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Abstract Analyses of two-particle correlations have provided the chief means for determining
spatio-temporal characteristics of relativistic heavy ion collisions. We discuss the theoretical
formalism behind these studies and the experimental methods used in carrying them out. Recent
results from RHIC are put into context in a systematic review of correlation measurements
performed over the past two decades. The current understanding of these results are discussed
in terms of model comparisons and overall trends.
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1 Introduction

The study of nucleus-nucleus collisions at ultra-relativistic energies aims at char-
acterizing the dynamical processes via which matter at extreme densities is pro-
duced, and the fundamental properties which this matter exhibits. In nucleus-
nucleus collisions, how do partonic equilibration processes proceed? For how
long, over which spatial extension and at which density is a QCD equilibration
state approached, and what are its properties? Particle densities attained during
a heavy ion collision are expected to exceed significantly the inverse volume of a
hadron. This implies that the high temperature phase of QCD, the Quark Gluon
Plasma, comes within experimental reach. Chiral symmetry restoration and de-
confinement phase transition are testable in heavy ion collisions. However, the
experimental study of QCD at high temperatures and densities is complicated by
the short lifetime and mesoscopic extension of the produced system. Femtoscopy,
the spatio-temporal characterization of the collision region on the femtometer
scale, is needed to frame any discussion of dynamical equilibration processes.

The Relativistic Heavy Ion Collider (RHIC) just finished the first part of a ded-
icated experimental heavy ion program. Center of mass energies (

√
sNN = 200

GeV) exceeded those of previous fixed target experiments by a factor 10. The
current discussion of RHIC data focuses mainly on several qualitatively novel
phenomena which all support the picture that dense and rapidly equilibrating
QCD matter is produced in the collision region (1; 2; 3; 4). In particular, iden-
tified single inclusive hadron spectra all appear to emerge from a common flow
field whose size and dependence on transverse momentum and azimuth is consis-
tent with expectations that the produced matter is a locally equilibrated, almost
ideal fluid of very small viscosity. Moreover, high-pT hadron spectra show a cen-
trality dependent, strong suppression in Au+Au collisions, but not in a d+Au
control experiment, indicating that even the hardest partons produced in the col-
lision participate significantly in equilibration processes. In short, experiments
at RHIC have demonstrated already that heavy ion collisions produce dense and
equilibrating matter, and that controlled experimentation of this matter is pos-
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sible, using a large variety of probes.
Despite these successes numerous questions remain concerning the state of the

matter produced in these collisions. Most notably, the equation of state is far from
being determined and issues concerning chiral symmetry restoration are largely
unresolved. Addressing these fundamental questions about bulk matter requires
a detailed understanding of the dynamics and chemistry of the collision which
can only be acquired by thorough and coordinated analyses of data and theory.
In particular, spatio-temporal aspects of the reaction need to be experimentally
addressed. The small size, ∼ 10−14 m, and transient nature, ∼ 10−22 seconds,
of the reactions preclude direct measurement of times or positions. Instead,
femtoscopy must exploit measurements of asymptotic momenta. Correlations of
two final-state particles at small relative momentum provide the most direct link
to the size and lifetime of subatomic reactions (5; 6; 7; 8; 9; 10; 11; 12). Since
correlations from either interactions or from identity interference are stronger
for smaller separations in space-time, spatio-temporal information can be most
easily extracted for small sources, opposite to the limitations of microscopes and
telescopes.

The interference of two particles emitted from chaotic sources was first ap-
plied by Hanbury-Brown and Twiss (13; 14) where photons were exploited to
determine source sizes for both laboratory and stellar sources in the 1950s and
1960s. Correlations of identical pions were shown to be sensitive to source di-
mensions in proton-antiproton collisions by Goldhaber-Goldhaber, Lee and Pais
in 1960 (15). In the 1970s methods were refined by Kopylov (16; 17), Koonin,
(18) and Gyulassy (19), and other classes of correlations were shown to be useful
for source-size measurements, such as strong and Coulomb interactions. Bevalac
analyses showed that interferometry was truly capable of quantitatively determin-
ing spatial and temporal source dimensions, (20), and of providing a stringent
test of dynamical models (21). Throughout the last 25 years this phenomenology
has developed into a precision tool for heavy ion collisions. Whereas hadronic
sources are short lived and one measures correlations of the momentum of outgo-
ing particles, stars are long-lived and require experimental filters to enforce the
approximate simultaneity of the two photons. Despite the fact that the theory for
these two classes of measurement are very different (22), the heavy-ion commu-
nity often refers to any type of two-particles-at-small-relative-momentum analysis
related to size and shape as HBT correlations, in reference to Hanbury-Brown
and Twiss’s original work with photons. To some, however, the term “HBT”
refers only to identical-particle interferometry. Following Lednicky, we will em-
ploy the term “femtoscopy” (23; 24) to denote any measurement that provides
spatio-temporal information, including coalescence analyses.

The theory and phenomenology of correlation femtoscopy are reviewed in the
next section, with particular emphasis on describing the approximations used to
derive the connection between spatio-temporal aspects of the emission function
and correlations constructed from final-state momenta. Experimental methods
and techniques are correspondingly reviewed in Sec. 3. Section 4 presents ex-
perimental results, with an emphasis on describing the systematics of source di-
mensions and lifetimes as a function of beam energy, system size, particle species
and a particle’s momentum. In addition to source dimensions, results for phase
space density and entropy are presented. Comparisons of experimental results
and transport models are presented in Sec. 5 with an emphasis on explaining the
“HBT puzzle”, i.e., the fact that dynamic descriptions that incorporate a phase
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transition to a new state of matter with many degrees of freedom significantly
over-predict observed source sizes. Section 6 summarizes the current state of the
field and lists new directions and challenges for future theoretical and experimen-
tal analyses.

2 Theory and Phenomenology Basics

2.1 Formalism

Two-particle correlation functions are constructed as the ratio of the measured
two-particle inclusive and single-particle inclusive spectra,

Cab(P,q) =
dNab/(d3pad

3pb)

(dNa/d3pa)(dN b/d3pb)
, (1)

P ≡ pa + pb, qµ = (pa − pb)
µ/2 − (pa − pb) · P

2P 2
Pµ .

The theoretical analysis of (1) aims at relating this experimentally measured
correlation to the space-time structure of the particle emitting source (7; 6; 8; 11).
Two forms are common for connecting the measured correlation function to the
space-time emission function s(p, x) through a convolution with the wave function
φ. In the first form (25),

Cab(P,q) =

∫

d4xad
4xbsa(pa, xa)sb(pb, xb)|φ(q′, r′)|2

∫

d4xasa(pa, xa)
∫

d4xbsb(pb, xb)
. (2)

In calculations of two particle correlation functions, the squared relative two-
particle wave function |φ|2 serves generally as a weight, and the emission function
s(p, x) contains all space-time information about the source since it describes the
probability of emitting a particle with momentum p from a space-time point x.
Here, and throughout this section, primes denote quantities in the center-of-mass
frame, i.e., the frame where P = 0. The source function sa is evaluated at the
momentum p̄a = maP/(ma + mb), p̄0

a = Ea(p̄a).
The second form, which is equally justified as Equation 2 by the approximations

described further below, is,

Cab(P,q) − 1 =

∫

d3r′SP(r′)
[

|φ(q′, r′)|2 − 1
]

, (3)

SP(r′) ≡
∫

d4xad
4xbsa(p̄a, xa)sb(p̄b, xb)δ (r′ − x′

a + x′
b)

∫

d4xad4xbsa(p̄a, xa)sb(p̄b, xb)
.

This expression allows one to consider |φ|2 as a kernel with which one can trans-
form from the coordinate-space basis to the relative-momentum basis. It also
emphasizes the limitation of correlation functions, that they can provide, at best,
the function SP(r′), the distribution of relative positions of particles with iden-
tical velocities and total momentum P as they move in their asymptotic state.
Thus, correlations do not measure the size of the entire source. Instead, they ad-
dress the dimensions of the “region of homogeneity”, a term coined by Sinyukov
(26), i.e., the size and shape of the phase space cloud of outgoing particles whose
velocities have a specific magnitude and direction. If the collective expansion of
the produced matter is strong, as is the case in central collisions, then the region
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of homogeneity is significantly smaller than the entire source volume. In what
follows, we discuss the assumptions on which Equations 2 and 3 are based.

We start from explicit expressions for the one- and two-particle spectra in terms
of T -matrix elements. For one-particle emission,

E
dN

d3p
=

∫

d4x s(p, x) =
∑

F ′

|
∫

d4xTF ′(x)e−ip·x|2, (4)

s(p, x) =
∑

F ′

∫

d4δxT ∗
F ′(x + δx/2)TF ′(x − δx/2)eip·δx . (5)

Here, F ′ refers to the state of all other particles in the system. All interactions
with the residual system are incorporated into the T matrix. However, there is a
choice as to whether mean-field interactions are included in the T matrix or are
instead incorporated into the evolution matrix (27; 28; 29; 30; 31). For example,
one can include the Coulomb interactions with the residual system by replacing
the phase factor eip·x in Equation 4 with an outgoing Coulomb wave function.
This can be quantitatively important, in particular for slow particles. It becomes
difficult when the two particles interact with one another through the strong or
Coulomb force, as this represents a quantum three-body problem.

Assumption 1: Higher order (anti)symmetrization can be neglected.
Equation 4 implies that all particles with asymptotic momentum p must have
had their last interaction with the source at some point x. For distinguishable
particles, this is indeed the case and Equation 4 does not represent an assumption.
However, if there are Na > 1 particles of the same type a, then one must consider
Ta(x1 · · · xNa). The evolution matrix is then no longer a simple phase factor but
includes Na! interference terms. The single-particle probability is then obtained
by integrating over the other Na−1 momenta. This can be accomplished explicitly
for simple source functions (32; 33; 34; 35; 36). The distortion to the single-
particle spectra and to the two-particle correlation function were found to be
important when the phase space density approached unity. Otherwise, Equation 4
is well justified.

Assumption 2: The emission process is initially uncorrelated
In writing Equation 4, one requires that two-particle matrix elements factorize,
TF ′′(xa, xb) = TF ′

a
(xa)TF ′

b
(xb), i.e., that the emission is independent. If multi-

particle symmetrization can be neglected, the two-particle evolution operator fac-
torizes into a center-of-mass and a relative operator. One has U(xa, xb; pa, pb) =
uq′(x

′
a−x′

b)e
iP ·(E′

axa/Minv+E′

b
xb/Minv) for non-identical particles, whereas for identi-

cal particles U = eiP ·(xa+xb)/2(uq′(x
′
a−x′

b)±(uq′(x
′
b−x′

a))/
√

2. This is illustrated
in Figure 1. Then, the two-particle probability can be expressed in terms of one-
particle source functions,

EaEb
dNab

d3pad3pb
=

∫

d4xad
4xbd

4q̃sa((E
′
a/Minv)P + q̃, xa)sb((E

′
b/Minv)P − q̃, xb)

×d4δr′eiq̃·δr′u∗
q′(x

′
a − x′

b + δr′/2)uq′(x
′
a − x′

b − δr′/2). (6)

Assumption 3: Smoothness approximation(37; 38; 39)
Equation 6 is difficult to evaluate as it requires knowledge of the source function
evaluated off-shell. For the special case where the particles do not interact aside
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Figure 1: Schematic representation of the squared emission amplitude for two
particles emitted independently from the grey-shaded source region and interact-
ing with each other in the final states. For identical bosons (+) and fermions (-),
correlation also involves interference between the paths.

from identical particle interference, uq(xa − xb) = [eiq·(xa−xb) ± eiq·(xb−xa)]/
√

2,
the integrals over q̃ and δr′ can be performed analytically,

EaEb
dNab

d3pad3pb
=

∫

d4xad
4xb {s(pa, xa)s(pb, xb) (7)

±s(P/2, xa)s(P/2, xb) cos[(pa − pb) · (xa − xb)]} .

The source functions in the interference term are evaluated off-shell for non-zero
q, P0/2 6= E(P/2). The smoothness approximation replaces s(P/2, xa)s(P/2, xb)
with either s(E(P/2),P/2, xa)s(E(P/2),P/2, xb) which leads to Equation 3, or
with s(pa, xa)s(pb, xb) which leads to Equation 2. If the first approximation is
performed, one should also make the same approximation for the denominator.
The smoothness approximation has been checked for expanding thermal sources,
where it was found to be very reasonable for large (RHIC-like) sources, but quite
questionable for smaller sources such as those found in pp or e+e− collisions (39).

Assumption 4: Equal time approximation
For the general case where the evolution operator incorporates Coulomb or strong
interactions, deriving Equations 3 and 2 from Equation 6 is more complicated.
First, the smoothness assumption amounts here to neglecting the q̃ dependence in
the product of the source functions in Equation 6. This assumption is somewhat
more stringent in the presence of final state interactions, since the relevant range
of q̃ extends beyond q. With this assumption, one obtains a δ-function constraint
for δr′, and the integrand of (6) is proportional to the squared evolution matrix
|u′

q(x
′
a −x′

b)|2. This evolution matrix has non-zero time components, which must
be neglected if one is to identify it with the relative wave function. Since the
relative motion in the pair rest frame is small, one expects this approximation to
be reasonable, but it has not yet been tested in model studies.

