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Abstract
This paper presents an experimental study on the femtosecond (fs) laser ablation of bundles of
single wall carbon nanotubes (SWCNTs) deposited on glass and the resulting nanoablation of
glass beneath the bundles. The peak ablation threshold of SWCNT bundles is
50 ± 12 mJ cm−2, which is about ten times lower than the theoretical ablation threshold of
individual SWCNTs. Nanoscale ablation of the glass surface (30–50 nm wide, 20–50 nm deep
and micrometres long) directly beneath the bundles is possible at a laser fluence of
920 ± 76 mJ cm−2, which is 4–5 times lower than the fs laser ablation threshold of glass. We
attribute these reduced ablation thresholds to the enhancement of fs laser pulses in the
near-field of nanotube bundles. This nanoablation approach can be used for lithographical and
surgical applications requiring nanoscale precision.

1. Introduction

Laser ablation using ultrafast laser pulses below tens of
picoseconds has been extensively studied for precise ablation
of various materials [1–3]. During interaction with dielectric
materials, for example, ultrafast pulses provide high peak
intensities that can initiate nonlinear processes, such as
multiphoton, avalanche and tunnelling ionizations [4]. These
nonlinear processes result in reduced ablation thresholds that
are especially critical when interacting with high bandgap,
sensitive materials, such as glass and biological tissue [5]. In
contrast to long pulse ablation, which is inherently dominated
by the thermal diffusion process, ultrafast laser ablation
minimizes the heat affected zone (HAZ) and correspondingly
allows material removal with high precision.

Single wall carbon nanotubes (SWCNTs) are of practical
interest since they can potentially be used in many
applications, such as chemical sensors and electronic devices
[6–8]. Recently, SWCNTs have attracted significant research
attention in biological and medical areas [9–14]. Of particular
interest, Kam et al [14] and Panchapakesan et al [12] have
proposed a new class of techniques for cancer therapy using
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SWCNTs’ strong absorption of light at near infrared (NIR)
wavelengths and transferring heat from incident laser light
to SWCNTs which have been either loosely adsorbed onto
or delivered into cancer cells. Strong NIR light absorption
at the plasmonic frequency by metallic nanostructures, such
as nanorods [15] and nanoshells [16], has also been used for
photothermal cancer therapy [17, 18]. The nanostructures act
as efficient photothermal absorbers to locally destroy cancer
cells at low laser energies [19]. To minimize the simultaneous
destruction of neighbouring healthy cells, ultrafast laser pulses
at NIR wavelengths could be used as a precise submicrometre
surgical tool because of their small HAZ [5]. The interaction
of ultrafast laser pulses with nanostructured materials such
as gold nanoparticles16 or SWCNTs will provide local near-
field enhancement of electromagnetic field and can be used
to increase the precision by confining the ablation into
nanodomains. However, so far the response of SWCNTs to
ultrafast laser pulses in terms of ablation threshold and near-
field enhancement has not been studied extensively.

While the interaction of ultrafast laser pulses with carbon
materials such as graphite and diamond has been studied
both theoretically and experimentally [20–24], their interaction
with SWCNTs was explored only by a small number of
studies [25–29]. Corio et al [25] and Ma et al [26], for
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example, experimentally studied changes in the morphology
and molecular structure of SWCNTs heated by a continuous
wave laser. Romero et al performed computational analysis
to eliminate defects in carbon nanotubes with femtosecond
(fs) laser pulses [27]. Recently, Dumitrica et al calculated
that the threshold for fs-laser fragmentation of SWCNTs is
2.8 eV atom−1, corresponding to a peak laser fluence of about
0.48 J cm−2 [28]. Kocabas et al conducted multiple-shot
picosecond laser ablation of SWCNTs to generate aligned
arrays of carbon nanotubes [29]. They came to the conclusion
that irradiation of SWCNTs with multiple picosecond pulses
resulted in the accumulation of heat and subsequent thermal
ablation of the nanotubes. In addition, Corio et al [25] found
that single SWCNTs of small diameter are ablated at a lower
threshold than those of larger diameter as a result of continuous
wave laser-induced heating. However, the heat-diffusion based
ablation using CW-laser irradiation or long duration laser
pulses is fundamentally different from that with fs laser pulses,
which is dominated by non-thermal mechanisms [3].

