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Femtosecond Laser Thermal 
Accumulation‑Triggered Micro‑/Nanostructures 
with Patternable and Controllable Wettability 
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HIGHLIGHTS

• The patternable and controllable wettability via femtosecond laser thermal accumulation engineering is proposed for liquid manipu-
lating.

• The wettability of polyimide film can be tuned from superhydrophilicity (~3.6°) to superhydrophobicity (151.6 °).

• Three diverse surfaces with patternable and heterogeneous wettability are constructed for application of water transport, droplet arrays, 
and liquid wells.

ABSTRACT Versatile liquid manipulating surfaces combining patternable and 
controllable wettability have recently motivated considerable attention owing 
to their significant advantages in droplet-solid impacting behaviors, microdro-
plet self-removal, and liquid–liquid interface reaction applications. However, 
developing a facile and efficient method to fabricate these versatile surfaces 
remains an enormous challenge. In this paper, a strategy for the fabrication of 
liquid manipulating surfaces with patternable and controllable wettability on 
Polyimide (PI) film based on femtosecond laser thermal accumulation engineer-
ing is proposed. Because of its controllable micro-/nanostructures and chemical 
composition through adjusting the local thermal accumulation, the wettability 
of PI film can be tuned from superhydrophilicity (~ 3.6°) to superhydrophobicity 
(~ 151.6°). Furthermore, three diverse surfaces with patternable and heterogene-
ous wettability were constructed and various applications were successfully real-
ized, including water transport, droplet arrays, and liquid wells. This work may 
provide a facile strategy for achieving patternable and controllable wettability efficiently and developing multifunctional liquid steering surfaces.
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1 Introduction

Surface wettability is critical to a range of practical appli-
cations [1–9], which is primarily governed by the surface 
micro-/nanostructures and chemical composition [10–12]. 
Versatile liquid manipulating surfaces with controllable 
microstructures and wettability have attracted consider-
able interest on account of their great potentials in scien-
tific investigations, involving cellular screening [13, 14], 
droplet-solid impacting behavior [15, 16], liquid direc-
tional transport [17, 18], oil–water separation [19, 20], 
bubble assembling [21], and so forth. Currently, several 
methods have been explored to fabricate functional surfaces 
with superwettability, such as plasma treatment [22, 23], 
electrochemical-etching [24, 25], UV irradiation [26], and 
spray-coating [27, 28]. For instance, Li et al. [29] designed 
an adhesion-patterned surface on porous alumina plates 
by chemical vapor deposition and UV irradiation, which 
was successfully applied for controllable droplet rotational 
bouncing. Song et al. [30] developed a serial-wedge-shaped 
wettability pattern on an aluminum plate via electrochemical 
etching, Fluoroalkylsilane modification and laser scanning, 
which was competent for the realization of spontaneous 
and directional transportation of gas bubbles in an aque-
ous environment. However, there are still several deficien-
cies needed to be addressed, including complex treatments, 
high cost and uncontrollable wettability. Therefore, seeking 
a convenient and efficient way to fabricate multifunctional 
liquid manipulating surfaces with controllable wettability is 
urgently demanded.

Laser processing has emerged as an effective technique 
to control the wettability of solid surfaces, because differ-
ent micro-/nanostructures can be directly prepared on vari-
ous substrates by one-step laser scanning [31–33]. In most 
cases, the laser beam forms micro-/nanostructures on sub-
strates for achieving desired wettability owing to the ther-
mal effects, which is induced by laser ablation with high 
energy density. However, laser ablation with thermal effects 
is only serving for the fabrication of simply functional sur-
faces with non-tunable wettability, and it is hard to satisfy 
our up-to-date requirements. Compared with these conven-
tional lasers, femtosecond laser has a variety of features, 
such as high energy intensity, high processing efficiency and 
environmental friendliness [34–37]. Nevertheless, almost 
all reported femtosecond laser fabrication technology has 

taken advantage of cold machining, which can only achieve 
one wettability without post-treatment [38, 39]. To our best 
knowledge, regulating the thermal accumulation of the fem-
tosecond laser processing to achieve various patternable and 
controllable wettability for liquid manipulating has never 
been reported.