The above formalism is semi-classical in the sense that a quantum-mechanical
particle emission probability, defined by the T -matrix elements, is usually ap-
proximated by classical source functions. As a consequence, quantum uncertainty
limits the applicability of Equations 3 and 2. To illustrate this limitation, source
functions have been evaluated by convoluting the emission function with wave
packets(40; 41; 42; 43) of spatial width σ. This leads to a broadening of spatial
distributions by (∆R)2 ∼ 0.5−1.0 fm2. Since quantum smearing may already be
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incorporated into some of the semi-classical treatments through the choice of the
initial density distribution, these calculations should be regarded as indicative of
the theoretical uncertainty. Since this error affects the size in quadrature, it is
negligible for large sources, but might be significant for sources near 1 fm in size
with strong space-time correlations (42; 41; 44; 38; 39). In particular, analyses
of ππ correlations from e+e− collisions, which result in source sizes of less than
1.0 fm(45; 46), are difficult to interpret in the above formalism.

2.2 Identical-Particle Interference

In the absence of strong and electromagnetic final state interactions, the wave
function of an identical particle pair in Equation 3 becomes

|φ(q′, r′)|2 − 1 = ± cos(2q′ · r′). (8)

The distribution of separations in coordinate space SP(r′) can then be determined
by performing a three-dimensional Fourier transform of C(q′)−1. It is instructive
to consider the properties of this inversion in more detail. The curvature of C(q)
at q = 0 can be related to the mean-square separation of the three-dimensional
shape of SP(r) (we neglect the P labels in C and S),

−d2C(q)

dqi dqj
= 〈rirj〉 =

∫

d3rSP(r)rirj. (9)

This relation has been useful to qualitatively illustrate the relation between spe-
cific space-time information and specific features of the correlator. However,
applying the identity quantitatively requires careful consideration of pions from
longer-lived resonances which can dominate the calculation of 〈r2〉 if not ac-
counted for.

2.3 Correlations from Coulomb and Strong Interactions

Compared to the case for non-interacting identical particles, where the transfor-
mation between SP(r) and C(P,q) is a Fourier transform, analyzing the experi-
mentally measured correlation function with Equation 3 to determine the source
function is more complicated. Understanding the resolving power of the kernel
|φ(q, r|2 requires a detailed understanding of the relative wave function. Once
one averages over spins, the squared relative wave function is a function of q, r
and cos θqr. In relativistic collisions, correlation analyses are usually confined to
light singly charged hadrons. Coulomb-induced correlations are then weak and
must be analyzed at small q where quantum effects become important (qr/~ ∼ 1).
The relative two-particle wave function in the presence of Coulomb interactions
can then be written as a function of qr/~, r/a0 and cos θqr.

φ = Γ(1 + iη)e−πη/2eiq·r

{

1 +

∞
∑

n=1

hn · (r/a0)
n

}

, (10)

where a0 is the Bohr radius, h1 = 1 and hn = n−1−iη
−inη hn−1. Here, η ≡ µe2/~q

is independent of r, and for small r/a0 the correlation function behaves as the
Gamow factor, G(η) ≡ e−πη|Γ(1 + iη)|2 = 2πη/(e2πη − 1). Thus, the Coulomb
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kernels have little resolving power for ππ correlations where the a0 = 387 fm, but
have greater resolving power for pK correlations where a0 = 84 fm.

Coulomb interactions combine with identical-particle statistics. For r << a0,
the effects of Coulomb can be removed easily from the correlation function since
η is independent of r (19),

|φ|2 ≈ G(η)[1 + cos(2qr cos θqr)] . (11)

For realistic source sizes, the order r/a0 corrections are of the order of 10%
for ππ correlations and are larger for heavier pairs (37; 47). Significant effort
has been invested in “correcting” experimental correlation functions to remove
Coulomb effects to all orders, but such “corrections” are model-dependent. The
safest method for determining the source function is either inverting the full kernel
(48; 49; 50; 51; 52; 53) or fitting C(q) to some parameterized form for S(r) which
is convoluted with the full kernel. Neither of these tactics are computationally
prohibitive.

Strong interactions can also be exploited to provide size and shape information.
If the size of the source is much larger than the range of the potential between
the two particles, the kernel (|φ|2−1) can be determined entirely from knowledge
of the phase shifts. Pairs that have a resonant interaction are especially useful,
because the resonance will lead to a peak whose height is inversely proportional
to the source volume, if qR >> ~. At small q the kernel is determined by the
scattering length, a, (54) and the height of the correlation at q = 0 becomes

C(q = 0) − 1 =

〈

−2a

r
+

a2

r2

〉

, (12)

where the averaging is performed using SP (r) as a weight. Of course, the ef-
fects of strong interactions, Coulomb and identical-particle interference can all
combine as is the case for pp correlations. The pp kernel has been analyzed in
depth by Brown and Danielewicz where the kernel was inverted and applied to
experimental pp data. Evidence was seen for significant non-Gaussian behavior in
the resulting source functions (52; 53). Strong-interactions also provide angular
resolving power (55) which can be understood from the perspective of classi-
cal trajectories. Even s-wave scattering can be exploited to discern information
about shape.

Strong and Coulomb induced correlations apply to both identical and non-
identical particles. For non-identical particles the wave function is not sym-
metrized and |φ(q, r)|2 6= |φ(q,−r)|2 which results in odd components of the
correlations function, C(q) 6= C(−q) if there are odd components of S(r) as
is the case for non-identical particle pairs. This asymmetry can be experimen-
tally exploited to investigate the spatio-temporal differences between the emission
functions of different particle species (56; 57); this requires, however, sufficient
statistics to select on the angle between the total and relative momentum in the
pair center of mass ∠(q,P) (58).

2.4 Coordinate Systems

Correlation functions depend on two three-dimensional momenta, P and q. For
high-energy collisions, analyses are usually performed in the “longitudinally co-
moving system” (LCMS), a rest frame moving along the longitudinal (beam)
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direction such that Pz = 0. Axes are usually chosen according to the “out-side-
long” prescription. The longitudinal axis is chosen parallel to the beam, while
the outward axis points in the direction of P, which is perpendicular to the beam
axis. The sideward axis is chosen perpendicular to the other two. If the system
is boost-invariant, observables expressed in the LCMS variables are independent
of Pz and the source has a reflection symmetry about the rlong = 0 plane. If
the collision is central, there is also a reflection symmetry about the rside = 0
plane. Any four-vector V can be expressed in this coordinate system using the
four-momentum P to project out the components(59; 60; 61),

Vlong = (P0Vz − PzV0)/MT , (13)

Vout = (PxVx + PyVy)/PT ,

Vside = (PxVy − PyVx)/PT ,

where MT = P 2
0 − P 2

z and P 2
T = P 2

x + P 2
y . Dimensions of the source function are

typically quoted in this coordinate system. One could also perform a second boost
to the pair frame, in which the transverse components of the total momentum
are zero. Then,

V ′
out =

Minv

MT

(PxVx + PyVy)

PT
− PT

MT Minv
P · V, (14)

where M2
inv = P 2. Relative wave functions are more conveniently expressed in

the frame of the pair. For instance, a sharp resonant peak is no longer sharp if the
correlation is viewed away from the pair frame. For pairs where the correlation
is influenced by Coulomb and strong interactions, most analyses are conducted
in the pair frame.

For non-zero impact parameters, azimuthal symmetry is lost and source func-
tions also depend on the azimuthal direction of the pair’s total momentum (62;
63; 64). Also, if boost-invariance is broken, the pair’s rapidity needs to be speci-
fied. In this more general case, reflection symmetries are broken and the choice of
the coordinate axes becomes somewhat arbitrary. One could orient the axes ac-
cording the event’s impact parameter, or one could rotate the coordinate system
so that in the new frame cross terms such as 〈xy〉 vanish (illustrated in Figure 2).
One would then specify the Euler angles as part of the description of the source
function.

2.5 Gaussian Parameterizations

To gain a physical understanding of the three-dimensional spatio-temporal source
distribution, it is useful to summarize its size and shape with a few parameters.
This motivates the study of Gaussian parameterizations for the source SP(r′)
and the two-particle correlator. Realistic sources deviate from Gaussians, e.g. by
exponential tails due to resonance decay contributions. The extracted Gaussian
source parameters may thus depend on details of the fitting procedures. These
shortcomings can be overcome with imaging methods, or more complicated forms
for the fitting. A more general three-dimensional analysis of correlations would
involve decomposing both the correlation and source functions in either spherical
or Cartesian harmonics (65; 66). Although the detailed non-Gaussian aspects
of the correlation are important, the extra information can also cloud the main
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trends in the data. In practice, Gaussian parameterizations provide the standard
minimal description of experimental data.

2.5.1 The general case The most general form for a Gaussian source is
exp{−Aαβ(xα−x̄α)(xβ−x̄β)}, where xα refers to the four dimensions x, y, z, t, and
A is a 4 × 4 real symmetric matrix. The most general form has 14 parameters,
10 parameters for A and four more parameters for the offsets x̄α. Reflection
symmetries can be used to eliminate certain cross terms and some of the offsets
(67). Furthermore, if the particles are identical or have the same phase space
distributions, all the offsets can be set to zero. Since the source function for the
second species b might also have 14 parameters, there could be up to 28 Gaussian
parameters in describing both sa and sb. However, since S(r) depends only on the
distribution of relative spatial coordinates in the pair frame, only nine Gaussian
parameters are required to describe the most general for S for a given P. Three
of these nine parameters can be identified with Gaussian widths, three can be
identified with offsets, and the last three can either be identified with cross terms,
or with the three Euler angles describing the orientation of the three-dimensional
ellipse.

Using the reflection symmetries for mid-rapidity sources in a symmetric central
collision, a Gaussian parameterization of the emission function for particle species
a in the out-side-long coordinate system reads

sa(p, x) ∼ exp

{

−(xout − x̄a,out − Vs,a(t − t̄a))
2

2R2
a,out

(15)

− (xside)
2

2R2
a,side

− (xlong)
2

2R2
a,long

− (t − t̄a)
2

2(∆τa)2
.

}

,

The symmetries forbid any cross terms in the exponential involving xside or xlong,
such as xsidexout or xlongt, but do not forbid a cross term between outward position
xout and time t. Here, this cross term is taken into account by allowing the source
to move in the outwards direction with a velocity Vs. The symmetries also forbid
offsets in the sideward or longitudinal direction. These other offsets have also
been addressed for non-central collisions (68; 69).

The correlation function is determined by the phase space density of the final
state, Equation 27. The resulting phase space density is

fa(p, r, t) ∼ exp

{

−
[

xout − X̄a(t)
]2

2
[

R2
a,out + (Vs,a − V⊥)2(∆τa)2

] − x2
side

2Ra,side2

−
x2

long

2Ra,long2

}

,

X̄a(t) = x̄a,out + V⊥(t − t̄a). (16)

Here, V⊥ is the velocity of the pair in the LCMS frame.
The correlation function is determined by the relative distance function SP(r′),
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see Equation 3,

SP(r′) ∼ exp

{

−
[

r′out − X̄out

]2

4γ2
⊥R2

out

− r′2side

4R2
side

−
r′2long

4R2
long

}

(17)

R2
out =

1

2

[

R2
a,out + R2

b,out + (Vs,a − V⊥)2(∆τa)
2 + (Vs,b − V⊥)2(∆τb)

2
]

,

R2
side =

1

2

[

R2
a,side + R2

b,side

]

, R2
long =

1

2

[

R2
a,long + R2

b,long

]

,

X̄out = x̄′
a,out − x̄′

b,out,

where γ⊥ ≡ (1 − V⊥)−1/2. Thus, there are four measurable parameters, Rout,
Rside, Rlong and X̄out. In the absence of any symmetry, there are five more terms:
three cross terms (R2

out,side, R
2
out,long and R2

side,long), and two more offsets (Xside

and Xlong). For identical particles all the offsets are zero.

2.5.2 Sensitivity to Lifetime Given the symmetries used to derive Equa-
tion 17, the most experiment can provide is the determination of the four param-
eters, Rout, Rside, Rlong and X̄out. The only way to independently determine the
lifetime is to assume that the two transverse spatial sizes are approximately equal
(70). After assuming R2

a,out + R2
b,out ≈ R2

b,side + R2
b,side, Equation 17 yields for

identical particles (Va,s = Vb,s = Vs,∆τa = ∆τb = ∆τ),

(V⊥ − Vs)
2(∆τ)2 ≈ R2

out − R2
side . (18)

In general, however, the source velocity is not precisely known and outward and
sideward spatial dimensions are not exactly equal which result in a significant
systematic error when applying Equation 18, especially since temporal effects
enter in quadrature. The Rout/Rside ratio only provides a reliable estimate of the
lifetime when (V⊥ − Vs)∆τ is much larger than the transverse size.

