CONTENTS

Preface			xi
Histor	y of C	Optical Comb Development	1
Introd	uction	n	12
1.	Time	e- and Frequency-Domain Pictures of a Mode-Locked	
		r	
		Introduction to mode-locked lasers	
	1.2	Frequency spectrum of a mode-locked laser	15
	1.3	Determining absolute optical frequencies with octave-	
		spanning spectra	17
	1.4	Femtosecond optical-frequency comb generator	19
	1.5	Time- and frequency-domain characterizations of f_0	22
2.		ision Optical Frequency Metrology Using	
	Fem	tosecond-Optical-Frequency Combs	24
	2.1	Measurement of absolute optical frequency	24
	2.2	Optical atomic clocks	27
	2.3	Optical frequency synthesizer	29
3.		mic and Molecular Spectroscopy	
	3.1	Precise, simultaneous determination of global atomic	
		structure and transition dynamics	30
	3.2	I_2 hyperfine interactions, optical frequency standards,	
		and clocks	33
4.	Carı	rier-Envelope Phase Coherence and Time-Domain	
	App	lications	38
	4.1	Timing synchronization of mode-locked lasers	39
	4.2	Phase lock between separate mode-locked lasers	40
		Extending phase-coherent femtosecond combs to the	
		mid-IR spectral region	41
	4.4	Femtosecond lasers and external optical cavities	42

	4.5 Coherent control via quantum interference between	10
	one- and two-photon absorption	
~	4.6 Extreme nonlinear optics	
5.	Summary	48
Femto	second Laser Development	54
1.	Introduction	54
2.	Pulse Dynamics	57
3.	Octave-Spanning Lasers	
	3.1 Octave-spanning laser using prisms	
	3.1.1 Design	65
	3.1.2 Carrier-envelope phase stabilization	
	3.1.3 Frequency-dependent spatial mode	67
	3.2 Prismless octave-spanning laser	70
	3.2.1 Design	70
	3.2.2 Carrier-envelope phase stabilization	72
4.	Carrier-Envelope Phase Dynamics	74
5.	Summary	.75
Gigah	ertz Femtosecond Lasers	
1.	Introduction	
2.	High-repetition-Rate Ring Oscillators	, 80
	2.1 Design criteria and basic resonator layout	, 80
	2.2 Standard Ti:sapphire lasers for 0.3–3.5 ghz repetition	
	rate	. 83
	2.3 Cr:forsterite oscillator at 433 mhz — extension to	
	telecommunication wavelengths	
3.	Broadband Ti:sapphire Oscillator	
	3.1 How does it work?	
	3.2 Application in frequency metrology and optical clocks	
4.	Conclusion	.93
Micro	structure Fiber and White-Light Generation	.97
1.	Introduction	
2.	Microstructure Fiber Fabrication	
	2.1 Preform fabrication	
	2.2 Fiber draw	
3.	Microstructure Fiber Types	
4.	Linear Optical Properties of Microstructure Fiber	
5.	Supercontinuum Generation	
	5.1 Nonlinear envelope equation	
	5.2 Spectral superbroadening	105

	5.3 Continuum instability and noise 107
6.	Conclusions 109
Ontio	al Comb Dynamics and Stabilization 112
-	al Comb Dynamics and Stabilization
1.	Introduction
2.	Comb Parameters and Their Connection to Intracavity
	Dispersion
	2.1 Carrier-envelope-offset phase and frequency in the time
	domain
_	2.2 The frequency comb and its dynamics 115
3.	Measurement of the CEO Frequency 117
	3.1 Heterodyning different laser harmonics 117
	3.2 Transfer oscillators and interval bisection 119
4.	CEO Phase Noise
	4.1 Noise densities and rms phase jitter 121
	4.2 CEO-phase noise of mode-locked oscillators 121
	4.3 Physical mechanisms behind CEO fluctuations
	4.4 Amplitude-to-phase conversion effects
5.	Stabilization of the CEO Frequency 126
	5.1 Controlling the CEO frequency of a laser oscillator 126
	5.2 Performance of CEO phase locks 127
	5.3 Limitations of CEO control 129
6.	Summary 130
	osecond Noncollinear Parametric Amplification and
	arrier-Envelope Phase Control
1.	
2.	Advances of Noncollinear-Phase-Matched Optical
	Parametric Conversion 135
3.	Principle of Parametric Amplification 138
	3.1 Noncollinear-optical-parametric amplification (NOPA) 140
4.	Signal-Wavelength-Insensitive Phase Matching 144
5.	Group-Velocity Matching in β -BaB ₂ O ₄
6.	Femtosecond NOPA Based on β -BaB ₂ O ₄
	6.1 Broadband amplification of a single-filament
	continuum 150
	6.2 Output properties 152
7.	Limitation of Pulse Width because of Pulse-Front Mismatch 155
	7.1 Tilted pump geometry for pulse front matching 157
8.	Chirp Property of Signal 159
	8.1 Compression to the sub-5 fs regime 160
9.	Second-Generation Noncollinear Parametric Amplifier 166