Herein, we put forward a femtosecond laser thermal accu-
mulation engineering to prepare patternable and controllable 
wettability surfaces toward liquid manipulating on polyimide 
(PI) film. With the thermal accumulation developing, the PI 
film surface’s micro-/nanostructures and chemical compo-
sition can be modified accordingly, which leads to the con-
tinuously controllable wettability, from superhydrophilicity 
(~ 3.6°) to superhydrophobicity (~ 151.6°). Subsequently, a 
series of heterogeneous and patternable wettability surfaces 
are prepared and various liquid manipulating applications 
are successfully achieved, including water transport, droplet 
arrays and liquid wells.

2  Experimental Section

2.1  Femtosecond Laser Fabrication

In this work, PI film (∼0.1 mm) was selected as the raw 
material. PI film has exceptional advantages such as endur-
ing high-low temperature resistance, good thermal stability, 
corrosion resistance, excellent mechanical properties, high 
electrical insulation, and radiation resistance. Additionally, 
PI film has low thermal conductivity and its melting tem-
perature is ~ 280 °C. The laser beam (central wavelength of 
1035 nm, pulse width of 350 fs) from a commercial femto-
second fiber laser system (HR-Femto-IR-50-40B, Huaray, 
China) was guided onto the sample surface and scanned 
along x–y directions through a two-mirror galvanometric 
scanner system (basiCube 10, Scanlab, Germany) with an 
F-Theta lens (focused length of 125 mm). The laser repeti-
tion rate, power, and scanning speed were used from 5 to 
100 kHz, 80 to 900 mW, 50 to 250 mm  s−1, respectively. The 
scanning spacing was fixed at 12 µm. All the treatments were 
carried out at room temperature.

2.2  Characterization

A field emission scanning electron microscope (SEM, 
MIRA3 LMU, Tescan, Czech Republic) was utilized to 
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observe the micro-/nanostructures. The elemental composi-
tion and map of the samples were determined by an energy-
dispersive spectroscope (EDS, Tescan, Czech Republic). 
The three-dimensional morphology and cross-sectional 
profiles were characterized by a laser confocal microscope 
(LCM; Axio LSM700, Zeiss, Germany). The surface tem-
perature distribution was recorded by an infrared camera 
(Ti450, Fluke, USA). A contact angle system (Biolin Sci-
entific, Finland) was used to measure the contact angles of 
water droplets on the samples surfaces. The left and right 
contact angles were measured to calculate the average value 
of water contact angles (WCAs). All average WCAs and 
standard deviations were calculated from at least three dif-
ferent measurements.

3  Results and Discussion

Femtosecond laser processing has drawn increasing atten-
tions owing to its exceptional advantages, such as high res-
olution, non-contact processing, and strong controllability 
[40–45]. It can construct three-dimensional microstructures 
on different substrates and change the chemical composition 
of the substrates, making it as an effective technology for 
controlling the wettability of materials [46–53]. Figure 1a 
shows a schematic of the femtosecond laser-treated Polyim-
ide (PI) film surface at different repetition rates and powers. 
In the case of low repetition rate (5 kHz) and low power 
(80 mW), worm-like rough microstructures were formed 
on the flat PI film surface by line-by-line scanning process, 
and the maximum temperature of the scanning process 
was ~ 34.0 °C. By comparison, under high repetition rate 
(100 kHz) and high power (900 mW), smooth PI film was 
transformed into rough film with grid-shaped microstruc-
tures. Correspondingly, the maximum temperature of this 
treatment was ~ 59.4 °C, which was significantly higher than 
that of low repetition rate and low power treatment. The 
maximum temperature of the femtosecond laser scanning 
process rose significantly with the increase in power percent-
age when the repetition rate reached or higher than 100 kHz, 
reflecting obvious thermal accumulation effects. Moreover, 
low thermal conductivity of PI film also promoted the local 
thermal accumulation effects. Generally, strong thermal 
accumulation effects induced by high repetition rate and 
high power can generate a larger thermal-affected region 
on the sample surface (Fig. S1) [54]. Figure 1b shows a 

