degree in Informa-

tion Technologies in 2013 from the University of

Parma, Italy. In 2012 he was visiting researcher

at The University of Nottingham, UK. Between

2014 and 2017, he was a post-doctoral researcher

and Von Humboldt Post-doctoral Fellow at the

University of Kiel, Germany.

He is now Professor in Electrical Engineering

at The University of Nottingham Ningbo China and the Head of Power

Electronics of the Nottingham Electrification Center. His research focuses

on power electronics for renewable energy systems, smart transformer fed

micro-grids and dc grids for the More Electric Aircraft. He is author/co-

author of more than 200 scientific papers and an Associate Editor of the

IEEE Transactions on Industrial Electronics and of the IEEE Transactions

on Transportation Electrification.

He is the Chair of the IEEE Industrial Electronics Society Technical

Committee on Renewable Energy Systems.

CHRIS GERADA received a PhD degree in nu-

merical modelling of electrical machines from

the University of Nottingham, Nottingham, UK,

in 2005. He subsequently worked as a re-

searcher at the University of Nottingham on high-

performance electrical drives and on the design

and modelling of electromagnetic actuators for

aerospace applications. He was appointed Lecturer

in electrical machines in 2008, Associate Pro-

fessor in 2011, and Professor in 2013. His core

research interests include the design and modelling of high-performance

electric drives and machines. Prof. Gerada is an Associate Editor of the

IEEE Transaction on Industry Applications. He has secured major industrial,

European and UK grants, authored more than 200 papers and has been

awarded a Royal Academy of Engineering Research Chair to consolidate

research in the field.

PAT WHEELER received his BEng [Hons] de-

gree in 1990 from the University of Bristol, UK.

He received his PhD degree in Electrical Engi-

neering for his work on Matrix Converters from

the University of Bristol, UK in 1994. In 1993

he moved to the University of Nottingham and

worked as a research assistant in the Department

of Electrical and Electronic Engineering. In 1996

he became a Lecturer in the Power Electronics,

Machines and Control Group at the University of

Nottingham, UK. Since January 2008 he has been a Full Professor in the

same research group. He was Head of the Department of Electrical and

Electronic Engineering at the University of Nottingham from 2015 to 2018.

He is currently the Head of the Power Electronics, Machines and Control

Research Group and is the Li Dak Sum Chair Professor in Electrical and

Aerospace Engineering at the University of Nottingham, China. He is a

member of the IEEE PELs AdCom and was an IEEE PELs Distinguished

Lecturer from 2013 to 2017. He has published 500 academic publications in

leading international conferences and journals.

10 IEEE OPEN JOURNAL OF THE INDUSTRIAL ELECTRONICS SOCIETY. VOLUME XX, 20XX

