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ABSTRACT: Oxidation-state-specific dynamics at the Fe M2,3-edge are measured on
the sub-100 fs time scale using tabletop high-harmonic extreme ultraviolet
spectroscopy. Transient absorption spectroscopy of α-Fe2O3 thin films after 400 nm
excitation reveals distinct changes in the shape and position of the 3p → valence
absorption peak at ∼57 eV due to a ligand-to-metal charge transfer from O to Fe.
Semiempirical ligand field multiplet calculations of the spectra of the initial Fe3+ and
photoinduced Fe2+ state confirm this assignment and exclude the alternative d−d
excitation. The Fe2+ state decays to a long-lived trap state in 240 fs. This work
establishes the ability of time-resolved extreme ultraviolet spectroscopy to measure
ultrafast charge-transfer processes in condensed-phase systems.

SECTION: Spectroscopy, Photochemistry, and Excited States

T ime resolved X-ray absorption spectroscopy is a powerful
tool for probing the electronic structure of short-lived

states because of the element, oxidation state, and spin state
specificity of core-to-valence transitions. With the advent of
third-generation synchrotrons and free-electron lasers, photo-
induced nuclear and electronic dynamics of transition-metal
complexes have been studied on picosecond to femtosecond
time scales.1,2 First-row transition metals are generally probed
at the K- and L2,3-edges, corresponding to 1s → 3d and 2p →
3d transitions. There is far less work on the M2,3-edge, or 3p→
3d transition, due to the rarity of sources in the extreme
ultraviolet (XUV) spectral region from 40 to 100 eV and the
need for high-vacuum sample environments. However, time-
resolved spectroscopy at this edge is attractive for three reasons.
First, the large overlap between the 3p and 3d wave functions
leads to an absorption cross section that is 10 times larger than
the L2,3-edge and 1000 times larger than the K-edge. For solid-
state samples such as transition-metal oxides, the optical and
XUV cross sections are of the same order of magnitude, with
similar penetration depths for pump and probe beams. Second,
the Coulomb and exchange coupling between the 3d electrons
and the 3p core−hole produces a multiplet peak shape that is
indicative of the ligand field, oxidation state, and spin state of
the metal.3 Finally, recent advances in high-harmonic
generation (HHG)4 enable transient absorption spectroscopy
to be reliably performed in the XUV using a tabletop laser-
based source, with a photon flux that is 2 orders of magnitude
higher than femtosecond “slicing” beamlines and the time

resolution from the femtosecond5,6 to attosecond7,8 regimes.
Tabletop XUV spectroscopy has recently been used to measure
gas-phase dynamics of small molecules,5,8 dielectric switching in
Si,7 and element-specific spin dynamics in NiFe alloys and
multilayers.9,10

In this work, it is shown that M2,3-edge transient absorption
spectroscopy can be used to measure photoinduced oxidation
state changes in a condensed-phase sample, α-Fe2O3 (hema-
tite), which is a stable, earth-abundant semiconductor that is
the subject of intense study due to its potential as a
photocatalyst for water splitting.11 The efficiency is hampered
by low electron mobility and rapid trapping of the initial
photoexcited state. The nature of this initial state is a subject of
continued debate due to the complex electronic structure of
this material.12−18 Band gap excitation at 2.2 eV arises from d−
d transitions that are spin-allowed due to magnetic coupling
between Fe atoms.17 However, the interpretation of the major
visible-light absorption feature at 3.2 eV19 depends strongly on
the theoretical model used. This peak was first explained as a
ligand-to-metal charge transfer (LMCT) transition on the basis
of self-consistent field Xα scattered wave15 and semiempirical
atom superposition and electron delocalization (ASED)16

calculations. Later treatments17 including a recent high-level
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complete active space self-consistent field/complete active
space with second-order perturbation theory (CASSCF/
CASPT2) study18 calculated this peak to be a d−d transition,
with LMCT transitions (O2− 2p → Fe3+ 3d) occurring at
higher energy. The oxidation state and spin state specificity of
M2,3-edge absorption make it an excellent tool for distinguish-
ing between these conflicting analyses.
The experimental apparatus is diagrammed in Figure 1. XUV