photograph of the pristine PI film, low repetition rate and 
low power laser-treated Polyimide (LRLLP) film, high rep-
etition rate and high power laser-treated Polyimide (HRHLP) 
film (Fig. S2). These three samples are hydrophilic, super-
hydrophilic, and superhydrophobic, respectively. A number 
of studies have investigated the wettability of PI treated with 
laser under various conditions (Table S1). Compared with 
the previous approaches for preparing surfaces with hetero-
geneous wettability, femtosecond laser thermal accumula-
tion engineering can achieve controllable wettability by only 
one step in air atmosphere on PI film (Table S2). Owing to 
controllable wettability and designable patterns, superhy-
drophobic–superhydrophilic patterned surfaces (SHB-SHL) 
fabricated by the femtosecond laser thermal accumulation 
engineering have guaranteed the various applications of 
water transport, droplet arrays and liquid wells (Fig. 1c).

Figure 2a–c shows the scanning electron microscopy 
(SEM) images of the pristine and laser-treated PI film 
surfaces. Compared with the smooth surface of PI film 
(Fig. 2a), the LRLLP (5 kHz, 80 mW, 50 mm  s−1) film is 
rough and covered by worm-like microstructures with an 
average width size of ~ 0.5 μm (Fig. 2b), the rough struc-
tures change the film surface wettability from hydrophilic-
ity to superhydrophilicity. However, the HRHLP (100 kHz, 
900 mW, 50 mm  s−1) film surface is covered by grid-shaped 
microstructures composed of filaments covered with par-
ticles (Fig. 2c), which may be caused by strong thermal 
accumulation effects during femtosecond laser processing. 
The SEM images of different locations show that the rough 
microstructures are uniformly distributed on the laser-treated 
surfaces (Figs. S3 and S4). Additionally, SEM images of 
the treated PI film with laser scanning speeds of 50, 100, 
and 150 mm  s−1 are shown in Figs. S5 and S6. The energy-
dispersive spectroscope (EDS) was employed to determine 
the elemental chemical composition and maps of the PI, 
LRLLP and HRHLP films (Fig. 2d–f). The LRLLP film 
shows the increase in the C content from 58.11 to 68.64% 
and a decrease in N content, revealing that it was slightly 
carbonized (Fig. 2d-e). For the HRHLP film, the C con-
tent increased apparently from 58.11 to 79.20%, and the O 
content decreased from 23.62 to 13.68%, which suggested 
that the HRHLP film was seriously carbonized (Fig. 2d, 
f). The elemental maps indicated that C, N, and O were 
evenly distributed on PI films after the laser treatment. As 
can be seen from Fig. 2g, the uniformly morphology micro-
structures with a depth less than 5 μm were detected on 
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the LRLLP film surface. Nevertheless, an LCM image of 
the HRHLP film surface shows protrusions with heights of 
5–20 μm (Fig. 2h). Moreover, the LCM images of the treated 
PI film surface with laser scanning speeds of 50, 100, and 
150 mm  s−1 are also shown in Figs. S7 and S8.

Systematically investigating the surfaces wettability is of 
great importance. Water contact angle (WCA) measurements 
were, respectively, employed on the PI, LRLLP, HRHLP 
films surfaces to examine the water wettability. As shown 
in Fig. 3a, the PI film surface showed hydrophilicity with 
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a WCA of ~ 74.6°, while the LRLLP film surface showed 
superhydrophilicity with a WCA of ~ 3.6° (Fig. 3b). Mean-
while, a small water droplet placed on the HRHLP film 
surface could remain spherically shaped, and the WCA 
reached ~ 151.6°, which indicated that the HRHLP film was 
superhydrophobic (Fig. 3c). Moreover, the HRHLP film sur-
face exhibited a small sliding angle (~ 3°) and splendid self-
cleaning effect (Figs. S9 and S10, Videos S1 and S2). The 
WCA only changed slightly when the substrate temperature 
increased from 30 to 70 °C or bending the HRHLP film 
for 30 cycles, revealing good thermal stability and resist-
ing bending of the HRHLP film (Figs. S11 and S12). The 
LRLLP and HRHLP films also possessed superhydrophilic-
ity and superhydrophobicity for other aqueous liquids, such 
as tea and coffee, respectively (Fig. S13). PI film surface 
is hydrophilic with a WCA of ~ 74.6°. After low repetition 
and low power laser treatment, the prepared sample surface 
is rough and covered by worm-like microstructures. In this 
condition, the water droplet could wet the microstructure 