In this paper we study non-thermal ablation of CNTs using
a single fs-laser pulse. We report the threshold of single-
shot fs-laser ablation of SWCNT bundles on a glass substrate
and the resulting nanoablation of glass beneath the bundles.
Atomic force microscopy (AFM) is used to image a laser
exposed area before and after ablation. Remarkably, nanoscale
lines of 30–50 nm widths and 20–50 nm depths are generated
on the glass substrate. Nanoablation is believed to be due to
enhancement of laser pulses in the near field of the SWCNT
bundles.

2. Experimental approach

Purified SWCNTs manufactured by the high pressure
CO process were provided by Carbon Nanotechnologies
Inc. (Houston, TX) with less than 15% ash content by weight.
The as-received SWCNTs were further purified using modified
oxidation and ultrasonication processes [30, 31]. Specifically,
SWCNTs were oxidized in a box furnace for 14 h at 275 ◦C,
followed by reflux in 2.5 M HNO3 for 36 h. The resulting
mixture was filtered through a 100 nm pore size polycarbonate
filter, rinsed and re-suspended in N,N-dimethylmethanamide
(DMF). Ultrasonication of the SWCNT/DMF mixture at a
concentration of ∼50 mg L−1 for 2 h was performed to cut
the SWCNTs into shorter lengths to promote their separation.
Centrifugation (5000 rpm, 45 min) was used to remove larger
impurities from the solution. The transmission electron
microscope (TEM) image in figure 1 shows that the SWCNTs
remain in a bundle state due to a substantial van der Waals
attraction (∼950 meV nm−1) [32]. The diameter of the bundles
varies between 5 and 25 nm. A 2 µL aqueous sample of
SWCNT suspension was deposited onto a glass wafer, which
was subsequently heated to 120 ◦C for 20 min on a hot plate to
evaporate DMF. Consequently, only a single layer of randomly
distributed SWCNTs was left on the wafer. The density of
SWCNTs on the glass wafer could be adjusted by the amount
of solution deposited. We used borosilicate glass wafers with
a surface roughness of less than 1 nm from Precision Glass

Figure 1. TEM image of SWCNT bundles after oxidation and
ultrasonication processes. Scale bar is 5 nm.
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Figure 2. Schematics of the experimental setup.

and Optics (Santa Ana, CA). The wafers were ultrasonically
cleaned with methanol prior to use.

Figure 2 illustrates the experimental setup. The laser
pulses of 220 fs duration and 780 nm centre wavelength were
generated using a regeneratively amplified Ti : sapphire laser
(Spitfire, Spectra Physics, Mountain View, CA) at a 1 kHz
repetition rate. The glass wafer surface was placed normal to
the incident laser beam. The laser beam was linearly polarized
and focused with a long working distance objective lens
(Mitutoya, 10×, NA = 0.28) onto the glass wafer. The 1/e2

radius of the laser beam on the glass was w0 = 3.5 ± 0.2 µm
as measured using a previously published method [1]. The
laser energy was adjusted by a combination of a polarizing
cube beam splitter and a half wave plate and measured by a
laser pulse energy meter (PD10, Ophir). The SWCNTs were
imaged before and after laser ablation with an AFM (Digital
Instruments Dimension 3000 scanning probe microscope) in
tapping mode.

3. Results

To determine the laser ablation threshold of SWCNTs, we
measured the minimum local laser fluence where SWCNTs
started to disappear. Based on a Gaussian spatial profile of
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the laser beam with a 1/e2 laser beam radius w0, the radial
distribution of laser fluence is presented by

F(r) = F
peak
0 exp

(
−2r2

w2
0

)
, (1)

where F
peak
0 is the laser peak fluence and r is the distance from

the centre of the beam. The laser pulse energy E, measured by
the laser pulse energy meter, is related to the peak fluence by

F
peak
0 = 2E

πw2
0

. (2)

For the measured radius of disappearance of SWCNTs r0, the
local ablation threshold fluence (peak fluence), F

peak
th (r0), is

given by

F
peak
th (r0) = 2E

πw2
0

exp

(
−2r2

0

w2
0

)
. (3)

In the literature, on the other hand, most studies report the
fluence in terms of an average value defined by

F ave
0 = E

πw2
0

. (4)

For consistency with our measurements we cite the data from
the literature in terms of peak fluences.