2.5.3 Gaussian Cross Terms In addition to the three Gaussian parame-
ters, Rout, Rside and Rlong that describe the dimensions of a Gaussian source, one
needs in the general non-symmetric case, three more parameters to describe the
angular orientation of the principal axes. Figure 2 displays how the principal axes
might differ from the out-side-long axes once the collisions are off center. These
three Euler angles combined with three sizes can also be related to the parameters
Aij in the general form for a three-dimensional Gaussian, exp(−Aijrirj), where
A is a symmetric matrix with six independent components (71; 67; 62; 64).

For pairs of identical particles, the correlation function for Gaussian sources is
also Gaussian,

C(q) = 1 + exp(−(R2)ijQiQj) , (19)

where Q = 2q. The six experimentally determined parameters, (R)2ij , can be

related to the moments of S(r′) (72),

〈rirj〉 = (R2)ij . (20)

For central collisions, the source sizes (R2)ij depend only on the longitudinal

pair momentum PL and on the modulus of the transverse pair momentum |~PT |.
This is different for non-central collisions for which the azimuthal direction φpair =

∠(~PT , b̂) of the transverse pair momentum with respect to the impact parameter
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Figure 2: For non-central collisions the principal axes describing the orientation
of the region of homogeneity can differ from the out-side-long axes. By viewing
the source distribution from the perspective where the beam axis is oriented
horizontally (left panel) and from peering down the beam pipe (right panel), the
orientations leading to out-long and out-side cross terms are illustrated.

direction b̂ matters. The φpair-dependences of (R2)out, (R2)side and (R2)out−side

then characterize the degree to which the initially out-of-plane-extended source
geometry has expanded to the point where it becomes in-plane-extended (62; 63).
The out-longitudinal and side-longitudinal cross terms contain information about
the extent to which the main axis of the emission ellipsoid is tilted with respect
to the beam axis(63). We return to this topic in Section 4.2.

The Yano-Koonin parameterization (73; 74; 67; 75) provides an alternative
basis for describing the out-long cross term. The Yano-Koonin form is based on
the assumption that one can boost along the beam axis to a source frame where
the correlation function has a simple form.

C(P,Q) = 1 + exp
{

−Q̃2
⊥R2

⊥ − Q̃2
||R

2
|| − Q̃2

0R
2
0

}

, (21)

where Q̃ is the momentum difference defined in the source frame which has ra-
pidity yYK. In that frame R0 is the Gaussian lifetime and R⊥ and R|| are the
dimensions of the source. This can be transposed to the out-long-side frame by
boosting Q̃ along the beam axis to the frame where Pz = 0, i.e. the LCMS
frame, then using the fact that Q0 = QoutP⊥/P0 ≡ QoutV⊥ in the new frame.
This yields Q̃0 = cosh(yππ − yY K)QoutV⊥ − sinh(yππ − yYK)Qlong, and Q̃|| =
cosh(yππ − yY K)Qlong − sinh(yππ − yYK)QoutV⊥, where yππ is the rapidity of the
LCMS frame. Substituting these expressions into Equation 21 yields a cross term
in the exponential equal to QoutQlong(R

2
0 + R2

||) sinh 2(yππ − yYK), which disap-

pears when yY K = yππ. By fitting yY K as a function of the pair rapidity, aspects
of boost invariance can be tested. Given that the distribution of source rapidities
should fall off for large rapidities, one expects yY K to lag yππ since pions of a
given rapidity would more likely have been emitted from sources with smaller
rapidities (74).

2.6 The λ factor

Many pions measured in experiment come from long-lived decays. Pions from
weak decays may, or may not depending on the experiment, be identified and
removed from the analysis since their decay vertices are typically a few centime-
ters from the reaction center. Decays from η or η′ mesons occur a few thousand
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fm away from the center of the collision. At these distances, they are effectively
uncorrelated with other particles but can not be identified with experiment. If
a fraction λ of the pairs originate from the spatio-temporal region relevant for
correlations, the correlation is muted by the factor λ (19). If the source function
is divided into two contributions, S(r) = λSlocal + (1 − λ)S∞, where both Slocal

and S∞ integrate to unity, the resulting correlation is

C(q) = (1 − λ) + λ

∫

d3r′Slocal(r
′)

[

|φ(q′, r′)|2 − 1
]

. (22)

If the experimental sample includes a contamination from weak decays, η, or
mis-identified particles of a fraction f , the lambda factor becomes (1 − f)2. It is
not uncommon for this contamination factor to be near 30% which results in λ
near one half.

Certainly, this division is somewhat artificial as there are non-Gaussian tails,
or halos (76), to Slocal due to such causes as the exponential fall-off of the source
function in the longitudinal direction or semi-long-lived resonances such as the φ
whose lifetime is 40 fm/c. Non-Gaussian behavior is a subject for either imaging
(48; 49; 50; 51; 52; 53), or for more complicated parameterizations.

The λ factor is often referred to as an incoherence factor, the name being mo-
tivated by the properties of a coherent state, exp{i

∫

dpη(p)[a(p) + a†(p)]}|0〉,
which for identical particles leads to no correlation. Coherent states represent
highly correlated emissions due to phase coherence and thus violate the assump-
tion of incoherence or uncorrelated emission implied by Assumption 2 early in
this section. Whether an observation of λ 6= 1 is due to coherence or due to
contamination from particles from far outside the source volume can be tested
by analyzing three-particle correlations (77; 78). Such analyses of data at both
SPS and RHIC have been consistent with the incoherence conjecture (79; 80; 81).
Microscopic model calculations at the AGS reproduce the excitation function of
λ when resonances contributions are included (82).

2.7 Collective Flow and Blast-Wave Models

Both longitudinal and radial collective expansion reduce the size of the “region
of homogeneity”, i.e., the relevant volume for particles of a given velocity. For an
infinite volume, the size of this region is set by the length one must move before
collective velocity overcomes the thermal velocity, R ∼ Vtherm/(dv/dz).

2.7.1 Longitudinal Flow The Gaussian lifetime ∆τ described in Equa-
tion 18 represents the spread of the emission times. A small value of ∆τ does
not imply that particles were emitted early, but that they were emitted suddenly.
Inferring the mean time at which particles are emitted requires a different as-
sumption. For instance, at RHIC, the initial nuclei are Lorentz contracted by
a factor of 100, and if there were no subsequent expansion, Rlong would be less
than a Fermi. If one assumes that the system expands along the beam axis with
no longitudinal acceleration, the collective velocity becomes

Vcoll,z = z/t. (23)

If emission then comes from sources moving over a large range of rapidities (a
boost-invariant expansion), the dimension along the beam axis for the source
emitting zero-rapidity particles is determined by the distance one can move be-
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Figure 3: Since particles with heavier masses have smaller thermal velocities their
source volumes are more strongly confined by collective flow. For longitudinal
flow (left panel) this results in smaller values of Rlong for particles with higher

mT =
√

m2 + p2
T . For radial flow (right panel) this confines heavier particles

towards the surface which results in both a reduced volume and an offset ∆r in
the outward direction.

fore the collective velocity overwhelms the thermal velocity to force the emission
function back to zero. The size can then be expressed as:

Rlong ≈ Vtherm

dv/dz
= Vtherm〈t〉. (24)

Whereas Rout/Rside gives information about the suddenness of emission, Rlong

provides insight into the mean time at which emission occurs given an estimate
of the thermal velocity.

For a thermal source with relativistic motion, the thermal velocity along the
beam axis is determined by the temperature and the transverse mass, mT =
√

m2 + p2
T (59). For large mT the thermal velocity in the longitudinal direction

becomes non-relativistic, Vtherm =
√

T/mT , and the source size falls as 1/
√

mT

which is referred to as mT scaling (83). This is illustrated in Figure 3. How-
ever, this assumes all particles are emitted with the same Bjorken time τB and
temperature, independent of the transverse mass. Since particles with high mT

are probably emitted at lower τB, and since the temperature roughly behaves at

τ
−4/3
B , the longitudinal size could fall even more quickly than m

−1/2
T .

In a boost invariant expansion, emission is a function of the Bjorken time

τB =
√

t2 − z2, not the time t, and since t =
√

τ2
B + z2, those particles emitted

with small z have a head start. This is sometimes referred to as an inside-
outside cascade. The transverse shape of S(r) is then affected non-trivially by the
expansion along the beam. The resulting correlation function can be calculated
analytically in the case of pure identical-particle correlations (84; 85).

As will be seen in the next subsection, boost invariance is also incorporated into
blast-wave models with transverse expansion. Boost invariance is also assumed
for many hydrodynamic models. The finite size of the system would alter the



May 13, 2005 15

results for two reasons. First, if the distribution of sources covers only a finite
range in η, the tails of the distribution S(r) are cropped off. Assuming the
distribution in η is Gaussian rather than uniform,

1

R2
long

∼ 1

V 2
thermτ2

B

+
1

η2
Gτ2

B

, (25)

where ηG is the range of rapidities over which the sources are distributed. If ηG

were 1.5 units of rapidity, the extracted values of τB from boost-invariant pictures
would be underestimating τB by ∼ 10%.

A second shortcoming of boost-invariant models is that they ignore acceleration
in the longitudinal direction. Accounting for this acceleration would alter the
relation between the time and the velocity gradient. Neglecting this acceleration
could also lead to a modest underestimate of τB.

2.7.2 Transverse Collective Flow Since transverse collective flow is
intimately related to the pressure and viscosity, it is of central importance. Blast-
wave models are based on pictures of thermal sources super-imposed onto the
transverse and longitudinal collective velocity profiles. Simple forms are then
chosen for the profiles. Only two parameters are important for analyzing spectra,
the temperature and the transverse velocity. Since heavier particles are more
sensitive to flow than are light particles, the two parameters can be adjusted to
fit the spectra of several species.

In addition to the temperature and transverse velocity, correlation measure-
ments are also sensitive to the space-time parameters of the blast wave. In a
minimal parameterization this would include the lifetime τB and the transverse
size R. More sophisticated models would also include a spread in lifetime ∆τ
and a surface diffuseness ∆R. Additional parameters ensue when one considers
sensitivity to the reaction plane. Then, two parameters are needed to describe
the transverse size, and two parameters are required to describe the transverse
collective velocity. These parameters can then depend on the azimuthal direction
of P (86).

Choosing a blast-wave parameterization involves a number of choices with re-
gards to the form of the parameterization (87). Chemical potentials and temper-
atures might be chosen to vary with the transverse position r (88; 89) or might be
chosen to be uniform. A wide variety of parameterizations have been employed
for the transverse velocity profile, which might choose linear profiles for either v,
γv or the transverse rapidity asinh(γv). In some parameterizations, the velocity
profile has been chosen to rise quadratically with r (90; 91). Although hydrody-
namics has been invoked as justification for different parameterizations, profiles
from hydrodynamics vary according to the equation of state.

For particles moving much faster than the surface velocity transverse flow man-
ifests itself by constraining particles to an increasingly small fraction of the blast-
wave volume for the same reason that Rlong falls with mT due to longitudinal
expansion (92). For large mT , this leads to both Rside and Rout falling as 1/

√
mT

(88; 89; 93). The fact that transverse dimensions fall with mT might also result
from the dynamics of cooling, superimposed with a growing fireball. This corre-
lates high-energy particles with earlier times when the fireball was both smaller
and at a higher temperature.

Non-identical particles are of special interest in a blast-wave. For particles
moving faster than the surface of the blast wave, there is a stronger tendency
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for heavier particles to be more confined to the region of the surface due to
their slower thermal velocities (68). This results in heavy particles being ahead
of lighter particles of the same asymptotic velocity, and leads to a non-zero ∆r

illustrated in Figure 3. As discussed in Sec. 2.3, these displacements are accessible
through measuring odd components of the correlation function (56; 57; 58).

2.8 Generating Correlations Functions from Hydrodynamics and

from Microscopic Simulations

Any model that predicts final-state space-time and momentum information of
emitted particles can be used to predict correlation functions. This informa-
tion may be extracted from both microscopic simulations or from hydrodynamic
calculations.