of the rough surface. At this point, Wenzel state is used to 
understand superhydrophilicity:

 
where r is the surface roughness factor defined as the 

ratio of the actual contact area to projected area. θW and 
θY are WCAs on rough and flat surfaces, respectively. This 
model and equation indicate that the surface roughness fac-
tor increases surface wettability for hydrophilic surfaces. 
Therefore, there is a smaller WCA (~ 3.6°) of the LRLLP 
film surface as compared to PI film surface. As such, the 
water droplet tends to spread quickly over the LRLLP film 
surface. By virtue of the amplifying function of the rough 
microstructures in surface wettability, compared with the 
hydrophilic PI film (Fig. 3d), the rough worm-like micro-
structures induced by low repetition rate laser ablation con-
fer superhydrophilic property (Fig. 3e). However, SEM and 
LCM images of the HRHLP film surface show the pres-
ence of uniformly distributed micro-protrusions, causing 

(1)cos �W = r cos �Y
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the reduction in effective contact area of the HRHLP film 
surface in contact with water (Figs. 2h and S14). In gen-
eral, a decrease in the O content on organic polymer sur-
face attenuates surface hydrophilicity [55]. Besides surface 
topography, high repetition rate pulses can also cause a 
decrease in the O content from 23.62 to 13.68%, which has 
a great influence on surface wettability. In this situation, the 
water droplet could not completely wet the rough surface, 
and air pockets exist between the surface and water droplet. 
To understand the superhydrophobicity, the Cassie-Baxter 
model and Eq. (2) are used:

where θCB is the actual WCA, rf is the ratio between the wet 
area and the apparent area, and f is the fraction of the rough 
surface in contact with water. The uniformly distributed 
micro-protrusions on the HRHLP film surface cause more 
air pockets and a low f, resulting in a larger WCA (~ 151.6°). 
Therefore, the synergistic function of chemical composition 
and surface microstructure endows the HRHLP film surface 
with superhydrophobic property (Fig. 3f).

Dynamic wetting behaviors of water droplets on the PI, 
LRLLP and HRHLP film surfaces were in accordance with 
their WCAs. When a water droplet from a microsyringe 

(2)cos �CB = rf ∗ f cos �Y + f − 1
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slowly contacted the PI film surface, it adhered to the PI film 
surface due to the high adhesion (Fig. 3g). When a water 
droplet contacted the LRLLP film surface, the water drop 
would be quickly absorbed and wet the whole LRLLP sur-
face (Fig. 3h). However, when a water droplet touched the 
HRHLP film surface, the water droplet was extruded and 
deformed. Finally, it will leave the HRHLP surface with the 
gradual movement of the microsyringe, and the HRHLP sur-
face remained dry, indicating a critically low adhesion of the 
HRHLP film surface (Fig. 3i). The videos of water droplets 
impact on the PI, LRLLP and HRHLP films surfaces were 
captured by a high-speed camera (Fig. S15, Videos S3-S5). 
In order to achieve controllable wettability, we tested the 
influence of the repetition rate, power and scanning speed 
on the wettability of the as-prepared sample. Figure 3j shows 
the influence of repetition rate and power on the surface wet-
tability given a constant scanning speed (50 mm  s−1). With 
negligible thermal accumulation, the samples treated with 
low repetition rate laser showed superhydrophilicity. The 
WCA of as-prepared samples tended to rise with the increase 
in repetition rate and laser power, which eventually achieved 
superhydrophobicity. When the laser power is constant, dif-
ferent repetition rates would cause completely different wet-
ting ability. For example, in the case of power about 900 
mW, repetition rates of 20, 50, and 100 kHz would induce 
superhydrophilicity, hydrophilicity, and superhydrophobic-
ity, respectively. While, the change of power cannot produce 
controllable wettability under the same repetition rate. For 
instance, in the case of repetition rate about 100 kHz, pow-
ers of 200, 500, and 900 mW would induce hydrophilicity, 
hydrophilicity, and superhydrophilicity, respectively. It dem-
onstrates the possibility of realizing controllable wettability 
by adjusting power and repetition rate under the condition 
of scanning speed about 50 mm  s−1. As shown in Fig. 3k, 
once other parameters were certain, the series LRLLP and 
HRHLP films wettability would gradually approach the PI 
films with the scanning speed increase. Figure 3k indicates 
that the scanning speed of 50 mm  s−1 is proper to achieve 
the superwettability. As can be seen from parts j and k of 
Fig. 3, the main parameter to control the surface wettabil-
ity is the repetition rate, followed by power and scanning 
speed. In addition, the wettability performance of LRLLP 
and HRHLP films placed in air (temperature of ~ 20 °C and 
humidity of ~ 40%) for 7 days did not change significantly, 
demonstrating the excellent stability of LRLLP and HRHLP 
films (Fig. 3l). Therefore, it can be concluded that fabricating 