transient absorption spectroscopy on a solid-state sample, in
this case, a 14 nm thick α-Fe2O3 film on a 100 nm Si3N4

substrate,20 poses unique experimental challenges beyond those
faced in gas-phase studies.5,6 Thin samples and substrates are
required due to the short penetration depth of the probe beam.
The substrate itself absorbs 90% of the XUV photons;
therefore, the flux measured at the CCD detector is 10 times
lower than that in a gas-phase experiment with the same sample
absorbance. HHG is therefore performed in a semi-infinite gas
cell21 to maximize photon flux, stability, and ease of alignment.
In order to improve the spectral coverage and minimize the
low-flux regions between odd harmonics, a two-color laser field
(800 nm + 400 nm)22 is used to drive the HHG process. This
breaks the inversion symmetry of the electric field and allows
both even and odd harmonics to be produced. The average
photon flux collected at the CCD from 47.5 to 67.5 eV is 2.6 ×
104 photons/0.1 eV/sec (Figure 2A).
In addition to maximizing the XUV flux and stability, care is

required to avoid sample damage from the pump beam. The 3
mm × 3 mm sample is raster-scanned between 2 s pump/probe
data acquisitions, and approximately 2000 transient spectra are
collected from one sample before there is a ∼10% reduction in
the observed transient signal. Data from three identical samples
are averaged to create the transient spectra, for a total data
acquisition time of 3.5 h. The XUV continuum produced by
HHG allows a full spectrum to be collected at once, as in an
energy-dispersive beamline.23 The spectrometer is calibrated
using the first- and second-order absorption peaks of Xe gas. To
minimize the effect of pump light scattering onto the CCD,
difference spectra at time t are recorded in comparison to a
spectrum taken at −500 fs. The chirp of the XUV probe pulse is
not expected to be significant on the time scales presented
here.24

The ground-state XUV absorption of the α-Fe2O3 film is
shown in Figure 2B, with major and minor peaks at 57.5 and
53.7 eV, respectively. This spectrum is an excellent match for
that of a hematite single crystal measured using a synchrotron
source,25 and electron diffraction was used to confirm the
sample phase (see the Supporting Information). Static M2,3-
edge spectra of first-row transition metals have been discussed

in detail26 and are calculated using a semiempirical ligand field
multiplet model with the atomic charge, ligand field symmetry
and strength, and a screening parameter as the only
inputs.3,25−27 Briefly, the Fe3+ cation in the octahedral ligand
field of the surrounding O2− anions has a ground-state
electronic configuration of 6A1 (Figure 3). In the absence of
spin−orbit coupling, only two 3p → 3d transitions are allowed
by spin and dipole selection rules, leading to the two observed
absorption features. Unlike the 2p → 3d transition in L2,3-edge
absorption, spin−orbit coupling effects at the M2,3-edge are
weak and effectively only broaden the two peaks. The simulated
spectrum shown in Figure 2B, calculated using the program
CTM4XAS5527 with the ligand field parameters of Berlasso et
al.,25 is an excellent match to the experimental spectrum. The
absolute peak position determined from this calculation is
approximate, and the energy axis is therefore shifted by −1.7 eV

Figure 1. Diagram of the XUV transient absorption instrument. High harmonics are generated in a semi-infinite gas cell with a two-color driving field
(1.5 mJ, 35 fs at 800 nm + 20 μJ, 60 fs at 400 nm). Residual 800/400 nm light is blocked with a total of 1.2 μm Al filters. The Ne pressure in the gas
cell is 100 Torr (1.3 × 104 Pascals). The XUV beam is refocused onto the sample with a gold-coated toroidal mirror in grazing incidence, and the
transmitted beam is diffracted from a concave variable line-spacing grating onto an array CCD. The sample is pumped at 400 nm with a 3 μJ, 80 fs
pulse. Beyond the semi-infinite gas cell, the instrument is under vacuum (∼10−6 Torr).