Figures 3(a) and (b) show AFM images of SWCNTs on a
glass substrate before and after irradiation with a single laser
pulse at a peak fluence of 5.6 J cm−2. Using fluences slightly
above the glass ablation threshold of 5.2 J cm−2 [1], we could
minimize debris due to ablation and prevent impairing the
AFM imaging. Figure 3(c) shows the cross-sectional profile of
the deposited carbon nanotubes before ablation and reveals that
most tubes were bundled together with a diameter of 5–25 nm
(see also figure 1). There are about 30 SWCNT bundles per
10 µm2 area and the average bundle length is about 2 µm.
The arrow in figure 3(b) indicates the direction of the laser
polarization. The centre of the laser beam is represented
by the cross of two perpendicular lines. The corresponding
Gaussian distribution of the laser fluence is plotted in
figure 3(d).

Three distinguished regions of ablation can be observed in
figure 3(b). Concentric white circles are drawn to indicate the
boundaries of these regions. The large circle (No 1) indicates
the region where most carbon nanotubes are ablated, the
medium circle (No 2) indicates the region where nano-width
lines are ablated on glass, and the small circle (No 3) indicates
the region where fs-laser ablation of glass at the microscale is
observed. The radius r0 of SWCNTs’ disappearance indicated
by the large white circle (No 1) is 5.35 µm, corresponding to
a threshold fluence of F

peak
th (r0) = 52 mJ cm−2 for SWCNTs’

ablation.
To analyse the details of the region of glass nanoablation

we present higher magnification AFM images in figure 4. A
few elliptical and rectangular dotted shapes are added in the
AFM images to highlight the regions of glass nanoablation
before and after laser exposure. We observed that the glass
nanoablation seen in figure 4(b) took place at the same

exact positions of carbon nanotubes in figure 4(a). These
nanolines on glass have a similar orientation and length of
the carbon nanotubes that previously occupied those locations.
The cross-sectional profiles along A–B and A′–B′ before and
after ablation plotted in figure 4(c) clearly demonstrate that
nanoablation occurs on glass directly beneath SWCNTs. The
width of the nanoablated lines is between 30 and 50 nm and
the depth is up to 50 nm. At the centre of the laser beam
inside the small circle, we observe direct fs-laser ablation of
glass up to a radius of 1.1 µm. This radius corresponds to a
threshold fluence of 4.6 J cm−2 which is close to the published
threshold of glass ablation of 5.2 J cm−2 [1]. The circular
distribution of the nanoablation region allows us to estimate
its threshold fluence. The measured distance from the centre
of the laser beam is ∼3.6 µm, corresponding to a fluence of
840 mJ cm−2. This fluence is about six times lower than the
expected threshold of glass ablation.

To estimate the ablation thresholds, additional experi-
ments were performed for a variety of laser fluences ranging
from 0.2 to 3.5 J cm−2. At fluences as low as 2.24 J cm−2,
direct fs-laser ablation of glass could not be observed anymore
whereas nanoablation of glass could still be obtained. We anal-
ysed the laser exposed regions using AFM and measured the
radius of circles indicating the disappearance of carbon nan-
otubes, the border of the nanoablated regions (nanolines) on
glass and the border of fs-laser ablated craters on glass. By
recognizing that material cannot be ablated at laser fluences
lower than the threshold, namely, r = 0 when F

peak
0 = F

peak
th ,

equation (1) yields

r2 = w2
0

2
ln

(
F

peak
0

F
peak
th

)
. (5)

Figure 5 presents the measured radius data as a function of
the peak fluence, F

peak
0 . Linear fits to data points based

on equation (5) reveal the linear relationship between the
squared radius of the ablated region and the logarithm of
the incident laser fluence. The extrapolation of the linear
fit to r2 = 0 results in threshold fluences, F

peak
th , for

fs-laser ablation of glass, nanoablation of glass and ablation
of SWCNT bundles of 4.1 ± 0.2 J cm−2, 920 ± 76 mJ cm−2

and 50 ± 12 mJ cm−2, respectively. Our measured ablation
threshold of SWCNT bundles is about ten times lower than
the theoretically calculated value (about 480 mJ cm−2) for the
ablation of individual (not bundled) SWCNTs [28]. The reason
for this discrepancy might be due to the fact that the theoretical
value for individual SWCNT was computed based on the
estimated data for graphite. Their calculated threshold fluence
for individual SWCNTs is indeed similar to that for graphite
(500 mJ cm−2) [33]. On the other hand, it is also possible that
these lower values of measured ablation thresholds of bundled
SWCNTs are a result of a possible near-field enhancement
between the bundled nanotubes.