Microscopic simulations model the collision by evolving particles along straight-
line classical trajectories which are punctuated by collisions that are programmed
to be consistent with free-space cross sections. When the modeling is done on a
one-to-one basis, the simulations are referred to as cascades. Boltzmann simula-
tions are similar but employ an over-sampling by a factor Ns accompanied by a
scaling down of the cross sections by the same factor. These are then consistent
with the Boltzmann equation and become local and relativistically covariant in
the large Ns limit (94; 95). To generate correlation functions from either class of
simulation, there are essentially two methods which are equally justified within
the smoothness approximation. Method I is motivated by Equation 3. This in-
volves first creating two lists, one for each species, of the space time coordinates
xa and xb of all those particles that were emitted with momenta maP/(ma +mb)
and mbP/(ma + mb). From these lists, one generates SP(r) by sampling the
distributions of xa − xb. This list is then convoluted with |φ(q, r)|2 to generate
C(P,q) for all q. In Method II, one samples pairs randomly without regard to
their momenta. The numerator of the correlation function is then calculated by
generating pairs with the same weight as one expect to observe experimentally,
and applying a weight given by the square of the relative wave function. The
denominator would be calculated in a similar manner, but without the weight
from the wave function. This method reflects the description of the correlation
function in Equation 2. Acceptance effects or kinematic cuts can then be per-
formed exactly as they would be performed for real particles. Method II has
an advantage in that it is easier to accurately incorporate acceptance effects or
tight kinematic cuts. Method I makes for a much quicker calculation since the
procedure does not require sampling particles for irrelevant momenta (38).

Given the equation of state and the initial energy density, hydrodynamics pro-
vides the means for solving for the space-time development of the stress-energy
tensor which can be used to make predictions for correlations (96; 97; 98). Vis-
cous effects can also be incorporated and are non-negligible (99; 100). Generating
source functions from the output of hydrodynamic calculations is not as straight-
forward as it might seem. The Cooper-Frye prescription (101) conserves energy
and momentum if the equation of state is one of free particles, but suffers from
the fact that the particles that cross backwards across the surface into the hy-
drodynamic volume enter the source function as a negative emission probability.
If the relative velocity of the surface, as measured by an observer in the matter’s
rest frame, is not much faster than the thermal velocity, a different prescription
is required. Numerous prescriptions have been proposed to address these issues
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(102; 103; 104).
Hydrodynamic models, even those that incorporate viscosity, can not be justi-

fied once the system expands to the point that the mean free path is similar to the
characteristic size of the system. However, Boltzmann descriptions or cascades
are well justified at lower densities. Several efforts have thus focused on coupling
the two approaches (105; 106; 107; 108). Since the final-state trajectories are
established in the Boltzmann part of the prescription, one can apply either of the
methods mentioned above.

2.9 Phase Space Density, Entropy and Coalescence

Since phase space density depends on both the momentum p and the position
r, a measurement of the phase space density must specify the spatial region
over which it is determined. In practice, spatial information from two-particle
correlation functions is instrumental to this end. For identical particle pairs, the
“area” under the correlation function determines the average phase space density
(109). Substituting the final phase space density for the time-integrated source
function,

∫ tf dx0

Ep(2π)3
s(p, x)|p0=Ep = f(p,x, tf ) , (26)

and inserting into Equation 3 with Q = 2q leads to

∫

d3Q [C(Q) − 1] = (2π)3
∫

d3r|f(P/2, r, tf )|2
[∫

d3rf(P/2, r, tf )
]2 =

f̄(P/2)

dN/d3p
, (27)

f̄(p) =
(2π)3

(2S + 1)

Ep

m

dN

d3p
SP=2p(r′ = 0).

Equation 28 applies also for the case of non-identical particles of the same phase
space density. We note that f̄(p) is the phase space density averaged over coor-
dinate space for a specific momentum using the phase space density itself as the
weight. Unless f(p, r, t) is a constant within a fixed volume, the average phase
space density will fall below the maximum phase space density (102). For in-
stance, if f(p, r, t) has a Gaussian profile in coordinate space, the average phase
space density will be 2−3/2 of the maximum phase space density for that momen-
tum. For a Gaussian source,

f̄(p) =
π3/2

(2S + 1)mR3
inv

E
dN

d3p
, (28)

where R3
inv = (E/m)RoutRsideRlong is the product of the three radii as measured

in the frame of the pair. The phase space density is determined by combining a
source size measurement with the spectra. Entropy can be related to the phase
space density in the standard way (110)

S = (2S + 1)

∫

d3rd3r

(2π)3
[−f ln f ± (1 ± f) ln(1 ± f)] , (29)

dS/dy ≈
∫

d2pT E
dN

d3p

[

5

2
− ln(23/2f̄(p)) ± f̄(p)/2

]

. (30)
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Here, Equation 30 ignores higher powers of f̄ .
The average phase space density is also straight-forward to determine by con-

structing ratios of spectra with species that can either bind or form a resonance.
If species a and b can bind to form species c, thermal arguments would state

fc(r, t) = fa(Pma/mc, r, t)fb(Pmb/mc, r, t)e
B/T , (31)

where B is the binding energy, or the excitation energy if the resonance is un-
stable. Coalescence arguments, which give the same expression but without the
binding energy (111; 112), are identical if the binding energy is small compared to
the temperature as is the case for nucleon coalescence. The average phase space
density for a or b can be determined by inserting Equation 31 into Equation 28,

f̄a,b(p) = e−B/T mb,a(2Sb,a + 1)

mc(2Sc + 1)

EcdNc/d
3P

Eb,adNb,a/d3p
. (32)

Here, the binding energy needs to be expressed in the frame of the thermal bath.
For the case where B is small the assumption of a thermal bath can be neglected.
Two examples where particles with similar phase-space densities form low-energy
resonances or bound states are pn → d and φ → K+K−.

By comparing the expression for f̄ from the ratio of spectra in Equation 32,
with Equations 28 or 28, one can determine either SP(r′ = 0) or the Gaussian
parameters from ratios of spectra.

SP(r′ = 0) = e−B/T mamb(2Sa + 1)(2Sb + 1)

(2π)3mc(2Sc + 1)

EcdNc/d
3P

EadNa/d3pa · dN/d3pb
, (33)

R3
inv(P) =

1

(4π)3/2SP(r′ = 0)
. (34)

Coalescence analyses can provide powerful measurements of volumes, but they
only provide a single number, S(r′ = 0), and cannot provide any insight into
either the shape or the r dependence.

3 Femtoscopic measurements

Experimental techniques have developed considerably in response to significant
improvements in both the theory and the quantity and quality of experimental
data. In this Section we discuss the general experimental approach for defining
and analyzing femtoscopic correlations and their systematic dependence on global
and kinematic quantities.

3.1 Correlation Function Definition

In practice, the formal definition of the correlation function in Equation 1 is
seldom used in heavy ion physics. Instead the correlation of two particles, a and
b for a given pair momentum P and relative momentum q is nominally given by,

Cab
P (q) =

Aab
P (q)

Bab
P (q)

· ξP(q). (35)
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where Aab
P (q) is the signal distribution, Bab

P (q) is the reference or background
distribution which is ideally similar to A in all respects except for the presence
of femtoscopic correlations, and ξP(q) is a correction factor introduced to com-
pensate for non-femtoscopic correlations present in the signal that are not fully
accounted for in the background as well as artifacts resulting e.g. from finite
resolution and contamination.

3.2 Signal Construction

The signal Aab
P (q) refers to the relative momentum distribution of particles a and

b for a given range of pair momenta, P, and a given set of event characterizations.
Although not all analyses proceed in exactly the following fashion, the mechanics
of constructing the signal and background are most easily understood if one
considers as separate steps,

1. Event quality cuts and event-class binning,

2. Single-track (including particle identification) cuts and single-particle bin-
ning,

3. 2-particle pairing, 2-track cuts and pair momenta binning.

Here “event class” refers to both physics observables such as collision centrality
and reaction plane orientation, and detector considerations such as event vertex
position and the condition of the detector when the event was recorded, usu-
ally keyed by run number. The latter considerations are relevant to the proper
construction of the background. For event-class, particle, and pair bin, the fi-
nal signal is usually stored as a set of 3D-histograms in the canonical relative
momentum variables.

Single-particle acceptances divide out with a properly constructed background,
but 2-track acceptances can have a large effect on the correlation function. For
this reason the analysis of 2-track cuts is the dominant consideration in the
signal construction for most analyses. The cuts and terminology are different
for TPC experiments with near continuous hit distributions and Drift Cham-
ber experiments with projective geometry, but the goals are the same. Split-
tracks (113; 114) and ghost-tracks both refer to single tracks which are incorrectly
reconstructed as a pair of tracks with very low relative momenta. Even after the
event-reconstruction algorithms (which generate a list of individual tracks) have
been optimally tuned, small traces of these false pairs remain and must be re-
moved from the analysis with identical pairwise cuts. Usually only a tiny fraction
of tracks are split, and this effect may be ignored in essentially every physics ex-
cept femtoscopic ones. Various methods have been developed for identifying likely
split tracks, usually based on the number (114) or topology (113) of space-points
associated with the track.

Pairwise effects usually also result in the loss of pairs at low relative momentum,
since two tracks with very similar trajectories tend to be reconstructed as a single
track. (Note that in tracking detectors, this is not a problem if one or both of
the particles is a topologically-identified neutral particle. In that case, the decay
daughters may be well-separated even if their parents have identical momentum.)
Such merging issues are usually resolved by pairwise cuts which remove merged
pairs. Developing efficient and appropriate cuts can be a subtle exercise, and
requires good knowledge of the detector and event reconstruction software. In
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most cases these cuts are supported by simulations, but final determinations are
nearly always based upon data.

The question arises– what does it mean to cut out merged pairs? After all,
if the tracks have merged, then the pair is lost anyway. The point is twofold.
Firstly, the pair efficiency usually does not drop from 100% to 0% sharply as a
function of any variable. Thus, the cuts are usually tuned to exclude all (82; 113)
or most (115; 116; 117) of the inefficient region. If regions with less than perfect
efficiency remain in the analysis, a two-track efficiency correction based on Monte
Carlo simulations must be applied, typically leading to systematic uncertainties
of a few percent. The second reason for the cut is that it is applied equally to the
signal and to the background distribution Bab

P (q) (118). Thus, if some fraction f
of pairs is lost at some relative momentum q in Aab

P (q), the same fraction is lost
in Bab

P (q), and the ratio in Equation 35 is robust against the effect.

3.3 Background Construction

For reasons just described, all cut-imposed effects on the signal pair distribution
Aab must be applied to Bab. This often means identifying which pairs “would
have” been removed by merging, splitting, or other cuts, had the particles come
from in the same event.

The ideal background should be identical to the signal in all respects except
for the presence of femtoscopic correlations. Therefore, the global event charac-
teristics, single particle distributions and acceptances should match those of the
signal. A simple and straightforward way to construct such a background is to
form pairs from different events within a single event class. This event-mixing
technique (119) has gained wide acceptance in relativistic heavy-ion collisions
where violations to energy-momentum conservation are negligible in the high
multiplicity environment. This technique will be described in detail in what fol-
lows. However, other methods have also been used, especially if one considers
femtoscopy in other systems.

For elementary-particle collisions or in low-multiplicity events, event mixing
can violate total energy momentum conservation, especially when exclusive fi-
nal states or jet-axes must be preserved; thus, the correlation function would
reflect non-femtoscopic in addition to femtoscopic correlations. In these cases,
the most common techniques form a background from unlike-signed pairs, with
resonance regions excluded with cuts (120) or normalized with a correlation of
like- to unlike-signed pairs from a Monte Carlo (121). Other experiments have
constructed a background using only Monte Carlo generated pairs (122). A
few experiments have investigated backgrounds formed by swapping (123) or re-
versing momentum components relative to a jet-axis (120), but these methods
are not widely used. For detectors with symmetrical acceptance, such as the
STAR TPC (124), momentum conservation effects may be eliminated by mixing
pairs from the same event, with the lab momentum of one particle flipped (125).
Backgrounds constructed from single-particle distributions as formally defined by
Equation 1 have been used for heavy ion collisions at lower energies and shown
to be consistent with the more commonly used event-mixing technique (126).

In order to avoid inducing artificial structure in the correlation function, the
particles forming pairs in the background distribution should originate from “par-
ent” events with the same event characteristics. The parent events should have
similar vertex positions to within the experimental resolution. Because detector
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acceptances can vary with time (e.g. components may fail for some runs) parent
events should have been measured close in time to each other; this is usually
easiest in any case, since event mixing is done “on the fly” as time-ordered data
is read sequentially.

Parent events whose particles are mixed should also have the same single-
particle momentum distributions. Thus, they should have similar centralities and
orientations of the reaction plane. For example, mixing particles from events with
very different pT slopes or directions of preferred emission (elliptic flow) would
produce differences between Aab(q) and Bab(q) even in the absence of physical
correlations. Since almost all analyses to date have ignored these potential biases,
it is comforting that accounting for them makes little difference in practice (113).

The list of event classes given here is by no means exhaustive. One can expect
future analyses to incorporate the orientation of high pT particles (jet axis) or
any other event-related observable.

The procedure for deciding how many events to mix remains something of an
art and involves optimizing over the range of data runs, bin width, and statistics.
In order to minimize statistical errors, one typically forms approximately ten
times the number of pairs in the background as in the signal. For the special case
when all possible combinations are formed the variance of a particular relative

momentum bin is proportional to n
3
4 , where n is the number of entries in the

bin (20). However, as the number of pairs formed is reduced, the variance per

bin approaches the n
1
2 value expected for Poisson statistics (116). It is possible

that non-Poisson fluctuations persist in the co-variance between different bins,
but this has not yet been investigated.