Figure 2. (A) Absolute XUV photon flux collected at the detector after
passing through 14 nm thick α-Fe2O3 on 100 nm Si3N4. The use of
odd and even harmonics produces excellent spectral coverage with
sufficient flux for absorption spectroscopy, with an average of 2.6 × 104

photons/0.1 eV/sec from 47.5 to 67.5 eV. (B) Ground-state XUV
absorption of a 14 nm thick α-Fe2O3 thin film. Black: experimental
spectrum. Red line and sticks: ligand field multiplet simulation. See the
Supporting Information for a discussion of the line broadening and
Fano line shape.
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to match the major peak position at 57.5 eV. The calculated
stick spectrum is broadened, as described in the Supporting
Information. All simulated spectra in this work use identical
energy-axis shifting and broadening. In Figure 2A, the vertical
axis of the simulated spectrum is shifted and scaled to best
match the experimental result and account for a baseline of
nonresonant absorption.
Photoexcitation of the α-Fe2O3 film with 3 μJ, 400 nm, 80 fs

pulses causes a change in the shape of the M2,3-edge spectrum
indicative of the excited-state electronic structure (Figure 4A).
Immediately after photoexcitation, the transient spectrum is
characterized by a negative feature at 57.5 eV caused by
depopulation of the ground state and three excited-state peaks
at 52.9, 54.6, and 55.8 eV. Over the next 1 ps, the 55.8 eV peak
increases and blue shifts, while the negative feature at 57.5 eV
decays to ∼25% of its initial magnitude. No further spectral
evolution is observed for delay times as long as 100 ps. Given
the pump power of 3 μJ, spot size of 150 μm fwhm, and optical
density at 400 nm of 0.5, it is estimated that one pump photon
is absorbed per 20 Fe atoms. No significant change was seen in
the spectra or kinetics at 1 μJ/pulse. Kinetic traces at
absorption energies of 54.6, 56.4, and 57.4 eV are shown in
Figure 4B. Because of the spectral overlap of the transient

features, a global fit is performed on the full 2-D data set using
the program GLOTARAN.28 An excellent match to the
experimental data is obtained by using a two-state sequential

model ( →A B
k

) with a time constant (1/k) of 240 ± 30 fs,
convoluted with an 88 ± 3 fs Gaussian instrument response
function (IRF). Errors are the standard deviation of the mean
from four data sets on fresh samples. The two evolution-
associated spectral components29 identified by the fit are shown
in Figure 4C, with the time evolution of each component
shown in the inset.
The electronic structure of the short-lived initial photo-

excited state is determined by comparing the experimental
initial excited-state spectrum with simulated spectra of the
possible LMCT and d−d excited states. Figure 5A shows
simulated XUV absorption spectra of the 5T2 Fe2+ state that
would be formed from a LMCT transition and the 4T1 Fe3+

state that would be formed from a d−d transition, calculated
using the ligand field multiplet method described above. For
consistency, all of the input parameters to the simulation except
for the oxidation and spin state are identical to those used for
the 6A1 Fe

3+ ground state in Figure 2B. The simulated spectrum
of the LMCT state is red-shifted from that of the ground state,
with two large peaks at 56.2 and 54.6 eV and a small peak at
52.2 eV. Core-level spectra of reduced species (Fe2+) are red-
shifted from their oxidized counterparts (Fe3+), and the ∼2.5
eV shift is consistent with that observed in an electron energy-
loss spectroscopy (EELS) study of the Fe2+/3+ M2,3-edge of a
series of iron-containing minerals.30 A red shift in Fe absorption
upon photoreduction was also observed via picosecond time-
resolved X-ray absorption spectroscopy at the Fe K-edge of
dye-sensitized γ-Fe2O3 nanoparticles.