controllable wettability surfaces on PI film through femto-
second laser thermal accumulation engineering is feasible.

By regulating the femtosecond laser thermal accumula-
tion on different regions, various superhydrophilic–super-
hydrophobic patterns can be constructed, which realizes a 
series of new liquid manipulating applications. For example, 
path patterns composed of superhydrophobic borders and 
superhydrophilic paths could be used for continuous and 
stable liquids transportation. Figure 4a shows a schematic 
diagram of water transport. When water droplets continu-
ously drop on one side of the superhydrophilic path, they 
speedily spread out and arrive at the other side. Figure 4b 
exhibits the qualitative mechanism of the water transport 
on the superhydrophobic–superhydrophilic path. Superhy-
drophobic borders ensure the uneven distribution of water 
to cause different transient angles. Thus, the difference in 
transient angles creates a driven force to make water trans-
port along the designed superhydrophilic path, which can be 
described as follows [56, 57]:

where θR is the transient angle contacting with superhydro-
philic paths, θL is the transient angle contacting with super-
hydrophobic borders, R0 is the characteristic radius of water 
droplets, and γ is the surface tension of water. Water-repel-
lency from superhydrophobic borders and water-absorption 
from superhydrophilic paths ensure that water can transport 
along the designed superhydrophilic path. Figure 4c shows 
a series of optical photos of the whole process for water 
transport (Video S6). The trajectory of water transporting 
along the superhydrophilic path can also be seen from the 
corresponding infrared images (Fig. 4d). When encountering 
external force interference, the water on the superhydrophilic 
path can generate a rapid and adaptive deformation accord-
ingly. This feature leads to the fact that when we tilted the 
substrate at a small angle in any direction, water could be 
limited to the superhydrophilic path (Video S7). With the 
gradual and continuous addition of water droplets, water was 
still kept on the superhydrophilic regions by forming a three-
dimensional structure (Fig. S16).

Besides, uniformly distributed circular superhydrophilic 
areas surrounded by superhydrophobic regions were fabri-
cated for creating droplet arrays (Video S8). As shown in 
Fig. 4e, the fabricated pattern was immersed in water and 
then pulled out from water. The optical image shows that 
water droplets were firmly adhered to superhydrophilic 
areas, but superhydrophobic regions remained dry (Fig. 4f). 

(3)Fdriven ∼ �R
0

(

cos �R − cos �L
)
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Using programable processing, a variety of patterns with 
different shapes were prepared, including triangle, rectan-
gle, and hexagon, which could also form stable and consist-
ent droplet arrays (Fig. S17). The droplet arrays composed 
of completely independent droplet units served as an ideal 
platform for high-throughput live-cell screenings without 

cross-contamination, which would be useful for various bio-
logical and medical applications. Additionally, water drop-
lets were fixed on the designed superhydrophilic areas to 
generate various water-based patterns (Fig. 4g).