Once the pairs have been mixed, the background must be subject to the same
2-track cuts that have been applied to the signal. For example, the exact same
track merging cuts or minimum separation on a detector must be applied to both
signal and background.

3.4 Corrections

Corrections to the correlation function fall into three categories: finite resolution
effects, mis-identified particle contamination, and compensation for deficiencies
in the background.

The first category concerns single-track momentum resolution, and reaction-
plane resolution. We consider finite momentum resolution corrections first. Typ-
ically, momentum resolutions are on the order of 1%. One approach is to correct
for momentum resolution by a double ratio of the ideal correlation function gen-
erated from a Monte Carlo simulation with perfect momentum resolution divided
by a Monte Carlo correlation function with momentum resolution turned on. The
femtoscopic weights are inserted into the simulations iteratively until the fitted
radii converge (118; 114; 82; 113). A second approach is similar, but corrects
only the Coulomb interaction term, which is most greatly affected by momentum
resolution effects (117). In both cases, the corrections change the fitted radii by
only . 5%.

As discussed in Section 4.2, azimuthally-sensitive analyses (127; 128; 129) mea-
sure oscillations in correlations as a function of emission angle with respect to the
reaction plane. Finite resolution effects in the reaction plane angle (130) artifi-
cially reduce the oscillation strengths. Methods have been developed to correct
the distributions Aab(q) and Bab(q) for these effects (64; 131).
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Another type of correction accounts for the inclusion of mis-identified and
secondary-particle contamination. For example, electrons may be mistakenly
identified as π− mesons. It is usually assumed that the mis-identified or sec-
ondary particles are uncorrelated with other particles, so the net effect on the
correlation function is to damp all structure uniformly in q. For purely Gaussian
correlations (c.f. Section 3.5), this effect is absorbed wholly into the λ factor
discussed in Section 2.6; homogeneity lengths– derived from the width of the
Gaussian correlation– are unaffected by the reduction in its strength. In many
cases, however, the homogeneity length is extracted largely from the strength of
the correlation, and so contamination effects must be removed. In the general
case, for which the purity ρ depends on the relative momentum, the correlation
function is be corrected according to Ctrue(q) = (Craw(q)−1)/ρ(q)+1 (58; 113).

It is more difficult to corrected for correlated contamination. For example,
if cuts cannot completely distinguish primary protons from those coming from
Λ decay, then measured p − Λ correlations will contain contributions from Λ −
Λ correlations. Unlike the “white noise” contamination discussed above, this
introduces structure into CpΛ(q) which would require detailed simulations to
account for. Such corrections will become more important at RHIC due to copious
resonance production, and especially for baryon correlation measurements, in
which the heavy daughter carries most of the momentum of the parent resonance.

The last category of corrections are applied to fix deficiencies in the background
distribution. This includes corrections is to account for two-particle inefficiencies,
which have been discussed in the previous Section. A second correction of this
type deals with the residual signal correlation that is present in all backgrounds
derived from events that contribute to the signal. The “residual” correlation
arises because femtoscopic correlations can modify the single particle distribu-
tions. This is especially true for small-aperture spectrometers. This effect can be
removed with an iterative procedure (20; 132), however, for many large experi-
ments the induced error is often 1% or less, and it is easier to fold this into the
systematic errors (117).

3.5 Fitting

After the application of all cuts and corrections, the correlation is formed accord-
ing to Equation 35 and then fit to determine spatial parameters. As described in
Section 2, there are three approaches to fitting the correlation function: fitting
to a simplified Gaussian form with strong and Coulomb interactions neglected or
factored out, fitting to a convolution of the full kernel convoluted to a parame-
terization of S(r), and inverting the kernel to fit a source image. The simplified
Gaussian fits based on Equation 19 are limited to correlations of identical pions,
kaons, and photons, but it has been the most widely used method to date be-
cause of the computational demands of the other methods. We expect its use
to continue for the large systematic studies in which binning in centrality, reac-
tion plane, and kT leads to fits of more than one hundred separate correlation
functions for a single colliding system.

However, the functional form of the Gaussian parameterization used by experi-
mentalists has evolved over the years. Before reviewing the most recent functional
forms, it is necessary to review the treatment of the Coulomb interaction, and
the fraction of pairs coming from the source that contribute to the femtoscopic
correlations. Both were first introduced into the literature by Zajc (20) in the
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Figure 4: Projections of
a 3-dimensional correlation
function (integrated over 0-
30 MeV/c in orthogonal com-
ponents) for low-kT π− pairs
for 200 GeV central Au+Au
collisions (113) (filled sym-
bols) with fit function. Open
symbols include correction for
Coulomb interaction among
all pairs. Projections gen-
erated according to the pre-
scription described in (135).

form of the Gamow factor given in Section 2 and an empirical parameter λ to ac-
count for the observation that not all pairs exhibit femtoscopic correlations. With
steady improvements in data quality and CPU speed the Gamow factor has been
replaced with a calculation of an squared unsymmetrized Coulomb wave for a
finite Gaussian source. The improvements in data quality have also led to a
self-consistent treatment of λ with respect to both Coulomb and Gaussian com-
ponents of the fit function (133; 134). For this to be accurate we must assume
that the source is fully chaotic, an assumption that has recently been verified
with three-pion correlations (81; 77). The non-femtoscopic pairs consist of mis-
identified particles and particles that emanate from too far from the source for
the correlation to be resolved experimentally. The region far from the source has
been referred to the source halo, to differentiate it from the core. The correlation
fit function is therefore given by Equation 36,

C(q) = N [λG(q)F (q) + (1 − λ)] , (36)

where N is the overall normalization, F is the Coulomb component, and G is the
Gaussian form for the un-damped correlation function, Equation 19 for out-long-
side coordinates, or Equation 21 for Yano-Koonin variables.

Fig. 4 shows projections of a π− − π− correlation function measured by the
STAR collaboration (113). The filled symbols are the measured correlation func-
tion corrected for momentum resolution only and fit with Equation 36. The open
symbols have been over-corrected by applying to all pairs the Coulomb correction
for the fitted source dimensions. Depending on the shape of the correlation and
degree of experimental contamination, extracted homogeneity lengths may vary
by up to ∼ 15% if the correlation function is over-corrected.

For proton-proton correlations and non-identical particle correlations direct fits
are performed by convoluting the full kernel with a parameterized source. For
these analyses, the paucity of statistics has been more of a limitation than the
relatively modest demands in CPU power. The examples given in Section 4 are all
for one-dimensional analyses, but recent data from RHIC will soon be analyzed
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in multi-dimensions.
The ability to image the source by inverting the kernel is a relatively recent

development, but one with very general applications. Because the source is pa-
rameterized by a series of B-splines, it is a very general form which is sensitive
to non-Gaussian shapes. To date source imaging has been performed only with
one-dimensional correlations, but like with the direct fits, a multi-dimensional
kernel will soon be possible (136; 65).

Non-Gaussian effects were reported already in the first pion correlation mea-
surement at RHIC (137). With higher statistics, the STAR Collaboration has
studied the issue in greater detail (113), performing a functional expansion (the
so-called Edgeworth expansion (138)) about a Gaussian shape. While signifi-
cant non-Gaussian contributions were reported, the dominant length scales were
already extracted in the purely Gaussian fits.

3.5.1 Minimization A simple chi-squared test is inappropriate for fitting
correlation functions because the ratio of two Poisson distributions is not itself
Poisson distributed, especially when taking the ratio of small numbers. For this
reason a log-likelihood fit function of the form given in Equation 37 is preferred.

χ2
PML = −2

[

A ln

(

C (A + B)

A (C + 1)

)

+ B ln

(

A + B

B (C + 1)

)]

. (37)

This equation derived from the principle of maximum likelihood assuming that
both signal and background are Poisson distributed (116). The full derivation of
Equation 37 and comparison to earlier log-likelihood functions is given in (116).

4 Measured Femtoscopic Systematics

The first systematic study to compare femtoscopic measurements across several
systems and experiments was performed almost 20 years ago with data from
intermediate-energy heavy ion-collisions at the Bevalac (139). The data, taken
with from experiments with different acceptances, triggers, and analysis tech-
niques, were sufficient to demonstrate a crude A1/3 scaling of the 1-dimensional
radii indicating that spatial scales were indeed being probed. The first femto-
scopic measurements for relativistic heavy ion collisions were presented by the
NA35 Collaboration at the Quark Matter meeting in Nordkirchen (140; 141).
More detailed measurements followed with the availability of sulphur and silicon
beams at the SPS (118) and AGS (142; 143).

Since then, increasingly sophisticated experiments at the AGS, SPS, and RHIC
have performed femtoscopic measurements corresponding to a wide range of con-
trol parameters. The experimental community performing the measurements has
reached critical mass and matured substantially; a common language and knowl-
edge base has developed concerning sometimes subtle details in performing and
interpreting femtoscopic measurements. The result of this effort is a striking
degree of consistency across experiments in regions of phase space where ac-
ceptances overlap, and meaningful generation of systematics across experiments.
Large-statistics data sets routinely allow three-dimensional correlation measure-
ments with small statistical error bars. Systematic errors, which now dominate
the experimental errors, have been reduced to the level of ∼ 5%, or ∼ 0.25 fm for
most measurements. It is no exaggerations to state that femtoscopic measure-
ments have become a precision tool.
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Figure 5: Pion source radius dependence on number of participants (left) and on
charged particle multiplicity (right). Data are for for Au+Au (Pb+Pb) collisions
at several values of

√
sNN, and also for Si+A collisions at the lowest energy.

Average transverse momentum 〈kT 〉 ∼ 450 MeV/c for the RHIC data and ∼
390 MeV/c at the lower energies. Data from (116; 144; 117; 113).

Here, we cover the most important systematics of femtoscopic measurements
from the AGS, SPS, and RHIC. We discuss only generally the physics probed
by a given systematic, appealing to intuitive schematic models such as the blast
wave (68). Full interpretations and comparisons to dynamic models are given in
Section 5

4.1 System size: Npart and Multiplicity

As discussed earlier, femtoscopic radii probe homogeneity regions, and not the
entire source (hereafter, the term “source” will be used to refer to the entire
source of particle emission). Nevertheless, the claim that two-particle correlations
probe spatial scales would be given little credence if the radii did not exhibit a
strong, positive correlation with system size. Therefore, measuring the systematic
variation of the radii vs. system composition and centrality represents the most
basic test of both theoretical and experimental femtoscopic techniques.

Coalescence studies (145) and two-proton measurements at the AGS (146) and
SPS (147) unambiguously demonstrate that nucleon homogeneity lengths increase
with decreasing impact parameter and/or increasing projectile mass, continuing
the trend mapped at lower energies (148; 149), where directional cuts have allowed
measurement of the shape of the homogeneity region (150; 151; 152). More de-
tailed information comes from pion correlations at relativistic energies, for which
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three-dimensional analyses allow partial isolation of purely geometrical effects.
The centrality dependence of Bertsch-Pratt source radii are shown in Figure 5
for a wide range of collision energies. The left panels show the dependence on
the number of participating nucleons, Npart, a generalization of the A1/3 linear
scaling of nuclear radii used to approximate the initial overlap geometry. All

of the radii exhibit a linear scaling in N
1/3
part, most with finite intercepts. It is

possible to compare linear slopes for different energy ranges, however, the inter-
cepts are difficult to interpret given the ambiguities involved in extrapolating to
fewer than two participating nucleons. For Rout the linear slopes for all energies
are approximately consistent, with the AGS data falling slightly above, and the
lower energy SPS data falling well below the RHIC results. Only the slope of
the Rlong dependence shows a significant increase from the AGS to RHIC, con-
sistent with a lifetime that increases with both centrality and

√
sNN . The trend

of increasing Rlong with increasing
√

sNN is reversed for
√

sNN < 5 GeV (82).

The right panels of Figure 5 show the same radii as a function of (dNch/dη)1/3.
The primary motivation for exploring the (dNch/dη)1/3dependence is its relation
to the final state geometry through the density at freeze-out. However, the two
scaling quantities are highly correlated. In fact, the values of dNch/dη shown
on the right side of Figure 5 were derived from Npart using the Nα

part parame-
terizations given in (153), and conversely, the Npart values are often calculated
from multiplicity distributions using a Glauber model. Given this caveat, the
Rside and Rlongvalues exhibit a linear dependence on (dNch/dη)1/3, again with
finite intercepts. The strong uniformity from

√
sNN of 5 to 200 GeV leads one to

believe that the Npart scaling (initial overlap geometry) is a result of the scaling
with multiplicity (final freeze-out geometry) and not the other way around. The
Rout differences between the AGS and RHIC apparent in the Npart scaling are
magnified with dNch/dη scaling, whereas the differences with the lower energy
SPS data are compressed.

We note that the systematics in system size represent an initial “sanity check”
for the femtoscopic technique. The obvious direct connection of the radii to the
source geometry estimated in two ways refutes suggestions (154) that smaller,
non-geometric length scales dominate experimentally extracted transverse radii.