31

The XUV absorption spectrum of the lowest-energy Fe3+ d−
d excited state (4T1) is calculated to have a minor peak at 53.0
eV and major peaks at 58.8 and 63.8 eV (Figure 5A). Higher-
energy d−d excited states such as 4T2 are calculated to have
spectra similar to that of the 4T1 state, with a prominent
absorption feature at around 64 eV. This net blue shift upon
crossover from high to low/intermediate spin has been
predicted for a range of 3d transition metals,26 and a similar
effect has been observed in the L3-edge spectrum of the spin-
crossover compound [Fe(tren(py)3)]

2.32 Note that these
simulations do not take into account possible structural
distortions resulting from the excitation.

Figure 3. Diagram of initial and final states in the M2,3-edge (3p →
3d) absorption of octahedral Fe3+. Electron−electron repulsion splits
the 3p63d5 ground state and 3p53d6 core−hole excited state into the
atomic multielectron states 6S, 4G, and so forth, which are further split
by the ligand field. In an octahedral field, the absorption of a photon
transforms as the symmetry operation 1T1, resulting in two spin- and
dipole-allowed transitions. Spin−orbit coupling further splits and
mixes the states (not shown in this diagram), effectively broadening
these two transitions to produce the spectrum shown in Figure 2B.

Figure 4. (A) XUV transient absorption spectra of α-Fe2O3 after excitation at 400 nm. Spectra are binned by 0.1 eV and smoothed using a 0.5 eV
running boxcar average. (B) Kinetic traces at 54.6, 56.4, and 57.4 eV. Points are experimental data, and solid lines are from the global fit. (C)

Evolution-associated spectra of the initial and final excited states obtained from a global fit using a two-state sequential ( →A B
k

) model, convoluted
with a Gaussian IRF. (Inset) Population of each state versus time. The fit identifies a time constant (1/k) of 240 ± 30 fs and an IRF of 88 ± 3 fs.
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Simulated difference spectra (excited state − ground state) of
the LMCT and d−d excited states are shown in Figure 5B,
along with the experimental difference spectrum of the initial
excited state determined by the global fit. The simulated LMCT
difference spectrum is an excellent match to the experimental
difference spectrum, with similar shape and peak-to-peak
spacing. On the other hand, the shape of the simulated d−d
difference spectrum is qualitatively very different from that of
the observed spectrum, most notably in the positive feature
from 60 to 70 eV that is absent in the experiment.
The 240 fs time constant for conversion of the initial LMCT

state to the final trap state is consistent with a reported ∼300 fs
(instrument-response-limited) decay to a long-lived state
observed with visible-light transient absorption spectroscopy
of α-Fe2O3 nanoparticles33 and thin films34 after 400 nm
excitation. This fast decay was assigned as hot electron
relaxation, band filling, and/or band gap shrinkage. The long-
lived state was attributed to trapping at either Fe3+ oxygen-
deficient defects or midgap d−d states. Excess electrons on Fe
atoms in α-Fe2O3 are thought to be stabilized by relaxation of
the surrounding O atoms to form a small polaron, which has
been observed with time-resolved Fe K-edge spectroscopy.35

Such a polaron induced by the LMCT transition is therefore
another possible identity of the long-lived state, as is trapping at
the film surface or at grain boundary defects. Such states cannot
be simulated using the semiempirical ligand field multiplet
approach discussed above, which assumes a ligand field with
well-defined symmetry. The long-lived trap state spectrum
(Figure 4C) does not match that predicted for a d−d excited
state (Figure 5B), suggesting that there is not a simple cascade
to a low-lying d−d state and that geometric distortions may

contribute to the final electronic state. Ab initio simula-
tions36−39 of the XUV spectra of possible trap states are
ongoing and will be the subject of a future publication.
In conclusion, we have demonstrated the power of high-

harmonic M2,3-edge transient absorption spectroscopy to
measure ultrafast photoinduced oxidation state changes in
solid-state transition-metal systems. The strong oscillator
strengths of the 3p → 3d transitions, electronic-state-specific
peak shapes, and ultrafast time resolution make this an
attractive alternative to synchrotron- and free-electron laser-
based sources. Charge-transfer processes are central to
photovoltaic and photocatalytic materials, and the ability to
observe the flow of electrons in real time using a tabletop
source will open up new possibilities in inorganic chemistry and
materials science.
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Details of film fabrication and characterization by electron
diffraction, UV−vis spectrum of the α-Fe2O3 film, and
description of the line width of simulated spectra. This material
is available free of charge via the Internet at http://pubs.acs.org.
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