10.	Conclusions and Outlook 170	0
Ontica	l Frequency Measurement 170	6
1.	Frequency Combs	
2.	The Cesium D_1 Line and the Fine Structure Constant	
3.	Optical Synthesizers	
4.	Octave-Wide Frequency Combs	
5.	Application to Hydrogen	
6.	The First Optical Synthesizer	
7.	The Hydrogen Spectrometer	
8.	The 1 <i>S</i> –2 <i>S</i> Transition Frequency	
9.	Checking for Slow Drifts of a Natural Constant	
-	al Frequency Measurement Using Frequency	~
	Itiplication and Frequency Combs	
1.	Introduction	8
2.	Frequency Measurements by Repeated Harmonic Mixing	~
	(Frequency Chains)	
3.	Frequency Interval Division Approach	
4.	Optical Frequency Measurement Using Femtosecond Lasers 20	
5.	Optical Frequency Measurements	
	5.1 Ca frequency measurement	
	5.2 Yb ⁺ frequency measurement	2
6.	Test on the Precision of Frequency Measurement with	
	Frequency Combs	
	6.1 Transfer technique	
	6.2 Frequency ratio	
7.	Summary	20
Femto	osecond Lasers for Optical Clocks and Low Noise	
	equency Synthesis	25
1.	Introduction	
	1.1 Basic components of optical clocks	
	1.2 Uses of optical atomic clocks	
	1.3 A brief history of the development of optical clocks	

	<i>2</i> .1	Single for references	
	2.2	Neutral atom references	234
	2.3	Molecular references	236
	2.4	Local oscillator requirements	238
3.		tosecond Laser-Based Optical Frequency Synthesizers	

	3.1 Considerations in designing a femtosecond comb for
	use in an optical clock
	3.2 Frequency synthesis with a femtosecond laser
	3.2.1 methods of control
	3.3 Testing the synthesizer
	3.4 Alternatives to Ti:sapphire
4.	Signal Transmission and Cross-Linking
Gener	ation And Measurement of Intense Phase-Controlled Few-
	le Laser Pulses
1.	Introduction
1. 2.	Carrier-Envelope Phase of a Mode-Locked Pulse Train and
Δ.	a Single Attosecond Pulse
3.	Measurement of Phase Variations
5.	3.1 Detecting carrier-envelope drift of oscillator pulses
	3.2 Detecting carrier-envelope drift of amplified pulses
	3.3 Measuring the phase difference by linear interferometry273
4.	Phase Jitter of the White-Light Continuum
ч.	4.1 Phase lock between the input pulse and the white-light
	continuum
	4.2 Phase noise resulting from intensity fluctuations
5.	Concepts of Phase-Controlled Amplification
<i>5</i> . 6.	Phase-Stabilized 5 fs, 0.1 TW-Amplified System
0. 7.	Control of Light Field Oscillations
8.	Carrier-Envelope-Phase Measurement without Ambiguity 296
9.	Gouy Phase Shift for Few-Cycle Laser Pulses
). 10.	Conclusions and Outlook
10.	Conclusions and Outlook
Quant	um Control of High-Order Harmonic Generation
1.	The Physics of High-Order-Harmonic Generation
2.	"Single-Atom" Effects in High-Order-Harmonic
	Generation: Manipulation and Coherent Control
3.	Phase Matching of High-Harmonic Generation
4.	Quasi-Phase Matching of High-Harmonic Generation
5.	Conclusion
4 m -= 1º -	actions of Lilturfast Lagons
	cations of Ultrafast Lasers
l. 2	Mode Locking
2.	Group and Phase Velocities in Ring Lasers
3.	Ring Lasers as Sensors
	3.1 Case (1): nonreciprocal effects

	3.2 Case (2): reciprocal effects that can be synchronized to	
	the cavity repetition rate	341
	3.3 Case (3): reciprocal effects, slow motions	342
4.	Intracavity-Pumped Optical Parametric Oscillator as a	
	Mode-Locked Ring Laser	343
5.	Stabilization of the Frequency Comb	345
	5.1 Locking femtosecond pulses to stable reference cavities	346
	5.2 Characterization of femtosecond comb stability	348
6.	Dispersion Measurement Applications	349
	6.1 Cavity characterization	349
	6.2 Atmospheric dispersion	351
7.	Ring Laser Stabilization	352
Author	addresses	355
Index		359