4.2 Collision Orientation: Pair emission angle relative to b̂

The variation of femtoscopic radii with the pair emission angle relative to ~b
(φpair) can be used to probe the 3-dimensional shape of the source (71; 155; 62;
156; 157; 63; 64; 68). The anisotropic shape transverse to the beam direction–
the coordinate-space analog to the elliptic flow characterizing momentum-space–
gives rise to cos(nφpair) (n even) oscillations in the squared transverse source radii
R2

out, R2
side, R2

out,side (62; 64).

Just as one expects the source (and homogeneity regions) to be larger for

decreasing |~b|, one also expects it to be rounder, reflected by small oscillations
of the radii. Figure 6 for mid-rapidity pions from Au+Au collisions at RHIC
confirms this expectation. As |~b| increases, the oscillations indicate a transverse
source increasingly elongated out of the reaction plane (129).1

1The out-of-plane nature of the elongation may be read directly from Figure 6. Ignor-
ing collective flow or opacity effects (e.g. 63) an out-of-plane-extended Source would produce
R2

side(φpair = 0◦) > R2
side(φpair = 90◦), as seen in Figure 6. Collective flow effects complicate
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That the strong in-plane expansion (158) does not fully convert the initial
out-of-plane (overlap) geometry into an in-plane-extended source at freeze-out,
suggests a rather short evolution time; in essence, the system did not have time
to reverse its deformation. However, this is only a hint, and a full dynamical
transport calculation is required to extract physical timescales (86).

Whereas at the highest RHIC energy, the freeze-out anisotropy is ∼ 1
3 the

of the initial (129), at low AGS energies, the final anisotropy is consistent with
that of the initial overlap region (127), or perhaps slightly lower. Since elliptic
flow “vanishes”– changes sign– at these energies (159), these trends make intu-
itive sense and suggest an underlying connection to the evolution dynamics. It
would be desirable to map the source anisotropy at intermediate (AGS and SPS)
energies, for which there may be interesting changes in the space-time system-
atics. At these energies, there have been intriguing hints of asymmetries in the
homogeneity regions for pions (160; 161; 162; 163) and protons (164), and in the
proton-pion separation (161; 69), although they have not been finalized.

If the impact parameter direction b̂– not simply the 2nd-order event-plane angle
(unambiguous only over a range [0, π])– is known, then more detailed informa-
tion may be obtained. In the left panel of Figure 2, the source is tilted with
respect to the beam axis, towards b̂. Just as anisotropic azimuthal geometry in
the transverse plane is related to the structure of elliptic flow (86; 96), a tilted
geometry can reveal important information on the underlying nature of directed
flow (165; 166; 63; 127). The structure in R2

o,l and R2
s,l shown in Figure 7 is

generated by this tilt. The spatial tilt has been measured only at low AGS ener-
gies (127); a measurement at RHIC might reveal exotic geometric configurations

this picture (62; 68), but the sign of the oscillations are determined by geometric, not dynamic,
effects for realistic Sources at RHIC (86; 68).
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Figure 8: The Yano-
Koonin source rapidity
is shown as a func-
tion of the pion pair
rapidity for central
Au(Pb)+Au(Pb) col-
lisions over a broad
range of energies (open
symbols are for π−π−,
closed symbols for
π+π+). Both quantities
are in the center-of-
mass frame of the
colliding system. Data
from (171; 172; 173;
174). ππY0 1 2
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generated by QGP formation (167) and would impact the important issue of
boost-invariance at mid-rapidity.

4.3 Boost invariance : Yππ

In high-energy hadronic collisions the initial parton distribution is expected to
be approximately flat in rapidity. It has been conjectured that this momentum
rapidity distribution corresponds to producing matter which initially exhibits a
boost-invariant Hubble-type scaling correlation between longitudinal flow veloc-
ity and space-time points, vL,flow = z/t (168; 169). Relativistic hydrodynam-
ics preserves boost-invariance of the initial conditions throughout its dynamical
evolution (169). The combination of the above arguments underlies expecta-
tions that in ultra-relativistic heavy ion collisions, particle production emerges
from boost-invariant longitudinal flow, and that dN/dy exhibits an approximately
boost-invariant plateau around mid-rapidity. However, an extended plateau has
never been observed from AGS through RHIC energies (3).

Since correlation measurements access spatio-temporal information, the ques-
tion arises (74; 170) whether they allow us to test the relation vL,flow = z/t
between the space-time rapidity and the momentum rapidity of the source. For
boost-invariant sources, one can show that the pair momentum rapidity is equal
to the Yano-Koonin source velocity which is directly obtained from the Gaussian
radius parameters, Yππ ≈ YL,flow ≡ tanh−1 vL,flow. However, even if the source
density distribution shows significant deviations from boost-invariance, this re-
lation still holds approximately as long as the velocity profile is boost invariant,
and kT is sufficiently large (74).

Figure 8 reveals a roughly universal dependence of YYK on Yππ for pions
from central collisions, depending weakly if at all on

√
sNN (c.f. Section 2.5.3).

This trend is particularly striking given the very different center-of-mass projec-
tile rapidities (∼ 1.55 and 5.5 for

√
sNN = 5 and 200 GeV, respectively) and

corresponding widths of the pion distributions dN/dy.
By way of caution, we note that the results from RHIC are limited to the

region Yππ < 1.2, and that the deviations from boost-invariance are mostly in
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the lower energy data. Extending the RHIC results to more forward rapidities
would provide a important test for both the velocity scaling at RHIC and the
energy-independence that is exhibited in Figure 8.

For central collisions the roughly universal behavior approximately obeys the
boost-invariant consistency relationship discussed above. Moreover, YL,flow shows
a significant kT dependence and falls below the linear relation in particular for
small kT (173). Qualitatively, this is consistent with blast-wave models in which
a boost-invariant longitudinal flow is superimposed on a source density distri-
bution of finite longitudinal width. However, a full dynamical understanding of
the dependence is missing so far. However, the flat YYK dependence on Yππ

measured at the SPS (173) for the most peripheral collisions is counter-intuitive,
and requires further study.

The question of whether the source has boost-invariant space-time structure
is an important one. There are many reports of very short evolution timescales
(“lifetimes”) based on fits to the data with Equation 24, which is based upon an
assumption of boost-invariance (83). Relaxation of that assumption might lead
to considerably larger estimates (175).

4.4 Collective dynamics: kT and particle mass

As discussed in Section 2.7.2, the dynamic substructure of the source is encoded
in space-momentum (xp) correlations. Longitudinal xp correlations, encoded
in Rlong(kT ), are generally acknowledged (83; 68) to reflect longitudinal flow.
Since all transverse correlations are generated in the collision itself, considerably
more attention has generally been paid to the transverse substructure than to
the longitudinal flow discussed in Section 4.3.

The most common explanation for transverse xp correlations is collective trans-
verse flow (92). These correlations have mostly been studied through pion corre-
lations, but transverse flow implies also a systematic trend as the particle mass
is varied.

4.4.1 kT dependence of pion radii Collective flow generates a charac-
teristic fall-off of the pion source radii with kT , which is ubiquitously observed in
data. Final results for the kT -dependence of Gaussian radii from central Au+Au
(Pb+Pb) collisions exist at the AGS (82; 116), SPS (172; 132; 176; 173; 144),
and RHIC (137; 177; 129; 113; 174; 117). As is clear from Figure 9, aside from a
small variation in overall scale (discussed later), the kT dependence is startlingly
similar for all energies.

Figure 10 quantifies the evolution of the mT -dependence of the pion source
radii with

√
sNN, using fits to Ri(mT ) ∼ m−αi

T . As discussed in Section 2.7.1,
αi = 0.5 would represent expectations for instantaneous thermal emission for a
three-dimensionally expanding fireball in the limit of large mT .

The similarity persists as Npart is varied. In Au+Au collisions at RHIC,

Ri(mT ) (i = out, side, long) simply scale as N
1/3
part, with perhaps some flattening

for Npart < 100 (113; 117). Very similar kT dependence for different Npart is also
observed in Pb+Pb collisions at SPS (144) and for Si+Au and Au+Au collisions
at the AGS (116).

In a flow-dominated freeze-out scenario, the fall-off of transverse radii with mT

increases as flow increases and/or temperature decreases (e.g. 68). Blast-wave fits
to spectra (178) indicate that freeze-out flow and temperature vary significantly
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Figure 9: World data set of published mT dependence of pion Bertsch-Pratt
radii near mid-rapidity from Au+Au (Pb+Pb) collisions. Centrality selection is
roughly top 10% of cross-section, but varies somewhat with experiment. Data
from (82; 116; 144; 132; 173; 176; 177; 117; 174; 137; 113) Lines represent
parameterized fits; see text for details.

with
√

sNN for
√

sNN . 10 GeV. The overall approximate
√

sNN-independence
of the αi parameters may reflect the fact that significantly changing the slope of
Ri(mT ) requires very large changes in flow and temperature; on the other hand,
it could be that the compensating effects of smaller (larger) homogeneity lengths
generated by larger flow (temperature) cancel almost exactly in Nature. While
Ri(mT ) almost certainly reflects strong collective flow, the strength of that flow
requires other information, such as particle spectra (90; 68).

Since the radii fall off roughly as 1/
√

mT (c.f. Figure 10) and such a dependence
has been discussed frequently in the literature (e.g. 179; 180), it is interesting to
look at the overall scale parameter from a single-parameter fit to R′

i/
√

mT . The√
sNN-dependence of R′

side and R′
long are shown in Figure 11. The scale of the

longitudinal homogeneity length grows significantly with
√

sNN, consistent with
an increase of the system evolution time. However, R′ varies only very weakly
with

√
sNN.

4.4.2 Systematics with particle mass Systematic studies for different
mass particles provide additional controls probing the space-time evolution of the
source. In particular for kaons, the interpretation may be simplified due to re-
duced effects of resonance feed-down (181) and a reduced scattering cross-section
for K+ in nuclear matter, raising the possibility that kaon correlations could peer
“farther back” to earlier stages of the collision (182). Indeed, the first kaon mea-
surements (183; 184; 185; 171) reported smaller source radii for kaons. However,
the observation that radii for K+ and K− were very similar (184) was an early
experimental indication that different cross-sections were not the driving physics
behind these smaller radii. This was supported by model calculations (186) which
suggested that K+ and K− in fact scattered roughly equally in the dense medium
created in heavy ion collisions. In this case, the smaller radii for kaons results
from their increased mass in a flow field, not different cross-sections.

If indeed flow is generated in matter sufficiently dense that individual cross-
sections are unimportant, then all particles participate equally in collective trans-
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verse flow. In this case, their source radii should approximately follow a common
mT scaling (26; 154; 187; 8). Within uncertainties, first results on kaon interfer-
ometry by NA44 at the SPS in S+Pb (179) and Pb+PB (188) collisions were con-
sistent with a 1/

√
mT scaling expected for isotropic “Hubble” flow (26; 154; 187).

In some more recent analyses (189), the common mT systematic for the trans-
verse radii is less steep than for Rlong(mT ) (c.f. Figure 10), as might be expected
for more boost-invariant (non-isotropic) flowing systems (8; 68).

Figure 12 collects the mT dependence of homogeneity lengths for several en-
ergies. Left panels show results for Si+Au collisions at

√
sNN=5.4 GeV, mea-

sured by E802 for pions (116) and kaons (183; 185). Femtoscopic radii for pi-
ons (132; 189; 144; 176) kaons (188), protons (190), and photons (191) measured
in Pb+Pb collisions at the SPS are shown in the center panels. The right panel
shows the one-dimensional radius parameter Rinv measured at RHIC for pions,
charged kaons, and protons (192), neutral kaons (193), and with Λ − p correla-
tions (194).2 To compare across energies, Rinv results are included for the AGS
and also for the SPS, where the Rinv values were calculated from the 3D fit results
by accounting for the boost along the outwards direction from the LCMS to the
PCOM frame, R2

inv = R2
long + R2

side + γ2R2
out, where γ is given by mT /m of the

pair. Note that for massless particles, such as photons, γ is given by kT /Qinv.
For a given orientation of the photon pair momentum Rinv can be related to 3D
radii in the LCMS frame through the following expression for the exponent of

2Protons and Λ baryons are not identical particles, of course. However, their masses are
sufficiently close to try including R

p−Λ
inv on a mT -scaling plot. Adherence to the scaling is

consistent with a flow-dominated scenario in which homogeneity lengths depend only on mass.
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the Gaussian source term,

Q2
invR

2
inv = Q2

inv

(

R2
long cos2 θ + R2

side sin2 θsin2φ + k2
T /Q2

invR
2
out sin2 θcos2φ

)

= k2
T R2

out sin2 θcos2φ + Q2
inv

(

R2
long cos2 θ + R2

side sin2 θsin2φ
)

. (38)

Thus Rout drops completely out of the source term and enters into the λ coeffi-
cient (191), but as a function of kT . For this reason the 1D Qinv fits from WA98
are plotted alongside values of Rside and Rlong instead.