Based on the water-repellency from superhydropho-
bic regions and the water-absorbing properties from 
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arrays. g Optical photographs for the designed superhydrophilic–superhydrophobic patterns filled with water dyed with Methylene Blue
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superhydrophilic regions, water can be tethered to superhy-
drophilic areas surrounded by superhydrophobic regions to 
form stable water walls, which can contain another immis-
cible liquid. Compared with the traditional solid vessels, 
liquid wells have unique and intriguing features such as self-
healing and capacious (Fig. 5a). In this experiment, oil was 
mainly selected as the contained liquid. Water was firstly 
confined to a superhydrophilic area to construct a water wall. 
Then, oil was added to the superhydrophobic regions sur-
rounded by the water wall and spread out. Finally, oil was 
limited to the preformed water wall with an annular shape 
(Fig. 5b and Video S9). The results indicated that whether 
the organic liquids could be contained within the water walls 
mainly depends on the physical and chemical properties of 
the organic liquids (Fig. S18). Oil and 1-decanol incompat-
ible with water could be well contained within the water 
wall. However, ethanol and isopropanol miscible with water 
collapsed the water wall and then spread out over the supe-
rhydrophobic regions. Combining with controllable femto-
second laser processing, we designed several patterns with 
different shapes (triangle, hexagon and conjoined square), 
which can contain 1-decanol successfully (Fig. S19). 
Besides, we employed a knife to cut the liquid well for test-
ing its resistance to external mechanical forces. After cutting 
the liquid well filled with oil using a knife, the liquid well 
structure remained intact. Only a small part of oil droplets 
flowed out to the superhydrophobic regions surrounding the 
liquid well following the direction of the knife (Fig. 5c and 
Video S10).

Due to the dynamic fluidity of water, liquid wells could 
hold more organic liquid, which is completely distinct from 
the frequently used solid vessels. To investigate the high-
capacity properties, oil was deposited on the superhydropho-
bic regions within a water wall (140 µL), and the volume of 
the oil was gradually increased until oil overflowed (Fig. 5d 
and Video S11). With the continuous addition of oil drop-
lets, the water wall could accommodate a great deal of oil 
through an adaptive deformation. When less oil was depos-
ited (Ho < Hw), oil menisci was formed in the area where 
the water wall contacted oil due to the tension between water 
and oil (Fig. 5e). When more oil was deposited (Ho > Hw), 
oil menisci was higher than the water wall, which is realized 
by the balance between capillary forces and gravitational 
forces on the top of the water wall (Fig. 5e). In addition, we 
inclined the liquid well with approximately the same height 
of oil and water wall at a small angle, then restored it to the 

horizontal surfaces (Fig. S20). During this process, oil was 
always successfully contained in the water wall due to the 
fluidity and deformation of water in the superhydrophilic 
areas. To further explore the capacity of a liquid well, the 
height of the water walls constructed by different water vol-
umes and the maximum height of oil was measured. The 
results showed that a maximum height of 1.5 ± 0.1 mm was 
reached for 140 µL water. With a liquid wall built by 140 
µL water, the maximum height of oil contained in the liquid 
well could reach 3.37 ± 0.25 mm (Fig. 5f). In the experi-
mental cases, the maximum height of oil exceeded the cor-
responding water wall height, which reflected the high-
capacity characteristics of liquid wells.

4  Conclusions

In summary, we processed patternable and controllable 
liquid manipulating surfaces on PI films through one-step 
femtosecond laser thermal accumulation engineering. With 
various surface microstructures and chemical composition 
induced by thermal accumulation effects, the laser-treated 
samples realized continuously controllable wettability 
from superhydrophilicity (~ 3.6°) to superhydrophobicity 
(~ 151.6°). By regulating local thermal accumulation effects, 
various surfaces with patternable wetting performance were 
also successfully fabricated and multiple liquid manipulating 
applications were achieved, such as water transport, droplet 
arrays, and liquid wells. The proposed facile and efficient 
fabrication method might provide a viable source for various 
applications of bubble self-assembling, droplet-solid impact-
ing behavior, fog collection, and oil–water separation.
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