4. Discussion

Notably, the threshold fluence for glass nanoablation
(0.92 J cm−2) is about 4.5 times smaller than the measured
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Figure 3. AFM images of SWCNTs deposited on the glass substrate before (a) and after (b) fs-laser pulse irradiation. The area within the
large circle indicates the region where SWCNTs disappeared. Glass ablation at the nanoscale and microscale takes place within the smaller
circles, Nos 2 and 3, respectively. The corresponding distribution of the local laser fluence is plotted in the Gaussian curve in (d). The
cross-sectional profile along A–B is plotted in (c). Scale bars are 2 µm.

Figure 4. Magnified AFM images of the region within two small circles presented in figure 3 before (a) and after (b) ablation. Several
dotted ellipses and rectangles are drawn to highlight that nanolines are directly created beneath the SWCNTs. Scale bars are 1 µm. (c) The
cross-sectional profiles along A–B and A′–B′.
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Figure 5. (a) Single-shot fs-laser ablation of glass, (b) nanoablation
of glass and (c) fs-laser ablation of SWCNT bundles. The plots
show the linear relation between the squared radius of the areas
(circles Nos 1, 2 and 3) and the logarithmic of the local laser fluence
in accordance with equation (5). The extrapolations to zero provide
the single pulse thresholds. The error bars represent the uncertainty
of the radius measurement.

threshold for fs-laser ablation of glass (4.1 J cm−2) [1]. We
may attribute this nanoablation phenomenon to a possible
local-field enhancement near the carbon nanotube bundles.
We have previously showed that the near-field enhancement
of fs-laser pulses can be used to overcome the diffraction
limit of traditional laser ablation for patterning silicon at the
nanoscale using gold nanoparticles [34]. Enhancement of
electromagnetic fields near the surface of nanoparticles is a
result of the excitation of localized surface plasmons as well
as the lightning rod effect in metallic nanostructures [35].

Surface plasmons are collections of electrons that oscillate at
the interface between the metal and its surrounding dielectric
material.

A number of experimental studies detected surface
plasmons in multi-wall carbon nanotubes (MWCNTs) [36,37],
bundles of SWCNTs [38] and purified SWCNTs [39] using
electron energy loss spectroscopy (EELS). These studies
showed two main peaks identified as surface plasmons in the
ranges 5–7.5 eV and 21–27 eV. Careful EELS measurements
by Pitchler et al showed some additional peaks at energies
below 3.5 eV [39]. Bose [40] later attributed these peaks to
possible surface plasmons related to the collective azimuthal
motion of electrons on the surface of the nanotubes. More
recent experiments demonstrated the nanoantenna operation of
MWCNTs [41, 42] as well as their photon coupling capacity
(near 2.3 eV) using a fluorescent microbead detection [43].

Despite these studies providing some insight into
the plasmonic features of carbon nanotubes, our present
understanding of their collective electronic excitation modes or
plasmons is still limited. in particular, considering the mixed
metallic and semiconducting nature of SWCNT bundles,
further studies are needed to elucidate the exact nature of the
near-field enhancement phenomena observed in this study.

5. Conclusions

We studied the properties of fs-laser ablation of SWCNTs.
We found that the peak fluence threshold for ablation of
SWCNTs in a bundle state is 50 mJ cm−2. This value is 5–10
times smaller than the measured fs-laser ablation threshold
for graphite and 10 times smaller than that calculated for
the ablation of single nanotubes. At a peak laser fluence
of 920 mJ cm−2, we observed nanoablation of glass directly
beneath the bundled SWCNTs and creation of micrometres
long nanolines. The nanoablations are believed to be due
to near-field enhancement of the electric field near the
bundled SWCNTs. This enhancement by carbon nanotubes
could potentially be used in a number of applications. It
could possibly be used for lithographic patterning on various
materials for electronic as well as for biological applications.
Recently, Chen et al developed a new technique to interface
biocompatible CNTs with a cell surface by carbohydrate-
receptor interactions: the modified CNTs are nontoxic and
bind to specific sites on cell surfaces [44]. Through this
method it might be possible to use the near-field enhancement
of SWCNTs to kill cancer cells by irradiating SWCNT labelled
cancer cells with ultrafast laser pulses. The advantage of
the near-field enhancement is that it only damages atto-litre
volumes around the SWCNTs. In addition to the nanoscale
localization of laser pulses the nonthermal nature of fs-laser
ablation can be exploited to minimize the destruction of
surrounding healthy cells.
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