This consistency between different particle types may carry an important mes-
sage. It calls into question theoretical scenarios which appear to explain Ri(mT )
for particular particle types only (29). Further, the consistency with emission
from a common flow-dominated source may also support freeze-out scenarios in
which the last scattering in the dense phase determines the homogeneity region,
instead of milder rescatterings in the more dilute stage, which are dominated by
particle species-dependent cross-sections (195; 196).

4.5 New possibilities: Non-identical particle correlations

Almost all femtoscopic measurements to date have been done through correla-
tions of identical particles, usually charged pions. With the availability of high-
statistics data sets and new theoretical ideas (197), however, experiments are
beginning to make full multi-dimensional analyses of non-identical particle cor-
relations. These correlations are being used to test and refine the treatment of
Coulomb effects in identical-particle correlation analyses, to explore violations of
flow-induced “universal” mT scaling, and to extract qualitatively new information
on the space-time substructure of the source.
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4.5.1 Opposite-sign pion correlations The most common non-identical
particle femtoscopy measurements have involved π+ − π− correlations. Here,
the natural assumption is that the homogeneity regions of these particles coin-
cide. The primary interest is in whether the homogeneity volume is extracted
from π±−π± correlations– driven by quantum statistics and Coulomb FSI (with
minimal strong FSI effects)– is consistent with that extracted from π+ − π−

correlations– determined only by Coulomb and strong FSI (113). This issue has
obvious implications for the FSI weight F (q) discussed in Section 3.5.

At the SPS, π+ − π− correlations from reactions with sulphur (198) and
lead (172) beams were consistent with emission from a homogeneity region with
spatial scale roughly the same as the radii from identical-particle correlations.
Preliminary analysis of opposite-sign pion correlations from Au+Au collisions at
the AGS (171; 69) similarly find consistency with scales extracted from like-sign
pion correlations. Recently, STAR reported (113) strong consistency at RHIC
energies as well. Using large-statistics data sets, they further show that contribu-
tions to the π+ − π− correlation function from strong-force interactions, though
small, are nevertheless important in explaining the data in detail.

4.5.2 Other non-identical particle correlations in |~q| For statisti-
cal reasons, most non-identical particle correlations are measured in one-dimensional
|~q|-space, and thus probe only the average spatial separation between the two
particles at freeze-out in the pair center-of-momentum frame (c.f. Section 2.3).
Because they are sensitive to the size of each particles emission source and this
separation between them it is often necessary to rely on the identical particle
correlations for interpretation of results.

Despite these ambiguities, one-dimensional non-identical particle correlations
may be used to test existing systematics and expectations of the freeze-out sce-
nario. Conversely, if the freeze-out geometry may be taken as given, non-identical
particle correlations may place constraints on hadronic scattering parameters, e.g.
to measure the squared relative wave-function of a pion and a Ξ baryon. First
studies along these lines are underway at RHIC (199).

Wang and Pratt (54) suggested the measurement of p − Λ correlations, which
may be more sensitive to large structure than p − p correlations, and have a
higher 2-track reconstruction efficiency for some experiments. Published results
from Au+Au collisions at the AGS (51) suggest a p − Λ separation distribution
with a width similar to the proton homogeneity length and roughly consistent
with mT scaling expectations (cf Section 4.4.2). Preliminary results at SPS (200)
and RHIC (199; 201) give similar conclusions. Since the p − Λ potential is not
unambiguously known theoretically (54), it is unclear whether possible statisti-
cally marginal violations of mT scaling (51) or differences between baryon and
anti-baryon emission regions (199) are meaningful. To first order, existing p − Λ
correlations confirm existing systematics.

With the high-statistics and -quality data sets at the largest collision energies,
truly exotic correlation studies are possible. Preliminary results (201) from RHIC
on π − Ξ correlations look particularly promising. Here, the well-measured pion
emission distribution may be used to study the strange baryon freeze-out con-
figuration. It may also provide information on the π − Ξ final state interaction
and scattering cross-section which in turn can be used to constrain our under-
standing of the sources of collective flow. Blast-wave calculations reproduce the
preliminary π − Ξ correlations, suggesting that the Ξ flow is determined by its
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mass, not its quark content.

4.5.3 New information– non-identical particle correlations with

directional cuts on ~q Non-identical particle correlation analyses as a func-
tion of– or with cuts on– the relative direction of ~q and ~P reveal qualitatively
new information (56; 57; 197, and Section 2). In particular, in addition to the
RMS width of the separation distribution, the direction and size of the average
separation between the particles is probed, although offsets in time and space
cannot be disentangled; this is shown as ∆r in Figure 3. The correlation func-
tions selected for ~q ‖ ~P and ~q ∦ ~P differ if ∆r 6= 0. Furthermore, collective flow
will induce position-momentum correlations detectable with directionally-selected
non-identical particle correlations (57; 68).

These correlations are statistically challenging, and few results are available.
At RHIC, STAR has reported (58) asymmetries in K± − π± correlations mea-
sured in central Au+Au collisions. In Blast-wave calculations with transverse
flow roughly adjusted to reproduce other observations at RHIC (68) describe
the data semi-quantitatively. Preliminary studies of p − π correlations at the
SPS (200) and RHIC (201) exhibit very similar mass-ordered spatial asymme-
tries in the transverse plane. A preliminary study at the AGS (69) reported very
large (∆rlong ≈ 10 fm) average p − π separations in the longitudinal (beam) and
impact parameter direction for forward-moving particles, suggesting very strong
longitudinal flow, however, this result was never confirmed.

We expect full three-dimensional analyses of a wide range of non-identical par-
ticle combinations to be available in the near future from RHIC experiments.
Sophisticated analyses may probe non-trivial geometric substructure when se-
lecting on reaction plane, including the sideward shift predicted by blast-wave
calculations (68) when anisotropic flow structure is present.

5 Interpretations of Experimental Results

In this Section, we ask what we can learn from the spectrum of results just
presented. Beginning with the broadest, least detailed observations, we move to
two fundamental quantities which may be directly extracted from the data, and
finally on to comparisons with specific models of heavy ion collisions.

5.1 General Conclusions from Systematic Trends

One of the first messages to take away from the discussion of Section 4 is that
the results are stable across detector and method; experimental systematics and
uncertainties are under control. Whatever difficulties we may have in interpret-
ing measurements, we may be confident that they do not have their origin in
experimental artifact.

The size and shape inferred from two-particle correlations tracked with colli-
sion geometry as anticipated. Kinematic and mass dependences of femtoscopic
measurements showed the expected clear signatures of strong collective flow in
the beam direction and perpendicular to it.

At a generic level (ignoring quantitative predictions), we are first given pause at
the jejune nature of the

√
sNN -dependence of femtoscopic parameters. The most

common example discussed is the pion source radii excitation function shown in
Figure 13. In Section 4 we have explored the trends in considerably greater detail,
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but the Figure conveys the right message: scanning
√

sNN through a range of
two orders of magnitude, changes final-state geometry little.

Based on rather generic arguments of soft points in the Equation of State or
entropy generation during a phase transition, there had been hopes for non-trivial
structure in the excitation function, as the energy threshold for Quark Gluon
Plasma (QGP) creation was crossed (59; 202; 203; 204). General expectations
were for “long” (relative to the explosion of a purely hadronic system) system
evolution time scales if QGP was formed. Blast-wave analyses of data (e.g. 68)
appear to rule out systems with lifetimes in the neighborhood of 20 fm/c or
higher. However, due to dynamic effects careful comparison with a dynamical
model is required to extract detailed evolution information; this is discussed in
Section 5.3.

Neglecting flow and other important details, and focusing solely on the exci-
tation function in Figure 13, we note that its gradual but non-monotonic behav-
ior has been successfully described in terms of a single parameter– a universal
(
√

sNN -independent) pion mean-free-path at freezeout (205) of 1 fm, related to
the pion number density and chemical composition of the system at freeze-out.
It remains unclear how to interpret this intriguing simplification of the data, or
whether it might be used to provide insight on the underlying physics of the
collision.

5.2 Phase Space Density and Entropy

As shown in Section 2.9, average phase space densities, f̄(p), can be calculated by
combining source-size measurements with spectra. Pionic phase space densities
have been estimated for 130A GeV collisions at RHIC (110), at the top SPS
energies, and for several AGS energies (208). Figure 14 shows results for all three
regions. In each case, the phase space densities were calculated via Equation 28.
For the SPS case, results were generated by applying Equation 28 to published
spectra (209) and source-size measurements (210). We note that our calculations
for the SPS are higher than previously published values at low pt (211). This
discrepancy is likely due to the fact that in Ref. (211) analytic parameterizations
were used which significantly differ from published spectra at low pt.

When applying Equation 28 an issue arises as to whether one should subtract
the contribution from resonances to the spectra. Indeed, if the pions are created
by decays so far outside the source volume that they do not contribute to the
correlation function, they should not be considered as pions when calculating the
phase space density. There are two strategies to correct for such pions. First,
one could use spectra where such particles are subtracted and apply Equation 28
literally. As a second option, one could use the spectra without subtractions, but
then multiply the expression for f̄ by

√
λ. Since most published spectra have

been purged of the products of weak decays, the first method is usually applied.
However, published spectra still include the contribution from ηs which decay
thousands of fm away from the source. The η contribution was accounted for in
the SPS calculation for Figure 14 by reducing the spectra by 5%.

The phase-space densities in Figure 14 show a steady rise with beam energy
that seems to plateau at SPS energies. Since the displayed phase space densities
have been averaged over coordinate space, the peak values are higher (87; 102),
by a factor of 2

√
2 if the spatial profiles are Gaussian. For a breakup temperature

of 110 MeV, this requires a rather high chemical potential, near or above 80 MeV



36 HBT Review

Figure 13: Panels (a-d):
Excitation function of
π− source parameters
at mid-rapidity and low
kT (∼ 0.17 GeV/c) in
central Au+Au(Pb+Pb)
collisions. PHENIX data
are for kT ∼ 0.26 GeV/c
and so fall somewhat
below the trend. Panel
(e): Transverse freeze-out
anisotropy parame-
ter from non-central
(|~b| ∼ 8 fm) Au+Au
collisions, estimated from
the azimuthal depen-
dence of source radii.
Data are from (177; 117;
137; 129; 113; 116; 144;
176; 174; 132; 82; 127).
Also shown are calcula-
tions (82; 127; 132; 206)
at several energies with
the RQMD model (207);
hashed region at other
values of

√
sNN inter-

polates between these
calculations.
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Figure 14: Average
pionic phase space
densities for central
Au+Au and Pb+Pb
collisions from the
AGS to RHIC
rise with beam
energy but seem
to plateau at SPS
energies. Values
were calculated with
Equation 28.

(212; 213; 214).
Ratios of particle yields have been shown to be consistent with chemical freeze-

out at temperatures near 170 MeV (215; 216; 217). This suggests an interpre-
tation where at higher densities the system is so strongly interacting that yields
equilibrate until the system reaches this temperature, and are then frozen dur-
ing the subsequent freeze-out. At AGS energies, the increase in pion production
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brought on by increased beam energy results in more pions being pushed into a
given amount of phase space as realized in Figure 14 by the rising phase space
density. However, one would expect that, as the excitation energy surpasses the
threshold for a 170 MeV temperature, the phase space density would reach a
limiting value. Since the average phase space density is preserved in an isen-
tropic expansion with fixed particle number (not exactly true if several masses
are mixed together), one would expect phase space densities to saturate once en-
ergy densities reached this value. Indeed, the behavior in Figure 14 is consistent
with this scenario.

As shown in Section 2.9, entropy can be calculated from average phase space
densities using Equation 30. Spectra and source-size measurements for baryons
and mesons were used to estimate phase space densities and entropy for 130A GeV
Au+Au collisions at RHIC. The total entropy in the central unit of rapidity was
estimated at dS/dy = 4450 ± 10% (110). In a hydrodynamic expansion entropy
is conserved though viscosity and shock waves might result in a roughly 10%
increase during the evolution. Thus, this measurement provides an upper bound
for the entropy at τ ∼ 1 fm/c when thermalization first occurs. At τ = 1 fm/c,
the volume for particles in this rapidity slice is determined by the geometric
cross-sectional areas of the over-lapping gold nuclei multiplied by cτ , thus an
upper bound for the entropy density can be determined s ≤ (dS/dy)/(τπR2).
Knowing the energy density at τ = 1 fm/c would then provide a point in the
equation of state, s vs. ǫ. The value of dS/dy estimated in (110) is consistent
with lattice calculations if ǫ(τ = 1 fm/c) ∼ 7 GeV/fm3. Estimates of the original
energy density from the final-state measurement of dEt/dη are in range of 4.5
GeV/fm3 (218), but since these estimates neglect losses from longitudinal work
or the energy from longitudinal thermal motion, the 7 GeV/fm3 value seems
reasonable.

5.3 Dynamic Models and their Comparison with Data

It is increasingly recognized that the comparison of dynamic models of heavy ion
collisions to data is only insightful if it involves a sufficiently large variety of ex-
perimental data. A comparison of dynamic models to femtoscopic measurements
alone (or to any other class of measurements alone) is of limited value, simply
because for realistic models, the number of possible model-dependent parameter
choices then tends to exceed the number of experimental constraints. In fact, all
the model results which we review in the current subsection remain unsatisfac-
tory with this respect: they either deviate significantly from femtoscopic data, or
they reproduce these data at the price of missing other important experimental
information. In particular, there is so far no dynamically consistent model which
reproduces quantitatively both the systematic trends discussed in Section 4, and
the corresponding single inclusive spectra. In this situation, the scope of this
subsection is somewhat limited. We want to explain why a dynamical under-
standing of femtoscopic measurements is important. We shall also discuss the
key physics input which enters current attempts of dynamic modeling, and the
uncertainties resulting from it. However, we shall try to bypass as far as possi-
ble model-dependent details, and rather focus on the question which qualitative
changes in the underlying dynamics result in characteristic changes of femtoscopic
data.

Correlation measurements provide a “snap shot” of the geometrical distribu-
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tion of particles at the time they decouple from the reaction. This geometrical
distribution provides a unique test of the dynamical evolution of the produced
matter at the late stage. Since the spatial extension, dynamical evolution and
lifetime of the produced system determines phase space density and thus par-
ticle reaction rates, it is evident that any dynamic model for the latter has to
be consistent with femtoscopic information. So far, correlation analyses have fo-
cused mainly on Boltzmann (or cascade) models, on hydrodynamic models, or on
combinations of both (hybrid models). These model classes correspond to rather
different equations of state.

The equations of state represented by cascade models tend to be stiff unless
they incorporate large number of resonant scatterings. If particles collide via
2 → 1 → 2 processes where the intermediate state has a finite lifetime, the equa-
tion of state can be softened (219; 220). A prominent example of a cascade model
is RQMD (186), Relativistic Quantum Molecular Dynamics; it is the only one
which has been compared to data at AGS, SPS and RHIC. Results for RQMD
are shown in Figure 13. However, for RHIC energies, the dynamic consistency
of RQMD is questionable since the model uses for most of its evolution hadronic
degrees of freedom although RQMD simulations for RHIC yield an energy den-
sity which stays above that of normal nuclear matter for a significant duration
(∼ 5 fm/c). As can be seen in Figure 15 RQMD, which models the expansion as
a hadronic cascade, over-predicts Rout and Rlong at RHIC despite the fact that
it under-predicts multiplicities. Another hadron cascade model, the “Hadronic
Rescattering Model” (221; 222), based solely on hadronic rescattering with sud-
den collisions gives smaller sources, similar to those of AMPT which come closer
to the data. Part of the difference between the two hadronic cascades may derive
from RQMD’s treatment of scatterings as resonant interactions with finite life-
times, which differs from the instantaneous collisions employed in the Hadronic
Scattering Model. Figure 15 also displays results for MPC (223), which aims at
providing a transparent partonic toy model, by modeling the collision of light par-
tons which undergo a one-to-one hadronization to pions. MPC, which has only
instantaneous two-to-two scatterings should have the stiffest effective equation of
state and underestimates the source radii. AMPT (224; 225) aims at a realistic
description of all aspects of the reaction dynamics and includes a partonic cas-
cade coupled to a hadronic cascade employing a full list of resonant interactions.
AMPT provides a good fit to experimental radii, though the kt fall-off is stronger

than that found in the data, which fall off ∼ m
−1/2
T . The more rapid decrease of

radius parameters with respect to kT may be due to the continuous surface-like
emission characteristic of microscopic models, which when combined with cool-
ing, gives a higher relative weight for high-energy particles to have been emitted
earlier in time, before the reaction volume has reached its full spatial extent. Any
modification that would reduce this type of emission should improve agreement
with data. Cautiously, one would conclude that the results in Figure 15 favor
models with a stiff, but not too stiff, equation of state and no latent heat.

This conclusion is further supported if one compares the results of cascade
models with those of hydrodynamic simulations or hybrid models. Figure 16
compares results from RHIC to a 3-dimensional hydrodynamic model of Hirano et
al. (226) that investigates the effects of resonance decays on chemical composition,
the 2-dimensional model of Heinz and Kolb (227), and a 2-dimensional chiral
model by Zseische et al. (228) that performs calculations for both first order and
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Figure 15: RHIC results are compared to three Boltzmann/cascade models,
RQMD, MPC and AMPT with two different parton cross sections. Data are
for 2π−(open symbols) and 2π+(closed symbols) source radii.

cross-over transitions. In all cases the more favorable calculations are compared
with the data: partial chemical freeze-out for Hirano, and cross-over transition for
Zschiesche, but large discrepancies between the models and the data still remain.

In general, these models invoke equations of state which are typically softer
than those used in cascades and Boltzmann calculations, and they often have
latent heats to accompany the transition from the partonic phase. As a conse-
quence, lifetime and emission duration of the produced matter are significantly
larger than what one finds in cascade models, and such models often significantly
over-predict Rlong and Rout/Rside. The fact that Rside comes out smaller than the
data in Figure 16 is mainly due to an attempt to compensate within the available
model-parameter range the very large time-scales as much as possible. Purely
hydrodynamic models can vary overall source volumes by adjusting the break-up
criteria, but doing so can make it difficult to fit the three source dimensions, and
their mT dependence, as well as other observables. Several prescriptions have
been applied to improve the modeling of the breakup in the late stage to depend
on microscopic considerations determined by free-space cross sections without
having an extra adjustable parameter, e.g. break-up density, (103; 104; 102). An
alternative to improve the description of breakup is the use of hybrid models,
in which hydrodynamic evolution in the early stage is combined with cascading
in the late stage. In Figure 16, we compare results of one such hybrid model,
URQMD (105; 106), to results of hydrodynamic calculations. Similar results were
obtained by Teaney, et al., (107; 108). Compared to hydrodynamic simulations,
hybrid descriptions do not seem to notably reduce the over-predicted lifetimes.
They tend to emit most of the pions at a time near or above 15 fm/c and signif-
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Figure 16: Hydrodynamic (Zschiesche, Hirano and Kolb) and hybrid hydrody-
namic/cascade (Soff) models calculations in comparison to RHIC data. Data are
for 2π−(open symbols) and 2π+(closed symbols) source radii.

icantly over-predict Rout/Rside ratios, while blast-wave parameterizations favor
breakup times near or slightly below 10 fm/c. However, firm conclusions that
the relative failure of hybrid models derives from the chosen equations of state
can not be made until comparisons are made between Boltzmann and hybrid
calculations that use the same equation of state. Until such an analysis is per-
formed, other issues will cloud the interpretation, such as whether viscous effects
or details of the hydrodynamic/Boltzmann interface dominate results and might
even invalidate the hydrodynamic approach.

Entropy and pressure are intimately related, in that knowing the entropy den-
sity as a function of the energy density determines the pressure as a function of
energy density. Whereas one can intuitively understand why a lower pressure
would lead to longer lifetimes and larger source dimensions, the manifestations of
changing the entropy are less transparent. One way to understand the effects of
changing the entropy is to associate higher entropy with a larger effective number
of light degrees of freedom. For instance, if one were to hadronize via a one-to-one
parton-to-pion scheme, the volume per identical particle would change by a factor
of the number of degrees of freedom. If the r.m.s. momentum is the same before
and after hadronization this would imply a change in entropy per particle equal
to the logarithm of the ratio of effective degrees of freedom, and if ∼ 40 light
partonic degrees of freedom were immediately replaced by three pionic degrees of
freedom, the system would lose ln(40/3) units of entropy per particle. To conserve
entropy, a system must expand its volume by a similar ratio which implies an
increase in radius parameters. Hydrodynamic models, which manifestly conserve
entropy, use the energy stored in the latent heat to provide the heat necessary to
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preserve entropy during hadronization. Entropy conservation is more difficult to
enforce in microscopic approaches. This underlines the challenges involved in ap-
plying microscopic simulations in an environment of strongly interacting matter
with ill-defined degrees of freedom, and re-emphasizes the importance of gain-
ing a better understanding of the validity of hydrodynamic calculations in such
manifestly finite situations. It is peculiar that the entropy extracted from source-
size and spectral measurements is consistent with the lattice-inspired equation
of state (107; 108), while the source sizes extracted from hybrid models incorpo-
rating similar equations of state significantly over-predict source sizes. Part of
this contradiction can be explained by increases in the populations of baryons,
which, since they inherently have more entropy per particle than do pions, can
account for much of the missing entropy (110). Thus, the HBT puzzle does not
necessarily imply an entropy puzzle.

The HBT puzzle is not so much that radius parameters can not be fit by models,
but that our most sophisticated models, which incorporate a phase transition, fail
to reproduce the data. The very gradual evolution of extracted source sizes as
beam energies traverse a large range of energies is remarkable and puzzling in its
own right. A simple explanation is that the equations of state do not dramatically
change as the energy density changes from hadronic to super-hadronic densities,
i.e., there is not even a hint of a latent heat. However, as emphasized above,
a host of unresolved issues prevent more quantitative conclusions from being
reached. These qualifiers can not be lifted until much more thorough analyses
of models are performed, entailing a systematic exploration of the sensitivity of
model predictions to both parameters and assumptions. This would necessitate a
tremendous commitment from the community, but without it, many conclusions
about the matter created in relativistic heavy ion collisions will remain vague.

6 Summary

Twenty five years ago, the goal of femtoscopy was to demonstrate that one could
measure a hadronic length scale with correlations, and if a result was on the order
of a few Fermi, the analysis was deemed a success. In contrast, with the improved
accuracy of measurements, the enormous increase in statistics, and the simulta-
neous development of phenomenology and theory, femtoscopy is now considered a
precision measurement. Ten percent deviations between theory and experiment
are now taken seriously as evidence that the spatio-temporal description of a
model is significantly flawed. At RHIC energies, all six dimensions of the correla-
tion function have been exploited to provide truly three dimensional insight into
the phase space cloud for particles of any momentum with any direction.

For relativistic heavy ion collisions, there were expectations that a transition
from hadronic to partonic matter might be accompanied by a large latent-heat,
which would bring about a dramatic change in the dynamics as beam energies
traversed the range for exploring the mixed phase. During this range, it was
expected that the latent heat and the associated softening of the equation of
state would manifest itself by slowing the explosion with lifetimes approaching
or exceeding 20 fm/c. The “signal” of the phase transition would have been a
increase of the effective lifetime for a range of beam energies followed by a return
to more explosive and shorter lived reactions at even higher energies.

Extended lifetimes were not observed. Increasing beam energies from AGS
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to RHIC indeed causes larger energy densities and higher multiplicities which
push towards increasing the source volumes. However, much of this increase
in multiplicities is absorbed by higher phase space densities rather than larger
source sizes. Combined with the increasing strength of radial flow, which provides
smaller regions of homogeneity relative to the overall source volume, the result is
that the effective dimensions change remarkably little over a wide range of beam
energies. Furthermore, it appears that lifetimes of the reaction never leave the
neighborhood of 10 fm/c. Not only does this represent a lack of evidence for a
latent heat, it represents evidence that there is no such latent heat.

These conclusions remain only modestly guarded. Theory and phenomenol-
ogy are progressing, but improvements in such aspects as mean-field effects or
accounting for the smoothness approximation are not expected to change conclu-
sions by more than 10%. Like the improvements in including Coulomb effects in
Sec. 4, removing some of the distortions and aberrations from the analyses are
likely to be significant for fine-tuning models, but should not alter the conclusion
that there is no large latent heat associated with the reaction.

It is in the theory of modeling, i.e., generating the source functions, that there
is the greatest need for progress. Since femtoscopic measurements are determined
solely by the geometry of breakup, changes in chemical or kinetic evolution may
have a significant impact on extracted source dimensions. The next generation of
transport theories should be more flexible, and will probably incorporate numer-
ous effects such as in-medium mass changes, in-medium reduction of scattering
cross sections, viscous effects and dynamical solutions for chemical rates.

Despite the progress listed above, measurement has only begun to address
the rich expanse of information available in correlations. Nearly all the three-
dimensional analyses have been focused on identical-pion correlations. The huge
data sets of the recent and upcoming runs at RHIC make it possible to analyze
source functions for many pairs of particles in six full dimensions. In addition to
providing important verification of identical-pion measurements, these analyses
address other issues, such as whether all species flow and break up together.

This is not a field for the complacent. As emphasized above, efforts at RHIC
are just beginning to explore wholly new classes of correlations. Energy densities
at the LHC might surpass those at RHIC by the same factor that those at RHIC
surpassed the AGS. Just as our visions of the future from twenty years ago proved
largely naive, we should be prepared to be surprised with the femtoscopy of the
next 25 years.
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